
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 12:1, 2010, 38–58

Tight Bounds for Delay-Sensitive Aggregation†

Yvonne Anne Pignolet1 Stefan Schmid2 Roger Wattenhofer3

1 IBM Research, Zurich Research Laboratory, Switzerland.‡
2 T-Labs, TU Berlin, Germany.‡
3 Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland.‡

received August 11, 2009, revised December 14, 2009, accepted January 19, 2010.

This article studies the fundamental trade-off between delay and communication cost in networks. We consider an
online optimization problem where nodes are organized in a tree topology. The nodes seek to minimize the time until
the root is informed about the changes of their states and to use as few transmissions as possible. We derive an upper
bound on the competitive ratio of O(min(h, c)) where h is the tree’s height, and c is the transmission cost per edge.
Moreover, we prove that this upper bound is tight in the sense that any oblivious algorithm has a ratio of at least
Ω(min(h, c)). For chain networks, we prove a tight competitive ratio of Θ(min(

√
h, c)). Furthermore, we introduce

a model for value-sensitive aggregation, where the cost depends on the number of transmissions and the error at the
root.

Keywords: Competitive Analysis, Wireless Sensor Networks, Distributed Algorithms, Aggregation

1 Introduction
The analysis of distributed algorithms often revolves around time and message complexity. On the one
hand, we want our distributed algorithms to be fast, on the other hand, communication should be min-
imized. Problems often ask to optimize one of the two—and treat the other only as a secondary target.
However, there are situations where time and message complexity are equally important.

In this article, we study such a case known as distributed aggregation (a.k.a. multicast aggregation).
Nodes of a large distributed network may sense potentially interesting data which they are to report to
a central authority (sink). Not only should the data make its way fast through the network such that
information is not unnecessarily delayed; but also, since message transmission is costly, one may reduce
the number of transmissions by aggregating messages along the way. In other words, nodes may wait for
further packets before forwarding them in order to decrease the number of transmission at the expense of

‡Email: yvo@zurich.ibm.com stefan@net.t-labs.tu-berlin.de wattenhofer@tik.ee.ethz.ch
†A preliminary version of this work has been published at the 27th ACM Annual Symposium on Principles of Distributed

Computing (PODC), 2008 [OSW08].

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm12:1ind.html

Tight Bounds for Delay-Sensitive Aggregation 39

a later arrival of the information at the sink. This problem has many applications. In the past it was mostly
studied in contexts such as control message aggregation. In the heyday of wireless networking the first
application that comes to mind is perhaps sensor networking. Due to energy constraints, it is necessary
to minimize the number of transmissions. At the same time, it is desirable to aim at minimizing the time
until the sink is informed about changes of measured values.

We assume that the communication network of the nodes forms a pre-computed directed spanning tree
on which information about events is passed to the root node (the sink). Data arrives at the nodes in an
online (worst-case) fashion. The main challenge is to decide at what points in time the data should be
forwarded to a parent in the tree.

1.1 Related Work

The trade-off between delay and communication cost appears in various contexts, and plays a role in the
design of algorithms for wireless sensor networks, for Internet transfer protocols, and also appears in
organization theory. This section gives a brief overview of related work on this topic.

A basic problem in the design of Internet transfer protocols such as the TCP protocol concerns the
acknowledgments (ACKs) which have to be sent by a receiver in order to inform the sender about the
successful reception of packets: In many protocols, a delay algorithm is employed to acknowledge mul-
tiple ACK packets with a single message or to piggy-back the ACK on outgoing data segments [Ste94].
The main objective of these algorithms is to save bandwidth (and other overhead at the sender and re-
ceiver) while still guaranteeing small delays. The problem of aggregating ACKs in this manner is also
known as the TCP acknowledgment problem, which was proved to be 2-competitive [DGS98]. Karlin
et al. [KKR01] pointed out interesting relationships of the single-link acknowledgment problem to other
problems such as ski-rental, and gave an optimal, e/(e − 1)-competitive randomized online algorithm
(where e = 2, 7182... is the Euler number).

There are many variations of the theme, e.g., Albers et al. [AB03] seek to minimize the number of
acknowledgments sent plus the maximum delay incurred for any of these packets. They propose a π2/6-
competitive deterministic algorithm for the single link (where π = 3.1415...), which is also a lower bound
for any deterministic online algorithm. Frederiksen et al. [FL02] consider deterministic and randomized
algorithms for bundling packets in a single-link network. They observe that because of physical network
properties, a certain minimum amount of time must elapse in-between the transmission of two packets;
the trade-off is investigated that on the one hand waiting delays the transmission of the current data, and
on the other hand sending immediately may delay the transmission of the next data to become available
even more.

There is also much literature on aggregation in sensor networks [KEW02, KLS08, SBAS04, SO04,
vRW04, YF05, YKP04]. E.g., Becchetti et al. [BKMS+06] studied online and offline algorithms for sce-
narios where fixed deadlines must be met. They show that the offline version of the problem is strongly
NP-hard and provide a 2-approximation algorithm. More complexity results for settings with fixed dead-
lines have been derived in [NS09].

Korteweg et al. [KMSSV09] address a similar problem following a bicriterion approach which con-
siders time and communication as two independent optimization problems: A (B,A)-bicriterion problem
minimizes objective A under a budget on objective B. Inter alia, the authors prove that if r is the ratio
between the maximum and the minimum delay allowed, then the competitive ratio of their algorithm is
(2hλ, 2h1−λ log r) for any λ in (0, 1].

40 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

The paper closest to our work is by Khanna et al. [KNR02] which investigates the task of centralized
and decentralized online control message aggregation on weighted tree topologies. In particular, [KNR02]
presents a O(h logα)-competitive distributed algorithm, where h is the tree’s height, and α is the sum of
the weights of the tree’s edges. Moreover, the authors show that any oblivious distributed online algorithm
has a competitive ratio of at least Ω(

√
h) (an oblivious algorithm bases the decisions at each node solely

upon the static local information available at the node).
In this article, we study the same algorithm and we give a new analysis for scenarios where the commu-

nication cost is c on all links, resulting in a better upper bound ofO(min (h, c)). We also derive a new gen-
eralized lower bound for edge cost which is different from h, and show that for any oblivious aggregation
algorithm, the competitive ratio is at least Ω(min(h, c)). Moreover, by taking into account many intrinsic
properties of the algorithm, we show that for chain graphs an upper bound of O(min(

√
h, c)) holds. This

is asymptotically tight. Brito et al. [BKV04] extended the work of Khanna et al. by proving general upper
and lower bounds for the asynchronous and the centralized ACK aggregation problem. Interestingly, the
asynchronous model yields higher lower bounds in the distributed case than the synchronous (“slotted”)
model, e.g., the lower bound for the chain network is Ω(h) in the distributed asynchronous model, a factor
of
√
h greater than the bounds in the synchronous model.

Finally, our value-sensitive aggregation model is reminiscent of the recent “online tracking” work by
Yi and Zhang [YZ09]. The authors study a 1-lookahead scenario where Alice outputs a function f :
Z+ → Zd, and Bob, knowing all values at t ≤ tnow needs to guess f(t) in an online fashion. Different
scenarios are examined, and competitive strategies are presented that result in small errors only and save
on communication cost. Our model differs from [YZ09] as it describes a 0-lookahead model and as in
their model, nodes are forced to send updates if the measured value differs sufficiently from the value
stored at the root.

1.2 Model
The network to be considered is modeled by a rooted tree T = (V,E) of height h with root r ∈ V and
n = |V | nodes. Every node u except for the root r (the sink) has a parent node v, i.e., an edge (u, v) ∈ E.
The cost of transmitting a message over an edge is c ≥ 1; we assume that nodes know the value c. Besides
general trees, we will also study chain networks (sometimes also referred to as linked lists networks or
linear arrays in literature) where each node has exactly two neighbors except for the root and the leaf node
which have 1 neighbor.

We assume that events occur at the leaf nodes L ⊂ V (e.g., a control message arriving at a node, or a
sensor node detecting an environmental change). We will refer to the information about the occurrence of
a single event as an event packet. Leaf l creates an event packet p for every event that happens at l.

Eventually, all event packets have to be forwarded to the root. Instead of sending each packet p ∈ P
individually to a node’s parent after the event took place, nodes can retain packets and send a message m
consisting of one or more packets together later, thus saving on communication cost as we have to pay
for a link only once per message (rather than per event). Messages can be merged iteratively with other
messages on their way to the root.

We consider a synchronous model where time is divided into time slots. In each slot, an arbitrary num-
ber of events can arrive at each node. For an event packet p, tl (p) denotes the time slot its corresponding
event occurred at a node and tr (p) the time when it reaches the root. For each time slot an event waits at
a node, we add one unit to the delay cost, i.e., the delay cost dc (p) the event accumulates until reaching
the root is dc (p) = tr (p)− tl (p).

Tight Bounds for Delay-Sensitive Aggregation 41

Each message can only be forwarded one hop per time slot, i.e., a message always has to wait one time
slot at a node before being transmitted to the next node. Thus, the delay accumulated by an event is at
least hl, where hl denotes the length of the path from the respective leaf l to the root. The total delay cost
of all events accumulated up to time slot T is hence

dcT =
∑

p∈P,tr(p)≤T

dc (p) +
∑

p∈P,tr(p)>T

(T − tl (p)).

Nodes can aggregate as many event packets as needed. At each time step t, a node may aggregate awaiting
event packets and forward the resulting message to its parent. The cost of sending a message is c per edge
no matter how many event packets it contains. Consequently, the total communication cost is the sum
of the edge cost of all message transmissions. More formally, let St be the set of nodes sending out a
message in time slot t, then the total communication cost ccT up to time slot T is ccT =

∑T
t=1 |St|. The

total cost up to time T is the sum of both the delay and the communication cost,

costT = dcT + ccT .

Observe that the edge cost c allows us to weight delay and communication cost: A larger c implies that
communication cost become relatively more important compared to the delay cost. Note that we neglect
the energy consumption in idle listening mode and consider the nodes’ transmission cost only. We believe
that this is justified for networks where listening nodes have their radios turned off most of the time and
only check for data transfers at the very beginning of each time slot.

Nodes do not know the future arrival time of events, and hence have to make the decisions on when
to send messages online. We are in the realm of competitive analysis (see, e.g., the work by Sleator and
Tarjan [ST85], or the introductory book by Borodin [BEY98]) and define the (strict) competitive ratio ρ
achieved by an online algorithm ALG as the delay and communication cost of ALG divided by the total
cost of an optimal offline algorithm OPT that knows the event arrival sequences a priori.

Definition 1.1 (ρ-competitiveness) An online algorithm ALG is (strictly) ρ-competitive compared to an
optimal offline algorithm OPT if for all input sequences S, i.e., all possible event arrival sequences,

costALG(S) ≤ ρ · costOPT (S).

The goal of an online algorithm designer is hence to devise algorithms minimizing ρ, as a small ρ describes
the guaranteed worst-case quality of an algorithm.

We focus on oblivious online algorithms.

Definition 1.2 (Oblivious Algorithms) A distributed online algorithm ALG is called oblivious if the
decisions by each node v ∈ V whether to transmit a message solely depends on the number of events
currently stored at node v and on the arrival times of the corresponding messages at node v.

In particular, Definition 1.2 implies that the decisions of a node v do not depend on packets forwarded by v
earlier or on v’s location in the aggregation network. Being oblivious is a desirable property of distributed
algorithms, since non-oblivious algorithms need dynamic updating mechanisms—a costly operation.

42 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

root

v1 v2

v3

events at node v1 v2

t = 1 1 0
t = 2 1 2

delay at node v1 v2 v3

t = 1 1 0 0
t = 2 3 2 0
t = 3 0 4 2
t = 4 0 0 6
t = 5 0 0 0

Fig. 1: Example execution of KNR where the transmission cost c is 3.

1.3 Our Contribution
We prove that the simple algorithm introduced in [KNR02] achieves a competitive ratio of O(min(h, c))
where h is the tree’s height, and c is the transmission cost per edge. This improves an existing upper
bound of O(h log(cn)), where n is the network size. We also demonstrate that this upper bound is
tight in the sense that there exist problem instances where any oblivious algorithm has a ratio of at least
Ω(min(h, c)). Earlier work proved a lower bound of Ω(

√
h) on a chain network. Therefore, we examine

this topology more closely and show that chain networks are inherently simpler than general trees by
giving a competitive ratio of Θ(min(

√
h, c)) for oblivious algorithms. In the last part of this article,

we present an event aggregation model which takes into account that nodes often have non-binary data
to aggregate and greater differences between values need to be reported to the root faster than small
differences. We present a model comprising this additional constraint as well as an oblivious algorithm
achieving a competitive ratio ofO(c/ε) on a one-link network, where ε is the minimum difference between
two values. We also describe an optimal offline algorithm (requiring polynomial time) for this model.

2 Oblivious Online Algorithm
This section describes and analyzes the deterministic online algorithm KNR presented in [DGS98,
KNR02]. The algorithm is oblivious in the sense that decisions are reached independently of the dis-
tance to the root (cf Definition 1.2). Essentially, the event aggregation algorithm KNR seeks to balance
the total delay cost and the total communication cost. In order to do so, it aggregates information about
multiple events into one message until the forwarding condition is satisfied. Whenever a new event occurs
or a message arrives, it is merged with the message waiting for transmission at the node.

For a message m at node v, we define delayv(m, t), denoting the delay associated with message m
currently stored at node v at time t. Informally, it is the sum of the accumulated delay cost at node
v of all the event packets the message m contains. In every time step a message remains at a node,
delayv(m, t) is increased by the number of packets in the message. If a message arrives at a node where
another message is already waiting to be forwarded, the two messages are merged. More formally, let
a message m be a set of merged messages {m1, . . . ,mk}, where message mi consists of |mi| packets
and arrived at the current node in time slot ti. The delay of message m at node v at time t is defined by
delayv(m, t) :=

∑k
i=1 |mi|(t− ti).

When executing algorithm KNR, a node v forwards a message m to its parent as soon as the current
accumulated delay exceeds the transmission cost: delayv (m, t) ≥ c.

Tight Bounds for Delay-Sensitive Aggregation 43

1 2 3 4 … ti ti+1 ti+2 time

OPT OPTAGG AGG AGG AGG AGGAGG

Fig. 2: Illustration of a sequence of event arrivals at a leaf and the corresponding forwarding actions of the online
algorithm KNR for c = 4. In addition, the time slots where the optimal offline algorithm forwards its messages are
marked as well. Note that we cannot verify in this limited view of a leaf node how much better OPT ’s decisions are
because of our lack of knowledge on the situation at the other nodes.

We demonstrate the execution of KNR on a simple example. Consider the tree and the event arrival
sequence in Figure 1. There are two events occurring at leaf node v1, one in time slot t = 1, one at time
t = 2. Node v2 receives two packets at t = 2. The transmission cost is set to c = 3. For this input
sequence, node v1 sends its two packets after time t = 2 and node v2 after time t = 3, i.e., as soon as
the accumulated delay reaches or exceeds c = 3. Node v3 incurs a delay of two after the message from
v1 arrives. In the next time slot, v3’s delay cost increases to 6, as the message from v2 arrives with two
additional packets, so there are four messages at v3 now.

3 Tight Bound for Trees
Upper Bound
We establish a new upper bound of O(min(h, c)) on the competitive ratio of KNR by a surprisingly
simple analysis. Instead of calculating the delay and the communication cost the event packets accumu-
late, we focus on the messages KNR and OPT send. We proceed as follows. First, we investigate the
competitiveness of KNR for a single link network, then tackle the chain network, and finally generalize
our analysis to tree topologies.

Theorem 3.1 On arbitrary trees, the competitive ratio of KNR is at most

ρ =
costKNR

costOPT
∈ O(min (h, c)).

Proof: We begin by analyzing one path from a leaf l to the root. Given a sequence of event arrivals
at the leaf, we can compute when KNR sends messages to the leaf’s parent node. We study the cost
accumulated by these messages in groups of three messages. Then our results are generalized to trees.

Lemma 3.2 For the events occurring at a given leaf l, the competitive ratio is at most O(min (hl, c)).

Proof: Given a sequence of event arrivals at the leaf, we can compute when KNR sends messages to the
leaf’s parent node. We define mA

i to be the ith message that leaf node l, located at depth hl, sends to its

44 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

parent. Let t0 be the first time slot, and the time slot when message mA
i is forwarded towards the root

by l is denoted by ti. Let the total number of messages that leaf l transmits be MA
l . If such a message

mA
i contains less than c packets it incurs a transmission cost of c and a delay cost of less than 2c per hop

towards the root. If a message consists of more than c packets, the delay cost per hop is bounded by the
number of packets. Thus, the total cost for KNR amounts to at most hl(c+ max(2c, |mA

i |)) for mA
i .

In order to determine the minimum cost an offline algorithm accumulates, we divide the time into
intervals of three message transmissions. More precisely, we consider time periods [tj , tj+3], where j
mod 3 = 0. There are two possibilities for algorithm OPT : Either it sends one or more messages in
the period [tj , tj+3] as well, yielding at least a transmission cost of c, or the delay accumulated by these
packets is at least c. Either way, the cost accumulated by OPT at leaf l for these packets is at least c.
In addition, the delay cost accumulating until the packets arrive at the root is at least (hl − 1)(|mA

j | +
|mA

j+1|+ |mA
j+2|), since every packet in mA

j , m
A
j+1 and mA

j+2 incurs a delay cost of at least one for each
hop towards the root. Thus, OPT ’s total cost for a period [tj , tj+3] is at least

c+ (hl − 1)(|mA
j |+ |mA

j+1|+ |mA
j+2|).

Unless MA
l mod 3 = 0, we cannot consider all messages in groups of three. If there are one or two last

messages that do not belong to such a group, the respective cost of OPT for the period [t3bMA
l /3c

, tMA
l

]
is at least c+ (hl − 1)|mMA

l
| or c+ (hl − 1)(|mMA

l
|+ |mMA

l −1|).
This implies that for any given sequence of event arrivals at a leaf the competitive ratio is

ρ =
costKNR

costOPT

≤
∑MA

l
j=1 hl(c+ max(2c, |mA

j |))

cdMA
l /3e+

∑MA
l

j=1 hl|mA
j |

≤
3MA

l hlc+
∑MA

l
j=1 hl|mA

j |

cMA
l /3 +

∑MA
l

j=1 hl|mA
j |

<
3MA

l hlc

MA
l (c/3 + hl)

+ 1

∈ O (min (hl, c)) .

2

Observe that we make no assumptions on the behavior of the optimal algorithm in Lemma 3.2. More-
over, we charge the optimal algorithmOPT only for the transmissions over the edges between the leaves
and their neighbors when boundingOPT ’s communication cost, i.e., we basically exempt the optimal al-
gorithm from paying for any other transmission. Furthermore, we ignore the cost KNR could potentially
save by merging messages on their way to the root: We assign the highest possible delay and communi-
cation cost to every message of KNR. These properties allow us to extend Lemma 3.2 to trees without
modification: More precisely, if we consider the longest path in the tree the statement holds for general
trees as well. 2

Tight Bounds for Delay-Sensitive Aggregation 45

root

v1 v2 v3 ... vn/2-1

vn/2

Fig. 3: Lower bound topology.

Lower Bound
We conclude our investigations of the tree network with a lower bound stating thatKNR is asymptotically
optimal compared to any oblivious algorithm (Definition 1.2). For oblivious algorithms, it holds that the
wait time w only depends on the packet arrival time of the packets currently stored by a given node.

Theorem 3.3 On trees, any oblivious deterministic online algorithm ALG has a competitive ratio

ρ =
costALG

costOPT
∈ Ω(min(h, c)).

Proof: Consider the tree topology depicted in Figure 3 which consists of a chain network of n/2 + 1
nodes, where all nodes except for the two last ones have an additional neighbor (n even). The leaf nodes
are referred to by v1, ..., vn/2.

We compute the minimum delay and communication cost any oblivious online algorithm ALG will
accrue for input sequence where all leaves simultaneously get one packet. Since ALG is oblivious, ac-
cording to Definition 1.2, each leaf node vi will send the packet to its parent after waiting for w time slots,
where the packet arrives at time w + 1. (The value of w ≥ 0 depends on the chosen algorithm; observe
that w is the same for all nodes, because we assume ALG to be oblivious.) From there, the packets leave
at time 2w + 2. This process is repeated until all packets reach the root. Generally, the packet of leaf
node vi will arrive at a node at distance j from vi at time j + jw, and will stay there for w time slots.
Observe that the packets of two nodes vi−1 and vi are never merged into one message. Thus, ALG has
communication cost in the order of Θ

(
h2c
)

and delay cost in the order of Θ
(
h2
)
.

The optimal algorithm OPT has to send at least one message over each edge, resulting in a communi-
cation cost of Θ (ch). The minimum delay cost until all packets reach the root is Θ

(
h2
)
. If all the packets

are merged into one message on their way to the root, the delay and communication cost is in this order
of magnitude. Thus we have the following (asymptotic) competitive ratio:

ρ =
costALG

costOPT
∈ Ω

(
h2 + h2c

2hc+ h2

)
.

2

This result implies thatKNR is asymptotically optimal in the sense that there exists no oblivious online
algorithm achieving a better performance.

46 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

Discussion
Note that the above analysis for upper and lower bounds carries over to the model where events can appear
at any node, not only at the leaves: The case where events occur at inner nodes can be reduced to a problem
instance where events only occur at leaves by simply creating a new tree with additional leaves attached
to any node where events occur; we have to map the arrival time slots to earlier time slots, ensuring that
they arrive at the inner nodes at the correct time.

Theorem 3.1 can be compared to the results obtained in [KNR02]. There, an upper bound ofO (h logα)
is derived for the competitive ratio of KNR, where α is the total communication cost (sum of edge
weights) of the tree. If all edges have a weight c, this translates into O (h log (nc)), which is O

(
h2 log c

)
in balanced binary trees. In this case, the analysis presented above is better by a factor of Θ (h log c) if
h < c. In other networks, for instance, on chain topologies, the gap between the two bounds narrows,
although there always remains a factor in the order of Ω(log(max(h, c)): Let us only take the edges on
the longest path into account for the upper bound of [KNR02]. Thus the bound reduces to O(h log(hc)).
If c > h this is O(h log c) whereas the bound presented here is O(h). If c < h the bound from [KNR02]
gives O(h log h) and our analysis results in O(c). Technically the difference between our approach and
the approach in [KNR02] is the way we sum up the delay cost of the algorithms. In [KNR02], the sum
of the delay cost per packet for KNR is expressed in terms of the delay cost per packet of the optimal
offline algorithm: By a potential function argument, it is shown that the number of packets that reach the
root later than in the optimal case decreases quickly over time. This implies that the total delay cost of the
online algorithm cannot be much larger than the total delay cost of the offline algorithm. In contrast, in our
approach we consider the absolute cost the online and offline algorithms accumulate. Like in [KNR02],
there is no need to study merge behavior explicitly.

4 Tight Bound for Chains
Upper Bound
The previous section has already discussed the implications of our tree analysis on the performance of
KNR on chain networks. In the following, we go one step further and take a closer look at chains. We
show by a more detailed analysis that the bound derived there can be improved. In particular, we leverage
the fact that the algorithm can merge messages and forward them together, i.e., save on transmission
cost. Moreover, a merged message moves faster towards the root since it now contains more packets and
reaches the forwarding threshold in fewer time slots than the two separate messages consisting of fewer
packets. Concretely, we prove that on the chain topology, KNR is O(min

√
h, c)-competitive, and that

no oblivious algorithm can be less than Ω(min(c,
√
h))-competitive.

Theorem 4.1 In chain graphs, the competitive ratio of KNR is

ρ =
costKNR

costOPT
∈ O

(
min

(√
h, c
))

.

Proof: Since a chain is a tree, we already know that O(min(c, h)) and hence O(c) is an upper bound
on the competitive ratio due to Theorem 3.1. It remains to prove that O(

√
h) is an upper bound on the

competitive ratio for chain networks. We use the following lemmata repeatedly.

Tight Bounds for Delay-Sensitive Aggregation 47

Lemma 4.2 When executingKNR, a message consisting of ni packets that arrive at the leaf at the same
time reaches the node at distance l from the leaf after ldc/nie time slots if the message does not merge
with any other message.

Proof: Let tj denote the time the message spends at depth hj , i.e., at the jth node of its path to the root.
Since KNR is oblivious and no messages are merged, tj = dc/nie is the same for every node of the
chain. Thus the number of time slots the message spends on a path of length l is

∑l−1
j=0 tj = ldc/nie. 2

Lemma 4.3 If KNR does not merge any messages then there are at least

h

⌈
c

ni

⌉
− (h− 1)

⌈
c

ni+1

⌉
time slots between the arrival of the packets of mA

i and the arrival of the packets of mA
i+1 at the leaf node,

if mA
i+1 contains more packets than mA

i .

Proof: To ensure that mA
i reaches the root separately even though it is followed by a larger message, mA

i

has to have arrived at the root before mA
i+1 arrives at the node in depth 1. By Lemma 4.2 we know that

mA
i reaches the root hdc/nie time slots after its arrival at the leaf. If mA

i+1 arrives at the leaf δi time slots
after the departure ofmA

i then it reaches the node in distance 1 to the root(h−1)dc/ni+1e time slots later.
Hence we can derive the inequality hdc/nie < δi + (h− 1)dc/ni+1e and the claim follows. 2

Since a smaller message moves at a lower speed, a message mi+1 containing ni+1 packets can never
catch up with a message mi with ni+1 or more packets, even if there is only one time slot between their
departure and arrival.

We start analyzing input sequences where KNR does not merge any messages at inner nodes. We then
show that merge operations cannot deteriorate the competitive ratio.

Let mA
i denote the ith message of KNR and let ni be the number of packets contained in message

mA
i . Without loss of generality, we assume that for each message mA

i of KNR, all ni packets arrive
simultaneously, since an optimal offline algorithm OPT would clearly incur the same or higher delay
cost if packets arrived dispersed over time. We will be referring to this assumption as Assumption 1.

Lemma 4.4 Given a sequence of packet arrivals where KNR does not merge any messages, the ratio
between the cost of KNR and the cost of OPT is maximized if the number of time slots between the
arrival of the packets of mA

i and the packets of mA
i+1 is

h

⌈
c

ni

⌉
− (h− 1)

⌈
c

ni+1

⌉
.

Proof: Due to Lemma 4.3, the minimum number of time slots between the arrival of the packets of mA
i

and mA
i+1 is h dc/nie − (h − 1) dc/ni+1e. For KNR, the delay cost and the communication cost is

neither reduced nor increased if there are more time slots in-between the arrivals. If OPT merges two or
messages of KNR, the delay cost is increased if there are more time slots between the arrival of packets
of consecutive messages. Hence, the claim follows, as the competitive ratio is maximized when OPT ’s
cost is minimized. 2

48 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

Thus we can assume without loss of generality that there are exactly h dc/nie − (h − 1) dc/ni+1e
time slots between the arrival of consecutive messages thanks to Lemma 4.4. We will be referring to this
assumption as Assumption 2.

Lemma 4.5 For sequences where KNR does not merge any messages, the competitive ratio of KNR is
O(
√
h) on chain graphs.

Proof: We pick a transmission of the optimal offline algorithm OPT and compare the cost accumulated
for the packets within this message to the cost the online algorithmKNR incurs for the same packets. We
show that the competitive ratio for each such transmission is O(

√
h) by proving an upper bound on the

cost for the online algorithm KNR followed by a lower bound on the cost the optimal algorithm accrues.
Let us consider the case where OPT ’s message mO consists of packets distributed over z messages

mA
i by the online algorithm KNR. In other words, we assume that for a certain number of packets, the

online algorithm sends messages mA
i where i ∈ {1, . . . , z} and OPT sends one message mO. If there

are any packets in the first or the last message of KNR that the optimal algorithmOPT does not include
in mO, we ignore them when computing the delay and communication cost for OPT . For i = 1 or i = z
we set ni to the number of packets that are in mA

i and in mO . When sending the z messages individually
to the root, KNR incurs a transmission cost of ccKNR = zhc and a delay cost of dcKNR < 2zhc. After
having bounded the cost for KNR we now turn to the minimum cost an offline algorithm faces. Clearly,
the transmission of mO entails a communication cost of ccOPT = ch for OPT . As a next step we want
to determine the minimum delay cost accumulated by the z messagesmA

i , which are merged into message
mO by the optimal algorithm.

We consider two cases: a) the minimum delay cost if the majority of messages is large, i.e., contains
more than c/2 packets, and b) the minimum delay cost if the majority of the packets is small, i.e., consists
of at most c/2 packets. We show that in both cases the delay cost of the optimal algorithm is Ω(cz2).

a) If more than z/2 messages contain more than c/2 packets, we ignore all other messages and focus
on the messages with ni > c/2. Let δj denote the number of time slots between the arrival of message
mA
j and the arrival of mA

j+1. Assume there are y messages with ni > c/2. They are responsible for a
total delay cost of at least dcOPT >

∑y
i=1 ni

∑y
j=i δj . Even when δj = 1 for all j, this sum amounts to

dcOPT >

y∑
i=1

ni

y∑
j=i

δj ≥
y∑
i=1

c

2
(y − i) ∈ Ω(y2c).

Thus this sum is Ω(z2c), because y > z/2.
b) If the majority of messages mA

i contain at most c/2 packets, we ignore the other messages. For
simplicity’s sake we let z denote the number of messages with ni ≤ c/2. Let λi denote the time period
between the arrival of the ni packets and the time slot when the corresponding message mA

i departs from
the leaf. Moreover, let δi be the time period after the message has departed from the leaf until the next set
of ni+1 packets arrives. See Figure 4 for an example.

The total sum of the delay cost OPT accumulates at the leaf for all messages mA
i is given by

dcOPT =
z−1∑
i=1

ni

z−1∑
j=i

(λj + δj) .

Tight Bounds for Delay-Sensitive Aggregation 49

mi mi+1 mi+2

λi
λi+1δi δi+1δi-1

time

mi mi+1

mi-1

Fig. 4: A sequence of message arrivals and departures for KNR at a leaf. The message mA
i is forwarded after δi

time slots at the leaf. δi time slots later the next message arrives.

The following two key facts enable us to derive a bound for the delay cost the optimal algorithm incurs
by waiting until the packets of all messages mA

i have arrived at the leaf:

Fact 1 If the number of packets between two messages differs by a factor of at most two, the time they
spend at the leaf differs by the same factor. More formally, if 2ni > nj , j > i then, λj = dc/nje >
c/2ni ≥ λi/2.
Fact 2 If the difference between the size of two messages is larger than a factor of two, we can apply
Lemma 4.3 to compute the minimum number of time slots between their arrival that ensures that a larger
message cannot catch up with a smaller message on its path to the root. It holds that if 2ni < nj , j > i
then the number of time slots mA

j arrives later than mA
i is at least

h

⌈
c

ni

⌉
− (h− 1)

⌈
c

nj

⌉
≥ h

c

ni
− (h− 1) (

c

nj
+ 1)

>
2hc− (h− 1)(c− 2ni)

2ni

>
hc

4ni
,

as ni < c/4 due to our assumption that the largest message contains at most c/2 packets and no messages
are merged after they leave the leaf node.

We construct a binary vector a where ai = 1 if there exists a message mA
j with j > i and 2ni < nj .

Using this vector we can rewrite the delay cost dcOPT the optimal algorithm incurs at the leaf.

50 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

dcOPT =
z−1∑
i=1

ni

z−1∑
j=i

(λj + δj)

>

z−1∑
i=1

ni

ai hc4ni
+ (1− ai)

z−1∑
j=i

c

2ni

 (1)

>

z−1∑
i=1

(
aihc

4
+

(1− ai)(z − 1− i)c
2

)

=
c

4

z−1∑
i=1

(ai(h− 2z + 2 + 2i) + 2z − 2− 2i) . (2)

In (1), we used Facts 1 and 2 to bound
∑z−1
j=i λj+δj . If ai = 1, we apply Fact 2 and the sum is replaced

by the number of time slots until the large message responsible for ai = 1 arrives, in the other case, we
have a lower bound for λj due to Fact 1.

If h > z − 2 the sum in (2) is minimized if ai = 0 for all messages. In this case it holds that

dcOPT >
c

4

z−1∑
i=1

(2z − 2− 2i)

=
c

4
(z − 1)(2z − 2− z)

>
c

4
(z − 2)2

∈ Ω(cz2).

If h < z − 2, then
∑z−1
i=1 ai(h− 2z + 2 + 2i) can be negative. This sum is minimized if the messages

with ai = 1 occur first. Let the number of these messages be y. In this case, we have to consider∑y
i=1 h − 2z + 2 + 2i = y(h − 2z + 3 + y), which reaches its minimum of −(1/4)(2z − h − 3)2 for

y = z − h/2− 3/2. Consequently,

dcOPT >
c

4

z−1∑
i=1

(ai(h− 2z + 2 + 2i) + 2z − 2− 2i)

> − c

16
(2z − h− 3)2 +

c

4
(z − 2)2

∈ Ω(cz2).

Hence dcOPT is Ω(cz2) in both cases a) and b); finally:

ρ =
costKNR

costOPT
∈ O

(
zhc

cz2 + ch

)
= O

(
min

(
h

z
, z

))
= O

(√
h
)
.

2

Tight Bounds for Delay-Sensitive Aggregation 51

We now investigate what happens if there are fewer time slots between packet arrivals, i.e., situations
where merge operations can occur. To this end, we consider a sequence of packet arrivals without merge
operations and compare it to the same sequence where the number of time slots between consecutive
arrivals is reduced. More precisely, let S = {(n1, t1), (n2, t2), . . .} denote a sequence of packet arrivals,
where (ni, ti) describes the arrival of ni packets in time slot ti. We compute the difference between
the cost accumulated for sequences S = {(n1, t1), (n2, t2), . . .} without merged messages and S′ =
{(n′1, t′1), (n′2, t

′
2), . . .}, where for all i > 0 it holds that ni = n′i and ti+1 − ti ≥ t′i+1 − t′i.

Lemma 4.6 Consider a transmission of OPT in the sequence S′ and assume that KNR merges µi
messages into one message at hop distance i from the leaf. Compared to a sequence S where no messages
are merged, KNR can reduce its cost by at least Ω(µi · c · (h− i)).

Proof: If the µi messages are sent to the root separately, the online algorithm pays µi(h−i)c communica-
tion cost for the transmissions between the node at distance i to the root node. By merging theses messages
the cost for the transmission amounts to (h− i)c, consequently the difference is in Ω(µi · c · (h− i)). 2

Lemma 4.7 Consider a transmission of OPT in the sequence S′ and assume that KNR merges µi
messages into one message at hop distance i from the leaf. Compared to a sequence S where no messages
are merged, OPT can reduce its cost by at most O(µi · c · (h− i)).

Proof: Consider the µi messages thatKNRmerges at node i. Note that message j of size nj cannot catch
up with a message of greater size nj > ni unless it merges with another message first. This implies, that
in order to have µi messages merging at distance i from the leaf, the message size of KNR’s messages
has to be strictly monotonically increasing.

In the following, let the superscript s identify variables considered in the scenario where KNR does
not merge any messages, and the superscript m identify variables in the other scenario. Let λl + δl denote
the time period between two consecutive arrival time slots of the set of nl and the set of nl+1 packets,
where λl = dc/nle is the number of time slots the lth message spends at the leaf δl is the number of time
slots between mA

l ’s departure and mA
l+1’s arrival that ensure that mA

l+1 does not catch up (too early) with
mA
l . For sequences where KNR does not merge any packets, OPT ’s delay cost is given by

dcs =
µi−1∑
l=1

µi−1∑
j=l

nl(δsj + λj).

In order to guarantee that consecutive messages are not merged by KNR it holds that δsl = h dc/nle −
(h− 1) dc/nl+1e − dc/nle due to Lemma 4.3 and Assumptions 1 and 2. Since nl < nl+1, we know that
δsl < h(dc/nle − dc/nl+1e). Note that this entails that

µi−1∑
j=l

δsj ≤ h (dc/nle − dc/nµi
e) .

If we assume the merge operation of µi messages to happen at depth h − i we can compute a lower
bound for the shortened time period between two messages. Observe that in order to ensure that messages

52 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

do not merge too early, it must hold that δml ≥ i dc/nle − (i− 1) dc/nl+1e − dc/nle. Due to nl < nl+1,
δml ≥ (i− 1)(dc/nle − dc/nl+1e) and thus

µi−1∑
j=l

δmj ≥ (i− 1) (dc/nµi
e − dc/nle) .

Combining the above, OPT can reduce its delay cost by at most

∆dcOPT = dcs − dcm

≤
µi−1∑
l=1

nlh

(⌈
c

nl

⌉
−
⌈
c

nµi

⌉)
− nl(i− 1)

(⌈
c

nl

⌉
−
⌈
c

nµi

⌉)

≤
µi−1∑
l=1

nl (h− i+ 1))
(
c

nl
− c

nµi

+ 1
)

= (µi − 1)(h− i+ 1)(c+ 1).

2

Lemma 4.8 Consider a sequence of packet arrivals on a chain graph satisfying the following conditions:
KNR sends some messages individually to the root and performs one merge operation on the other
messages. If OPT merges all these messages into one at the leaf then the competitive ratio is O(

√
h).

Proof: Let the number of messages KNR sends individually to the root be denoted by ν and the number
of messages KNR merges at distance i from the leaf be denoted by µ. If the packets that form the µ
messagesKNRmerges arrive before the ν messages sent to the root separately the claim follows directly
from Lemmas 4.6 and 4.7. Otherwise we have to take the delay cost the ν messages can save since the
to be merged messages can arrive closer to each other into account. Applying Lemmas 4.6 and 4.7 leads
to a total cost for KNR of less than 3(νhc + hc + µic) and the total cost for OPT amounts to at least
Ω
(
hc+ min(ν2c, νhc) + µic

)
. As in the proofs above we can assume without loss of generality that

(ν + µ) ∈ ω(
√
h). If νh < ν2 the competitive ratio is O(1), otherwise the ratio is at most O(νh+µ

h+ν2+µ).

Assume ν to be lager than µ. This implies that ν >
√
h and hence the ratio is O(νh/ν2) = O(

√
h). If µ

is larger than ν, we have a ratio of O(hnµ/(h+ nµ2)), which is O(
√
h). 2

Hence, we have shown that the competitive ratio does not deteriorate for one occurrence of a merge
operation. We can apply the above lemma and induction on the number of merge operations one message
takes part in: Treat the node where a merge occurs as a new leaf node and consider the merge operations
on the remaining chain until the root independently. For this network, the same arguments apply, and we
can conclude that the cost the online and the offline algorithm save by merging does not inflict a change
in the competitive ratio. Hence it follows that the competitive ratio is at most O(min(

√
h, c)) on chain

graphs. 2

Tight Bounds for Delay-Sensitive Aggregation 53

Lower Bound
We now show that KNR is asymptotically optimal for all oblivious online algorithms, i.e., we derive a
lower bound for chain networks of Ω(min(

√
h, c)).

Theorem 4.9 The competitive ratio of any oblivious algorithm ALG is at least

ρ =
costALG

costOPT
∈ Ω

(
min(

√
h, c)

)
.

Proof: Let ALG denote any oblivious online algorithm, and assume that packets arrive one-by-one: At
time 0, a packet p arrives at the leaf node l. The next packet arrives at the leaf exactly when ALG sends
the packet at l. Let w denote the time a packet waits at l, and observe that the same waiting time holds
for all nodes on the way from the leaf to the root due to the oblivious nature of ALG. Thus, the total
waiting time per packet is hw, and the communication cost is hc: costALG = hw+hc. We now derive an
upper bound on the optimal algorithm’s cost for this sequence. We partition the packets into blocks of size√
h, i.e., one message contains

√
h packets. Thus, the communication cost per packet of this algorithm

is hc/
√
h =

√
hc. The delay cost per message at the leaf is

∑√h−1
i=1 iw ∈ Θ(hw). In addition, each

packet experiences one unit of delay per hop on the way up to the root. Thus, the optimal cost per packet
is costOPT ≤ Θ(

√
hc+ w

√
h+ h). Therefore, it asymptotically holds for this sequence that

ρ ≥ hc+ hw√
hc+ w

√
h+ h

=
h(c+ w)√
h(c+ w) + h

.

The lower bound follows from distinguishing three cases. If h and c + w are asymptotically equivalent,
this yields Ω(

√
h). If h is asymptotically larger than c + w, the best oblivious algorithm choosing w as

small as possible gives a lower bound of Ω (c). Finally, if h < c+ w, we have Ω(
√
h). 2

Discussion
Compared to the trees studied in the previous section, the analysis of chain networks is more involved.
This can be explained with the fact that the tree bound is in the order of the tree height and hence merely
investigating the cost occurring at any given depth rather than on the whole path is sufficient to prove the
claim; there is no need to perform a detailed comparison of merge sequences of the online algorithm and
the offline algorithm.

Our findings can be compared to the analysis presented in [KNR02]. Their Ω(
√
h) lower bound holds

for arbitrary oblivious algorithms on trees. We have shown that this upper bound is too pessimistic, as
general trees are inherently more difficult than chain topologies, and that the lower bound can be increased
to Ω(min(h, c)). For chain networks, we have generalized their result to arbitrary edge cost, yielding a
lower bound of Ω(min(

√
h, c)), which is proved tight by KNR.

54 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

5 Value-Sensitive Aggregation
There are many scenarios where, in contrast to the aggregation model considered above, the information
to be delivered is not binary (e.g., event messages) but where arbitrary value aggregations need to be
performed at the root. E.g., consider a set of sensor nodes measuring the temperature or oxygen levels at
certain outdoor locations, and the root is interested to have up-to-date information on these measurements.
In this case, larger value changes are more important and should be propagated faster to the root, e.g., such
that an alarm can be raised soon in case of drastic environmental changes.

In the following, we consider a most simple topology: A network consisting of a leaf and a sink. Let
the value measured by the leaf l at time t be lt. We assume that the leaf node can only send the value it
currently measures. The root node’s latest value of node l at time t is denoted by rt. We seek to minimize
the following optimization function: cost = M · c+

∑
t |lt− rt| where M is the total number of message

transmissions and c the cost per transmission, i.e., M · c is the total communication cost. We refer to the
sum

∑
t |lt − rt| as the error cost.

Typically, the values measured by a sensor node do not change arbitrarily, but there is a bound on the
maximal change per time unit. In the following, we assume that the value measured by a node changes by
at most ∆ per time slot. Moreover, we assume that the sensor nodes can only measure discrete quantities,
and that the difference between two measured values is at least ε.

Optimal Offline Algorithm for Link
There exists a simple optimal (offline) algorithm OPT which applies dynamic programming. OPT
exploits the following optimal substructure: If we know the best sending times for all slots t′ < t given
that a message is sent at time t′, we can compute the optimal sending times assuming that OPT sends
at time t. Let the number of time slots under scrutiny be T . Note that, we only have to consider the
time slots with value changes, because an optimal algorithm either sends a value immediately after it has
changed or not until the value has changed again. Let time slot ti denote the time slot when the ith value
change occurred and we set t0 = 0. Determining all time slots with value changes requires iterating
over all T time slots. To compute the minimum cost accumulated until time slot ti, we consider each
possible last transmission j < i and add the inaccuracy cost which accrued at the root node between the
two transmissions j and i. Hence we can construct an array OPT [·] of size λ + 1, where λ is the total
number of value changes at the leaf node. We set OPT [0] = 0, as we assume that initially, the root stores
the correct value. The remaining matrix entries are then computed as follows:

OPT [i] = min
j<i

OPT [j] + c+ |lti − ltj |+
i−1∑

k=j+1

|ltk − ltj |(tk+1 − tk)

 .

In time O(λ2) we construct a matrix A[·][·] of size (λ + 1) × (λ + 1), where for all 1 ≤ j, i ≤ λ the
entry Ai,j = |lti − ltj |(ti+1 − ti). This allows us to compute any sum

∑i−1
k=j+1 |ltk − ltj |(tk+1 − tk) for

1 ≤ i ≤ j ≤ λ in constant time. For a given i, 1 ≤ i ≤ λ, computing OPT [i] takes time O(λ) using
these pre-computed values. Thus, we have the following theorem.

Theorem 5.1 In a link network, the optimal aggregation strategy for T time slots can be computed in
time O(T + λ2), where λ is the number of value changes at the leaf.

If the input for the offline algorithm consists of a sequence of value changes and the time slots when
they happened, the time complexity is O(λ2).

Tight Bounds for Delay-Sensitive Aggregation 55

Online Algorithm for Link
We propose the following online algorithm AGG, which can be seen as a generalization of the algorithm
KNR discussed in the previous sections: The leaf l sends the value it currently measures if and only if∑T
t=τ |lt − lτ | ≥ c, where τ is the last time l has transmitted its value and T is the current time.
For the analysis of AGG, we consider the time periods between two transmissions of AGG. For each

such period, we can bound the competitive ratio yielding an overall competitive ratio. We first need the
following helper lemma.

Lemma 5.2 Let ρ be the competitive ratio ofAGG whenAGG’s error cost is c in each time period I , then
3ρ/2 is an upper bound on the total competitive ratio.

Proof: First observe that AGG can have a larger error cost than c in a period, e.g., if in a time slot where
the accumulated error cost is c − ε for an arbitrarily small ε > 0 there is a large value change of size ∆
at the leaf. Hence, the online algorithm’s error in any period is at most 2(c − ε) + ∆. Consider a period
I where the online algorithm’s error cost is 2(c− ε) + k for some k ≤ ∆. Compared to the case studied
so far, AGG’s error cost will increase by at most k + c− 2ε. However, due to the large value change, we
know that the optimal algorithm’s error cost must increase by at least k as well. The new competitive ratio
ρ′ is hence

ρ′ =
CC ′AGG +DC ′AGG
CC ′OPT +DC ′OPT

≤ ccAGG + dcAGG + k + c− 2ε
ccOPT + dcOPT + k

=
ccAGG + dcAGG

ccOPT + dcOPT + k
+

k + c− 2ε
ccOPT + dcOPT + k

< ρ+
c− 2ε

ccOPT + dcOPT

< ρ+
c− 2ε

(ccAGG + dcAGG)/ρ

< ρ+
c− 2ε
2c/ρ

<
3ρ
2
.

2

56 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

Theorem 5.3 The competitive ratio of AGG is

ρ =
costAGG

costOPT
∈ Θ(c/ε),

where c is the link cost and ε is the minimum difference between two values.

Proof: Upper bound. First, the ratio is computed under the assumption that the error cost of AGG is
exactly c; we then apply Lemma 5.2. We classify the possible types of periods I between two sending
events of the online algorithm and consider them separately. Observe that for any period where the optimal
algorithm OPT transmits, the competitive ratio is at most 2, as OPT has cost at least c and the online
algorithm AGG has communication cost c and error cost c. It remains to examine the situations where
OPT does not send.

Assume that at the beginning of this period, AGG sends the value A0, and at the end, it sends the value
A1. Furthermore we denote the optimal algorithm’s value at the root at the beginning and at the end of
this period by O0 and O1, respectively. We define δ0 := |A0 −O0| and δ1 := |A1 −O1| and examine all
possible cases under the assumption that the error cost of AGG is c for every period.

Case δ0 = δ1 = 0: If OPT has no transmission, it must have the same error cost in this period as
AGG, because the initial and final values are the same, and hence ρI ≤ 2.

Case δ0 = 0, δ1 6= 0: If OPT has no transmission, it must have at least the same error cost as AGG in
I , thus ρI ≤ 2.

Case δ0 6= 0, δ1 = 0: If OPT has no transmission, it incurs at least error cost δ0 in the first time slot,
as AGG sends the correct value at the beginning of the period. Hence, ρI ≤ 2c/δ0.

Case δ0 6= 0, δ1 6= 0: In this case, OPT has error cost δ0 as well yielding ρI ≤ 2c/δ0.
Thus, for each of these periods, ρI ≤ 2c/δ0. It must hold that δ0 > ε, and the claim follows by applying

Lemma 5.2.
Lower bound. Consider the following sequence of values at the leaf node:

0, εc/ε, 0c/ε−1, − ε, 0c/ε−1, ε, 0c/ε−1, − ε, . . .

where αβ denotes that the value α remains for β time slots. Observe that for each subsequence

(0c/ε−1,−ε, 0c/ε−1, ε),

2ε is an upper bound on OPT ’s delay cost: It is the total delay cost if there are no transmissions at all in
the entire sequence. In contrast, AGG has 2c delay cost plus two transmissions. Thus, neglecting the cost
of the first time slot, we have ρ ≥ 4c/2ε = 2c/ε. 2

Please note that the lower bound in Theorem 5.3 only holds for our algorithm AGG. The analysis of
the claim for arbitrary algorithms is left for future research.

Tight Bounds for Delay-Sensitive Aggregation 57

6 Conclusion
This article attended to the subject of online information aggregation, which can be regarded as a general-
ization of the classic ski-rental problem to trees. The studied optimization problem captures the trade-off
between speed and energy prevalent in many wireless networks. We were able to show that a most simple
algorithm achieves a best possible asymptotic competitive ratio in the class of oblivious, deterministic and
fully distributed algorithms. In particular, the algorithm we consider fulfills its task without knowledge of
the presence and the state of devices in its vicinity, and it does not base its decisions on previous events.
Thus, apart from the efficiency criterion, the new analysis we have presented in this work suggests that
the algorithm introduced in [KNR02] is attractive for practical applications as it poses minimal hardware
requirements on sensor nodes in terms of computational requirements. Observe however that we assume
that bursty arrivals of events and packets can be handled by the nodes. An interesting future research
direction would be to allow nodes to inform their children that a certain packet could not be accepted due
to memory constraints, and should be re-sent later. This makes the protocol more complex and requires
nodes to know more about each other’s state. Moreover, while such a solution can mitigate a problem in
the short run, there is a natural bound on what can be stored in the total network with backlogging, namely
the overall storage capacity of the nodes.

Acknowledgments
We would like to thank Thibaut Britz and Marcin Bienkowski for interesting discussions on this work.

References
[AB03] Susanne Albers and Helge Bals. Dynamic TCP Acknowledgement: Penalizing Long Delays. In Proc.

14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 47–55, 2003.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge Univer-
sity Press, 1998.

[BKMS+06] Luca Becchetti, Peter Korteweg, Alberto Marchetti-Spaccamela, Martin Skutella, Leen Stougie, and
Andrea Vitaletti. Latency Constrained Aggregation in Sensor Networks. In Proc. Annual European
Symposium on Algorithms (ESA), pages 88–99, 2006.

[BKV04] Carlos Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive Analysis of Organization Networks
or Multicast Acknowledgement: How Much to Wait? In Proc. 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 627–635, 2004.

[DGS98] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP Dynamic Acknowledgment Delay:
Theory and Practice. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages
389–398, 1998.

[FL02] Jens S. Frederiksen and Kim S. Larsen. Packet Bundling. In Proc. 8th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 328–337, 2002.

[KEW02] B. Krishnamachari, D. Estrin, and S. Wicker. The Impact of Data Aggregation in Wireless Sensor Net-
works. In Proc. 22nd International Conference on Distributed Computing Systems Workshops (ICD-
CSW), pages 575–578, 2002.

[KKR01] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP Acknowledgement and Other Stories
About e/(e−1). In Proc. 33rd Annual ACM Symposium on Theory of Computing (STOC), pages 502–
509, 2001.

58 Yvonne Anne Pignolet, Stefan Schmid, Roger Wattenhofer

[KLS08] Fabian Kuhn, Thomas Locher, and Stefan Schmid. Distributed Computation of the Mode. In Proc.
27th ACM Symposium on Principles of Distributed Computing (PODC), 2008.

[KMSSV09] P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, and A. Vitaletti. Data Aggregation in Sensor Net-
works: Balancing Communication and Delay Costs. Theoretical Computer Science, 410(14):1346–
1354, 2009.

[KNR02] S. Khanna, S. Naor, and D. Raz. Control Message Aggregation in Group Communication Protocols.
In Proc. 29th International Colloquium of Automata, Languagues and Programming (ICALP), pages
135–146. Springer, 2002.

[NS09] T. Nonner and A. Souza. Latency Constrained Aggregation in Chain Networks Admits a PTAS. In
Proc. 5th International Conference on Algorithmic Aspects in Information and Management (AAIM).
Springer, 2009.

[OSW08] Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer. Tight Bounds for Delay-Sensitive
Aggregation. In Proc. 27th ACM Symposium on Principles of Distributed Computing (PODC), 2008.

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians and
Beyond: New Aggregation Techniques for Sensor Networks. In Proc. 2nd international conference on
Embedded networked sensor systems (SENSYS), pages 239–249. ACM, 2004.

[SO04] I. Solis and K. Obraczka. The Impact of Timing in Data Aggregation for Sensor Networks. In Proc.
IEEE International Conference on Communications (ICC), volume 6, 2004.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency of List Update and Paging Rules. Com-
mun. ACM, 28(2):202–208, 1985.

[Ste94] W. R. Stevens. TCP/IP Illustrated, Vol.1: The Protocols. Addison-Wesley, 1994.

[vRW04] P. von Rickenbach and R. Wattenhofer. Gathering Correlated Data in Sensor Networks. In Proc. ACM
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pages 60–66. ACM New York,
NY, USA, 2004.

[YF05] O. Younis and S. Fahmy. An Experimental Study of Routing and Data Aggregation in Sensor Networks.
In Proc. IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 50–57,
2005.

[YKP04] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-Latency Tradeoffs for Data Gathering in Wire-
less Sensor Networks. In Proc. 23rd Annual Joint Conference of the IEEE Computer and Communica-
tion Societies (INFOCOM), 2004.

[YZ09] Ke Yi and Qin Zhang. Multi-dimensional Online Tracking. In Proc. 19th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1098–1107, 2009.

	Introduction
	Related Work
	Model
	Our Contribution

	Oblivious Online Algorithm
	Tight Bound for Trees
	Tight Bound for Chains
	Value-Sensitive Aggregation
	Conclusion

