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Abstract7

We study the stabilization time of two common types of influence propagation. In majority processes,8

nodes in a graph want to switch to the most frequent state in their neighborhood, while in minority9

processes, nodes want to switch to the least frequent state in their neighborhood. We consider the10

sequential model of these processes, and assume that every node starts out from a uniform random11

state.12

We first show that if nodes change their state for any small improvement in the process, then13

stabilization can last for up to Θ(n2) steps in both cases. Furthermore, we also study the proportional14

switching case, when nodes only decide to change their state if they are in conflict with a 1+λ
215

fraction of their neighbors, for some parameter λ ∈ (0, 1). In this case, we show that if λ < 1
3 , then16

there is a construction where stabilization can indeed last for Ω(n1+c) steps for some constant c > 0.17

On the other hand, if λ > 1
2 , we prove that the stabilization time of the processes is upper-bounded18

by O(n · log n).19
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1 Introduction25

Dynamically changing colorings in a graph can be used to model various situations when26

entities of a network are in a specific state, and they occasionally decide to change their state27

based on the states of their neighbors. Such colorings are essentially a form of distributed28

automata, where the nodes can represent anything from brain cells to rival companies; as29

such, the study of these processes has applications in almost every branch of science.30

One prominent example of such colorings is a majority process, where each node wants to31

switch to the color that is most frequent in its neighborhood. These processes are used to32

model a wide range of phenomena in social sciences, e.g. the spreading of political opinions33

in social networks, or the adoption of different social media platforms [16, 7, 20].34

Another example is the dual setting of a minority process, where each node wants to35

switch to the least frequent color among its neighbors. Minority processes can model settings36

where nodes would prefer to differentiate from each other, e.g. frequency selection in wireless37

networks, or selecting a production strategy in a market economy [6, 21, 9].38

In our paper, we analyze the stabilization time of majority and minority processes, i.e.39

the number of steps until no node wants to change its color anymore. We study the processes40

in the sequential (or asynchronous) model, where in every step, exactly one node switches41

its color. As such, stabilization time in the sequential model describes the total number of42

switches before the process terminates.43
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Compared to a synchronous setting, the sequential model has the advantage that neighbors44

are never switching at the exact same time; this prevents the process from ending up in an45

infinitely repeating periodic pattern. This property is indeed a reasonable assumption in46

many application areas, including the examples mentioned above: you are highly unlikely to47

e.g. switch your wireless frequency at the exact same time as your neighbors, or change your48

political opinion at the exact same time as your friends.49

We study the maximal stabilization time of the processes in general graphs, assuming50

that the initial coloring of nodes is chosen uniformly at random. This setting may be relevant51

for a worst-case analysis in applications where the only thing we can influence is the initial52

coloring. For example, a wireless service provider might have no control over the topology of53

the network or the times when clients decide to switch their frequency, but it could easily54

ensure that its devices are initialized with a randomly chosen frequency.55

An important parameter of the model is the switching rule, i.e. the threshold at which a56

node decides to switch to the opposite color. Two very natural rules are (i) basic switching,57

when nodes decide to switch for any small improvement, and (ii) proportional switching,58

when we have a real parameter λ ∈ (0, 1), and nodes only change their color if they are59

motivated to switch by a 1+λ
2 fraction of their neighborhood.60

In our paper, we study the stabilization time for both basic and proportional switching.61

As a warm-up (in Section 5), we first show that in case of basic switching, both minority62

and majority processes can take Ω(n2) steps to stabilize with high probability, matching a63

naive upper bound of O(n2). This follows from an extension of the lower-bound construction64

in [28] to the random-initialized case.65

Our main contributions (Sections 6 and 7) are stabilization bounds in case of proportional66

switching:67

for proportional switching with λ < 1
3 , we present a construction that w.h.p. exhibits a68

superlinear stabilization time of Ω(n1+c) for a constant c > 0 that depends on λ.69

for proportional switching with λ > 1
2 , we show that w.h.p. the process always stabilizes70

in O(n · log n) steps, essentially matching a straightforward lower bound of Ω(n).71

2 Related work72

Majority and minority processes have been extensively studied from numerous different73

perspectives since the early 1980s [15, 11]. Most of the results focus on the simplest case74

of two colors, since this already captures the interesting properties of the process, and a75

generalization to more colors is often straightforward.76

Many different variants of these processes have been inspired by application areas ranging77

from particle physics to social science, as in case of e.g. Ising systems or the voter model78

[23, 22]. In particular, there is extensive literature on more sophisticated process definitions79

that aim to provide a more realistic model for a specific application, such as social opinion80

dynamics or virus infection spreading [2, 1, 8, 26].81

In case of majority processes, there is a particular interest in analyzing how a small set82

of nodes can influence the final state [36, 35, 14, 34, 3]. For both processes, there are also83

numerous works on the analysis of stable states [17, 5, 21, 18, 4]. However, in contrast to our84

work, most of these earlier results assume a synchronous setting, and only study the process85

on specific graph topologies, e.g. cliques, grids or Erdős-Rényi random graphs.86

There is a recent line of work on stabilization time in general graphs; however, these87

results assume a worst-case initial coloring. For basic switching, the work of [12] shows88
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that in the sequential adversarial and synchronous models, stabilization can last for Ω̃(n2)89

steps, matching a straightforward upper bound of O(n2). A similar lower bound is known for90

minority processes [28]. On the other hand, the two processes exhibit very different behavior91

in a benevolent sequential model: majority processes always stabilize in O(n) time, while92

minority processes can last for quadratically many steps [12, 28].93

On the other hand, if we consider general graphs with proportional switching, then the94

sequential processes are known to exhibit a worst-case runtime between quadratic and linear,95

depending on the parameter λ of the switching rule [30]. Stabilization time in this case96

is characterized by a non-elementary function f(λ) that monotonically and continuously97

decreases from 1 to 0 on the interval [0, 1]. The results of [30] show that for any ε > 0,98

stabilization time is upper-bounded by O(n1+f(λ)+ε), and the process can indeed last for99

Ω(n1+f(λ)−ε) steps. Our results are an interesting contrast to this, showing that if we100

randomize the initial state, then the process can only take Ω(n1+c) steps for smaller λ values.101

For general weighted graphs and a worst-case initial coloring, an exponential lower bound102

has also been shown for both majority [19] and minority [29] processes.103

There are also various works that assume a randomized initial coloring, but these results104

focus on special classes of graphs. For majority processes, stabilization time from a randomized105

initial state has been analyzed in Erdős-Rényi random graphs, grids, tori and expanders106

[13, 27, 10, 25]. For minority processes, the works of [31, 32, 33] study stabilization in cliques,107

cycles, trees and tori. As such, to our knowledge, stabilization time from a randomized initial108

coloring has not yet been studied in general graphs.109

3 Model definition and tools110

3.1 Preliminaries111

We study the processes on simple, unweighted, undirected graphs G(V, E) with node set V112

and edge set E. We denote the nodes of the graph by u or v, and the number of nodes in113

the graph by n. For a specific node v, we denote the neighborhood of v by N(v), and the114

degree of v by dv = |N(v)|. For ease of presentation, we usually define the size of our graph115

constructions in terms of an (almost) linear parameter m, and in the end, we select a value116

of m that ensures m ∈ Θ̃(n).117

As common in this area, we focus on the case of two colors. That is, we say that a118

coloring of the graph is a function γ : V → {black, white}. For a specific coloring γ, we119

define Ns(v) = {u ∈ N(v) | γ(v) = γ(u)} as the neighbors of v with the same color, and120

No(v) = {u ∈ N(v) | γ(v) ̸= γ(u)} as the neighbors of v with the opposite color.121

We use the concept of conflicts to define both majority and minority processes in a general122

form. We say that there is a conflict on the edge (u, v) if this edge motivates v to change123

its color; more formally, if u ∈ No(v) in case of a majority process, and if u ∈ Ns(v) in case124

of a minority process. We use Nc(v) to denote the conflicting neighbors of v under γ, i.e.125

Nc(v) = No(v) for majority and Nc(v) = Ns(v) for minority.126

Given a specific coloring γ, we say that node v is switchable if |Nc(v)| is larger than a127

specific threshold, which is defined by the so-called switching rule (discussed in detail in the128

next subsection). If v is switchable, then it can change its color to the opposite color (i.e. it129

can switch). We also use the word balance to refer to the metric |Nc(v)|
dv

in general, which130

indicates how close node v is to being switchable.131

A majority/minority process is a sequence of colorings of the graph G (known as states).132

Every state is obtained from the previous state by switching a switchable node in the previous133

state. We assume that exactly one node switches in each step, which is often known as the134
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sequential or asynchronous model of the process. In our paper, we also assume that the initial135

state of the process is a uniform random coloring, i.e. each node is white with probability 1
2136

and black with probability 1
2 , independently from other nodes.137

We say that a state of the process is stable if there are no more switchable nodes in the138

graph. The number of steps in the process (from the initial state until a stable state is139

reached) is known as the stabilization time of the process.140

We study the processes in general graphs, and we are interested in the longest possible141

stabilization time of a process, i.e. if in each step, the next node to switch among the142

switchable nodes is selected by an adversary who maximizes stabilization time. In other143

words, we study the worst-case stabilization of a graph on n nodes under the worst possible144

ordering of switches.145

We also use basic tools from probability theory, such as the union bound and the Chernoff146

bound, and the concept of an event happening with high probability (w.h.p.). For completeness,147

a brief summary of these techniques is provided in Appendix A.148

3.2 Switching rules149

Another important parameter of the processes is the condition that allows nodes to switch150

their color. There are two natural candidates for such a switching rule:151

I I. Basic switching: node v is switchable if |Nc(v)| > 1
2 · dv.152

I II. Proportional switching: node v is switchable if |Nc(v)| ≥ 1+λ
2 · dv.153

Note that both rules ensure that the overall number of conflicts in the graph strictly154

decreases in each switching step. Since there are at most |E| = O(n2) conflicts in the graph155

initially, we obtain a straightforward upper bound of O(n2) on the stabilization time.156

In case of basic switching, a node switches its color for an arbitrarily small improvement.157

Alternatively, if we denote the complement of Nc(v) by Nc(v) := N(v) \ Nc(v), we can also158

formulate this rule as |Nc(v)| − |Nc(v)| > 0. In case of the worst possible initial coloring,159

this rule is known to allow a stabilization time of Θ(n2) [28, 12, 18].160

In contrast to this, proportional switching is defined for a specific parameter λ ∈ (0, 1],161

and it requires that v is in conflict with a specific portion of its neighborhood, with 1+λ
2 ∈162

( 1
2 , 1]. This is often a more realistic approach if nodes have a large degree, or if switching163

also induces some cost in an application area. Equivalently, we can rephrase this rule as164

|Nc(v)| − |Nc(v)| ≥ λ · dv. This shows that whenever v switches, the total number of conflicts165

in the graph decreases by at least λ · dv, and v can have at most 1+λ
2 · dv − λ · dv = 1−λ

2 · dv166

conflicts on the incident edges after the switch.167

In case of a worst-case initial coloring, the maximal stabilization time for propor-168

tional switching is between quadratic and linear, following a monotonously decreasing169

non-elementary function f(λ) described in [30]. Since this non-elementary function also plays170

a role in our lower bound, we briefly discuss f(λ) in Appendix D for completeness.171

Note that for a very small λ value approaching 0, we can obtain basic switching as a172

special case of proportional switching in the limit.173

3.3 Application of earlier results174

We also apply the basic ideas behind some of the constructions from previous work, which175

were used to show similar lower bounds for a worst-case initial coloring.176
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Construction idea for basic switching. Recall that the result of [28] provides a quadratic177

lower bound on the stabilization time of minority processes.178

I Theorem (from [28]). Consider minority processes under the basic switching rule. There179

exists a class of graphs and an initial coloring with a stabilization time of Ω(n2).180

The main idea of the construction is to have a set P of m nodes, attached to two further181

sets A and B of size m. The construction makes sure that every node in A and B wants182

to switch to the opposite color. Then we switch these nodes in an alternating fashion: one183

from A, one from B, one from A again, and so on. The set P is designed such that its184

neighborhood is approximately balanced, and thus after each of these steps, the entire set P185

is switchable. Switching P after each step gives a sequence of m · 2m = Θ(n2) switches.186

Black box construction for proportional switching. We also use the result of [30], which187

provides a lower bound construction for any λ ≤ 1
3 in case of proportional switching and188

worst-case initial coloring. We apply this graph as a black box in our constructions, and refer189

to it as the prop construction.190

I Theorem (from [30]). Consider majority/minority processes under proportional switching191

for any λ ≤ 1
3 . There exists a class of graphs and an initial coloring with a stabilization time192

of Ω(n1+f(λ)−ε) for the function f described in Appendix D and for any ε > 0.193

4 Basic observations194

4.1 Initially balanced sets195

Since we start from a uniform random initial coloring, a basic tool in our proofs is the fact196

that w.h.p., a large set of nodes has a balanced distribution of the colors initially.197

I Definition 1 (ϵ-balanced set). Given a specific coloring, we say that a set of nodes S is198

ϵ-balanced if the number of white nodes in S is within
[
( 1

2 − ϵ) · |S|, ( 1
2 + ϵ) · |S|

]
.199

I Lemma 2. Let S1, ..., Sk be subsets of nodes in G such that |Si| ≥ c0 · log n for some200

constant c0 for all i ∈ {1, ..., k}, and k ≤ n. Then for any constant ϵ > 0, there is a c0 such201

that w.h.p., each set Si is initially ϵ-balanced.202

Proof. Let us select c0 = 3
ϵ2 . According to the Chernoff bound, the probability that Si is203

not ϵ-balanced is at most204

2 · e−4ϵ2· 1
6 ·|Si| ≤ 2 · e− 2

3 ϵ2·c0·log n = 2 · n−2.205

If we take a union bound over all the k ≤ n subsets, the probability that any of them is not206

ϵ-balanced is at most n · 2 · n−2 = 2 · n−1, so w.h.p. the claim indeed holds. J207

In particular, we can select a high constant c0, and refer to nodes v with dv ≥ c0 · log n208

as high-degree nodes, and the remaining nodes as low-degree nodes. Then Lemma 2 can be209

rephrased into the following claim:210

I Corollary 3. For any ϵ > 0, there exists a c0 such that w.h.p. the following claim holds:211

for all the high-degree nodes v in G, N(v) is initially ϵ-balanced.212
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4.2 Linear lower bound213

Note that we can easily provide an example of linear stabilization time, even for proportional214

switching with any λ ∈ (0, 1).215

Consider an edge graph, i.e. a connected component with only two adjacent nodes u and v.216

With a probability of 1
2 , node v is initially switchable in this graph, for both majority/minority217

processes (since it has the opposite/same color as u, respectively). Let us take n
2 independent218

copies of this single-edge graph; this gives n
2 nodes in the role of v. Then n

4 of these nodes219

are switchable in expectation, and with a Chernoff bound, one can show that at least n
8220

are switchable w.h.p.. We can switch these n
8 nodes in any order to obtain a sequence of221

n
8 ∈ Ω(n) switches.222

5 Lower bound constructions for basic switching223

For basic switching, we can give an example of quadratic stabilization time by a suitable224

extension of the construction in [28] to the random-initialized setting.225

In our analysis, we refer to a set of nodes as a group if they all have exactly the same226

neighborhood. In our figures, we denote groups by double-sided circles, with the cardinality227

shown beside the group, and an edge between two groups denotes a complete bipartite228

connection between the corresponding sets. Note that the nodes of a group always prefer the229

same color.230

I Theorem 4. Consider majority/minority processes under the basic switching rule, starting231

from a uniform random initial coloring. There exists a class of graphs that exhibit a232

stabilization time of Ω(n2) with high probability in this model.233

We now outline the main ideas of these graphs, with the details discussed in Appendix B.234

5.1 Minority processes235

For minority processes, consider the graph in Figure 1, which is essentially an extension of236

the graph in [28] with a complete bipartite connection between A0 and B0. For simplicity,237

we add an extra node to ensure that P has an odd degree. The graph has 5m + 3 nodes, and238

thus m ∈ Θ(n).239

Regardless of the initial coloring, each node in A0 has the same preferred color, since240

they all have exactly the same neighbors and they have an odd degree. Thus we can switch241

each node in A0 to this preferred color (if it did not have this color already). Assume w.l.o.g.242

that this color is white. Since now A0 is white entirely, we can switch each node in B0 to243

black. With this, the preferred color of each node in A becomes black, and the preferred244

color of each node in B becomes white.245

An intuitive description of the remaining sequence is as follows. Both A and B have246

approximately m
2 nodes (and w.h.p. at least m

3 nodes) that have the same color as the247

group above. These nodes are now all switchable, regardless of the color of nodes in P . We248

disregard the remaining nodes, and only focus on these m
3 switchable nodes in A and B.249

Initially, the neighborhood of P is w.h.p. ϵ-balanced. Hence by switching only ϵ · m of250

nodes either in A or in B, we can ensure that P has exactly one more white neighbor than251

black, which allows us to switch the entire group P to black. Then by switching one node252

in A to black, P will have one more black neighbor than white, so P becomes switchable253

again. We can then switch the nodes in A and B in an alternating fashion; this ensures that254

P always has one more same-colored neighbor after each step, which makes P switchable255
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m+1 m+1

m m

mP

A B

A0 B0

...

...

...

...

m+1 m+1

m m

mP

A B

A0 B0

A1,1 A1,i

A2,1 A2,i

B1,1 B1,i

B2,1 B2,i

Θ(log m) pairs of groups on both sides,
each group containing Θ( m

log m) nodes

Figure 1 Lower bound constructions of Ω(n2) steps in case of basic switching, for minority
processes (left) and majority processes (right). Recall that double-sided circles denote groups, and
edges between groups denote a complete bipartite connection between the two groups.

again. This process allows us to switch the nodes of P altogether Θ(m) times, which already256

adds up to a sequence of Θ(m2) = Θ(n2) switches.257

5.2 Majority processes258

The case of majority processes is more involved, since in this case, it is more difficult to259

ensure that the groups A0 and B0 attain different colors.260

Instead of connecting A0 to B0, we connect A0 to Θ(log m) further groups of size Θ( m
log m ),261

denoted by A1,1, A1,2, ... . Finally, we add Θ(log m) more distinct groups A2,1, A2,2, ..., also262

on Θ( m
log m ) nodes each, and we create a complete bipartite connection between A1,i and263

A2,i. We attach the same structures to group B0 in a symmetric manner; see Figure 1 for an264

overview of the construction.265

The main idea of the construction is as follows. With probability 1
2 , the group A1,i has266

more white nodes than black initially, which allows us to switch A2,i entirely to white. Since267

the groups A1,i are independent, there is indeed w.h.p. an index î such that the group A2,̂i268

can be switched entirely to white. The neighbors of A1,̂i are initially approximately balanced,269

so after recoloring all the Θ( m
log m ) nodes in A2,̂i to white, A1,̂i has more white neighbors270

than black; this allows us to switch all of A1,̂i to white. We note while our previous steps all271

follow directly from Corollary 3, this specific step requires a slightly stronger version of the272

Chernoff bound.273

We can then apply a similar reasoning on the group A0: since it was w.h.p. balanced274

initially, and turning A1,̂i to white has increased the number of its white neighbors by275

Θ( m
log m ) w.h.p., we can also turn the entire group A0 white. In a similar fashion, we can use276

groups B2,̂i and B1,̂i to switch each node in B0 black w.h.p..277

Once A0 is white and B0 is black, we again have Θ(m) switchable nodes in both A and278

B, and thus we can apply the same alternating method as in the minority case.279

6 Proportional switching: lower bound for λ < 1
3280

We now show that for proportional switching with small λ values, stabilization time can281

indeed be superlinear. Note that λ < 1
3 implies that 1+λ

2 = 2
3 − δ for some δ > 0.282
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...

S0 S1

S2,1 S2,2 S2,3 S2,ℓ−1 S2,ℓ

Θ(log m) levels

Sw
2,ℓ

Sb
2,ℓ

S3
Sw

3

Sb
3

prop
construction

black white

Figure 2 High-level illustration of the proportional lower bound construction for any λ < 1
3 .

We present our lower bound construction for majority processes; however, since our graph283

is bipartite, we can easily adapt this result to minority processes by inverting the colors in284

one of the color classes. More details of this technique are available in Appendix C.285

I Theorem 5. Consider majority/minority processes under the proportional switching rule286

for any λ < 1
3 , starting from a uniform random initial coloring. For any ε > 0, there exists287

a class of graphs that exhibit a stabilization time of Ω
(

n1+f( 2·λ
1−λ )−ε

)
with high probability.288

In a simplified formulation, this means that there exists a constant c > 0 such that there is a289

construction with a stabilization time of Ω(n1+c) in this setting.290

We divide our construction technique into five main phases, and discuss them separately.291

In each phase of the construction, we will refer to some edges of the nodes as output edges,292

which go to the following phase of the construction. In a specific phase, we always achieve293

a desired behavior without any change on these output neighbors yet. An overview of the294

entire construction is available in Figure 2.295

As before, we define our construction in terms of a parameter m = Θ̃(n), and discuss the296

value of m in the end.297

First, in the Opening Phase, our goal is to create a set S0 of constant-degree nodes298

such that (i) each node in S0 has 1 output edge to the next phase, and (ii) for any299

parameter p < 1, we can switch each node in S0 to black with a probability of at least p,300

independently from the remaining nodes.301

In the Collection Phase, we use our Opening Phase construction to produce another set302

S1 where (i) each node in S1 has c0 · log n output edges for a large enough constant c0,303

and (ii) w.h.p. we can switch all the nodes in S1 to black.304

In the Growing Phase, we begin with this node set S2,1 := S1, and add a range of further305

levels S2,2, S2,3, ... of the same size. Every level S2,i is only connected to the previous306

and next levels S2,i−1 and S2,i+1. The levels will have an exponentially increasing output307

degree, and hence in at most ℓ ≈ log m steps, we arrive at a final level S2,ℓ where each308

node has an output degree of Θ(m). As in case of S1, we show that we can w.h.p. turn309

each node in S2,i (and finally, in S2,ℓ) black.310

In the Control Phase, we use S2,ℓ to produce a set S3 where each node still has an output311

degree of Θ(m). We will ensure that (i) there is a specific point in the process where each312



P.A. Papp and R. Wattenhofer 48:9

node in S3 is switchable to black, and (ii) later, there is a specific point in the process313

where each node in S3 is switchable to white.314

Finally, in the Simulation Phase, we take an instance of the prop construction, and we315

use our set S3 to force each node in this construction to take the desired “initial” color.316

We can then simulate the behavior of prop as a black box, which is known to provide a317

superlinear stabilization time from this artificially enforced worst-case initial coloring.318

In this section, we outline the main ideas behind each of these phase. More details of the319

construction are discussed in Appendix C.320

We note that the second and third phases can be generalized to any λ up to 1
2 ; however,321

there is no straightforward way to do this for the remaining phases.322

6.1 Opening Phase323

To construct the set S0, first consider a node v with dv = 3: one neighbor labeled as an324

output, and two further neighbors u1 and u2. Initially, we have an 1
2 chance that v is already325

black. Even if v is not black initially, we can switch it black if both u1 and u2 are black326

initially: we have 1+λ
2 < 2

3 , so 2 black neighbors out of 3 are indeed enough to make v327

switchable. The probability that initially v is white but u1 and u2 are black is
( 1

2
)3 = 1

8 , so328

altogether, we can turn v black with a probability of p1 = 5
8 .329

Now assume that we take two such nodes that can be switched black with probability 5
8 ,330

we denote them by u′
1 and u′

2, and we connect their outputs to a new node v′. Again, v′ is331

already black initially with probability 1
2 ; if not, we can turn v′ black if both u′

1 and u′
2 are332

switched black, which happens with a probability of p 2
1 . This provides a black v′ with a333

probability of p2 = 1
2 + 1

2 ·
( 5

8
)2 = 89

128 .334

We can continue this in a recursive manner, always taking two copies of the previous335

construction, and connecting them to a new root node. After i steps, we end up with a336

full binary tree on 2i+1 − 1 nodes. This provides a black root node with a probability of pi,337

defined by the recurrence338

p0 = 1
2 and pi+1 = 1

2 + 1
2 · p 2

i .339

One can easily show that limi→∞ pi = 1. Hence for any constant parameter p < 1, there340

is an i such that pi ≥ p, and thus creating i layers with this method ensures that we can341

switch the final node black with probability at least p.342

In order to build our set S0, we can simply take m0 = |S0| independent copies of this343

tree. Since p is a constant, i and the tree size 2i+1 − 1 are also constants; thus the whole344

phase only requires O(m0) nodes altogether.345

6.2 Collection Phase346

Let us introduce a logarithmic parameter d0 = c0 · log n. Given our Opening Phase construc-347

tion S0, our next step is to create a smaller set S1 on m1 = 1
4·d0

· m0 nodes. Recall that348

all the m0 nodes in S0 had exactly 1 output edge; this allows us to connect each v ∈ S1 to349

4 · d0 distinct nodes in S0. We also add d0 further output edges to each v ∈ S1 to provide a350

connection to the next phase.351

Since each node in S0 becomes black with probability p independently, a Chernoff bound352

shows that v has at least (p − ϵ) · 4 · d0 black neighbors in S0 with a probability of 1 − O(n−2).353
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This already makes v switchable to black, since dv = 5 · d0, and thus for the appropriate p354

and ϵ values we have355

(p − ϵ) · 4 · d0

5 · d0
≈ 4

5 >
2
3 >

1 + λ

2 .356

Applying a union bound over all nodes v ∈ S1, we get that w.h.p. the entire set S1 can be357

switched to black.358

6.3 Growing Phase359

Given our set S1 from the Collection Phase, the next step is to iteratively build a range of360

levels S2,i for i = 1, 2, ... . Each of these levels has the same size |S2,i| = m1, but on the361

other hand, their degrees increase exponentially: the output degree of each node in S2,i+1 is362

always twice as big as the output degree of the nodes in S2,i.363

We achieve this by connecting every pair of subsequent levels as a regular bipartite graph.364

Let us begin with S2,1 := S1. Recall that each node in S1 has d0 output edges, so S2,1 and365

S2,2 will form a d0-regular bipartite graph. We then connect S2,2 and S2,3 as a 2 · d0-regular366

bipartite graph, S2,3 and S2,4 as a 4 · d0-regular bipartite graph, and so on. Thus in any level,367

we have a value d such that each node has d edges to the previous and 2d edges to the next368

level, and this value d doubles with each new level. Since the degrees grow exponentially,369

after about log m1 levels, we reach a last level S2,ℓ where the output degree is Θ(m1).370

We use an induction to prove that we can w.h.p. turn all nodes black in each S2,i. This is371

already known for S2,1 = S1 initially. In the general case, let v be an arbitrary node of S2,i.372

Since each v has at least d0 output edges to S2,i+1, we can use Lemma 2 to show that the373

output neighborhood of every node is initially ϵ-balanced. This means that for any v ∈ S2,i,374

at least ( 1
2 − ϵ) · 2d = (1 − 2ϵ) · d outputs are already black initially. Due to the induction,375

we can turn all the d remaining neighbors in S2,i−1 black, altogether giving (2 − 2ϵ) · d black376

neighbors of v. With dv = 3 · d, this amounts to a ratio of 2−2ϵ
3 black nodes in N(v). Since377

we have 1+λ
2 = 2

3 − δ, a sufficiently small choice of ϵ always ensures that this ratio is above378

1+λ
2 , and thus v is switchable to black. Hence each node in S2,i can indeed be turned black,379

which completes our induction.380

6.4 Control Phase381

In the following Control Phase, we create a new set S3 on m3 nodes. The goal of this phase382

is to ensure that at a specific point in the process, each v ∈ S3 switches to black, and then383

at a later point, each v ∈ S3 is switchable to white.384

In order to be able to initialize a prop construction on m nodes in the final phase, each385

node in S3 will have an output degree of m, for some parameter m. A detailed analysis386

shows that for a large constant α > 1, a choice of m3 = 1
α · m1 and m = 1

2 · m3 suffices for387

our purposes.388

To achieve the desired switching behavior for S3, we first create two copies of the previous389

phases: one of them ending with a level Sb
2,ℓ on α·m nodes where w.h.p. each nodes switches390

to black, and the other one ending with a last level Sw
2,ℓ on 2α·m nodes where w.h.p. each391

node switches to white in a symmetric manner. We connect each node in S3 to every node392

in both Sb
2,ℓ and Sw

2,ℓ. As a result, each v ∈ S3 has a degree of dv = (3α+1)·m. Note that393

the output degree of both Sb
2,ℓ and Sw

2,ℓ is Θ(m1) = Θ(α · m3), so for α large enough, they394

can indeed be connected to each node in S3.395

Now consider the neighbors of a node v ∈ S3. First Sb
2,ℓ becomes black and v’s neighbor-396

hood in Sw
2,ℓ is ϵ-balanced; this gives at least α · m + ( 1

2 − ϵ) · 2α · m = 2α · m · (1 − ϵ) black397
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neighbors in N(v), amounting to a 2α·(1−ϵ)
3α+1 fraction of dv. As 1+λ

2 = 2
3 − δ, for a sufficiently398

small ϵ and sufficiently large α, we can ensure that this ratio is larger than 1+λ
2 , and thus v399

is indeed switchable. We switch each v ∈ S3 to black at this point.400

After this, we turn each node in Sw
2,ℓ white. Nodes in S3 now have 2α · m white neighbors401

at least; this again ensures that each v ∈ S3 is now switchable to white. However, for our402

purposes in the last phase, we will only switch half of the nodes in S3 white at this point403

(denoted by Sw
3 ), and leave the remaining part black (denoted by Sb

3).404

6.5 Simulation Phase405

Finally, we use the prop construction on m nodes to obtain superlinear stabilization time.406

Given a node v in prop, assume w.l.o.g. that v is initially black in the example sequence of407

prop; we can apply the same technique for white nodes in a symmetric manner.408

Our main idea is to connect v to some new nodes in Sb
3 and Sw

3 . When Sb
3 and Sw

3 both409

switch to black, this allows us to switch v to its desired initial color (black). Then when410

Sw
3 switches back to white, the new neighbors become balanced, and thus the switchability411

of v will again depend on its original neighbors within prop. However, with these extra412

connections, the original N(v) is now only a smaller fraction of v’s total neighborhood, so413

this only allows us to simulate prop with a smaller parameter λ′ < λ.414

More specifically, if v has original degree d′
v within the prop construction, then we415

connect v to 1
2 · 1+λ

1−λ · d′
v arbitrary nodes in both Sb

3 and Sw
3 . We point out that our choice416

of m = 1
2 · m3 is indeed sufficient for this: since λ < 1

3 implies 1+λ
1−λ < 2, every node in the417

prop construction needs at most 1
2 · 1+λ

1−λ · d′
v < d′

v new edges to both Sb
3 and Sw

3 . Hence418

with d′
v < m in the prop construction, it is indeed enough to have m nodes in the sets Sb

3419

and Sw
3 . Furthermore, since each node in S3 has an output degree of m, we can also connect420

a node in Sb
3 or Sw

3 to as many nodes in the prop construction as necessary.421

With v connected to 1
2 · 1+λ

1−λ · d′
v nodes in both Sb

3 and Sw
3 , the new degree of v is now422

dv =
(

1 + 1 + λ

1 − λ

)
· d′

v = 2
1 − λ

· d′
v ,423

so v requires 1+λ
2 · dv = 1+λ

1−λ · d′
v conflicts to be switchable. Hence when Sb

3 and Sw
3 are424

both switched black, this is already enough to switch v black, since the two sets provide425

2 · 1
2 · 1+λ

1−λ · d′
v = 1+λ

1−λ · d′
v black neighbors to v together. Later Sw

3 switches to white; then for426

the rest of the process, v has 1
2 · 1+λ

1−λ · d′
v neighbors of both colors in S3.427

Let us now select λ′ = 2λ
1−λ , and apply the prop construction for λ′ as a black box.428

If v was switchable in the original prop construction at some point, then it had at least429

1+λ′

2 · d′
v = 1

2 · 1+λ
1−λ · d′

v conflicts within prop. Then together with the 1
2 · 1+λ

1−λ · d′
v additional430

conflicts to either Sb
3 or Sw

3 , v has at least 1+λ
1−λ · d′

v = 1+λ
2 · dv conflicts in our construction,431

and thus it is indeed switchable.432

Hence we can indeed simulate the behavior of prop in our construction: whenever v is433

switchable in the original prop graph, it is also switchable in our construction. This allows434

us to run the entire sequence of m1+f(λ′)−ε steps in prop, giving a sequence of m1+f( 2λ
1−λ )−ε

435

steps in terms of our λ.436

One can observe that our constructions contains only O(m · log m) nodes altogether, thus437

allowing a choice of m = Θ( n
log n ). This results in about438

n1+f( 2λ
1−λ )−ε · log n −(1+f( 2λ

1−λ )−ε)
439
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steps for the prop sequence in terms of n. Since such a prop construction exists for any440

ε > 0, we can get rid of the second factor in this lower bound by simply applying the same441

proof with a smaller value ε̂ < ε. Thus the claim of Theorem 5 follows.442

7 Proportional switching: upper bound for λ > 1
2443

We now show that with λ = 1
2 + δ for some δ > 0, stabilization happens w.h.p. in Õ(n) time.444

The only probabilistic element of this proof is the assumption that initially all high-degree445

nodes have an ϵ-balanced neighborhood; this indeed holds w.h.p., as we have seen before in446

Corollary 3.447

The idea of the proof is that even though there might be Θ(n2) conflicts in the graph448

initially, only a few of these conflicts can propagate through the graph. Let us call a conflict449

on edge (u, v) in our current coloring an original conflict if it has been on the edge since the450

beginning of the process, i.e. if every previous state (including the initial state) already had451

a conflict on (u, v).452

I Definition 6 (Active/Rigid conflicts). We say that a conflict on edge (u, v) is rigid if it is453

an original conflict, and both u and v are high-degree nodes. Otherwise, the conflict is active.454

Our proof is obtained as a result of three observations: that (i) there are only a few active455

conflicts in the graph initially, (ii) the number of active conflicts decreases in each step of456

the process, and (iii) the process stabilizes when there are no more active conflicts. Since the457

second point is the most complex out of the three claims, we first discuss it separately.458

I Lemma 7. The number of active conflicts strictly decreases in each step.459

Proof. Consider a specific step of the process, and let v be the node that switches in this460

step. Assume first that v is a low-degree node. In this case, v can only have active conflicts461

on its incident edges at any point in the process: initially, all conflicts of v are active by462

definition, and all the newly created conflicts in the process are also active. Since the number463

of conflicts on v’s incident edges decreases when v switches, the total number of active464

conflicts also decreases in this step.465

Now assume that v is a high-degree node. Since N(v) is initially ϵ-balanced, it has at466

most ( 1
2 + ϵ) · dv rigid conflicts in the beginning, and since all the newly created conflicts in467

the process are active, it also has at most ( 1
2 + ϵ) · dv rigid conflicts at any later point in the468

process. However, if v switches, then it must have at least 1+λ
2 · dv incident conflicts; this469

implies that at least 1+λ
2 · dv − ( 1

2 + ϵ) · dv of these conflicts are active. When v switches,470

it creates at most 1−λ
2 · dv new (active) conflicts. Thus, to show that the number of active471

conflicts decreases, we only require472

1 + λ

2 · dv −
(

1
2 + ϵ

)
· dv >

1 − λ

2 · dv,473

which is equivalent to λ > 1
2 + ϵ. This holds for a sufficiently small choice of ϵ < δ. J474

This already allows us to prove our upper bound.475

I Theorem 8. Consider majority/minority processes under the proportional switching rule476

for any λ > 1
2 , starting from a uniform random initial coloring. Any graph has a stabilization477

time of O(n · log n) with high probability in this model.478
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Figure 3 Our upper and lower bounds on stabilization time in the proportional case.

Proof. In any initial coloring, the number of active conflicts is at most O(n · log n): each479

low-degree node has at most c0 · log n incident edges, and the number of low-degree nodes is480

at most n. Lemma 7 shows that the number of active conflicts decreases in each step, so481

there are no active conflicts in the graph after at most O(n · log n) steps.482

Once there are no more active conflicts, the coloring is stable, since nodes cannot be483

switchable without an active conflict on the incident edges. More specifically, due to the484

ϵ-balanced property, all high-degree nodes v have at most ( 1
2 + ϵ) · dv rigid conflicts on the485

incident edges, which is smaller than 1+λ
2 · dv if we have ϵ < λ

2 . Low-degree nodes, on the486

other hand, can never have rigid conflicts on the incident edges at all. Thus the process487

indeed stabilizes in O(n · log n) steps. J488

8 Conclusion489

Our results show that the behavior of the processes from a randomized initial coloring is490

rather straightforward in case of the basic switching rule: stabilization time can indeed491

tightly match the naive upper bound of O(n2).492

However, in case of proportional switching, our work does leave some open questions.493

Figure 3 illustrates our upper and lower bounds for this case. The most apparent open494

question is the behavior of the process for the λ ∈ [ 1
3 , 1

2 ] case; in this interval, we only have495

the straightforward lower bound of Section 4.2. While the figure gives the impression that496

stabilization time might also have a Õ(n) upper bound in this case, it remains for future497

work to prove or disprove this claim.498

Furthermore, even for λ < 1
3 when stabilization is known to be superlinear, one might499

also be interested in devising upper bounds. Currently, the best known upper bound is that500

of O(n1+f(λ)+ε) from [30], which even applies for the worst-case initial coloring.501

MFCS 2021



48:14 Stabilization Bounds for Influence Propagation from a Random Initial State

References502

1 Victor Amelkin, Francesco Bullo, and Ambuj K Singh. Polar opinion dynamics in social503

networks. IEEE Transactions on Automatic Control, 62(11):5650–5665, 2017.504

2 Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli, Clemente Galdi, and Giuseppe Per-505

siano. Generalized discrete preference games. In Proceedings of the Twenty-Fifth International506

Joint Conference on Artificial Intelligence, IJCAI’16, page 53–59. AAAI Press, 2016.507

3 Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. On the complexity of reasoning508

about opinion diffusion under majority dynamics. Artificial Intelligence, 284:103288, 2020.509

4 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Complexity and approximation of510

satisfactory partition problems. In International Computing and Combinatorics Conference,511

pages 829–838. Springer, 2005.512

5 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Satisfactory graph partition, variants,513

and generalizations. European Journal of Operational Research, 206(2):271–280, 2010.514

6 Zhigang Cao and Xiaoguang Yang. The fashion game: Network extension of matching pennies.515

Theoretical Computer Science, 540:169–181, 2014.516

7 Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate majority.517

Scientific reports, 2:656, 2012.518

8 Carmen C Centeno, Mitre C Dourado, Lucia Draque Penso, Dieter Rautenbach, and Jayme L519

Szwarcfiter. Irreversible conversion of graphs. Theoretical Computer Science, 412(29):3693–520

3700, 2011.521

9 Jacques Demongeot, Julio Aracena, Florence Thuderoz, Thierry-Pascal Baum, and Olivier522

Cohen. Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus523

Biologies, 326(2):171–188, 2003.524

10 Michal Feldman, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. Reaching525

Consensus via Non-Bayesian Asynchronous Learning in Social Networks. In Approximation,526

Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-527

DOM 2014), volume 28 of Leibniz International Proceedings in Informatics (LIPIcs), pages528

192–208, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.529

11 Françoise Fogelman, Eric Goles, and Gérard Weisbuch. Transient length in sequential iteration530

of threshold functions. Discrete Applied Mathematics, 6(1):95–98, 1983.531

12 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence532

networks. In International Symposium on Distributed Computing, pages 433–446. Springer,533

2013.534

13 Bernd Gärtner and Ahad N Zehmakan. Color war: Cellular automata with majority-rule. In535

International Conference on Language and Automata Theory and Applications, pages 393–404.536

Springer, 2017.537

14 Bernd Gärtner and Ahad N Zehmakan. Majority model on random regular graphs. In Latin538

American Symposium on Theoretical Informatics, pages 572–583. Springer, 2018.539

15 Eric Goles and Jorge Olivos. Periodic behaviour of generalized threshold functions. Discrete540

Mathematics, 30(2):187–189, 1980.541

16 Mark Granovetter. Threshold models of collective behavior. American Journal of Sociology,542

83(6):1420–1443, 1978.543

17 Sandra M Hedetniemi, Stephen T Hedetniemi, KE Kennedy, and Alice A Mcrae. Self-stabilizing544

algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Processing545

Letters, 23(01):1350001, 2013.546

18 Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale. On the voting time of the547

deterministic majority process. In 41st International Symposium on Mathematical Foundations548

of Computer Science (MFCS 2016), 2016.549

19 Barbara Keller, David Peleg, and Roger Wattenhofer. How even tiny influence can have a big550

impact! In International Conference on Fun with Algorithms, pages 252–263. Springer, 2014.551



P.A. Papp and R. Wattenhofer 48:15

20 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through552

a social network. In Proceedings of the ninth ACM SIGKDD international conference on553

Knowledge discovery and data mining, pages 137–146. ACM, 2003.554

21 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph555

colorings. In International Symposium on Algorithmic Game Theory, pages 122–133. Springer,556

2013.557

22 Thomas M Liggett. Stochastic interacting systems: contact, voter and exclusion processes,558

volume 324. Springer Science & Business Media, 2013.559

23 Barry M McCoy and Tai Tsun Wu. The two-dimensional Ising model. Courier Corporation,560

2014.561

24 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabil-562

istic techniques in algorithms and data analysis. Cambridge university press, 2017.563

25 Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics and aggregation of564

information in social networks. Autonomous Agents and Multi-Agent Systems, 28(3):408–429,565

2014.566

26 Arpan Mukhopadhyay, Ravi R Mazumdar, and Rahul Roy. Voter and majority dynamics with567

biased and stubborn agents. Journal of Statistical Physics, 181(4):1239–1265, 2020.568

27 Ahad N Zehmakan. Opinion forming in Erdös-Rényi random graph and expanders. In 29th569

International Symposium on Algorithms and Computations. Schloss Dagstuhl-Leibniz-Zentrum570

fuer Informatik GmbH, Wadern/Saarbruecken, 2018.571

28 Pál András Papp and Roger Wattenhofer. Stabilization Time in Minority Processes. In572

30th International Symposium on Algorithms and Computation (ISAAC 2019), volume 149573

of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–43:19, Dagstuhl,574

Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.575

29 Pál András Papp and Roger Wattenhofer. Stabilization Time in Weighted Minority Processes.576

In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019),577

volume 126 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–54:15,578

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.579

30 Pál András Papp and Roger Wattenhofer. A General Stabilization Bound for Influence580

Propagation in Graphs. In 47th International Colloquium on Automata, Languages, and581

Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics582

(LIPIcs), pages 90:1–90:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für583

Informatik.584

31 Damien Regnault, Nicolas Schabanel, and Éric Thierry. Progresses in the analysis of stochastic585

2d cellular automata: A study of asynchronous 2d minority. In Luděk Kučera and Antonín586

Kučera, editors, Mathematical Foundations of Computer Science 2007, pages 320–332. Springer587

Berlin Heidelberg, 2007.588

32 Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the analysis of “simple” 2d589

stochastic cellular automata. In International Conference on Language and Automata Theory590

and Applications, pages 452–463. Springer, 2008.591

33 Jean-Baptiste Rouquier, Damien Regnault, and Éric Thierry. Stochastic minority on graphs.592

Theoretical Computer Science, 412(30):3947–3963, 2011.593

34 Grant Schoenebeck and Fang-Yi Yu. Consensus of interacting particle systems on Erdös-Rényi594

graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete595

Algorithms, pages 1945–1964. SIAM, 2018.596

35 Ahad N Zehmakan. Target set in threshold models. Acta Mathematica Universitatis Comeni-597

anae, 88(3), 2019.598

36 Ahad N Zehmakan. Tight bounds on the minimum size of a dynamic monopoly. In International599

Conference on Language and Automata Theory and Applications, pages 381–393. Springer,600

2019.601

MFCS 2021



48:16

Appendices602

A Techniques from Probability Theory603

In our proofs, we regularly use basic concepts and techniques from probability theory. In604

particular, our results also apply the following two well-known lemmas [24]:605

Union Bound: for any events A1, A2, ..., Ak, we have606

Pr
(

k⋃
i=1

Ai

)
≤

k∑
i=1

Pr(Ai).607

Chernoff Bound: let X1, X2, ..., Xk be independent Bernoulli random variables with608

Pr(Xi = 1) = 1
2 for all i. Then for any ϵ ∈ (0, 1), we have609

Pr
(∣∣∣∣∣

k∑
i=1

Xi − k

2

∣∣∣∣∣ ≥ ϵ · k

2

)
≤ 2 · e− 1

6 ·ϵ2·k.610

For convenience, we have stated the Chernoff bound for the simplest case of Pr(Xi = 1) =611

1
2 , since this is the case for the vast majority of random variables in our analysis. However,612

we also apply the general version of the Chernoff bound with Pr(Xi = 1) = p on one occasion613

in the analysis of the Collection Phase, and we also use the bound with a non-constant ϵ614

value in the analysis of our majority process construction for basic switching.615

Furthermore, we say that an event happens with high probability (w.h.p.) if it happens616

with a probability of at least 1 − O
( 1

nc

)
for some c > 0. Note that some works use a more617

relaxed definition of this concept, already accepting any probability of 1 − o(1) as w.h.p..618

Naturally, our results also hold with this more relaxed definition.619

B More details on the basic switching constructions620

B.1 Minority process construction621

The analysis of the minority construction is rather straightforward. To set A0 and B0 to the622

appropriate (different) colors, we only require that A0 has an odd degree (to switch A0 to623

one color) and |A0| > |B| (to switch B0 to the other); this is satisfied in our graph. Hence,624

we can begin the sequence of switches in the graph by switching A0 entirely to one color625

(w.l.o.g. white) and B0 to the other color.626

A Chernoff bound then shows that both A and B initially contains at least (1−ϵ)· m
2 ≥ m

3627

nodes of both colors w.h.p.. This implies that there are m
3 white nodes in A that all want to628

switch to black, and m
3 black nodes in B that all want to switch to white. Until these nodes629

are switched to this preferred color, they all remain switchable regardless of the current color630

of their neighbors in P .631

Another Chernoff bound shows that for any small constant ϵ, the initial number of black632

nodes in the neighborhood of P is also w.h.p. within [( 1
2 − ϵ) · m, ( 1

2 + ϵ) · m]. This means633

that by switching at most ϵ · m of these switchable nodes in either A or B, we can ensure that634

P has exactly one more black neighbors than white. Recall that for convenience, we added635

an extra neighbor to P in order for P to have an odd degree, too. A choice of a sufficiently636

small ϵ ensures that after this, we still have at least m
3 − ϵ · m > m

4 switchable nodes in both637

A and B.638
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We can then execute the alternating sequence in a similar fashion to the original con-639

struction in [28]. We first switch one of the m
4 switchable nodes in A to black; then P will640

have 1 more black neighbors than white, so we can switch the entire group P to white as a641

result. We then switch one of the m
4 switchable nodes in B to white; P now has 1 more white642

neighbors than black, so we can switch all nodes in P to black. Selecting the switchable643

nodes from A and B in an alternating fashion, we can create such an alternating sequence644

of 2 · m
4 nodes from A ∪ B, and after each step of this sequence, we can switch all nodes in645

P again. Since P consists of m nodes, this provides a minority process of at least m
2 · m646

switches. As we have m = Θ(n), this implies a stabilization time of Ω(n2).647

B.2 Majority process construction648

For majority constructions, let us select a constant c0, and introduce the notation h :=649

c0 · log m. We then take h further distinct groups A1,1, A1,2, ..., A1,h, with each of them650

consisting of m
h nodes, and connect them each to group A0 (via a complete bipartite651

connection). For convenience, we assume that m is divisible by h, and that h is an odd652

number. Besides this, we also add h distinct groups A2,1, A2,2, ..., A2,h, with each of these653

consisting of m
h nodes, too. For each i ∈ {1, ..., h}, we connect every node in A1,i to every654

node in A2,i. Altogether, the graph consists of 9m + 3 nodes, so we still have m = Θ(n).655

Now let us consider a specific i ∈ {1, ..., h}. If h is odd, then with a probability of 1
2 ,656

group A1,i contains more white nodes than black nodes initially. This implies that for each657

node in A2,i, the preferred color is white, and thus we can switch each node in A2,i to white658

(i.e the nodes that were not already white initially). This event happens independently for659

different i values, since the A1,i are disjoint; hence we can easily show that w.h.p., there660

exists an î ∈ {1, ..., h} such that A2,̂i is indeed switchable to white entirely. In particular,661

the probability that none of the A2,i is switchable to white is 2−h = 2−c0·log m, and since662

m = Θ(n) implies log m ≥ 1
2 · log n for n large enough, this probability is at most 2−2c0·log n,663

and thus it is in O( 1
n ) for a sufficiently large choice of c0.664

Furthermore, using Lemma 2, one can show that w.h.p. at least ( 1
2 − ϵ) · m

h of the nodes665

in A2,̂i were already black initially. This implies that when we turn A2,̂i entirely white, this666

increases the number of white nodes in A2,̂i by ( 1
2 − ϵ) · m

h = Θ( m
log m ) at least.667

Now consider a node v ∈ A1,̂i. Each such node has the same neighborhood: m + 1668

neighbors in A0, and m
h neighbors in A2,̂i, giving a total degree of dv = m + m

h + 1. Note669

that we have m < dv < 2m for a sufficiently large m.670

As the next step, we show that the neighborhood of v is relatively balanced initially. We671

need a slightly stronger bound here than in the previous cases, so we now apply the Chernoff672

bound with a non-constant ϵ value. We can choose, say, ϵ := m−2/5; then the Chernoff bound673

shows that the probability of v having more than ( 1
2 + m−2/5) · dv black neighbors initially674

is at most675

2 · e− 1
6 ·m−4/5·dv ≤ 2 · e− 1

6 ·m−4/5·m = 2 · e− 1
6 ·m1/5

.676

Furthermore, note that677 (
1
2 + m−2/5

)
· dv = 1

2 · dv + m−2/5 · dv <
1
2 · dv + m−2/5 · 2m = 1

2 · dv + 2 · m3/5 ,678

so the same upper bound holds for the probability that the number of black nodes is at least679

1
2 · dv + 2m

3
5 . Hence we can claim w.h.p. that initially, the number of black nodes in the680

neighborhood of A1,̂i is larger by at most 2 · m3/5 than the expected value.681

Recall that we have turned the entire A2,̂i white, increasing the number of white nodes in682

A2,̂i by at least Θ( m
log m ). Also, note that Θ( m

log m ) > 2 · m3/5 for m large enough. Therefore,683
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if A1,̂i had at least 1
2 · (m + m

h + 1) − 2 · m3/5 white neighbors initially, then after increasing684

this by Θ( m
log m ), the group A1,̂i has more white neighbors that black. This allows us to685

switch the entire A1,̂i to white, too.686

We can then apply a very similar argument on the group A0. Altogether, a node v ∈ A0687

has dv = 2m neighbors, and a Chernoff bound shows that at least m − 2 · m3/5 of these are688

already white initially. Lemma 2 proves that A1,̂i had at least ( 1
2 − ϵ) · m

h = Θ( m
log m ) black689

nodes initially, so when turning A1,̂i entirely to white, we increase the number of white nodes690

in A1,̂i by at least Θ( m
log m ). This results in at least m − 2 · m3/5 + Θ( m

log m ) > m = 1
2 · dv691

white neighbors for A0, so we can switch each node in A0 white.692

From here, our construction follows the same idea as the minority case. Turning A0 white693

already ensures that every black node in A is switchable to white. In a symmetric manner,694

we can turn each node in B0 black, ensuring that every white node in B is switchable to695

black. Then we can use the same alternating method as in the minority construction, which696

implies that we can switch the group P a total of Θ(m) times altogether. Since we still have697

m = Θ(n), this again provides a sequence of Ω(m2) = Ω(n2) switches.698

C More details on the proportional switching construction699

C.1 Overall analysis700

Let us first discuss the number of nodes in our construction.701

Recall that in the Opening Phase, we obtain our S0 by taking m0 independent copies of702

the tree described in Section 6.1. With p, i and 2i+1 − 1 being constants, the whole phase703

requires only O(m0) nodes.704

The Collection Phase then creates a set S1 on m1 := m0
4·d0

nodes; this already determines705

that |S2,1| = m1, too. Each level of the Growing Phase has the same size, i.e. |S2,i| = m1 for706

every i ∈ {1, ..., ℓ}. To reach an output degree of, say, 1
2 · m1 for every node in S2,ℓ, we need707

about ℓ ≈ log m1 distinct levels.708

Then in the Control Phase, we create a set on |S3| = m3 = m1
α nodes. Finally, the709

Simulation Phase uses a prop construction on m = 1
2 · m3 nodes.710

This implies that m1 = 2α · m for the size of the levels S2,i. Since α is a constant, this711

results in a Growing Phase construction of O(log m1) = O(log m) distinct levels of size m1,712

which is altogether still only O(m · log m) nodes. Finally, the Opening Phase adds another713

O(m1 · log n) nodes to this; if m = Ω(
√

n) and thus log n ≤ 2 log m, then this is still only714

O(m · log m) nodes. Note that some of the phases also require two distinct copies of the715

previous parts of the graph, but even with this, each phase only appears constantly many716

times in our construction. Hence the total number of nodes in the graph is O(m · log m),717

which allows for a choice of m := Ω( n
log n ) with the appropriate constants.718

Also, note that there are only constantly many distinct points of the construction where719

we point out that an event happens w.h.p.. In particular, we use one such assumption in the720

Collection Phase when we discuss the number of black neighbors developed in the Opening721

Phase, another one in the Growing Phase when we assume that all output neighborhoods722

are initially ϵ-balanced, and a final one in the Control Phase when we assume that for each723

v ∈ S3, the set of neighbors in Sw
2,ℓ is initially ϵ-balanced. Our final construction only contains724

constantly many copies of each of these phases. Thus we only make constantly many such725

assumptions altogether, which means that we can simply use a union bound to show that726

w.h.p. all of these assumptions will hold simultaneously. Therefore, we can indeed claim that727

our entire construction will w.h.p. behave as discussed.728
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C.2 Majority constructions to minority constructions729

While our proportional lower bound construction was presented for majority processes, we730

can easily adapt it to the case of minority processes. Note that each of the first 4 phases in731

our construction is a bipartite graph, so we can simply take one of the two color classes in732

the construction, and swap the role of the two colors in this color class to obtain the same733

behavior. This technique can be demonstrated most easily in the Growing Phase: if we can734

make each node in S2,1 black, then this allows us to switch each node in S2,2 white, then735

each node in S2,3 black again, each node in S2,4 white again, and so on. In the end, we can736

obtain a set S3 with the same property as before.737

The original prop construction from [30] is also a bipartite graph, and from a different738

initial ordering, it also provides an example sequence where stabilization lasts for n1+f(λ)−ε
739

steps for minority processes. Hence, in an identical way to majority processes, we can now740

use our set S3 in the Control Phase in order to force the prop construction to first take the741

desired initial colors, and then we can execute this sequence of switches. This provides an742

example construction to show the same lower bound in case of minority processes.743

One can also observe that the graph presented in Section 5.2 (i.e. the lower bound744

construction for majority processes with basic switching) is also a bipartite graph, and thus745

a similar method also allows us to convert this to a minority construction that shows a746

stabilization time of Θ(n2). As such, the construction of Section 5.1 is in fact not needed747

for the completeness of the paper, and could instead be replaced by a slight modification748

of the construction in Section 5.2. Nonetheless, we decided to still include the Section 5.1749

construction in the paper because it provides a notably simpler proof of the lower bound in750

case of minority processes.751

C.3 Details of the Opening Phase752

The main idea of the Opening Phase has already been discussed in Section 6. Each node753

v ∈ S0 is obtained as the root of a balanced binary tree. By taking all nodes in a leaf-to-root754

fashion in this tree and turning them black whenever possible, we ensure that the probability755

of turning a specific node black after i layers is described by the recurrence pi+1 = 1
2 + 1

2 · p 2
i .756

For any desired p < 1, a constant number of layers is sufficient to ensure that the root v757

becomes black with a probability of pi > p in the end.758

Thus our construction of S0 consists of m0 independent trees of i layers, where each node759

in the tree has 2 new neighbors in the following layer (except for the last layer). The set760

S0 consists of the root nodes of each of these m0 distinct trees. With both p and i being761

constants, the phase only requires O(m0) nodes altogether.762

Note that it is not straightforward to generalize this technique for λ values higher than763

1
3 . E.g. for any λ < 1

2 , one could devise a similar construction where each node has 3 input764

neighbors u1, u2, u3 (since λ < 1
2 implies 1+λ

2 ≤ 3
4 ), and we similarly end up with a tree of765

nodes with degree 4. However, this provides the recurrence pi+1 = 1
2 + 1

2 · p 3
i for the values766

pi, which does not converge to 1, but instead to a limit of
√

5−1
2 . Hence, this technique does767

not allow us to turn each node in S0 black with an arbitrarily high probability p.768

C.4 Details of the Collection Phase769

Overall, the Collection Phase is the simplest phase in our construction. The set S1 is simply770

a set of m1 nodes, each having a degree of 5 · d0. An Opening Phase of size m0 = m1 · 4 · d0771

provides enough nodes such that each v ∈ S1 can be connected to 4 · d0 distinct nodes in S0.772

Besides this, each v will also have d0 output edges to the next phase.773
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If each neighbor of v in S0 becomes black with a probability of at least p, then v has at774

least p · 4 · d0 black neighbors in S0 in expectation. We can then use a Chernoff bound to775

show that the probability is heavily concentrated around this expectation. Note that this776

requires the Chernoff bound on general Bernoulli random variables Xi with Pr(Xi = 1) = p;777

for simplicity, in Appendix A, we have only stated the bound for the simplest case of p = 1
2 .778

Let us select p = 15
16 in our Opening Phase. Let ϵ < 5

48 in order to ensure 4
5 ϵ < 3

4 − 2
3 , and779

let us define ϵ̂ := ϵ
p . Furthermore, let X denote the number of black neighbors in S0. Then780

the Chernoff bound shows that the probability of differing by more than an ϵ̂ multiplicative781

factor from the expected value is782

Pr (X ≤ (1 − ϵ̂) · p · 4 · d0) ≤ e− ϵ̂2·p·4·d0
2 = e−2ϵ̂2·p·c0·log n = n−2ϵ̂2·p·c0 .783

We can easily ensure that this is in O(n−2) by choosing c0 high enough such that ϵ̂2 ·p ·c0 ≥ 1.784

Note that (1 − ϵ̂) · p · 4 · d0 = (p − ϵ) · 4 · d0 due to the definition of ϵ̂.785

With dv = 5·d0, this implies a ratio of (p−ϵ)·4·d0
5·d0

= 3
4 − 4

5 ϵ > 2
3 blacks in the neighborhood,786

so the event that we cannot switch v black only has a probability of O(n−2). Taking a union787

bound over all v ∈ S1, we get that we can switch the entire S1 black with a probability of788

1 − O(n−1).789

Note that we can also easily generalize this phase for any λ < 1
2 . A value of λ < 1

2 still790

implies 1+λ
2 < 3

4 , so we only need to ensure (p − ϵ) · 4
5 > 3

4 in this case. This is achieved by791

any p > 15
16 and a sufficiently small ϵ.792

C.5 Details of the Growing Phase793

The Collection Phase already gives us a set S1 on m1 nodes with each v ∈ S1 having794

d0 = c0 · log n output edges. We now describe the Growing Phase in a more general form795

than in Section 6 to address the case of an arbitrary λ value with λ < 1
2 . As the key idea of796

the phase, we select a small parameter µ > 0, and we design the levels such that the output797

degree in S2,i+1 is always a (1 + µ) factor larger than the output degree in S2,i. Note that in798

Section 6, we discussed the special case of µ = 1.799

We then build the level-based construction described in Section 6. We first select S2,1 = S1.800

We then connect S2,1 and S2,2 as a d0-regular bipartite graph, we connect S2,2 and S2,3 as801

a (1 + µ) · d0-regular bipartite graph, we connect S2,3 and S2,4 as a (1 + µ)2 · d0-regular802

bipartite graph, and so on; Si and Si+1 forms a (1 + µ)i−1 · d0-regular bipartite graph. We803

can always select an arbitrary one among the different possible bipartite graphs to implement804

the connection between the given levels.805

After at most log(1+µ) m1 such levels, we reach a level S2,ℓ where the degree of each node806

is at least 1
2 · m1; we will use this last level for the next phase of our construction. Note that807

since m1 = Ω( n
log n ), we also know that ℓ = O(log n). As each of our levels consist of the same808

number of nodes m1, we only require O(m1 · log m1) nodes for this phase altogether. With809

our choice of m0 = Θ(n) and m1 = Θ( m0
log n ), we have m1 = Θ( n

log n ), and thus O(m1 · log m1)810

is indeed smaller than n for the appropriate choice of constants.811

To show that w.h.p. we can turn each node black in every level S2,i, we use an induction.812

Initially, we already know that w.h.p. we can turn each node in S1 black. Furthermore, we813

will assume that the outputs of each node in every level are initially ϵ-balanced. Note that814

since each node in this phase already has at least c0 · log n output neighbors, and there are815

at most n nodes altogether, we can apply Lemma 2 to show that w.h.p. this claim holds in816

our graph.817

Now let us consider a general level of the construction. Recall that for a general node818

v, we use d to denote the degree to the previous level, which means that v has (1 + µ) · d819
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output edges and a total degree of dv = (2 + µ) · d. If the outputs are ϵ-balanced initially,820

then at least ( 1
2 − ϵ) · (1 + µ) · d out of the (1 + µ) · d outputs are already black initially. Our821

induction hypothesis states that we can turn all the d previous-level neighbors of v black.822

This altogether amounts to at least (1 + ( 1
2 − ϵ) · (1 + µ)) · d black neighbors. Thus to show823

that v is switchable to black at this point, we need824

(1 + ( 1
2 − ϵ) · (1 + µ)) · d

(2 + µ) · d
≥ 1 + λ

2 .825

After expansion and simplification, this gives 2 · λ + 2 · ϵ · (1 − µ) + µ · λ ≤ 1. For any value826

of λ < 1
2 , we can ensure this with a sufficiently small choice of µ and ϵ. Hence after S2,i−1827

becomes black, we can also turn S2,i entirely black.828

We point out that this growing phase construction does not require a new probabilistic829

statement with each new level: we only use the fact that S1 can be switched entirely black830

w.h.p., and that the output neighborhood of each node is ϵ-balanced initially (which follows831

from Lemma 2). From this, the rest of our claims follow deterministically.832

C.6 Details of the Control Phase833

Intuitively, the base idea of the Control Phase is to make the output edges such an insignificant834

part of the neighborhood of S3 that the switchability of the nodes S3 is always controlled835

solely by the connections to Sb
2,ℓ and Sw

2,ℓ. Since we have 1+λ
2 = 2

3 − δ for some constant836

δ > 0, we can achieve this by ensuring that the current conflicts to Sb
2,ℓ and Sw

2,ℓ always837

amount to almost 2
3 of the total degree.838

This phase already requires us to create two different copies of the previous 3 phases.839

That is, besides the instance of the first three phases that allows us to switch each node840

in Sb
2,ℓ black, we also create another Opening, Collection and Growing Phase for the color841

white in a symmetric manner, which in the end allows us to switch all the nodes in the final842

set Sw
2,ℓ white. This only doubles the total number of nodes that we use for the first 3 phases,843

and thus it does not affect the magnitude of the final size of our construction.844

We choose the size of these three-phase constructions such that the size of Sb
2,ℓ is α · m,845

while the size of Sw
2,ℓ is 2α · m. For simplicity, we choose m1 to denote the size of the larger of846

the two sets, i.e. 2α · m. For the other copy of the first three phases (i.e the one ending with847

Sb
2,ℓ), we in fact only require half as many nodes, i.e. levels of size m1

2 in the Growing Phase.848

Note that Sb
2,ℓ is the last level of a Growing Phase on α · m nodes, so each node in Sb

2,ℓ849

has an output degree of at least α
2 · m. Since we have |S3| = 2m, for a sufficiently large α850

(i.e. α ≥ 4), it is indeed possible to connect each node in S3 to every node in Sb
2,ℓ, as the851

nodes in Sb
2,ℓ do have a sufficiently large output degree for this. Thus we can indeed ensure852

that each node in S3 has α · m edges to Sb
2,ℓ.853

Similarly, Sw
2,ℓ is the last level of a Growing Phase on 2α · m nodes, hence each node in854

Sw
2,ℓ has an output degree of α · m at least. Again, this output degree shows that a choice of855

α ≥ 2 allows us to connect each node in Sw
2,ℓ to all the 2m nodes in S3.856

Furthermore, note that we assume that for each node v ∈ S3, the set of neighbors of v in857

Sw
2,ℓ is initially ϵ-balanced. Since v has 2α · m neighbors in Sw

2,ℓ which is significantly larger858

than Θ(log n), we can easily make such an assumption; Lemma 2 shows that w.h.p. it holds859

for all nodes v ∈ S3.860

Also, we point out that this is a phase that we cannot generalize to larger λ values up to861

1
2 : the fraction 2α·(1−ϵ)

3α+1 is upper-bounded by 2
3 , and any other configuration of connections862

to Sb
2,ℓ and Sw

2,ℓ would either not make S3 switchable to black in the first place, or it would863

not be enough to switch it back to white later.864
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C.7 Details of the Simulation Phase865

Most aspects of the Simulation Phase have already been discussed in Section 6. For each866

node v in the prop construction, we add 1
2 · 1+λ

1−λ · d′
v new neighbors in both Sb

3 and Sw
3 , which867

first allows us to force v to take the desired initial color, and then to make the new part868

of the neighborhood balanced. This allows us to run the prop construction for λ′ = 2λ
1−λ ,869

providing a sequence of m1+f( 2λ
1−λ )−ε steps for any ε > 0. Since we have m = Ω( n

log n ) and870

we can get rid of the logarithmic factor with a smaller choice of ε, this shows a lower bound871

of n1+f( 2λ
1−λ )−ε.872

Recall that we have only discussed the Simulation Phase for the prop construction nodes873

that are initially black in the black box construction. In practice, we also need an entirely874

separate copy of the first 4 phases in order to set the initial color of the remaining prop875

nodes white. That is, we create another instance of the first 4 phases in a symmetric manner,876

similarly to the doubling step of the Control Phase. This now allows us to turn all levels in877

the Growing Phase white, and then obtain a set S′
3 where first every node can be switched878

to white, and then half of the nodes can be switched back to black. This again only doubles879

the number of nodes required in the first 4 phases, which does not affect the magnitude of880

the size of the graph.881

One might also wonder if we can generalize this phase to larger λ values by connecting882

our prop nodes to a fewer number of nodes in S3, and instead using the fact that the883

nodes have an initially ϵ-balanced neighborhood within the prop construction. However,884

our processes are sequential, and thus we could only apply this argument on the first nodes885

that are switched to their preferred initial color in the prop graph. The later nodes, on the886

other hand, will have a severely biased neighborhood due to the fact that we have already887

set many of their neighbors in the prop construction to the desired initial color.888

D Brief discussion of the function f(λ)889

For the sake of completeness, we also describe the function f(λ) that was introduced in [30]890

and used in Theorem 5.891

The domain of f is the open interval λ ∈ (0, 1), and the image of f is also (0, 1). On (0, 1)892

the function f is continuous, monotonously decreasing and convex, with limλ→0 f(λ) = 1 and893

limλ→1 f(λ) = 0 in the limits. As such, the bounds of n1+f(λ)±ε in [30] describe a transition894

from quadratic to linear behavior as λ goes from 0 to 1.895

The concrete formula of the function is given in terms of a parameter ϕ such that896

ϕ ∈ (0, 1−λ
2 ]. That is, the authors describe the stabilization time as a function of ϕ, and they897

show that stabilization time is maximal when the optimum ϕ is chosen. In particular, the898

function f is defined as899

f(λ) := max
ϕ∈(0, 1−λ

2 ]

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) .900

A derivative of this expression leads to an equation that cannot be solved with elementary901

methods, and thus there is no straightforward way to present f(λ) in a simple closed form.902

The plot of f(λ) is illustrated in Figure 4.903

Recall that in our lower bound presented in Section 6, we first apply the transformation904

λ → 2λ
1−λ , which maps the interval (0, 1) into (0, 1

3 ); we only call the function f after this905

transformation. The resulting function f( 2λ
1−λ ), as visible on the left side of Figure 3, is a906

continuous, monotonously decreasing, convex function on the domain (0, 1
3 ). The image of the907
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Figure 4 Illustration of the function f(λ) introduced in [30].

function is the entire (0, 1), since we now have limλ→0 f( 2λ
1−λ ) = 1 and limλ→ 1

3
f( 2λ

1−λ ) = 0908

in the limits. As such, our lower bound exhibits a similar transition from quadratic to linear909

behavior on the interval (0, 1
3 ).910
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