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Abstract
For the game of Cops and Robbers, it is known that in 1-cop-win graphs, the cop can capture
the robber in O(n) time, and that there exist graphs in which this capture time is tight. When
k ≥ 2, a simple counting argument shows that in k-cop-win graphs, the capture time is at most
O(nk+1), however, no non-trivial lower bounds were previously known; indeed, in their 2011
book, Bonato and Nowakowski ask whether this upper bound can be improved. In this paper,
the question of Bonato and Nowakowski is answered on the negative, proving that the O(nk+1)
bound is asymptotically tight for any constant k ≥ 2. This yields a surprising gap in the capture
time complexities between the 1-cop and the 2-cop cases.
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1 Introduction

The game of Cops and Robbers is a perfect information two-player zero-sum game played
on an undirected n-vertex graph G = (V,E), where the first player is identified with k ≥ 1
cops, indexed by the integers 0, . . . , k − 1, and the second player is identified with a single
robber. In round 0, the cop player chooses the initial (not necessarily distinct) cop locations
c0(0), . . . , ck−1(0) ∈ V and following that, the robber player chooses the initial robber location
r(0) ∈ V . Then, in round t = 1, 2, . . . , the cop player chooses the next (not necessarily
distinct) cop locations c0(t), . . . , ck−1(t) ∈ V under the constraint that ci(t) ∈ N +(ci(t− 1))
for every 0 ≤ i ≤ k − 1, where N +(v) denotes the neighborhood of vertex v in G including v
itself; following that, the robber player chooses the next robber location r(t) ∈ N +(r(t− 1)).

The goal of the cop player is to ensure that r(t− 1) ∈ {c0(t), . . . , ck−1(t)} for some finite
round t, referred to as capturing the robber. Conversely, the goal of the robber player is to
avoid being captured indefinitely. Graph G is said to be a k-cop-win graph if it admits a cop
strategy S that guarantees capture. The capture time of S is defined to be the maximum
number of rounds until capture is achieved, assuming optimal play by the robber. The
capture time of graph G is then defined to be the minimum capture time of any cop strategy
over G (notice that in this definition, it is assumed that k is clear from the context).

Bonato et al. [7] studied the capture time in single cop games and proved that every 1-cop-
win graph admits a cop strategy that captures the robber in O(n) rounds. By considering
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a path, it is straightforward to verify that this bound is asymptotically tight. A simple
configuration-counting argument (see, e.g., [5, 7]) shows that for any constant k ≥ 2, if G
is a k-cop-win graph, then its capture time is O(nk+1). One may suspect that this simple
upper bound can be improved as it does not generalize the tight O(n) bound in the 1-cop
setting. Answering an open question from Bonato and Nowakowski’s book [9, Chapter 8],
the main result of our paper is that perhaps surprisingly, this is not the case.

I Theorem 1. There exist a universal positive constant α such that for every k ≥ 2, there
exists an infinite family G of k-cop-win graphs such that the capture time of any n-vertex
graph G ∈ G is at least (n/ (αk))k+1. Moreover, the smallest graph in G has n = O(k2)
vertices.

Notice that for constant k ≥ 2, this theorem provides an (existential) Ω(nk+1) lower
bound on the capture time in k-cop-win graphs. Furthermore, it can be extended to non-
constant values of k = k(n) up to the conjectured maximum of k(n) = Θ(

√
n) (see the

related literature discussion), stating that in some k-cop-win graphs, the capture time is
exponential in k and stretched exponential in n.

2 Related Literature.

The Cops and Robbers game with a single cop was introduced by Quilliot [21] and inde-
pendently by Nowakowski and Winkler [19] who also provided a full characterization of
1-cop-win graphs. This was generalized to the multiple cop setting by Aigner and Fromme [2]
who defined the cop number of graph G to be the minimum number of cops that guarantees
that the robber can be captured (that is, the minimum k for which G is a k-cop-win graph).
Cast in this terminology, Aigner and Fromme proved that the cop number of any planar
graph is at most 3. An upper bound of O(r2) on the cop number of graphs excluding Kr

as minor was established by Andreae [4]; this result lies at the heart of the recent graph
decomposition technique of Abraham et al. [1] for the same family of graphs. For general
graphs, the maximum possible cop number is still an open question: the famous Meyniel’s
Conjecture [14, 6] states that this number is Θ(

√
n), where the state of the art is that it

is bounded between Ω(
√
n) [20] and O(n/2(1−o(1))

√
log n) [17]. Several characterizations of

graphs with cop number k are presented in [11].
As mentioned earlier, Bonato et al. [7] established a tight linear bound on the capture time

in 1-cop-win graphs. For k > 1 cops, non-trivial bounds on the capture time in k-cop-win
graphs were obtained mainly in the context of special graph classes, e.g., hypercubes [8] and
Cartesian products of trees [18]. To the best of our knowledge, the linear lower bound of [7]
is the (asymptotically) best previously known lower bound on the capture time in any class
of graphs for any k ≥ 1.

The capture time has been studied also for variants of the classic Cops and Robbers
game. For example, the multiple robber setting was investigated by Förster et al. [13] who
showed that the capture time may increase linearly with the number of robbers. Kehagias
and Pralat [16] analyzed the expected capture time of a drunk robber whose strategy is
simply a random walk on the graph. For a broader overview of the results on the game of
Cops and Robbers, the reader is referred to the book of Bonato and Nowakowski [9] and
recent surveys [3, 10, 12, 15].
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Techniques.

Our lower bound proof relies on designing a bad (from the perspective of the cops) graph
G that consists of several components, of which each has a different role (see the overview
in Section 3.1). Here, we provide a glimpse into this design from an alternative (strictly
informal and somewhat inaccurate) angle that may shed additional light on the techniques
we use. At the heart of our construction lies the concept of forcing each entity (cop or
robber) to follow a designated (non-simple) path in G, where in the scope of this discussion,
we assume that every vertex in G admits a self-loop so that these paths may include null
moves. Specifically, graph G contains equally long paths χ0, . . . , χk−1 and ρ, referred to in
this discussion as the canonical paths of the cops and robber, respectively. The best strategy
of the cop player is then to assign one cop, say Cop i, to each path χi so that ci(t) = χi(t)
for every t; in response to that, the best strategy of the robber is to play r(t) = ρ(t). This
induces a sequence σ of (distinct) configurations and the analysis is completed by showing
that σ is sufficiently long and that the robber is captured only at its end.

The most challenging part in the design of such canonical paths is to prove that the
aforementioned strategies are indeed optimal. To that end, we show that if the robber
deviates from her canonical path at time t, then she is either captured immediately or the
game shifts forward to a more advanced configuration σ(t′) for some t′ > t. Conversely, if
some cop deviates from her canonical path at time t, then the game shifts backwards to a
less advanced configuration σ(t′) for some t′ < t. The main feature in the latter argument is
an exit component X ; if the robber manages to reach X , then she can force the game to shift
backwards to the beginning, i.e., to σ(0). This threat is the key ingredient in the analysis of
the cop strategy: we construct the cops’ components so that they must strictly follow their
canonical paths in order to cover all exits in X .

Technical Remarks.

We call the set {c0(t), c1(t), . . . , ck−1(t)}, for some t, a cop combination. We say that Cop i
covers node v at time t if v ∈ N +(ci(t)). We may omit t if it is clear from the context. We
extend this covering notion to more than one cop and more than one node, e.g., we say that
the cops cover a set of nodes {v1, v2, . . . , vj} if each of the vi is covered by at least one of the
cops. Also, we say that a node is covered, resp. uncovered, if at least one cop covers it, resp.
if no cop covers it.

Due to the verbosity of our construction and to the space limitations, we defer all the
proofs to Appendix A and the discussion of the case of more than 2 cops to Appendix B.

3 The Case of 2 Cops

3.1 Overview
In this section, we construct a family {Gn̂}n̂≥3,n̂≡0 (mod 3) of 2-cop-win graphs, where
n̂ ∈ Θ(n).1 Then, we show that the capture time for 2 cops in Gn̂ is Ω(n3) by giving an
explicit strategy for the robber that achieves this capture time against any cop strategy.
We conclude by presenting a cop strategy for 2 cops that achieves a capture time of O(n3)
against any robber strategy, which also serves as a proof that the graphs are indeed 2-cop-win.
The other reason for explicitly specifying such a cop strategy (which must exist in 2-cop-win

1 Throughout the paper, we denote the number of nodes of a graph by n.
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Figure 1 The graph Gn̂ with its different components.

graphs, by the aforementioned simple configuration-counting argument) is that it forms the
basis for a generalized cop strategy in the case of k ≥ 2 cops. For a simplified overview of
our graph construction, please refer to Figure 1.

The general idea behind the graph construction and the specified strategies for the cops
and the robber is as follows: Our graph Gn̂ contains a U component, where the robber
cannot be captured, simply because each node in U has enough neighbors so that 2 cops
cannot cover all of these neighbors simultaneously. Moreover, the robber can always stay in
U (because each node in U has enough neighbors in U) except if the cops go to two special
nodes S0 and S1 which together cover all of U .

When the robber is thereby flushed out of U , she has to go to the R component of the
graph. Note that the nodes of R induce a simple path on Gn̂ and that after being flushed
out of U , the robber is located in the middle of this path. Now, the cops will continuously
prevent the robber from escaping R and slowly force the robber to one end of the path
where they will finally capture her. In order for this to take a long time, each node in R is
connected to a set of so-called exits which are nodes that together form the X component
of the graph. If the robber should manage to get to some exit, then she will be able to go
back to her preferred U component, unless the cops go again to the special S0 and S1 nodes,
in which case the robber can go back to the middle of the R path and thereby revert to a
previous configuration. Hence, in order to capture the robber, the cops have to continuously
cover these exits.

Unfortunately for the cops, there are only a few cop combinations that actually cover
all exits of a node in R. Moreover, only some of these cop combinations are proper in the
sense that they also prevent the robber from moving back on the R path towards the middle
which is essential for the cops in order to capture the robber. These proper exit-covering
cop combinations are described in the following. For an illustration of the underlying graph
structure, we refer to Figure 2.

One cop, say Cop 0, has to be in the C component of Gn̂ and the other one (Cop 1) in
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Figure 2 A part of the structure of Gn̂ around the X nodes. A C node and a D node together
cover the exits of an R node if and only if they have the same color.

the D component. The nodes in the C (resp., D) component induce a simple cycle on Gn̂.
Assume for simplicity that the number of nodes in these two cycles are both multiples of 3.
Now, we can imagine that the nodes in the C cycle are consecutively colored 0, 1, 2, 0, 1, 2, . . .
and that the nodes in the D cycle are colored 0, . . . , 0, 1, . . . , 1, 2, . . . , 2, resulting in three
equally-sized monochromatic blocks. Now, the nodes in C and D are connected to the nodes
in X in so that Cop 0 (in C) and Cop 1 (in D) cover all exits of an R node if and only if the
nodes the two cops are occupying have the same color. Thus, if Cop 0 wants to move, e.g.,
clockwise, in her C cycle, then between any two consecutive steps, she has to wait for Cop 1
to travel roughly a third of her D cycle.

Similarly, using an independent color pallet, we color the nodes along the R path
3, 4, 5, 3, 4, 5, . . . and color the nodes along the C cycle 3, . . . , 3, 4, . . . , 4, 5, . . . , 5. To prevent
the robber from moving back towards the middle of her R path, we construct Gn̂ so that
a C node covers an R node if and only if they do not have the same color. Thus, if Cop
0 proceeds along her C cycle, then as soon as the color of the C node changes, the robber
is forced to move one step forward along the R path. This accounts for Cop 0 traversing
roughly a third of the C cycle for each step of the robber along the R path. The direction of
the robber’s movement (towards either end of the R path) is determined by the direction
(clockwise or counterclockwise) of the movement of Cop 0 along the C cycle. We refer to
Figure 3 for an illustration of how the robber is pushed along the R by a cop residing in C.

Now, we design the graph Gn̂ so that the C, D, and R components consist of roughly n̂
nodes. Thus, the robber takes Ω(n̂) steps until she is captured, for each of her steps Cop 0
has to take Ω(n̂) steps, and for each step of Cop 0, Cop 1 has to take Ω(n̂) steps, resulting
in a total capture time of Ω(n̂3). Since every component of the Gn̂ except R, C and D is
of constant size, n̂ is linear in the number n of nodes. Hence, we obtain a capture time of

ICALP 2017
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R−1 R0 R1 R2R−2

· · · · · ·

C3

C0

C1
C2

C4

C5

C8
C7

C6

Figure 3 The edge structure between the C nodes and the R nodes. If a cop is in a C node and
the robber in an R node, then the robber has to make sure that that these two nodes have the same
color in order to avoid capture in the next move. By circling clockwise in C, the cop can force the
robber towards one end of the R path, by circling counterclockwise towards the other.

Ω(n3) for the graph class {Gn̂}n̂≥3,n̂≡0 (mod 3).

Before proceeding to the exact details of the graph construction, four remarks are in order.
Firstly, when the robber is flushed out of U to R, there is an intermediate step between
leaving U and arriving in R for technical reasons: Flushed out of U , the robber actually has
to go to a graph component called A. Then, one cop moves to another graph component
denoted T from which she covers all of A while ensuring that all nodes in U the robber could
go to are covered. Thus, the robber is flushed out of A and is forced to go to R so that we
can proceed as explained above.

Secondly, since Cop 0 has to be able to cover nodes from R when she is in C, there have
to be edges between R and C. To prevent the robber from escaping R by going to a node in
C via one of these edges, we augment the graph with a special P node. If, after the robber
indeed moves to the C component, Cop 1 moves to P and Cop 0 moves to S0, then together
they cover all C nodes and all their neighbors, ensuring that the robber will be captured in
the next round.

Thirdly, the robber does not have to start in U , but in fact it is best for her if she does
(in the sense of increasing the capture time against the best cop strategy), provided that she
cannot be captured immediately. In turn, this means that the cops should start in S0 and S1
in order to force the robber to start elsewhere. Even if the robber starts elsewhere, the cop
strategy explained above forces the robber to the R component. Moreover, the robber can
simply start in the middle of the R path and the cops cannot avoid having to go through
the exit-covering routine explained above.

Fourthly, while the cop strategy explained above chases the robber from the middle of
the R path to one of its ends, for simplicity, we will formally present a slightly simplified
version where the end of the path the robber is chased to is fixed in advance (so the robber
will be chased from one end of the path to the other end in the worst case for the cops).
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Figure 4 The construction of U . On the left side, we see the 11 × 11 grid constituting E and
three example lines L0,0, L0,1 and L2,0 from L. On the right side, we see the nodes of the bipartite
graph GE,L where the left-hand column of nodes constitutes (a part of) one side of the bipartition,
L, and the right-hand grid the other side, E . The edges between E and L are determined by the
incidence relation of the nodes and lines in the left-hand 11× 11 grid.

3.2 The Graph Construction
As explained above, the graphs Gn̂ we are about to construct contain a component U in
which the robber cannot be captured and from which the robber can only be flushed out by
a specific cop combination outside of U . Hence, the subgraph of any Gn̂ induced by (the
respective) U cannot be a 2-cop-win graph. As we want to generalize our graph construction
to the case of more than 2 cops, we thus need a way to construct a graph where k cops
cannot capture the robber. For this, inspired by the use of projective planes for constructing
graphs with high cop numbers in [20], we will use incidence graphs of objects resembling
affine planes. An explicit construction (for the case of 2 cops) is given in the following. For
an illustration of the construction, we refer to Figure 4.

Let E = {Ei,j | 0 ≤ i ≤ 10 ∧ 0 ≤ j ≤ 10} be a set of elements which we can imagine as
arrayed in an 11× 11 grid. Let L = {Li,j | 0 ≤ i ≤ 9 ∧ 0 ≤ j ≤ 10} be a set of lines where
each Li,j is defined as Li,j = {Eh,h(i+1)+j (mod 11) | 0 ≤ h ≤ 10}. Thus, each line Li,j may
be considered as a “line modulo 11” in our grid which goes through the element E0,j and
whose slope is determined by the parameter i (or more precisely i+ 1).

Now consider the incidence graph GE,L for E and L which is defined as follows: The
nodes of GE,L are exactly the elements and lines defined above, i.e., V (GE,L) = E ∪ L, and
there is an edge between some node Ei,j and some node Li′,j′ if and only if Ei,j is contained
in the set Li′,j′ (i.e., if and only if Ei,j lies on the line Li′,j′). There are no other edges, hence
GE,L is bipartite where one side of the bipartition is given by E and the other side by L.

I Lemma 2. In GE,L, any two nodes in E have at most one common neighbor in L. Also,
any two nodes in L have at most one common neighbor in E.

I Lemma 3. Let i ∈ {0, . . . , 10} be fixed. Any node from L has exactly one neighbor in GE,L
of the form Ei,j and exactly one neighbor in GE,L of the form Ej,i.

I Lemma 4. Let i ∈ {0, . . . , 9} be fixed. Any node from E has exactly one neighbor in GE,L
of the form Li,j.

For the construction of Gn̂, we will borrow nodes from GE,L and we will assume that the
borrowed nodes take along their relationship concerning edges between them, i.e., there is an

ICALP 2017
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edge between two borrowed nodes in our graph construction if and only if there is an edge
between those two nodes in GE,L.

We construct Gn̂ as given in the following. The vertex set of Gn̂ is defined as the (disjoint)
union of smaller vertex sets that constitute different parts of the graph with different purposes:

V (Gn̂) = E ∪ L∗ ∪ S ∪ A ∪ T ∪R ∪ C ∪ D ∪ {P} ∪ X , where
L∗ = {Li,j | 0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 10}
S = {S0,S1}
A = {A0, . . . ,A3}
T = {T0, . . . , T3}
R = {R−n̂, . . . ,Rn̂}
C = {C0, . . . , Cn̂−1}
D = {D0, . . . ,Dn̂−1}
X = X 0 ∪ X 1 ∪ X 2

X j = {X j
0 , . . . ,X

j
5 } for all 0 ≤ j ≤ 2

The edges of Gn̂ are specified in Table 1. Moreover, we set U = E ∪ L∗. Furthermore,
we call the nodes in X exits, and for each node Ri ∈ R we call the nodes from X , that are
connected to Ri, the exits of Ri.

The node subsets E and L∗ are borrowed from GE,L, but also the (renamed) nodes in X
are borrowed from GE,L: We consider X as a subset of L \ L∗. To ensure that no node in E
covers too many exits of some R node, the exits of any R node are borrowed (disjointly)
from a set of L \ L∗ nodes of the same slope. More precisely,

X 0 is borrowed from {L4,j | 0 ≤ j ≤ 10} ,
X 1 is borrowed from {L5,j | 0 ≤ j ≤ 10} ,
X 2 is borrowed from {L6,j | 0 ≤ j ≤ 10} .

As long as the above conditions are met, we do not care about the explicit choice of X as a
subset of L \ L∗. We obtain the following corollary from Lemma 2:

I Corollary 5. Any two nodes in E have at most one common neighbor in L∗. Any two
nodes in L∗ ∪ X have at most one common neighbor in E.

3.3 Observations
Before specifying asymptotically best strategies for the robber and the cops in Gn̂, we gather
some useful observations about the structure of Gn̂. In particular, we examine which cop
combinations cover certain neighbors of certain nodes. We start by showing that the cops
have to be in S0 and S1 in order to flush the robber out of U .

I Lemma 6. Consider any u ∈ U . The only cop combination not containing u that covers
all neighbors of u in U is {S0,S1}.

We proceed by showing that if the robber has been flushed out of U to some node Ai,
then the cops can only make progress by going to {S0, Ti} because otherwise the robber can
go back to U (or there is no progress if the cops simply stay in {S0,S1}).
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Node Neighbors
Ei,j L∗ nodes as determined by GE,L

Si (mod 2)
Aj (mod 4)
Tj (mod 4) if i (mod 2) = 1
X nodes as determined by GE,L

Li,j E nodes as determined by GE,L

Si (mod 2)
Ai (mod 4)
Ti (mod 4)

Node Neighbors
Ri Aj for all j if i = 0

Rj for j = i− 1 and j = i+ 1
Cj for all 0 ≤ j ≤ n̂/3 if i (mod 3) = 0
Cj for all n̂/3 ≤ j ≤ 2n̂/3 if i (mod 3) = 1
C0 and Cj for all 2n̂/3 ≤ j ≤ n̂− 1 if i (mod 3) = 2
P
X j

h where j = i (mod 3) and h ∈ {0, 1, 2, 3, 4, 5}
Ci S0

Rj for all j (mod 3) = 0 if 0 ≤ i ≤ n̂/3
Rj for all j (mod 3) = 1 if n̂/3 ≤ i ≤ 2n̂/3
Rj for all j (mod 3) = 2 if i = 0 or 2n̂/3 ≤ i ≤ n̂− 1
Cj for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂)
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 1, 3} if i (mod 3) = 0
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 2, 3} if i (mod 3) = 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 2, 3} if i (mod 3) = 2
Di Aj for all j

Tj for all j
Dj for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂)
P
X j

h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if 0 ≤ i ≤ n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 4, 5} if n̂/3 ≤ i ≤ 2n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 4, 5} if 2n̂/3 ≤ i ≤ n̂− 1
P Ti for all i

Ri for all i
Di for all i
X j

i where j ∈ {0, 1, 2} and i = 3

Node Neighbors
S0 Ci for all i

X j
i , where j ∈ {0, 1, 2} and i ∈ {0, 1, 2}

every Ei,j with i (mod 2) = 0
every Li,j with i (mod 2) = 0

S1 Ti for all i
X j

i , where j ∈ {0, 1, 2} and i ∈ {3, 4, 5}
every Ei,j with i (mod 2) = 1
every Li,j with i (mod 2) = 1

Ai Tj for all j
R0

Dj for all j
Ej,h for all h (mod 4) = i

Lj,h for all j (mod 4) = i

Ti S1

Aj for all j
Tj for all j 6= i

Dj for all j
P
X j

h , where j ∈ {0, 1, 2} and h ∈ {3, 4, 5}
Ej,h for all j (mod 2) = 1 and h (mod 4) = i

Lj,h for all j (mod 4) = i

Table 1 A listing of the edges of Gn̂. In each block, the nodes listed in the right column are the
neighboring nodes of the node listed in the left column. For simplicity, we omit a separate block for
specifying the neighbors of the X nodes. They can be inferred from the other blocks. The X nodes
do not have any edges connecting them to each other since they are borrowed from the L part of
GE,L.

I Lemma 7. Consider any Ai. The only cop combinations not containing Ai that cover all
neighbors of Ai in U are {S0,S1} and {S0, Ti}.

The following lemma shows that if the cops allow the robber to go to an exit of some R
node, then they have to go back to {S0,S1} in order to prevent the robber from going to U .

I Lemma 8. Consider any X j
i . The only cop combination not containing X j

i that covers all
neighbors of X j

i in U is {S0,S1}.

As Lemma 8 already indicates, the cops do not want the robber to be able to go to an
exit from an R node. The next lemma characterizes the cop combinations from where they
can prevent the robber from doing that.

I Lemma 9. Consider any Ri. The only cop combinations not containing any Rj with j ≡ i
(mod 3) that cover all exits of Ri are {S0,S1}, {S0, Tj} for any j, and {Cj ,Dh} for any pair
(j, h) satisfying one of the following three conditions:
1. j (mod 3) = 0 and 0 ≤ h ≤ n̂/3− 1,
2. j (mod 3) = 1 and n̂/3 ≤ h ≤ 2n̂/3− 1,
3. j (mod 3) = 2 and 2n̂/3 ≤ h ≤ n̂− 1.
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{c0(t), c1(t)} r(t− 1) r(t)

6= {S0,S1} some node in U some uncovered node in U
{S0,S1} some node in U some node in A

{S0,S1} or {S0, Ti} Ai R0

6= {S0,S1} and 6= {S0, Ti} Ai some uncovered node in U
not covering all exits of Ri Ri some uncovered exit of Ri

covering all exits of Ri Ri the uncovered node from {Ri−1,Ri,Ri+1}
with smallest absolute index; if all are

covered, stay in Ri

6= {S0,S1} X j
i some uncovered node in U

{S0,S1} X j
i some node from {R−1,R0,R1}

Table 2 The robber’s strategy

Observe that the cop combinations from Lemma 9 are independent of the choice of the
considered Ri which implies that these cop combinations cover all nodes in X . We call such
a cop combination exit-blocking. Furthermore, we call an exit-blocking cop combination
proper if it does not contain a node from S (i.e., it consists of a node from C and a node
from D). Lastly, we call a proper exit-blocking cop combination {Ci,Dj} forcing if there
exist h, h′ ∈ {−1, 0, 1}, h 6= h′, such that the cops cover all Rh (mod 3) and all Rh′ (mod 3).
A close look at the construction of Gn̂ shows that a proper exit-blocking cop combination
{Ci,Dj} is forcing if and only if i ∈ {0, n̂/3, 2n̂/3}.

Proper exit-blocking cop combinations prevent the robber from going back (too much)
towards the middle of the R path since they contain a C node which by its nature is connected
to every third R node. Thus, in order to be able to chase the robber towards one end of the
R path, the cops have to stay in proper exit-blocking cop combinations.

The C node in a forcing proper exit-covering cop combination covers more R nodes than
the C node in a usual proper exit-covering cop combination and thereby forces the robber to
move one step towards the end of her R path. In order to chase the robber another step, the
cops have to go to a forcing proper exit-covering cop combination containing a different C
node. The following lemma shows a lower bound on the time it takes the cops to go from
one forcing proper exit-covering cop combination to another with a different C node, while
using only proper exit-covering cop combinations on the way. Refer to Figures 2 and 3 for
illustrations of the underlying idea.

I Lemma 10. Let ({Ci,Dj} = {c0(t), c1(t)}, {c0(t+ 1), c1(t+ 1)}, . . . , {c0(t+h), c1(t+h)} =
{Ci′ ,Dj′}) be a sequence of proper exit-blocking cop combinations describing the combined
movement of the two cops from time t to time t+ h. If {Ci,Dj} and {Ci′ ,Dj′} are forcing
and i 6= i′, then h ≥ n̂/3 · (n̂/3− 1) ∈ Ω(n̂2).

3.4 The Robber’s Strategy
Here, we explicitly specify a strategy for the robber that ensures that 2 cops need time Ω(n3)
to capture the robber in Gn̂:

If the cops are in S0 and S1 in round 0, then the robber starts in R0, otherwise the robber
starts in some node in U that is not covered by any of the cops (which exists by Lemma 6).
Depending on where the cops are, the robber moves as specified in Table 2 (as long as she is
not captured yet).

We show now that the specified strategy is well-defined, i.e., that the robber can perform
any step in the strategy and that no other situations than the specified ones can occur if the
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r(t− 1) (c0(t− 1), c1(t− 1)) (c0(t), c1(t))

Ai (S0,S1) (S0, Ti)
6= Ai for all i (S0,S1) (S0, Tj) for some j
arbitrary (S0, Ti) (C0,D0)

6= Ch for all h (Ci,Dj)
(
Ci+1 (mod n̂),Dj+1 (mod n̂)

)
if this covers all nodes in X(

Ci,Dj+1 (mod n̂)
)
otherwise

Ch (Ci,Dj) (S0,P)
Table 3 The cops’ strategy

robber follows the strategy. For the first part, we go through the table line by line:
By Lemma 6, if the robber is in some node u ∈ U , then she can always go to some

uncovered node in U , provided the cops are not in S0 and S1. She can also go from u to
some node in A since any node in U has some node in A as a neighbor, by the construction
of Gn̂. Similarly, the robber can go from any node in A to R0. By Lemma 7, if the robber is
in some node Ai, then she can always go to some uncovered node in U , provided the cops
are not in S0 and S1 or in S0 and Ti. The instructions where to go to from Ri are trivially
satisfiable. From X j

i , the robber can always go to some uncovered node in U if the cops are
not in S0 and S1, by Lemma 8. She can also go to either R−1, R0 or R1 from X j

i since each
X j

i is connected to exactly one of those three R nodes, by the construction of Gn̂.
Moreover since the robber starts in a node in U or R, Table 2 covers all situations where

the robber is in some node in U , A, R or X , and each instruction ends with the robber being
in one of those nodes, the presented strategy specifies what the robber has to do for every
possibly occurring situation.

3.5 The Cops’ Strategy
Now, we explicitly specify a strategy for the cops that ensures that the robber is captured in
time O(n3) in Gn̂:

Cop 0 starts in S0 and Cop 1 starts in S1 in round 0. Depending on where the robber is,
the cops move as specified in Table 3. There is one exception however: If a cop can capture
the robber immediately, then she does so, overriding any possible instruction from the table.

We show now that the specified strategy is well-defined, i.e., that the cops can actually
perform any step in the strategy and that no other situations than the specified ones can
actually occur2 if the cops follow the strategy:

The construction of Gn̂ ensures that the cops can actually move from the cop combinations
at time t− 1 given in Table 3 to the cop combinations at time t. Since the cops start in S0
and S1, the only thing that is left to show is that from (S0,P) (which is the only output
combination that is not dealt with on the input side) the cops can capture the robber at
time t+ 1, provided that the robber is in some Ch at time t− 1. For that, it is sufficient to
observe that any neighbor of Ch, and Ch itself, is covered by S0 or P.

3.6 A Lower Bound for the Robber’s Strategy
Here, we show that the strategy for the robber specified in Table 2 ensures that the cops
need time Ω(n3) to capture the robber in Gn̂. For convenience, we assume throughout the

2 More precisely, if a situation occurs that is not specified in Table 3, then the cops can capture the
robber immediately.
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following lower bound considerations that if a cop can capture the robber immediately, then
she does so. This certainly cannot worsen any strategy the cops follow.

We start by observing that the set of R nodes can be partitioned into three roughly
equally-sized sets such that the R nodes in each such set have exactly the same exits. As the
following lemma shows, if the robber is in an R node, then she does not need to worry about
a cop being in another R node that has (and therefore covers) the same exits, since such a
situation cannot occur if the robber follows the specified strategy.

We proceed by determining the nodes the robber can be captured in. Then, using Lemma
11 and Lemma 12, we give a lower bound on the capture time of Gn̂.

I Lemma 11. If the robber follows the strategy specified in Section 3.4, then the following
holds: If the robber is in some node Ri at time t and is not captured at time t + 1, then
neither of the 2 cops can be in some node Rj with j ≡ i (mod 3) at time t+ 1.

I Lemma 12. If the robber follows the strategy specified in Section 3.4, then she can only be
captured in Rn̂ or R−n̂.

I Lemma 13. If the robber follows the strategy specified in Section 3.4, then 2 cops need
time Ω(n̂3) to capture the robber in Gn̂.

3.7 An Upper Bound for the Cops’ Strategy
While the aim of this work is a lower bound, we need to show that 2 cops can actually
capture the robber in Gn̂, in order to use Gn̂ as a lower bound graph for the capture time
for 2 cops in 2-cop-win graphs. We start by showing that from a proper exit-blocking cop
combination the cops can always go to another proper exit-blocking cop combination by
doing one of the following: Both cops move to the next node in their respective cycle or only
the cop in the D cycle moves to the next node.

I Lemma 14. If (Ci,Dj) is an exit-blocking cop combination, then it holds that at least one
of (Ci,Dj+1 (mod n̂)) and (Ci+1 (mod n̂),Dj+1 (mod n̂)) is an exit-blocking cop combination.

The following lemma shows that, once the cops reach C0 and D0, the robber cannot ever
leave R without being captured in the next two moves. Then, using Lemma 14 and Lemma
15, we give an upper bound on the capture time of Gn̂.

I Lemma 15. Let r(t) ∈ R and (c0(t+ 1), c1(t+ 1)) = (C0,D0) for some point in time t. If
the robber leaves R at some later point in time t′, i.e., if r(t′) /∈ R for some t′ > t, then the
robber will be captured at time t′′ ≤ t′ + 2, provided the two cops follow the strategy specified
in Section 3.5.

I Lemma 16. If the two cops follow the strategy specified in Section 3.5, then they capture
the robber in time O(n̂3) in Gn̂.

Finally, by Lemma 13 we get that for the case of 2 cops, the capture time of the graph
family {Gn̂}n̂≥3,n̂≡0 (mod 3) is Ω(n̂3) ⊆ Ω(n3) and by Lemma 16 we get that every graph in
{Gn̂}n̂≥3,n̂≡0 (mod 3) is 2-cop-win. Together, these lemmas yield Theorem 1 for 2 cops.

The Case of k > 2.

Our graph construction and the corresponding lower bound proofs follow closely the design
of the case of two cops. To accommodate a third cop, Cop 2, we essentially copy the D
component and ensure, that for every step of Cop 1, Cop 2 has to perform Ω(n̂) steps. For
the case of k > 3 cops, we simply apply this trick inductively. Due to space limitations, we
defer the detailed discussion of the case of k > 2 cops to Appendix B.
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A Deferred Proofs

Proof of Lemma 2. Assume for a contradiction that there are two different nodes Ei,j and
Ei′,j′ that have two different common neighbors, say Lh,q and Lh′,q′ . By the definitions
of the nodes in L and GE,L, it follows that j = i(h + 1) + q (mod 11), j = i(h′ + 1) + q′

(mod 11), j′ = i′(h + 1) + q (mod 11) and j′ = i′(h′ + 1) + q′ (mod 11). We obtain
(i′− i)(h+ 1) ≡ j′− j ≡ (i′− i)(h′+ 1) (mod 11) which implies (i′− i)(h′−h) ≡ 0 (mod 11).
Since 11 is prime, it follows that i′ = i or h′ = h.

If h′ = h, then our initial equations imply that also q′ = q which contradicts the fact that
Lh,q and Lh′,q′ are different nodes. If i′ = i, then our initial equations imply that also j′ = j

which contradicts the fact that Ei,j and Ei′,j′ are different nodes. The obtained contradiction
shows both statements given in the lemma. J

Proof of Lemma 3. Let Lq,q′ ∈ L. By the definition of Lq,q′ , the neighbors of Lq,q′ in GE,L
are exactly the nodes from {Eh,h(q+1)+q′ (mod 11) | 0 ≤ h ≤ 10}. The first lemma statement
follows immediately.

For the second statement, assume for a contradiction that h(q + 1) + q′ ≡ h′(q + 1) + q′

(mod 11) for some 0 ≤ h, h′ ≤ 10 satisfying h 6= h′. It follows that (h′ − h)(q + 1) ≡ 0
(mod 11), and since 11 is prime and h 6= h′, we obtain (q + 1) ≡ 0 (mod 11). But Lq,q′ ∈ L
implies 0 ≤ q ≤ 9, yielding a contradiction. J

Proof of Lemma 4. The neighbors of some node Ej,h ∈ E in GE,L are exactly the nodes
Lq,q′ that satisfy h = j(q + 1) + q′ (mod 11) which, in turn, are exactly the nodes from
{Lq,h−j(q+1) (mod 11) | 0 ≤ q ≤ 9}. The lemma statement follows. J

Proof of Lemma 6. Assume that no cop is in u. We start by observing that each node
v ∈ U , v 6= u, covers at most 1 neighbor of u in U , by Corollary 5 and the bipartiteness of
GE,L. Now we consider two cases:

First, assume that u ∈ E . Then, all neighbors of u in U are in L∗ and, more specifically,
for any 0 ≤ i ≤ 3, u has exactly one L∗ node with first index i as a neighbor, by Lemma 4.
Thus, according to Table 1, u’s neighbors can only be covered by nodes from U , S, A and T .
Moreover, each node from S covers exactly 2 of u’s 4 neighbors in L∗, while each node from
A and each node from T cover exactly 1 of u’s neighbors. By combining these insights with
our first observation and the fact that there are only 2 cops to cover u’s 4 neighbors in L∗,
we see that the cops have to be in S0 and S1 in order to cover all neighbors of u in U .

Second, assume instead that u ∈ L∗. Then, all neighbors of u in U are in E and, more
specifically, u has exactly 11 neighbors Ei,j where each number from {0, . . . , 10} occurs
exactly once as the first index and exactly once as the second index, by Lemma 3. Thus,
according to Table 1, u’s neighbors can only be covered by nodes from U , S, A, T and X .
Moreover, each node from S covers at most 6 of u’s neighbors, while each node from A and
each node from T cover at most 3 of u’s neighbors. Furthermore, since the nodes in X and
the nodes in L∗ are both borrowed from L, Lemma 2 ensures that each node from X covers
at most 1 of u’s neighbors. Since we have only two cops to cover the 11 neighbors of u in U ,
they must be in S0 and S1.

Note that the cop combination (S0,S1) indeed covers all neighbor’s of u in U in both
cases, since (S0,S1) covers the whole of U , according to Table 1. J

Proof of Lemma 7. Assume that no cop is in Ai. Consider the set Bi = {E0,i, . . . , E3,i}
which is a subset of the set of neighbors of Ai in U , by Table 1. We show a stronger version
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︸︷︷︸
{E0,5, . . . , E3,5}

S0

S1

︸︷︷︸

{E0,9, . . . , E3,9}

︸︷︷︸

{E0,1, . . . , E3,1} = B

T1

A1

Figure 5 A part of the structure around nodes in E . Each black node is connected to S0, each
white node is connected to S1 and each node in a grey area is connected to A1. Each white node in
a grey area is connected to T1. It follows that (S0,S1) and (S0, T1) cover all neighbors of A1 in E ,
including B1.

of the lemma statement where we only consider the neighbors of Ai contained in Bi. For an
illustration of the following considerations, we refer to Figure 5.

As can be seen from Table 1, for any j 6= i, Aj and Tj cover 0 nodes from Bi. Moreover,
by Lemma 3, each node from L∗ and each node from X cover at most 1 node from Bi since
the nodes in L∗ and the nodes in X are both borrowed from L. The only remaining neighbors
of nodes in Bi ⊂ E are S0, S1 and Ti, according to Table 1. These three nodes cover exactly
2 nodes from Bi each and S0 is the only node of the three that covers E0,i.

Since we have only 2 cops to cover the 4 nodes from Bi, we can conclude that the only
possible cop combinations for covering all neighbors of Ai in U are {S0,S1} and {S0, Ti}.
A close look at Table 1 shows that S0 covers exactly the neighbors Ej,h, resp. Lj,h, of Ai

that satisfy j (mod 2) = 0 while S1 and Ti both do the same for the neighbors that satisfy j
(mod 2) = 1. Thus, {S0,S1} and {S0, Ti} are indeed both cop combinations that cover all
neighbors of Ai in U . J

Proof of Lemma 8. Since any node in X is “the same” as a node from L∗ in the sense that
it is a node borrowed from L, we can actually use the same proof as given for the second
case in (the proof of) Lemma 6. The lemma statement follows. J

Proof of Lemma 9. Assume that no cop is in some Rj , where j ≡ i (mod 3). As can be
seen from Table 1, each node 6= P that is not contained in E , R, or X , and covers at least
one exit, covers exactly 3 of the 6 exits of Ri (which are X j

0 , . . . ,X
j
5 where j = i (mod 3)).

Since P, any E node (cf. Lemma 4), any X node and any Rj , where j 6≡ i (mod 3), cover
less than 3 of those exits, the only possibility for the 2 cops to cover all 6 exits is to be in a
cop combination where the two nodes cover exits in a complementary fashion. Now, checking
Table 1, we can confirm that these “complementary” cop combinations are exactly those
given in the lemma statement. J

Proof of Lemma 10. Assume that {Ci,Dj} and {Ci′ ,Dj′} are forcing and i 6= i′. Assume
further w.l.o.g. that the cop staying in the C nodes is Cop 0 and the cop staying in the D
nodes is Cop 1. Note that the definition of proper exit-blocking cop combinations ensures
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that one cop has to stay in the C nodes and the other one in the D nodes from time t to
time t+ h. Note further, that the C nodes together with the connecting edges form a cycle
and the same holds for the D nodes. We say that a cop moves clockwise on the C or D cycle,
if the index is increased by 1 (modulo n̂) when moving from a node to its neighbor, and
counterclockwise if she moves in the opposite direction.

By our observations about forcing cop combinations following Lemma 9, we know that
i, i′ ∈ {0, n̂/3, 2n̂/3} which implies that Cop 0 has to take at least n̂/3 steps in the C cycle
to get from Ci to Ci′ . More precisely, Cop 0 has to take at least n̂/3 clockwise steps or at
least n̂/3 counterclockwise steps; assume that the steps are clockwise (the proof for the
counterclockwise case is analogous).

We will show now that for Cop 0, the time between entering some node Cq from its coun-
terclockwise neighbor Cq−1 (mod n̂) and leaving Cq towards its clockwise neighbor Cq+1 (mod n̂)
is at least n̂/3 (during the sequence of proper exit-blocking cop combinations from time t to
time t+ h).

Assume that q (mod 3) = 1 which implies q − 1 (mod 3) = 0 and q + 1 (mod 3) = 2.
By the definition of proper exit-covering cop combinations (cf. Lemma 9), the following
holds: When Cop 0 enters Cq from Cq−1 (mod n̂), then Cop 1 must have been in Dn̂/3−1 and
move from there to Dn̂/3 in order for the two consecutive cop combinations to be proper
exit-covering. Similarly, when Cop 0 leaves Cq towards Cq+1 (mod n̂) then Cop 1 must have
been in D2n̂/3−1 and move from there to D2n̂/3. Now in order to get from Dn̂/3 to D2n̂/3
(via nodes in D) Cop 1 needs at least n̂/3 steps. If q (mod 3) = 0 or q (mod 3) = 2, the
bound of n̂/3 steps is proved analogously.

Since Cop 0 has to enter and leave at least n̂/3− 1 nodes on her way from Ci to Ci′ and
between Cop 0 entering and leaving such a node, Cop 1 has to take at least n̂/3 steps, the
lemma statement follows.

J

Proof of Lemma 11. Assume for a contradiction w.l.o.g. that r(t) = Ri, c0(t + 1) = Rj

where j ≡ i (mod 3). and that the robber is not captured at time t + 1. Assume further
that t is the smallest time for which such i and j exist. Now, if c0(t) ∈ A ∪ C ∪ {P} ∪ X ,
then Cop 0 would have captured the robber at time t+ 1, by Table 1 and the fact that j ≡ i
(mod 3). Thus, again by Table 1, c0(t) ∈ {Rj−1,Rj ,Rj+1}.

Given that c0(t) ∈ R and r(t) ∈ R, we get from Table 2 that r(t − 1) ∈ R. Let i′
be the corresponding index, i.e., r(t − 1) = Ri′ . Again, looking at Table 2 and keeping
in mind that r(t) = Ri, we conclude that {c0(t), c1(t)} covers all exits of Ri′ . Since
c0(t) ∈ {Rj−1,Rj ,Rj+1}, we obtain that there is some Rj′ ∈ {c0(t), c1(t)} with j′ ≡ i′

(mod 3), by Lemma 9. This yields a contradiction to the minimality of t. J

Proof of Lemma 12. The choice of the starting node of the robber ensures that the robber
cannot be captured in round 1 since R0 is connected to neither S0 nor S1. Moreover, we
observe that both S0 and S1 are connected neither to any node in A, nor to R−1, R0 or R1,
and that no node from T is connected to R0. Thus, looking at Table 2, we can conclude
that there is at most3 one case in which the robber can be captured at time t+ 2, namely,
that at time t she is in some node Ri and the cop combination {c0(t+ 1), c1(t+ 1)} covers
all exits of Ri as well as Ri−1, Ri and Ri+1. Then she will stay in Ri and can be captured
at time t+ 2.

3 That the robber can actually be captured will be shown in Section 3.7.
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By Lemma 9, there are two possibilities how the cops can cover those exits: Either they
are in some exit-covering cop combination or one of the cops is in some node Rj with j ≡ i
(mod 3). By Lemma 11, the latter case cannot occur.

Thus, the only case where the robber can possibly be captured at time t+ 2 is that she is
in some node Ri at time t and the cops are in some exit-covering cop combination at time
t+ 1 upon which the robber stays in Ri and can be captured there by the cops at time t+ 2.
In order to capture the robber in its R node at time t+2, one cop has to cover this R node at
time t+1. By Lemma 9 and Table 1, we obtain that {c0(t+1), c1(t+1)} = {Cq,Dq′} for some
q, q′. Since any node from C covers at most 2 of any 3 consecutively indexed nodes from R
and any node from D does not cover any node from R, this implies that {c0(t+ 1), c1(t+ 1)}
covers at most 2 of any 3 consecutively indexed nodes from R. Thus, the robber can only be
captured at time t+ 2 if she is in Rn̂ or R−n̂ at time t+ 1; otherwise she would go to an
uncovered node from {Ri−1,Ri,Ri+1} according to Table 2. If the robber is indeed in Rn̂

or R−n̂ at time t+ 1, she will stay in this node if her current node and the neighboring R
node are covered (which is the only case in which she will be captured at time t+ 2). We
conclude that the robber can only be captured in Rn̂ or R−n̂. J

Proof of Lemma 13. We start by observing that for any 2 ≤ i ≤ n̂, the only case where
the robber may move to Ri is if she is in some node in {Ri−1,Ri,Ri+1} whose exits are all
covered. This implies that the first time the robber moves to Ri she comes from Ri−1 (since
the path from R2 to Rn̂ can only be entered via R1 by the robber). Also, the last time the
robber moves to Ri from some node 6= Ri before she moves to Ri+1 for the first time, she
has to come from Ri−1.

Now, let 3 ≤ i ≤ n̂ and denote by t the last time that the robber enters Ri−1 before she
moves to Ri for the first time and by t′ the first time that the robber enters Ri. Assume
for the moment that the robber actually goes to those two R nodes at some point. By the
above observations, we have that r(t− 1) = Ri−2, r(t) = r(t+ 1) = · · · = r(t′ − 1) = Ri−1
and r(t′) = Ri.

Recall the definition of a forcing proper exit-blocking cop combination. Note that a
proper exit-blocking cop combination that covers two adjacent R nodes is always forcing,
by Table 1. Checking Table 2, we see that the robber only (possibly) moves from Ri−2 to
Ri−1 if Ri−2, Ri−3 and all exits of Ri−2 are covered. Thus, by Lemma 9 and Lemma 11,
{c0(t), c1(t)} is a forcing proper exit-covering cop combination (proper because nodes from S
or T do not cover any nodes from R). Analogously, we obtain that {c0(t′), c1(t′)} is a forcing
proper exit-covering cop combination. By Lemma 9, we can write those cop combinations as
{Cj ,Dh} = {c0(t), c1(t)} and {Cj′ ,Dh′} = {c0(t′), c1(t′)}, for some j, h, j′, h′.

Note that any forcing proper exit-covering cop combination can cover at most 2 of any
3 consecutively indexed nodes from R, as can be seen from Table 1. Since, as observed
above, {Cj ,Dh} = {c0(t), c1(t)} has to cover Ri−2 and Ri−3, and, similarly, {Cj′ ,Dh′} =
{c0(t′), c1(t′)} has to cover Ri−1 and Ri−2, it follows that j 6= j′.

Since the robber stays in Ri−1 from time t to time t′−1, the cops must have covered Ri−2
and all exits of Ri−1 during that time frame. In other words, {c0(t+ 1), c1(t+ 1)}, {c0(t+
2), c1(t+ 2)}, . . . , {c0(t′ − 1), c1(t′ − 1)} are proper exit-blocking cop combinations. Now, we
have collected all ingredients to actually apply Lemma 10. We obtain t′−t ≥ n̂/3 ·(n̂/3−1) ∈
Ω(n̂2). This implies that for any 3 ≤ i ≤ n̂, the time between the first visit of Ri−1 by the
robber and the first visit of Ri is in Ω(n̂2).

By Lemma 12, the robber can only be captured in Rn̂ or R−n̂. Assume that she will be
captured in Rn̂. As there are Ω(n̂) nodes along the R path between R2 and Rn̂ and forcing
the robber to go from one node of the path to the next one takes the cops time Ω(n̂2), we
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obtain a lower bound of Ω(n̂3). Analogously, we obtain a lower bound of Ω(n̂3) if we assume
that the robber will be captured in R−n̂. J

Proof of Lemma 14. If j /∈ {n̂/3− 1, 2n̂/3− 1, n̂− 1}, then Dj+1 (mod n̂) covers exactly the
same nodes from X as Dj . Thus, in that case, (Ci,Dj+1 (mod n̂)) must be exit-blocking if
(Ci,Dj) is exit-blocking.

If j ∈ {n̂/3 − 1, 2n̂/3 − 1, n̂ − 1}, then it is straightforward to check with Table 1
that the nodes in X that Dj+1 (mod n̂) does not cover, but Dj covers, are exactly the
nodes in X that Ci+1 (mod n̂) covers, but Ci does not, and vice versa. Thus, in that case,
(Ci+1 (mod n̂),Dj+1 (mod n̂)) covers exactly the same exits as (Ci,Dj). J

Proof of Lemma 15. By Lemma 14 and Table 3, the cops always stay in proper exit-blocking
cop combinations from time t+ 1 onwards, as long as the robber does not leave R. Since any
proper exit-blocking cop combination not only covers all exits of all R nodes, but also all
A nodes and P (since the cop combination contains a D node), the only node outside of R
where the robber could go without being captured immediately is some node Ci. So suppose
r(t′) = Ci for some i. Then, according to Table 3, the cops move to S0 and P at time t′ + 1.
Now, checking Table 1, we see that any neighbor of Ci, and also Ci itself, is covered by S0 or
P. Thus, the robber will be captured at time t′ + 2. J

Proof of Lemma 16. As specified in Section 3.5, the cops start in c0(0) = S0 and c1(0) = S1.
If the robber starts in a node in U ∪ S ∪ T ∪ C ∪ X , then, by Table 1, she will be caught at
time 1, so suppose she starts in a different node, i.e., in a node in A ∪R ∪D ∪ {P}.

If r(0) = Ai for some i, then, according to Table 3, the cops go to c0(1) = S0 and
c1(1) = Ti, a cop combination that covers all neighbors of Ai except R0. Thus, in order to
avoid being captured at time 2, the robber has to move to r(1) = R0.

If r(0) /∈ A, i.e., R ∪ D ∪ {P}, then the cops go to c0(1) = S0 and c1(1) = Ti for some
arbitrary i. This cop combination covers all nodes in S ∪A∪ T ∪ C ∪D ∪ {P} ∪X and since
r(0) is not connected to any node in U , the only nodes where the robber can go at time 1 in
order to avoid capture at time 2 are nodes in R.

Therefore, as in both cases the robber can only avoid immediate capture by going to an
R node, suppose that r(1) ∈ R. At time 2, according to Table 3, the cops move from (S0, Ti)
to (c0(2), c1(2)) = (C0,D0).

Now, by Lemma 15, we can assume for the remainder of the proof that the robber does
not leave R anymore. Observe that the subgraph of our graph induced by R is simply a
path. Since the robber stays in R, the cops will always perform the “same” step according to
Table 3, namely, they go from some cop combination (Ci,Dj) to (Ci+1 (mod n̂),Dj+1 (mod n̂))
or (Ci,Dj+1 (mod n̂)).

How long can Cop 0 possibly stay in Ci while performing these steps? After at most
n̂/3− 1 steps Cop 1 reaches node Dn̂/3−1, D2n̂/3−1 or Dn̂−1. Then, in the next step, Cop 1
goes to a D node that covers a different set of X nodes. Since, for each 0 ≤ h ≤ 2, each C
node and each D node covers exactly 3 nodes from X h and X h contains 6 nodes, the C node
and the D node in a proper exit-blocking cop combination must cover complementary sets of
X nodes. Thus, if Cop 1 changes the set of nodes in X she covers, then Cop 0 is required
to move. Hence after at most n̂/3 steps, Cop 0 moves from Ci to Ci+1 (mod n̂). Note that
Lemma 14 ensures that the cops indeed always cover all exits.

Using Table 3, the above discussion shows that the movement of Cop 0 looks as follows
(starting from c0(2) = C0): She stays in some node Ci for at most n̂/3 steps, then she moves
to the next C node (modulo n̂) in which she again stays for at most n̂/3 steps, and so on.
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Since −n̂ ≡ 0 (mod 3), Cop 0 covers R−n̂ at time 2, according to Table 1. Thus, at
time 2, the robber has to be in some node Rq with q > −n̂ (in order to not be captured
immediately). During moving in C, Cop 0 keeps R−n̂ covered until she reaches Cn̂/3. When
she is in Cn̂/3 she not only covers R−n̂, but also the next R node, R−n̂+1. Thus, now the
robber (who previously stayed in some node Rq with q > −n̂) has to be in some node Rq′

with q′ > −n̂+ 1.
By inductively applying this argument, the set of R nodes the robber can be in without

being captured immediately, shrinks by one node each time Cop 0 reaches a node from
{C0, Cn̂/3, C2n̂/3}. When there are no more R nodes left in that set, the robber will be
captured immediately.4 Note that because of the path topology of the subgraph induced
by R, in order to shrink the node set the robber can stay in, it is sufficient for Cop 0 to
cover one node from the path and (slowly) move it to the side the robber is in while making
sure that when moving from covering one node to covering the next, there is a point in time
where both nodes are covered.5

Collecting all the information from the above discussion, we obtain the following picture:
Moving from one C node to the next C node takes Cop 0 at most n̂/3 ∈ O(n̂) time steps.
Whenever Cop 0 reaches a node from {C0, Cn̂/3, C2n̂/3} (which happens at least once in any
consecutive n̂/3 · n̂/3 ∈ O(n̂2) time steps) the number of R nodes the robber can be in
without being captured immediately decreases by 1. As there are only O(n̂) R nodes in
total, the robber will be captured in time O(n̂3).

J

B The General Case

In this section, we will generalize our lower bound construction to arbitrary numbers of cops
up to cop numbers in Θ(

√
n). This upper bound up to which our lower bound construction

works coincides with the conjectured minimum number of cops with which the robber can be
captured in all graphs.

In the following, we give a high-level overview of how we change {Gn̂}n̂≥3,n̂≡0 (mod 3)
in order to obtain a family {Gk

n̂}n̂≥k,n̂≡0 (mod 3) of graphs that will yield a lower bound
of (Ω(n̂))k+1 for the capture time of k cops in k-cop-win graphs. The main idea of the
construction, as explained in Section 3, remains the same. In the 2-cop case, the cops started
in S0 and S1 in order to flush the robber out of her preferred component of the graph and
into the R path, and then went to the C and D cycles and circled through the nodes there
again and again in order to force the robber to one end of her R path.

For the general k-cop case, we add k − 2 special nodes S2, . . . ,Sk−1 and k − 2 new node
sets D1, . . . ,Dk−2 for the additional k − 2 cops (and rename D by D0). Now, the robber
can only be flushed out of her preferred graph component U if the k cops go to the cop
combination {S0, . . . ,Sk−1}. In that case, the robber can be forced to go to the R path and
then Cop 0 goes to C while, for any i ≥ 1, Cop i goes to Di−1. Like in D0, the nodes in any
Dj≥1 are connected by edges in a circular fashion and each Dj≥1 contains n̂ nodes.

Again, we want the cops to have to go through a certain combined movement in order to
force the robber to move one step on her path, and we want this combined movement to

4 This holds under the assumption we made that the robber stays in R. If she does not stay in R she can
increase the capture time by 1 by moving to some C node.

5 Indeed, Cop 0 could also start by covering node R0 and then move the covered node to the side of the
path the robber is in. This accelerates the capture time roughly by a factor of 2. The downside is that it
makes the cops’ strategy a bit more complex to describe which is why we chose the presented approach.
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take a long time (in general (Ω(n̂))k). Similarly to the 2-cop case, the cops cannot simply
advance to their desired forcing cop combination by moving there without coordinating, but
they have to constantly guard the exits of the R node the robber occupies.

In the 2-cop case, between taking two steps on her C cycle, Cop 0 had to wait for Cop
1 to travel a third of her D cycle because Cop 1 had to reach a node where she covers the
exits Cop 0 would not cover anymore when going to the new C node. For the k-cop case, we
generalize this idea by doing the following: For any surplus Cop i compared to the 2-cop
case, we add 6 exits to any R node6. These 6 exits can only be covered by cops i− 1 and i.
Moreover, analogous to the construction for the “initial” 6 exits which only cops 0 and 1 can
cover, we ensure that between any two steps of Cop i (in the same direction, clockwise or
counterclockwise), Cop i− 1 has to travel a third of her Di−2 cycle in order to always keep
all of the 6 exits, that the combination of Cop i− 1 and Cop i is responsible for, covered.

Thus, Cop k − 1 has to take Ω(n̂) steps between any two consecutive steps of Cop k − 2,
Cop k− 2 has to take Ω(n̂) steps between any two consecutive steps of Cop k− 3, and so on,
yielding a lower bound of (Ω(n̂))k for the cops to go from a cop combination that forces the
robber to take a step on her R path to the next such combination. Note that Cop 0, i.e., the
cop that actually forces the robber to move, has to take Ω(n̂) steps in order to get from one
forcing cop combination to the next one.

Since the robber reaches the end of her path in Ω(n̂) steps, we obtain a capture time of
(Ω(n̂))k+1.

While we can choose any multiple of 3 as the number n̂ determining the number of nodes
in the R, C and Di components of the graph, the size of most of the other components of the
graph depends on the number of cops. More specifically, for technical reasons, the size of U
depends quadratically7 on k whereas the sizes of S, A, T and X depend linearly on k. Thus,
we obtain that n ∈ Θ(k2 + kn̂), and for our lower bound construction to work, we have to
require that k ∈ O(

√
n).8 Moreover, for a constant k, n̂ is linear in the number n of nodes,

yielding a tight lower bound of Ω(nk+1) for the capture time. If k is not constant, then n̂
is in Θ(n/k) which yields a lower bound of (Ω(n/k))k+1. In particular, for k ∈ Θ(

√
n), we

obtain a lower bound of (Ω(
√
n))Θ(

√
n). Thus, surprisingly, there are graphs in which the

minimum number of cops sufficient to capture the robber actually needs time exponential in√
n to capture the robber.

B.1 The Graph Construction

Recall the construction of the preliminary graph GE,L from which we borrowed nodes in
order to obtain the components E , L∗ and X of Gn̂. We want to adapt the construction to
the case of k cops such that Lemmas 2, 3, and 4, also adapted to the k-cop case, still hold.

In order to achieve this, we simply change the sizes of the sets E and L used in the
construction of GE,L. Let z be the smallest integer ≥ 10 such that 2k + z is a prime. For
reasons that will become clear soon, we replace every “9”, “10” and “11” in the construction
of GE,L, by 2k + z − 2, 2k + z − 1 and 2k + z, respectively. Thus,

E = {Ei,j | 0 ≤ i ≤ 2k + z − 1 ∧ 0 ≤ j ≤ 2k + z − 1}

6 Note that Rj and Rh share the exits if j ≡ h (mod 3).
7 To be precise, we need Bertrand’s postulate to obtain this result, since the size of U is the square of the

first prime that follows k + 10.
8 To be more precise, there is some universal constant β ≥ 1, so that k is bounded from above by

√
n/β.
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and

L = {Li,j | 0 ≤ i ≤ 2k + z − 2 ∧ 0 ≤ j ≤ 2k + z − 1} ,

where Li,j = {Eh,h(i+1)+j (mod 2k+z) | 0 ≤ h ≤ 2k+z−1}. Again, we consider the associated
bipartite incidence graph which we denote by Gk

E,L.9
In the following, we give analogous versions of Lemmas 2, 3, and 4 for Gk

E,L. Since in the
proofs of the original lemmas, regarding the specific size of GE,L we use only the property
that 11 is prime, we can use analogous proofs to show our new lemmas.

I Lemma 17. In Gk
E,L, any two nodes in E have at most one common neighbor in L.

Furthermore, any two nodes in L have at most one common neighbor in E.

I Lemma 18. Let i ∈ {0, . . . , 2k+ z−1} be fixed. Any node from L has exactly one neighbor
in Gk

E,L of the form Ei,j and exactly one neighbor in Gk
E,L of the form Ej,i.

I Lemma 19. Let i ∈ {0, . . . , 2k+ z− 2} be fixed. Any node from E has exactly one neighbor
in Gk

E,L of the form Li,j.

In general, we will construct Gk
n̂ analogously to the construction of Gn̂. Again, we will

borrow nodes, this time from Gk
E,L. Moreover, we will add new node sets D1, . . . ,Dk−2,

consisting of n̂ nodes each, and increase the sizes of the components from Gn̂ as follows:

V (Gk
n̂) = E ∪ L∗ ∪ S ∪ A ∪ T ∪R ∪ C ∪ D0 ∪ D1 ∪ · · · ∪ Dk−2 ∪ {P} ∪ X

where

L∗ = {Li,j | 0 ≤ i ≤ 2k − 1 ∧ 0 ≤ j ≤ 2k + z − 1} ,
S = {S0, . . . ,Sk−1} ,
A = {A0, . . . ,A2k−1} ,
T = {T0, . . . , T2k−1} ,
R = {R−n̂, . . . ,Rn̂} ,
C = {C0, . . . , Cn̂−1} ,

Dj = {Dj
0, . . . ,D

j
n̂−1} for all 0 ≤ j ≤ k − 2 ,

X = X 0 ∪ X 1 ∪ X 2 and

X j = {X j
0 , . . . ,X

j
6(k−1)−1} for all 0 ≤ j ≤ 2 .

The edges of Gk
n̂ are specified in Tables 4, 5, and 6. Again, we set U = E ∪L∗ and call the X

nodes (connected to some node Ri) exits (of Ri).
As in the 2-cop case, E , L∗ and X are borrowed from Gk

E,L where X is considered as a
subset of L \ L∗. To ensure that no node in E covers too many exits of some R node, the
exits of any R node are borrowed (disjointly) from L \ L∗ nodes of at most 3 different slopes.
More precisely,

X 0 is borrowed from {Lh,j | 2k ≤ h ≤ 2k + 2 ∧ 0 ≤ j ≤ 2k + z − 1} ,
X 1 is borrowed from {Lh,j | 2k + 3 ≤ h ≤ 2k + 5 ∧ 0 ≤ j ≤ 2k + z − 1} ,
X 2 is borrowed from {Lh,j | 2k + 6 ≤ h ≤ 2k + 8 ∧ 0 ≤ j ≤ 2k + z − 1} ,

9 We may consider GE,L as a version of G2
E,L, where we simplified the construction by choosing z = 7

(instead of z = 13).
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Ei,j L∗ nodes as determined by Gk
E,L

Si (mod k)

Aj (mod 2k)

Tj (mod 2k) if i (mod k) = 1
X nodes as determined by Gk

E,L

Li,j E nodes as determined by Gk
E,L

Si (mod k)

Ai (mod 2k)

Ti (mod 2k)

Table 4 Edges in Gk
n̂.

S0 Ci for all i
X j

i , where j ∈ {0, 1, 2} and i ∈ {0, 1, 2}
every Ei,j with i (mod k) = 0
every Li,j with i (mod k) = 0

S1 Ti for all i
X j

i , where j ∈ {0, 1, 2} and i ∈ {3, 4, 5}
X j

i , where j ∈ {0, 1, 2} and i ∈ {6, 7, 8} if k ≥ 3
every Ei,j with i (mod k) = 1
every Li,j with i (mod k) = 1

Si≥2 Di
j for all j
X j

h , where j ∈ {0, 1, 2} and h ∈ {6(i− 1) + 3, 6(i− 1) + 4, 6(i− 1) + 5}
X j

h , where j ∈ {0, 1, 2} and h ∈ {6i, 6i+ 1, 6i+ 2} for all i ≤ k − 2
every Eh,j with h (mod k) = i

every Lh,j with h (mod k) = i

Ai Tj for all j
R0

D0
j for all j
Ej,h for all h (mod 2k) = i

Lj,h for all j (mod 2k) = i

Ti S1

Aj for all j
Tj for all j 6= i

D0
j for all j
P
X j

h , where j ∈ {0, 1, 2} and h ∈ {3, 4, 5}
X j

h , where j ∈ {0, 1, 2} and h ∈ {6, 7, 8} if k ≥ 3
Ej,h for all j (mod k) = 1 and h (mod 2k) = i

Lj,h for all j (mod 2k) = i

Table 5 Edges in Gk
n̂.
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Ri Aj for all j if i = 0
Rj for j = i− 1 and j = i+ 1
Cj for all 0 ≤ j ≤ n̂/3 if i (mod 3) = 0
Cj for all n̂/3 ≤ j ≤ 2n̂/3 if i (mod 3) = 1
C0 and Cj for all 2n̂/3 ≤ j ≤ n̂− 1 if i (mod 3) = 2
P
X j

h where j = i (mod 3) and h ∈ {0, . . . , 6(k − 1)− 1}
Ci S0

Rj for all j (mod 3) = 0 if 0 ≤ i ≤ n̂/3
Rj for all j (mod 3) = 1 if n̂/3 ≤ i ≤ 2n̂/3
Rj for all j (mod 3) = 2 if i = 0 or 2n̂/3 ≤ i ≤ n̂− 1
Cj for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂)
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 1, 3} if i (mod 3) = 0
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 2, 3} if i (mod 3) = 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 2, 3} if i (mod 3) = 2
D0

i Aj for all j
Tj for all j
D0

j for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂)
P
X j

h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if 0 ≤ i ≤ n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 4, 5} if n̂/3 ≤ i ≤ 2n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 4, 5} if 2n̂/3 ≤ i ≤ n̂− 1
additionally, if k ≥ 3:
X j

h where j ∈ {0, 1, 2} and h ∈ {6, 7, 9} if i (mod 3) = 0
X j

h where j ∈ {0, 1, 2} and h ∈ {6, 8, 9} if i (mod 3) = 1
X j

h where j ∈ {0, 1, 2} and h ∈ {7, 8, 9} if i (mod 3) = 2
Dj≥1

i Sj+1

Dj
h for h ≡ i− 1 (mod n̂) and h ≡ i+ 1 (mod n̂)
X q

h where q ∈ {0, 1, 2} and h ∈ {6j + 2, 6j + 4, 6j + 5} if 0 ≤ i ≤ n̂/3− 1
X q

h where q ∈ {0, 1, 2} and h ∈ {6j + 1, 6j + 4, 6j + 5} if n̂/3 ≤ i ≤ 2n̂/3− 1
X q

h where q ∈ {0, 1, 2} and h ∈ {6j + 0, 6j + 4, 6j + 5} if 2n̂/3 ≤ i ≤ n̂− 1
additionally, if j ≤ k − 3:
X q

h where q ∈ {0, 1, 2} and h ∈ {6(j + 1) + 0, 6(j + 1) + 1, 6(j + 1) + 3} if i (mod 3) = 0
X q

h where q ∈ {0, 1, 2} and h ∈ {6(j + 1) + 0, 6(j + 1) + 2, 6(j + 1) + 3} if i (mod 3) = 1
X q

h where q ∈ {0, 1, 2} and h ∈ {6(j + 1) + 1, 6(j + 1) + 2, 6(j + 1) + 3} if i (mod 3) = 2
P Ti for all i

Ri for all i
D0

i for all i
X j

i where j ∈ {0, 1, 2} and i = 3
Table 6 Edges in Gk

n̂.
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where, we specify in particular that

X 0
i is borrowed from {L2k,j | 0 ≤ j ≤ 2k + z − 1} ,
X 1

i is borrowed from {L2k+3,j | 0 ≤ j ≤ 2k + z − 1} ,
X 2

i is borrowed from {L2k+6,j | 0 ≤ j ≤ 2k + z − 1} ,

if 0 ≤ i ≤ 5 ∨ 6(k − 2) ≤ i ≤ 6(k − 1)− 1 ∨ i ≡ 5 (mod 6).
As long as the above conditions are met, we do not care about the explicit choice of X as

a subset of L \ L∗. Note that the (perhaps a bit confusing) above specification of some X
nodes is only relevant for Lemma 24. Furthermore, we see the reason for the exact definition
of z: To have nodes of the form L2k+8,j available as required above, we need that z ≥ 10
(i.e., 2k + z − 2 ≥ 2k + 8). It is straightforward to verify that if z ≥ 10, there are enough
nodes in the node sets we (disjointly) borrow from in the above specifications.

We obtain an analogous version of Corollary 5 from Lemma 17.

I Corollary 20. In Gk
n̂, any two nodes in E have at most one common neighbor in L∗.

Moreover, any two nodes in L∗ ∪ X have at most one common neighbor in E.

B.2 Observations
We show in the following that analogous versions of Lemmas 6, 7, 8, 9 and 10 hold also in
the k-cop case. Since the proofs of the original lemmas were already formulated with regard
to the generalization, almost all of the arguments can be transferred easily to the k-cop case.
Thus, for convenience, we will only point out the differences in the proofs of the original and
the k-cop case versions.

I Lemma 21. Consider any u ∈ U . The only cop combination not containing u that covers
all neighbors of u in U is {S0, . . . ,Sk−1}.

Proof. Analogously to the proof of Lemma 6, if u ∈ E , then the nodes from S are the only
nodes that cover more than one of u’s 2k neighbors in U . Since any S covers exactly 2 of
those neighbors, the cops have to be in {S0, . . . ,Sk−1} in order to cover all of those neighbors.

If u ∈ L∗, then analogously any node from S covers strictly more of u’s neighbors in U
than any node /∈ S ∪ {u}. Since no node in U is covered by more than one node from S, any
cop combination different from {S0, . . . ,Sk−1} covers strictly less than all of u’s neighbors in
U , yielding the lemma statement.

Note that {S0, . . . ,Sk−1} indeed covers all neighbors of u in U since {S0, . . . ,Sk−1} covers
all of U . J

I Lemma 22. Consider any Ai. The only cop combinations not containing Ai that cover
all neighbors of Ai in U are {S0, . . . ,Sk−1} and {S0, Ti,S2, . . . ,Sk−1}.

Proof. Analogously to the proof of Lemma 7, using the subset B = {E0,i, . . . , E2k−1,i} of the
set of neighbors of Ai in U , one can show that the only nodes 6= Ai that cover at least 2
nodes from B are S0, . . . ,S2k−1 and Ti. Moreover, these nodes cover each exactly 2 of the
2k nodes from B and the S nodes together cover all of B while Ti covers exactly the same
nodes from B as S1. Thus, the only two cop combinations that cover all nodes in B are
{S0, . . . ,Sk−1} and {S0, Ti,S2, . . . ,Sk−1} and these two cop combinations indeed cover all
nodes in B. The lemma statement follows. J
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I Lemma 23. Consider any X j
i . The only cop combination not containing X j

i that covers
all neighbors of X j

i in U is {S0, . . . ,Sk−1}.

Proof. Analogously to the proof of Lemma 8, this follows from the proof of Lemma 21. J

I Lemma 24. Consider any Ri. The only cop combinations not containing any Rj with
j ≡ i (mod 3) that cover all exits of Ri are {S0, . . . ,Sk−1}, {S0, Tj ,S2, . . . ,Sk−1} for any j,
and {Cj0 ,D0

j1
, . . . ,Dk−2

jk−1
} for any index tuple (j0, . . . , jk−1) satisfying the following condition:

For each h ∈ {0, . . . , k − 2} it holds that
1. jh (mod 3) = 0 and 0 ≤ jh+1 ≤ n̂/3− 1 or
2. jh (mod 3) = 1 and n̂/3 ≤ jh+1 ≤ 2n̂/3− 1 or
3. jh (mod 3) = 2 and 2n̂/3 ≤ jh+1 ≤ n̂− 1.

Proof. Assume for this proof that no considered cop combination contains any Rj with
j ≡ i (mod 3). We call a node 6= Ri base-covering if it covers at least three nodes from{
X i (mod 3)

0 , . . . ,X i (mod 3)
3

}
, and q-covering if it covers X i (mod 3)

6q+5 . Thus, any cop combina-
tion covering all exits of Ri has to contain a q-covering node for every 0 ≤ q ≤ k − 2.

Checking Tables 4, 5, 6, and the specification of the X nodes as a subset of L \ L∗,10
we see that for any 0 ≤ q, q′ ≤ k − 2 satisfying q 6= q′, the following holds: If a node is
base-covering, then it is not q-covering; if a node is q-covering, then it is not base-covering;
if a node is q-covering, then it is not q′-covering. Moreover, if a node is q-covering, then
it covers at most one node from

{
X i (mod 3)

0 , . . . ,X i (mod 3)
3

}
if q = 0, and no node from{

X i (mod 3)
0 , . . . ,X i (mod 3)

3

}
if q ≥ 1.

Hence, it follows that any cop combination covering all exits of Ri has to contain exactly
one q-covering node for every 0 ≤ q ≤ k− 2 and exactly one base-covering node; furthermore,
these k nodes are pairwise different nodes. Again, checking Tables 4, 5 and 6, we see that
each base-covering node and each (k − 2)-covering node cover at most 3 exits of Ri, whereas
for 0 ≤ q ≤ k − 3, each q-covering node covers at most 6 exits of Ri. Since Ri has 6(k − 1)
exits, any two different nodes in a cop combination that covers all exits of Ri have to cover
disjoint sets of exits. Moreover, the base-covering node and the (k − 2)-covering node indeed
have to cover 3 exits of Ri and the other q-covering nodes indeed 6 exits of Ri. This implies
that the base-covering node has to be S0 or a node from C, the 0-covering node has to be S1,
a node from T or a node from D0, and, for any 1 ≤ q ≤ k − 3, the q-covering node has to
be Sq+1 or a node from Dq. Furthermore, the (k − 2)-covering node has to be Sk−1, a node
from Dk−2, or an E node.11

As a special case, if k = 2, the 0-covering node v is also the (k − 2)-covering node. In
this case, node v has to be S1, a node from T , or a node from D0 (note that v cannot be an
E node in this case).

For the case of k ≥ 3, we observe that no base-covering or q-covering node v, for q ≤ k−4,
covers a node from

{
X i (mod 3)

6(k−2) , . . . ,X i (mod 3)
6(k−1)−1

}
and that any (k − 3)-covering node covers

at most 3 of these nodes. Since any E node covers at most 1 of these nodes, it cannot be the
case that the (k − 2)-covering node is an E node.

10Note that for any fixed 0 ≤ i ≤ 2 any node from E covers at most 1 node from
{
X i

0 , . . . ,X i
3
}
∪{

X i
6q+5 | 0 ≤ q ≤ k − 2

}
by Lemma 19, since these X nodes are borrowed from a set of “parallel” lines

from L \ L∗.
11No E node can be base-covering or q-covering for some 0 ≤ q ≤ k − 3 since any E node covers at most 1

node from
{
X i

0 , . . . ,X i
3
}

and at most 3 nodes from X i for any 0 ≤ i ≤ 2, by Lemma 19.
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Let Vk = {v0, . . . , vk−1} be a cop combination that covers all exits of Ri and assume
w.l.o.g. that v0 is the base-covering node and that vq is the (q − 1)-covering node, for all
1 ≤ q ≤ k − 1. Consider the subset W =

{
X i (mod 3)

0 , . . . ,X i (mod 3)
5

}
of the set of exits of

Ri. Since no S≥2 or D≥1 node covers a node from W , we get that the only two nodes from
Vk that can cover nodes from this subset are the base-covering node v0 and the 0-covering
node v1. Thus, v0 and v1 have to cover complementary subsets of W and, checking Tables 4,
5 and 6, we see that this is only the case if v0 = S0 and v1 = S1, or v0 = S0 and v1 ∈ T , or
v0 = Cj0 and v1 = D0

j1
such that one of the three properties from the lemma statement is

satisfied for h = 0.
Using the next 6 exits X i (mod 3)

6 , . . . ,X i (mod 3)
11 , we obtain a similar statement about

which combinations of nodes v1 and v2 can be, and so on. Combining the knowledge about any
two consecutive nodes from our cop combination, we obtain exactly the lemma statement. J

Using, Lemma 24, we define exit-blocking, proper exit-blocking and forcing proper
exit-blocking cop combinations analogously to the definitions in the 2-cop case. Again,
a proper exit-blocking cop combination {Cj0 ,D0

j1
, . . . ,Dk−2

jk−1
} is forcing if and only if j0 ∈

{0, n̂/3, 2n̂/3}.

I Lemma 25. Let ({Cj0 ,D0
j1
, . . . ,Dk−2

jk−1
} = {c0(t), . . . , ck−1(t)}, {c0(t + 1), . . . , ck−1(t +

1)}, . . . , {c0(t+ h), c1(t+ h)} = {Cj′0
,D0

j′1
, . . . ,Dk−2

j′
k−1
}) be a sequence of proper exit-blocking

cop combinations describing the combined movement of the k cops from time t to time t+ h.
If {Cj0 ,D0

j1
, . . . ,Dk−2

jk−1
} and {Cj′0

,D0
j′1
, . . . ,Dk−2

j′
k−1
} are forcing and j0 6= j′0, then h ∈ Ω(n̂)k.

Proof. Assume that {Cj0 ,D0
j1
, . . . ,Dk−2

jk−1
} and {Cj′0

,D0
j′1
, . . . ,Dk−2

j′
k−1
}) are forcing and j0 6= j′0.

Assume further w.l.o.g. that the cop staying in the C nodes is Cop 0 and, for any 0 ≤ q ≤ k−2,
the cop staying in the Dq nodes is Cop q + 1.

Then, with a proof analogous to the proof of Lemma 10, we see that Cop 0 has to take at
least n̂/3 steps in the C cycle to get from Cj0 to Cj′0

, Cop 1 has to take at least n̂/3− 1 steps
between any two of those steps of Cop 0, Cop 2 has to take at least n̂/3− 1 steps between
any two of those steps of Cop 1, and so on. We obtain h ∈ Ω(n̂)k. J

B.3 The Robber’s Strategy
Here, we adapt the strategy for the robber from the 2-cop case to the case of k cops as
follows:

If the cops are in S0, . . . ,Sk−1 in round 0, then the robber starts in R0, otherwise the
robber starts in some node in U that is not covered by any of the cops (which exists by
Lemma 21). Depending on where the cops are, the robber moves as specified in Table 7 (as
long as she is not captured yet).

Analogously to the arguments provided in the 2-cop case, Lemmas 21, 22 and 23 imply
that the specified strategy is well-defined and covers all possibly occurring situations.

B.4 The Cops’ Strategy
Here, we adapt the cops’ strategy to the case of k cops as follows:

Cop i starts in Si in round 0. Depending on where the robber is, the cops move as
specified in Table 3. Again, we have the exception that if a cop can capture the robber
immediately, then she does so, overriding any possible instruction from the table.

By analogous arguments to the ones provided in the 2-cop case, we see that the specified
strategy is well-defined and that no other situations than the specified ones can actually
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{c0(t), . . . , ck−1(t)} r(t− 1) r(t)

6= {S0, . . . ,Sk−1} some node in U some uncovered node in U
{S0, . . . ,Sk−1} some node in U some node in A

{S0, . . . ,Sk−1} or {S0, Ti,S2, . . . ,Sk−1} Ai R0

6= {S0, . . . ,Sk−1} and 6= {S0, Ti,S2, . . . ,Sk−1} Ai some uncovered node in U
not covering all exits of Ri Ri some uncovered exit of Ri

covering all exits of Ri Ri the uncovered node from {Ri−1,Ri,Ri+1}
with smallest absolute index; if all are

covered, stay in Ri

6= {S0, . . . ,Sk−1} X j
i some uncovered node in U

{S0, . . . ,Sk−1} X j
i some node from {R−1,R0,R1}

Table 7 The robber’s strategy

r(t− 1) (c0(t− 1), . . . , ck−1(t− 1)) (c0(t), . . . , ck−1(t))

Ai (S0, . . . ,Sk−1) (S0, Ti,S2, . . . ,Sk−1)
6= Ai for all i (S0, . . . ,Sk−1) (S0, Tj ,S2, . . . ,Sk−1) for some j
arbitrary (S0, Ti,S2, . . . ,Sk−1)

(
C0,D0

0, . . . ,Dk−2
0
)

6= Ch for all h
(
Cj0 ,D0

j1 , . . . ,D
k−2
jk−1

)
the first of the following cop combinations

that covers all nodes in X :(
Cj0+1 (mod n̂),D0

j1+1 (mod n̂), . . . ,D
k−2
jk−1+1 (mod n̂)

)(
Cj0 ,D0

j1+1 (mod n̂), . . . ,D
k−2
jk−1+1 (mod n̂)

)(
Cj0 ,D0

j1 ,D
1
j2+1 (mod n̂) . . . ,D

k−2
jk−1+1 (mod n̂)

)
...(

Cj0 ,D0
j1 , . . . ,D

k−3
jk−2

,Dk−2
jk−1+1 (mod n̂)

)
Ch

(
Cj0 ,D0

j1 , . . . ,D
k−2
jk−1

)
(S0,P, arbitrary, . . . , arbitrary)

Table 8 The cops’ strategy
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occur. The only exception is that it is not a priori obvious that, in the case where the r(t− 1)
column specifies “ 6= Ch for all h”, at least one of the presented output cop combinations
actually covers all nodes in X . This will be taken care of by Lemma 29.

B.5 A Lower Bound for the Robber’s Strategy
Here, we show that k cops need time (Ω(n̂))k+1 in order to capture the robber in Gk

n̂ if the
robber follows the strategy specified in Section B.3. For any constant k, this translates to a
capture time of Ω(nk+1), and for non-constant k = k(n), to a capture time of (Ω(n/k))k+1.
The latter bound holds for all k(n) ∈ o(

√
n) and for k(n) ∈ Θ(

√
n) with a small enough

constant in the O-notation.
Again, for convenience, we assume throughout the following lower bound considerations

that if a cop can capture the robber immediately, then she does so.

I Lemma 26. If the robber follows the strategy specified in Section B.3, then the following
holds: If the robber is in some node Ri at time t and is not captured at time t+ 1, then none
of the k cops can be in some node Rj with j ≡ i (mod 3) at time t+ 1.

Proof. This follows by a proof completely analogous to the proof of Lemma 11. J

I Lemma 27. If the robber follows the strategy specified in Section B.3, then she can only
be captured in Rn̂ or R−n̂.

Proof. This follows by a proof completely analogous to the proof of Lemma 12. J

I Lemma 28. If the robber follows the strategy specified in Section B.3, then k cops need
time Ω(n̂)k+1 to capture the robber in Gk

n̂.

Proof. This follows by a proof completely analogous to the proof of Lemma 13. J

B.6 An Upper Bound for the Cops’ Strategy
Here, we show a matching upper bound to the lower bound presented in the previous section,
for the graphs Gk

n̂. The cops achieve this upper bound by following the strategy presented
in Section B.4 which shows that the specified strategies for the robber and for the cops are
asymptotically optimal in the graph class {Gk

n̂}.

I Lemma 29. If (Cj0 ,D0
j1
, . . . ,Dk−2

jk−1
) is an exit-blocking cop combination, then at least one

of the output cop combinations in Table 8, in the row where r(t− 1) is specified as “ 6= Ch for
all h”, is an exit-blocking cop combination.

Proof. Let (Cj0 ,D0
j1
, . . . ,Dk−2

jk−1
) be an exit-blocking cop combination and assume w.l.o.g.

that Cop 0 is in Cj0 , Cop 1 is in D0
j1
, and so on. Then, by applying the arguments from

the proof of Lemma 14 to the last 6 exits {X h
6(k−2), . . . ,X

h
6(k−2)+5} for any 0 ≤ h ≤ 2, we

observe the following: If Cop k − 1 stays in Dk−2
jk−1

, then Cop k − 2 can make sure that those
6 exits are covered by also staying in Dk−3

jk−2
. If Cop k − 1 moves instead to Dk−2

jk−1+1 (mod n̂),
then Cop k − 2 can make sure that those 6 exits are covered by also staying in Dk−3

jk−2
or by

moving to Dk−3
jk−2+1 (mod n̂), depending on if jk−1 is not or is in {n̂/3− 1, 2n̂/3− 1, n̂− 1}.

In a similar fashion, Cop k−3 can ensure that the 6 previous exits {X h
6(k−3), . . . ,X

h
6(k−3)+5}

are covered, by staying in her node or moving to the next node in Dk−4, depending on if
Cop k − 2 stays or moves. By inductively applying this argument, we see that all exits can
be covered by a combined step of the cops where each cop either stays in her node or moves
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to the next node in her C or Dq cycle. Moreover, if Cop q stays in her node during this
combined step, then all cops q′ with q′ < q also stay in their nodes. It follows that at least
one of the cop combinations specified in the lemma is an exit-blocking cop combination. J

I Lemma 30. Let r(t) ∈ R and (c0(t+ 1), . . . , ck−1(t+ 1)) = (C0,D0
0, . . . ,Dk−2

0 ) for some
point in time t. If the robber leaves R at some later point in time t′, i.e., if r(t′) /∈ R for
some t′ > t, then the robber will be captured at time t′′ ≤ t′ + 2, provided the k cops follow
the strategy specified in Section B.4.

Proof. This follows by a proof completely analogous to the proof of Lemma 15. J

I Lemma 31. If the k cops follow the strategy specified in Section B.4, then they capture
the robber in time (O(n̂))k+1 in Gk

n̂.

Proof. Analogously to the proof of Lemma 16, one can show that the robber is forced to
the R path in at most 2 moves and that we can assume that she stays there forever. Also
analogously, one can obtain the following picture for the combined movement of the cops
(after they reach the cop combination {C0,D0

0, . . . ,Dk−2
0 } where we assume w.l.o.g. that Cop

0 is in C0, Cop 1 is in D0
0, and so on): Cop k−1 continuously moves in Dk−2 in a clockwise or

counterclockwise fashion, Cop k− 2 takes one step for any n̂/3 steps of Cop k− 1, Cop k− 3
takes one step for any n̂/3 steps of Cop k − 2, and so on, up to Cop 0. Moreover, whenever
Cop 0 reaches a node from {C0, Cn̂/3, C2n̂/3} (which happens at least once in any consecutive
(n̂/3)k ∈ (O(n̂))k time steps) the number of R nodes the robber can be in without being
captured immediately decreases by 1. As there are only O(n̂) R nodes in total, the robber
will be captured in time (O(n̂))k+1. J

Now, finally, Lemmas 28 and 31 together yield Theorem 1 with the same (short) line of
argumentation as in the case of k = 2.
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