
Physical Algorithms

Roger Wattenhofer

Computer Engineering and Networks Laboratory TIK
ETH Zurich, 8092 Zurich, Switzerland

{wattenhofer}@tik.ee.ethz.ch

Abstract. This is the accompanying paper to an ICALP 2010 invited
talk, intending to encourage research in physical algorithms. The area
of physical algorithms deals with networked systems of active agents.
These agents have access to limited information for varying reasons; ex-
amples are communication constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include tra-
ditional computer networks, but also more generally networked systems,
such as social networks, highly dynamic and mobile networks, or even
networks of entities such as cars or ants. In other words, the world is
becoming algorithmic, and we need the means to analyze this world!

1 Introduction

Computer science is about to undergo major changes because of the ongoing
multi-core revolution.1 These changes will happen on several levels, quite ob-
viously with respect to hardware, but probably multi-cores will affect software
and applications as well. We believe that this is a moment of opportunity to do
some soul searching, and to reconsider the foundations of computer science. In
particular, we suggest to widen the base of computer science, towards parallelism
and distributed systems, and as we will explain below, more generally towards
physical sciences.

1.1 Algorithms

Studying and analyzing algorithms has been a research success story. Turing ma-
chines, along with other machines models, gave way to analyze the efficiency of
computing problems, eventually resulting in a beautiful theory with long stand-
ing open problems such as “P vs. NP”.

The key to this success was essentially abstraction. Even though there is
no generally accepted definition of the term “algorithm”, when it comes to the
analysis of algorithms there clearly is a mainstream, namely that an algorithm

1 Looking at microprocessor clock speed charts, one may conclude that traditional
sequential algorithms had an expiration date around 2005. Since 2005 computers are
mostly getting faster because of multiple cores, and hence increased parallelism.

is a recipe that computes an output as a function of an input. Usually, one is
interested in minimizing the number of machine operations.2

Algorithm analysis is somewhere between engineering and mathematics. In-
deed, algorithm analysis seems to have added an extra dimension to mathematics
– efficiency. Until recently, mathematics mostly cared whether or not a problem
had a solution. Now the efficiency dimension adds shades of grey, as one may
wonder how difficult it is to find a solution of a problem.

Computational complexity has been a veritable success story in computer
science, and subsequently in mathematics, too. The practical impact of the the-
oretical results is a dense net of problems whose complexity in terms of the input
size is known, thus permitting to estimate the required amount of resources to
solve a given task. In the end, it allows to decide whether it is economically
feasible (rather than just theoretically possible) to realize a certain solution to a
problem. The success of this approach primarily comes from the simplicity and
generality of the underlying input/output computational model. As such, results
are comparable and robust against model changes.

In summary, computational complexity is a strong tool to analyze input/out-
put algorithms, applied by computer science as well as other science disciplines.
Not only is it a beautiful theory, it also has major practical relevance as com-
puters are by and large equivalent to the theoretical machine models such as
random access or Turing machines. Alas, . . .

1.2 The King is Dead

. . . as we speak, computers are changing! Physical constraints prevent sequential
systems from getting faster. The speed of light limits processor clock speeds de-
pending on the size of the CPU, while in turn transistors cannot be miniaturized
arbitrarily due to quantum effects. Instead, hardware designers have turned to
multi-core architectures, in which multiple processing cores are included on each
chip. Today, two or four cores are standard, but soon enough the standard will
be eight and more. This switch to multi-core architectures promises increased
parallelism, but not increased single-thread performance. Software developers
are expected to handle this increased parallelism, i.e., they are expected to write
software that exploits the multi-core architecture by consisting of several com-
ponents that can run in parallel without introducing substantial overhead. This
is a notoriously difficult job.

Consequently, it is questionable whether the success story of sequential com-
plexity analysis will continue. Multi-core machines are not the same as random
access machines, with an exponentially growing number of cores less and less
so. More generally, computing systems become more and more distributed in
the sense that information is local. Be it the Internet or a system-on-a-chip, no

2 There are other measures of complexity, e.g. how much space or randomness is used,
however, step complexity is generally considered the most important measure. Also,
typically only asymptotics are considered, i.e., how much longer the computation
takes if the input gets larger.

single part of the system has access to the global state as a whole, fundamentally
changing what can—or rather cannot—be done.

Essentially, the question we want to raise is whether the beauty of compu-
tational complexity continues to reflect the complexity of our physical world, or
whether it will be diminished to a concept of pure theory and math.

1.3 Long Live The King

We claim that algorithm analysis needs to be adapted, to meet the requirements
of current and future computer systems. Indeed, we believe that the time is
right to ask this question in a more general context. It seems that more and
more other sciences are dealing with systems that are distributed in one way or
another. In this paper, we survey a few examples; in lack of a better name we
call the area physical algorithms. The idea is to take techniques from algorithm
analysis and computation complexity, and transform these into tools applicable
also in settings which do not match the original input/output model.

2 Physical Algorithms

The area of physical algorithms deals with networked systems of active agents.
These agents are limited in various ways; examples are communication con-
straints, computational or memory constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include traditional
computer networks such as the Internet or clusters, but also more generally net-
worked systems, such as social networks, or even highly dynamic and mobile
“networks” of entities such as cars or ants. Often, parts of the system can be
designed or influenced, but others cannot.

Our definition of physical algorithms includes, but is not limited to, the
area of distributed algorithms. For instance, we may not be able to specify the
protocol of any of the agents at all, instead examining the effect of changing
the amount or reliability of information available to the agents. We emphasize
dynamics, i.e., algorithms should (if possible) adapt to dynamic changes. In
general, we attempt not to presume a potentially unrealistic amount of control
of system properties.

Moreover, networks that are large (on their respective scale), suffer from
the unreliability of information. Parts of the system may fail, or even behave
maliciously in order to corrupt the available data. Information becomes out-
dated because of changing topology or inputs, or more subtle variations such
as differing communication delays. Widening the scope, many systems comprise
intelligent agents that act on their own behalf, not necessarily seeking to sup-
port the community. Agents may compete for resources selfishly, and cannot be
expected to adhere to a specific protocol unless it maximizes their individual
profit.

Physical algorithms cover e.g. distributed algorithmic game theory, networks
and locality, self-organization, dynamic systems, social networks, control theory,

wireless networks, multi-core systems, and – getting more ambitious – the hu-
man brain as a network of neurons [KPSS10], social insects, biological systems
in general [Cha09], or also financial and political systems [ABBG10]. Figure 1
provides a “map” of what we consider physical algorithms. The general aim is to
find connections between these topics, and to find a general theory that includes
central aspects.

In the following, we first give a refined picture of the two axes of Figure 1.
We also give a few concrete application areas of physical algorithms, to render
the definition more lucid. Some of these areas are well-established already, some
are developing rapidly right now.

2.1 Agents

The agents themselves can be limited in different ways. They may be constrained
in computational power, in the sense that they can only compute restricted
functions, or they may not be able to store (large amounts of) information. Such
limitations may be particularly interesting in areas such as social insects.

Fault Tolerance: Moreover, agents may not be reliable. Agents may crash at any
point in time, because of lacking energy for instance. Likewise, agents may crash
and later regenerate. Also, agents may experience some kind of omission failure,
e.g. failing to receive a message, or transient commission failures, e.g. a local
state corruption.

Sometimes however, agents will misbehave in more awkward ways, for in-
stance by starting to behave in erratic ways, e.g. by sending random messages.
Indeed, the pioneers in fault-tolerance observed machine behavior that was es-
sentially inexplicable. They decided that the only reasonable way to model such
behavior was to consider the machines being “malicious”. Following their early
papers we call such behavior Byzantine today [SPL80,LSP82].

When a Byzantine failure has occurred, the system may respond in any
unpredictable way, unless it is designed to have Byzantine fault tolerance. In
a Byzantine fault tolerant algorithm, agents must take counter-measures that
deal with Byzantine behavior. Essentially, in many problems, the fraction of
Byzantine agents must be strictly less than a third [LSP82].

More recently, different kinds of agent (mis)behavior are getting into the
spotlight, in particular selfishness.

Game Theory: Algorithmic research has often dealt with models and problems
that do not follow the orthodox input/output format. Indeed, these studies are
probably as old as computer science itself. One of the very fathers of computer
science itself, John von Neumann, is among the pioneers of a conceptually sig-
nificantly different approach.

Before writing one of the earliest articles on computer science [vN93] in 1945,
von Neumann (together with Oscar Morgenstern) published Games and Eco-
nomic Behavior [vNM47]. Today, algorithms and game theory are converging

Social Networks

Internet Wireless Networks
an

tin
e

h
B

yz
a

Political Systems

Viral Marketing

M lti Cng
Se

lfi
s

Financial Systems

Social InsectsNeural NetworksA
ge

nt
s

Multi-Core

e
C

ra
sh

in

Cars

Parallel
Algorithms

Overlay/Virtual
Networksltr

ui
st

ic
/R

el
ia

bl
e

Networks

Static Faults Neighbors Mobile Arbitrary

A

Network

Fig. 1. A representation of the playing field of physical algorithms. On the vertical axis,
we see some typical models for the agents that make up networks. In the simplest case,
all agents are benevolent and reliable. In many systems, however, agents will be faulty,
and for instance crash. In other systems, agents will be selfish in a game-theoretic way,
i.e. they will be strategic in order to maximize their benefit. Finally, agents may be
malicious (Byzantine), even to a degree that they want to harm the system. Clearly
there is no total ordering between these agent models, in some systems faulty agents
may be more difficult to deal with than selfish agents. Also, mixed forms of agents
may be considered, i.e. some selfish, others malicious. The horizontal axis represents
the dynamics of the network. Also here the variants are by no means complete, they
should just give some intuition of what is possible. The simplest form of dynamics
are no dynamics at all, i.e. fixed networks. In most systems, networks are not static,
but allow for at least some slow form of dynamics, for instance, if once in a while—
very rarely—a link will fail because of a hardware failure. Further to the right, the
frequency of topology changes increases to a point where the network is continuously
transforming. The level of dynamics depends on this frequency, but also how these
topology changes are restricted. Maybe only local neighborhoods are changing? Maybe
the agents themselves are mobile, forming edges whenever two agents are in vicinity of
each other? Finally, we may consider completely virtual networks just modeling some
physical process, with rather arbitrary forms of dynamics. The figure exemplarily shows
typical application areas of physical algorithms. Depending on the application and the
considered time frame, we allow for many forms of network dynamics.

again, as researchers are starting to view the Internet and other computer sci-
ence phenomena in the light of game theory.3

One of the cornerstones of game theory is the so-called equilibrium,4 which
describes a state of a system where no participant of the system has an incentive
to change its strategy. As a perfect example of mathematicians mostly being
interested in the question whether something can be done or not, pure game
theorists are generally not interested in how such an equilibrium can be reached,
or how long it takes to reach the equilibrium. Computer scientists on the other
hand have been interested early on how to reach such an equilibrium [DGP06].
Clearly, this is an interesting playground for physical algorithms, as the partici-
pants of the systems cannot be modeled well by an input/output algorithm.

Today, game theory is a well-accepted subject in algorithms, probably the
only one that does not follow the input/output paradigm that is well represented
at theoretical computer science conferences.

Recently, research is starting to combine fault-tolerance with game theory
[AAC+05].5 In [MSW06], for instance, it is shown that the presence of Byzantine
players may even contribute to the social welfare of a system.

2.2 Networks

Less known, the very same John von Neumann was also seminal in the develop-
ment of the horizontal axis in our map of physical algorithms. Networks exist in
many variants today, apart from the predominant Internet there are also niche
areas such as sensor or peer-to-peer networks. More generally (and daring), one
may even consider networks beyond computing, e.g. the human society or the
brain.

Locality: All networks have in common that they are composed of a multiplicity
of individual entities, so-called nodes; e.g. human beings in society, hosts in the
Internet, or neurons in the brain. Each individual node can directly communicate
only to a small number of neighboring nodes. On the other hand, in spite of each
node being inherently “near-sighted”, i.e., restricted to local communication, the
entirety of the system is supposed to work towards some kind of global goal,
solution, or equilibrium.

It is at the core of really understanding networks to know the possibilities
and limitations of this local computation, i.e., to what degree local information

3 Algorithmic game theory is a perfect example of the differences between the approach
of computer science and mathematics/physics. In computer science, researchers try
to understand the Internet by modeling the participants of the Internet as active
(selfish) agents. Mathematicians and physicists take a more holistic approach and
try to find random graphs that model all possible layers of the Internet (web pages,
autonomous service providers, routers), or simply postulate that the bandwidth de-
mands in the Internet are self-similar.

4 Several different types of equilibria exist, e.g. Nash equilibria in games, or price
equilibria in markets.

5 One may argue that Byzantine agents are just selfish agents with a different goal.

is sufficient to solve global tasks [Lin92,Pel00,KMW04,Suo09]. Many tasks are
inherently local, for instance, how many friends of friends one has. Many other
tasks are inherently global, for instance, counting all the nodes of the system, or
figuring out the diameter of the system. To solve such global problems, there is
at least some information that must traverse long distances.

It is natural to ask whether there are tasks that are in the middle of these two
extremes; tasks that are neither completely local nor inherently global. Indeed,
this is the case. Assume for example that the nodes want to organize themselves,
some nodes should be “masters”, the others will be “slaves”. The rules are that
no two masters shall be direct neighbors, but every slave must have at least
one master as direct neighbor. In graph theory, this problem is known as the
maximal independent set (MIS) problem. Intuitively, this problem seems local
since the rules are completely local. Consequently it might be expected that
every node can communicate with its neighbors a few times, and together they
can decide who will become master and who will become slave. However, this
intuition is misleading. Even though the problem seems local, it cannot be solved
using local information only! No matter how the system tackles the problem, no
matter what protocol or algorithm the nodes use, non-local information is vital
to solve the task. On the other hand, the problem is also not global: Mid-range
information is enough to solve the problem. As such the MIS problem establishes
an example that is neither local nor global, but in-between these extremes. Since
at first sight it looks local, let us call it pseudo-local. Using locality-preserving
reductions one can show that there exists a whole class of pseudo-local problems,
similar to the class of NP-complete problems [KMW04].

This class of pseudo-local problems also includes many combinatorial opti-
mization problems, such as minimum vertex cover, minimum dominating set,
or maximum matching. In such problems, each node must base its decision
(for example whether or not to join the dominating set) only on information
about its pseudo-local neighborhood, and yet, the goal is to collectively achieve
a good approximation to the globally optimal solution. Studying such local ap-
proximation algorithms is particularly interesting because it sheds light on the
trade-off between the amount of available local information and the resulting
global optimality. Specifically, it characterizes the amount of information needed
in distributed decision making: what can be done with the information that is
available within some fixed-size neighborhood of a node. Positive and negative
results for local algorithms can thus be interpreted as information-theoretic up-
per and lower bounds; they give insight into the value of information [KMW06].

We believe that studying the fundamental possibilities and limitations of
local computation is of interest to theoreticians in approximation theory, dis-
tributed computing, and graph theory. Furthermore, these results may be of
interest for a wide range of scientific areas, for instance dynamic systems that
change over time. The theory shows that small changes in a dynamic system
may cause an intermediate (or pseudo-local) “butterfly effect,” and it gives non-
trivial bounds for self-healing or self-organizing systems, such as self-assembling
robots. It also establishes bounds for further application areas, initially in en-

gineering and computing, possibly extending to other areas studying large-scale
networks, essentially physical algorithms.

Studying locality and networks is at the heart of physical algorithms, as it
is one of the few examples that have established some form of theory that uses
concepts of complexity theory outside the input/output model.

Self-Organization and Dynamic Systems: Looking at the wider picture, one may
argue that the idea of local algorithms as discussed in the last paragraph goes
back to the early 1970s when Dijkstra introduced the concept of self-stabilization
[Dij73]. A self-stabilizing system must survive arbitrary failures, including for
instance a total wipe out of volatile memory at all nodes. The system must self-
heal and eventually converge to a correct state from any arbitrary starting state,
provided that no further faults occur.

It seems that the world of self-stabilization (which is asynchronous, long-
lived, and full of malicious failures) has nothing in common with the world of
local algorithms (which is synchronous, one-shot, and free of failures). However,
as shown 20 years ago, this perception is incorrect [AS88], and the two areas
are related. Intuitively, this is because (i) asynchronous systems can be made
synchronous, (ii) self-stabilization concentrates on the case after the last failure,
when all parts of the system are correct again, and (iii) one-shot algorithms
can just be executed in an infinite loop. Thus, efficient self-stabilization essen-
tially boils down to local algorithms and hence, local algorithms are the key to
understanding fault-tolerance [LSW09].

Likewise, local algorithms help to understand dynamic networks, in which the
topology of the system is constantly changing, either because of churn (nodes
constantly joining or leaving as in peer-to-peer systems), mobility (edge changes
because of mobile nodes in mobile networks), changing environmental conditions
(edge changes in wireless networks), or algorithmic dynamics (edge changes be-
cause of algorithmic decisions in virtual or overlay networks). In dynamic net-
works, no node in the network is capable of keeping up-to-date global information
on the network. Instead, nodes have to perform their intended (global) task based
on local information only. In other words, all computation in these systems is
inherently local! By using local algorithms, it is guaranteed that dynamics only
affect a restricted neighborhood. Indeed, to the best of our knowledge, local algo-
rithms always give the best solutions when it comes to dynamics. Dynamics also
play a natural role in the area of self-assembly (DNA computing, self-assembling
robots, shape-shifting systems, or claytronics), and as such it is not surprising
that local algorithms are being considered a key to understanding self-assembling
systems [Ste09,GCM05].

Social Networks: As already mentioned, there are numerous types of networks,
including for instance the human society or the network of all the web pages
in the world. Indeed, so-called social networks such as Facebook just merge the
two concepts.

A decade ago Jon Kleinberg [Kle00] gave a first algorithmic explanation to a
phenomenon studied almost a century ago. Back in the 1929, Frigyes Karinthy

published a volume of short stories that postulated that the world was “shrink-
ing” because human beings were connected more and more. Some claim that he
was inspired by radio network pioneer Guglielmo Marconi’s 1909 Nobel Prize
speech, to make the century complete. Despite physical distance, the grow-
ing density of human “networks” made the actual social distance smaller and
smaller. As a result, any two individuals could be connected through at most
five acquaintances, i.e. within six hops.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using individuals from the US Midwest as starting points
and from Boston as end points. The starting points were asked to send a let-
ter to a well-described target person in Boston, however not directly, but only
through an intermediate friend, hopefully “closer” to the target person. Shortly
after starting the experiment, letters have been received. Often enough of course
letters were lost during the process, but if they arrived, the average path length
was about 5.5.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e. each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties that
allow for “small world” effects. One of the keywords in this area are power-law
graphs, networks were node degrees are distributed according to a power-law
function.

This is interesting, but not enough to really understand what is going on.
For Milgram’s experiments to work, it is not sufficient to connect the nodes in
a certain way. In addition, the nodes themselves need to know how to forward a
message to one of their neighbors, even though they cannot know whether that
neighbor is really closer to the target. In other words, nodes are not just following
physical laws, but they make decisions themselves. In contrast to those math-
ematicians that worked on the problem earlier, Kleinberg [Kle00] understood
that Milgram’s experiment essentially shows that social networks are “naviga-
ble”, and that one can only explain it in terms of a greedy routing.

In particular, Kleinberg set up an artificial network with nodes on a grid
topology, plus one additional random link per node. In a quantitative study he
showed that the random links need a specific distance distribution to allow for
efficient greedy routing. This distribution marks the sweet spot for any navigable
network. As such it is a great example for physical algorithms, because physical
methods alone cannot find such a sweet spot, as statistical physicists hardly
argue about algorithmic properties.

The are many applications for research in social networking, for instance viral
marketing [KOW08], or spreading of biological viruses.

Physical Objects: A science fiction favorite are automatic cars equipped with
distance sensors, following each other at high speed and minimal distance. This is
a typical instance of physical objects organizing themselves. Unlike planets these

cars are not just following the laws of physics, but they will run algorithms that,
depending on the values delivered by the distance sensors or other additional
information (for instance wireless communication between cars), may speed up or
slow down. Having studied control theory (or having been in a read-end collision
accident) one knows that high speed lines of cars are not without problems. No
matter what, the control loop will experience some delay. So if some car will need
to break slightly, the next car might need to break a bit more already, and a
few cars down the road we might have a terrible crash, because some car cannot
break hard enough anymore.

There are several examples like this, e.g. coordination of helicopters or, more
generally, any kind of swarm trying to maintain a certain formation based only
on local distance information. In all these cases the agents may slowly drift from
their desired (relative) position, because they are not able or willing to control
their speeds perfectly. Furthermore, information on neighbors’ positions could
be outdated and/or inaccurate. Another example is clock synchronization in
computer networks: Each node is equipped with a hardware clock which is not
completely accurate, and nodes communicate local clock values by exchanging
messages of varying delay with their neighbors.

All these examples have in common that they are algorithmic, in the sense
that nodes have countless possibilities how to react to changes in the system.
In a recent article [LLW10], tight bounds for some clock synchronization prob-
lem have been proved. These results are surprising in various ways. Even if all
hardware clocks are accurate up to a few ticks per million ticks, it was shown
that no matter what algorithm one uses, the error will depend on the size of
the network. There is a simple algorithm that matches the lower bound using
local information only, however, unfortunately, this algorithm is not intuitive.
Indeed, it was shown that a number of canonical approaches are exponentially
worse than the lower bound [LW06].

Real-time control of physical objects is of course beyond the input/output
paradigm, still these problems usually have an algorithmic component which is
worth studying. The range is large, from simple questions like how to organize a
group of robot vacuum cleaners in order to clean a floor most efficiently, to the
question of bird flocking [Cha09].

Wireless Communication: Network dynamics go well beyond mobility and fail-
ures. In some networks, communication is not graph- but geometry-based, in
the sense that nodes can communicate with nearby nodes, only if not too many
other nearby nodes transmit at the same time.

In the past, a large fraction of analytic research on wireless networks has
focused on models where the network is represented by a graph. The wireless
devices are nodes, any two nodes within communication (or interference) range
are connected by an (annotated) edge. Such graph-based models are particularly
popular among higher-layer protocol designers, hence they are also known as pro-
tocol models. Unfortunately, protocol models are often too simplistic. Consider
for instance a case of three wireless communication pairs, every two of which
can be transmitting concurrently without a conflict. In a protocol model one

will conclude that all three senders may transmit concurrently. Instead, in re-
ality, wireless signals accumulate, and it may be that any two transmissions
together generate too much interference, hindering the third receiver from cor-
rectly receiving the signal of its sender.

This many-to-many relationship makes understanding wireless transmissions
difficult; a model where interference accumulates seems paramount to fully com-
prehend wireless communication. Similarly, protocol models oversimplify wireless
attenuation. In protocol models the signal is usually binary, as if there was an
invisible wall at which the signal immediately drops. Not surprisingly, in reality
the signal decreases gracefully with distance. Because of these shortcomings, re-
sults for protocol models are often not applicable in reality. In contrast to the
algorithmic (“computer science”) community which focuses on protocol models,
researchers in information, communication, or network theory (“electrical engi-
neering”) are working with wireless models that add up interference and take
attenuation into account. A standard model is the physical model.

In the physical model the energy of a signal fades with distance. If the signal
strength received by a device divided by the interfering strength of competitor
transmitters (plus the noise) is above some threshold, the receiver can decode
the message, otherwise it cannot. The physical model is reflecting the physical
reality more precisely, hence its name. Unfortunately, most work in this model
does not focus on algorithms with provable performance guarantees. Instead
heuristics are usually proposed and evaluated by simulation. Analytical work is
done for special cases only, e.g. networks with a grid structure, or random traffic.
However, these special cases do neither give insights into the complexity of the
problem, nor do they give algorithmic results that may ultimately lead to new
distributed protocols. If one is interested in the capacity of an arbitrary wireless
network, and how this capacity can be achieved, the community is not able to
provide an answer.

However, this is about to change. Starting with [MW06], more and more
algorithms work is adopting the physical model, thus combining the best of
both worlds, by giving algorithms and limits for arbitrary wireless networks (not
random node distributions), using the physical model (not the protocol model).
We believe that bridging the gap between protocol designers and communication
theorists is a fundamental challenge of the coming years, a hot topic for the
wireless network community with implications for both theory and practice, and
again a nice example of physical algorithms.

Multi-Core: Let us finish with what we started, multi-core systems. The switch to
multi-core architectures promises increased parallelism, but not increased single-
thread performance. Software developers are expected to handle this increased
parallelism.

Today, the main tool for dealing with parallelism are locks; locks are soft-
ware constructs that allow access to shared memory cells in a mutually exclusive
way. However, there seems to be a general consensus in the computer science re-
search community that locks are not the optimal programming paradigm to deal
with concurrency and synchronization. Nobody really knows how to build large

systems depending on locks. The currently most promising solution is transac-
tional memory [HM93]. Similarly to the database world, the programmer should
encapsulate sequences of instructions within a transaction. Either the whole
transaction is executed, or nothing at all. Other threads will see a transaction
as one indivisible operation.

To some degree, the core of a transactional memory system is the contention
manager. In case of a conflict between two transactions (e.g., both trying to
store a value into the same memory cell), the contention manager decides which
transaction must wait, or has to be aborted. The contention management policy
of a transactional memory implementation can have a profound effect on its
performance, and even correctness. Putting it simply, the contention manager
inherits the role of the scheduler in a single core operating system.

In general, we believe that the key to understanding multi-core computing
is through understanding networks. Transactions may for example be modeled
as nodes in a dependency graph with edges between them in case of a conflict.
Resolving conflicts based on local knowledge in this graph, solutions will scale
canonically with multi-core systems growing. Thus, the problem naturally falls
in the field of physical algorithms. A coloring of the graph yields a possible
schedule for the transactions by executing all transactions of the same color in
parallel.

An additional issue arises from the concurrent nature of programs in multi-
core architecture. As concurrent processes interact and interfere with each other,
processes also compete for some shared resources. If we keep in mind that in many
cases, programmers who write code for a multi-core system are hardly interested
in the performance of other processes, but merely on their own program’s perfor-
mance, we cannot desist from analyzing multi-core systems under the assumption
that processes compete selfishly for system resources. To link back to our first
example, game theory offers a great set of tools for this setting. We want to
figure out whether existing multi-core systems are cheating-proof, i.e., incentive
compatible in the sense that programmers have no interest to deviate from a
behavior which is best for the overall performance of the system [EW09].

It is necessary to shed more light on the theoretical foundations of multi-
core systems, with a special focus on transactional memory and its contention
manager [SW09]. What one needs are refined models of efficiency and new con-
tention managers that provably optimize the efficiency of transactional memory
systems.

Acknowledgements: Thanks to Christoph Lenzen, for discussing the topic, and
for reading the manuscript.

References

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-
Philippe Martin, and Carl Porth. Bar fault tolerance for cooperative ser-
vices. In SOSP, pages 45–58, 2005.

[ABBG10] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Com-
putational complexity and informational asymmetry in financial products.
Unpublished manuscript, 2010.

[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast as static
networks (preliminary version). In FOCS, pages 206–220. IEEE, 1988.

[Cha09] Bernard Chazelle. Natural algorithms. In Proc. of the 20 th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2009.

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a nash equilibrium. In Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing (STOC),
pages 71–78, New York, NY, USA, 2006. ACM.

[Dij73] Edsger W. Dijkstra. Self-stabilization in spite of distributed control.
Manuscript EWD391, October 1973.

[EW09] Raphael Eidenbenz and Roger Wattenhofer. Good Programming in Transac-
tional Memory: Game Theory Meets Multicore Architecture. In 20th Inter-
national Symposium on Algorithms and Computation (ISAAC), Honolulu,
Hawaii, USA, December 2009.

[FLP83] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of
distributed consensus with one faulty process. In PODS, pages 1–7, 1983.

[GCM05] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. Pro-
grammable matter. Computer, 38(6):99–101, 2005.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, pages 289–300, 1993.

[Kle00] Jon M. Kleinberg. The small-world phenomenon: an algorithm perspective.
In STOC, pages 163–170, 2000.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What Can-
not be Computed Locally! In Proc. of the 23 rd ACM Symposium on the
Principles of Distributed Computing (PODC), pages 300–309, 2004.

[KMW06] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The Price
of Being Near-Sighted. In Proc. of the 17 th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2006.

[KOW08] Jan Kostka, Yvonne Anne Oswald, and Roger Wattenhofer. Word of Mouth:
Rumor Dissemination in Social Networks. In 15th International Colloquium
on Structural Information and Communication Complexity (SIROCCO),
Villars-sur-Ollon, Switzerland, June 2008.

[KPSS10] Fabian Kuhn, Konstantinos Panagiotou, Joel Spencer, and Angelika Steger.
Synchrony and asynchrony in neural networks. In Proc. of the 21 st ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2010.

[Lin92] Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight Bounds
for Clock Synchronization. J. ACM, 57(2), 2010.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gen-
erals Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[LSW09] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local Algo-
rithms: Self-Stabilization on Speed. In 11th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), Lyon, France,
November 2009.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock Syn-
chronization. In 20th International Symposium on Distributed Computing
(DISC), Stockholm, Sweden, September 2006.

[MSW06] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When Selfish
Meets Evil: Byzantine Players in a Virus Inoculation Game. In 25th An-
nual Symposium on Principles of Distributed Computing (PODC), Denver,
Colorado, USA, July 2006.

[MW06] Thomas Moscibroda and Roger Wattenhofer. The Complexity of Connec-
tivity in Wireless Networks. In 25th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), Barcelona, Spain,
April 2006.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[SPL80] R. Shostak, M. Pease, and L. Lamport. Reaching Agreement in the Presence
of Faults. J. of the ACM, 27(2):228–234, 1980.

[Ste09] Aaron Sterling. Memory consistency conditions for self-assembly program-
ming. CoRR, abs/0909.2704, 2009.

[Suo09] Jukka Suomela. Survey of local algorithms. Manuscript, 2009.
[SW09] Johannes Schneider and Roger Wattenhofer. Bounds On Contention Man-

agement Algorithms. In 20th International Symposium on Algorithms and
Computation (ISAAC), Honolulu, USA, December 2009.

[vN93] John von Neumann. First Draft of a Report on the EDVAC. IEEE Ann.
Hist. Comput., 15(4):27–75, 1993.

[vNM47] John von Neumann and Oscar Morgenstern. Theory of games and economic
behavior. Princeton University Press, 1947.

