
Theoretical Computer Science 00 (2010) 1–14

Procedia Computer
Science

Bounds On Contention Management Algorithms1

Johannes Schneider, Roger Wattenhofer
{jschneid, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory
ETH Zurich, 8092 Zurich, Switzerland

Abstract

We present two new algorithms for contention management in transactional memory, the de-
terministic algorithm CommitRounds and the randomized algorithm RandomizedRounds. Our
randomized algorithm is efficient: in some notorious problem instances (e.g., dining philoso-
phers) it is exponentially faster than prior work from a worst case perspective. Both algorithms
are (i) local and (ii) starvation-free. Our algorithms are local because they do not use global
synchronization data structures (e.g., a shared counter), hence they do not introduce additional
resource conflicts which eventually might limit scalability. Our algorithms are starvation-free
because each transaction is guaranteed to complete. Prior work sometimes features either (i)
or (ii), but not both. To analyze our algorithms (from a worst case perspective) we introduce a
new measure of complexity that depends on the number of actual conflicts only. In addition, we
show that even a non-constant approximation of the length of an optimal (shortest) schedule of
a set of transactions is NP-hard – even if all transactions are known in advance and do not alter
their resource requirements. Furthermore, in case the needed resources of a transaction varies
over time, such that for a transaction the number of conflicting transactions increases by a factor
k, the competitive ratio of any contention manager is Ω(k) for k <

√
m, where m denotes the

number of parallel threads.

Keywords: scheduling, transactions, transactional memory, concurrency control, contention
management

1. Introduction

Designing and implementing concurrent programs is one of the biggest challenges a pro-
grammer can face. Transactional memory promises to resolve a couple of the difficulties by
ensuring correctness and fast progress of computation at the same time. Transactions have been

1This paper is an extension of [13].

/ Theoretical Computer Science 00 (2010) 1–14 2

in use for database systems for a long time. They share several similarities with transactional
memory. For instance, in case of a conflict (i.e. one transaction demanding a resource, e.g. a
shared object, held by another) a transaction might get aborted and all the work done so far is
lost, i.e. the values of all accessed variables will be restored (to the ones prior to the execution of
the transaction).

The difficulty lies in making the right decision when conflicts arise. This task is done by
so-called contention managers. They operate in a distributed fashion, that is to say, a separate
instance of a contention manager is available for every thread, operating independently. If a
transaction A stumbles upon a desired resource, held by another transaction B, it asks its con-
tention manager for advice. We consider three choices for transaction A: (i) A might wait or
help B, (ii) A might abort B or (iii) abort itself. An abort wastes all computation of a transaction
and might happen right before its completion. A waiting transaction blocks all other transactions
trying to access any resource owned by it.

Our contributions are as follows: First, we show that even coarsely approximating the
makespan of a schedule is a difficult task. (Informally, the makespan is the total time it takes
to complete a set of transactions.) This holds even in the absence of an adversary. However, in
case an adversary is able to modify resource requirements such that the number of conflicting
transactions increases by a factor of k, the length of the schedule increases by a factor propor-
tional to k. Second, we propose a complexity measure allowing more precise statements about
the complexity of a contention management algorithm. Existing bounds on the makespan, for
example, do not guarantee to be better than a sequential execution. However, we argue that since
the complexity measure only depends on the number of (shared) resources overall, it does not
capture the (local) nature of the problem well enough. In practice, the total number of (shared)
resources may be large, though each single transaction might conflict with only a few other trans-
actions. In other words, a lot of transactions can run in parallel, whereas the current measure only
guarantees that one transaction runs at a time until commit. Third, we analyze widely used con-
tention managers. For instance, some algorithms schedule certain sets of transactions badly,
while others require all transactions – also those facing no conflicts – to modify a global counter
or access a global clock. Thus, the amount of parallelism declines more and more with a growing
number of cores. Fourth, we state and analyze two algorithms. Both refrain from using glob-
ally shared data. From a worst-case perspective, the randomized algorithm RandomizedRounds
improves on existing contention managers drastically (exponentially) if for each transaction the
number of conflicting transactions is small. We also show that achieving a short makespan (from
a worst case perspective) requires to detect and handle all conflicts early, i.e. for every conflict a
contention manager must have the possibility to abort any of the conflicting transactions.

2. Related Work

In [7] Dynamic STM (DSTM) targeted towards dynamic data structures was described, which
suggests the use of a contention manager as an independent module. Most proposed contention
managers have been assessed by specific benchmarks only[12, 10], and not analytically. The
experiments yield best performance for randomized algorithms, which all leave a (small) chance
for arbitrary large completion time. Apart from that, the choice of the best contention manager
varies with the considered benchmark. Still, an algorithm called Polka [12] exhibits good overall
performance for a variety of benchmarks and has been used successfully in various systems,
e.g. [3, 10]. In [10] an algorithm called SizeMatters is introduced, which gives higher priority
to the transaction that has modified more (shared) memory. We show that from a worst-case

/ Theoretical Computer Science 00 (2010) 1–14 3

perspective Polka and SizeMatters may perform exponentially worse than RandomizedRounds.
In [6, 16] load adaption strategies have been investigated, i.e. algorithms have been proposed that
alter the number of cores that perform computations depending on previously occured conflicts.

The first analysis of a contention manager named Greedy was given in [5], using time stamps
to decide in favor of older transactions. [5] guarantees that a transaction commits within bounded
time and that the competitive ratio (i.e. the ratio of the makespan of the schedule defined by an
online scheduler and by an optimal offline scheduler, knowing all transactions in advance) is
O(s2), where s is the number of (shared) resources of all transactions together. The analysis
was improved to O(s) in [1]. In contrast to our contribution, access to a global clock or logi-
cal counter is needed for every transaction which clearly limits the possible parallelism with a
growing number of cores. In [11] a scalable replacement for a global clock was presented us-
ing synchronized clocks. Unfortunately, these days most systems come without multiple clocks.
Additionally, there are problems due to the drift of physical clocks.

Also in [1] a matching lower bound of Ω(s) for the competitive ratio of any (also randomized)
algorithm is proven, where the adversary can alter resource requests of waiting transactions. We
show that, more generally, if an adversary can reduce the possible parallelism (i.e., the number
of concurrently running transactions) by a factor k, the competitive ratio is Ω(k) for deterministic
algorithms and for randomized algorithms the expected ratio is Ω(min{k,

√
m}), where m is the

number of parallel threads. In the analysis of [1] an adversary can change the required resources
such that instead of Ω(s) transactions only O(1) can run in parallel, i.e. all of a sudden Ω(s)
transactions write to the same resource. Though, indeed the needed resources of transactions do
vary over time, we believe that the reduction in parallelism is rarely that high. Dynamic data
structure such as (balanced) trees and lists usually do not vary from one extreme to the other.

Furthermore, the complexity measure is not really satisfying, since the number of (shared)
resources in total is not correlated well to the actual conflicting transactions an individual trans-
action potentially encounters. As a concrete example, consider the classical dining philosophers
problem, where there are n unit length transactions sharing n resources, such that transaction Ti

demands resource Ri as well as R(i+1) mod n exclusively. An optimal schedule finishes in constant
time O(1) by first executing all even transactions and afterwards all odd transactions. The best
achievable bound by any scheduling algorithm using the number of shared resources as com-
plexity measure is only O(n). Furthermore, with our more local complexity measure, we prove
that for a wide variety of scheduling tasks, the guarantee for algorithm Greedy is linearly worse,
whereas our randomized algorithm RandomizedRounds is only a factor log n off the optimal, with
high probability.

We relate the problem of contention management to coloring, where a large amount of dis-
tributed algorithms are available in different models of communication and for different graphs
[15]. Our algorithm RandomizedRounds essentially computes a O(max{∆, log n}) coloring for a
graph with maximum degree ∆.

Contention management is related to online scheduling. In contrast to contention manage-
ment, most scheduling algorithms are centralized and assume known conflicts. For illustration,
in [4] the competitive ratios of scheduling algorithms are given for conflicting jobs. Their algo-
rithms are non-distributed and on arrival of a new job J all conflicting jobs of J are known all
at once, taking effect immediately, without change. Furthermore, the completion of a job cannot
create new conflicts. In our model a conflict between two transactions happens when both access
the same resource, which is not necessarily directly at their start. Additionally, dynamic data
structures change their structure when modified and thus a transaction might access different re-
sources due to the commit of another transaction, which might introduce new conflicts. Therfore,

/ Theoretical Computer Science 00 (2010) 1–14 4

it is difficult to reliably predict conflicts, since they might change any time.

3. Model

A set of transactions S T := {T1, ...,Tn} sharing up to s resources (such as memory cells)
are executed on m processors P1, ..., Pm.2 For simplicity of the analysis we assume that a single
processor runs one thread only, i.e., in total at most m threads are running concurrently. A thread
running on processor Pi consists of a sequence of transactions T Pi

0 ,T
Pi
1 ,T

Pi
2 , The sequence is

executed sequentially on the same processor Pi, i.e., transaction T Pi
j is executed as soon as T Pi

j−1
has completed, i.e. committed.

The duration of transaction T is denoted by tT and refers to the time T executes until commit
without contention (or equivalently, without interruption). The length of the longest transaction
of a set S of transactions is denoted by tmax

S := maxK∈S tK . If an adversary can modify the
duration of a transaction arbitrarily during the execution of the algorithm, the competitive ratio
of any online algorithm is unbounded: Assume two transactions T0 and T1 face a conflict and an
algorithm decides to let T0 wait (or abort). The adversary could make the opposite decision and
let T0 proceed such that it commits at time t0. Then it sets the execution time T0 to infinity, i.e.,
tT0 = ∞ after t0. Since in the schedule produced by the online algorithm, transaction T0 commits
after t0 its execution time is unbounded. Therefore, in the analysis we assume that tT is fixed for
all transactions T .3 We consider an oblivious adversary that knows the (contention management)
algorithm, but does not get to know the randomized choices of the algorithm before they take
effect.

Each transaction consists of a sequence of operations. An operation can be a read or write
access of a shared resource R or some arbitrary computation. A value written by a transaction T
takes effect for other transactions only after T commits. A transaction either successfully finishes
with a commit after executing all operations and acquiring all modified (written) resources or
unsuccessfully with an abort anytime. A resource can be acquired either once it is used for the
first time or at latest at commit time. A resource can be read in parallel by arbitrarily many
transactions. A read of transaction A of resource R is visible, if another transaction B accessing
R after A is able to detect that A has already read R. We assume that all reads are visible. In
fact, we prove in Section 4.4 that systems with invisible readers can be very slow. To perform a
write, a resource must be acquired exclusively. Only one transaction at a time can hold a resource
exclusively. This leads to the following types of conflicts: (i) Read-Write: A transaction B tries
to write to a resource that is read by another transaction A. (ii) Write-Write: A transaction
tries to write to a resource that is already held exclusively (written) by another transaction, (iii)
Write-Read: A transaction tries to read a resource that is already held exclusively (write) by
another transaction. A contention manager comes into play if a conflict occurs. It decides how
to resolve the conflict by making a transaction wait (arbitrarily long), or abort, or assist the other
transaction. We do not explicitly consider the third option. Helping requires that a transaction can
be parallelized effectively itself, such that multiple processors can execute the same transaction
in parallel with low coordination costs. In general, it is difficult to split a transaction into subtasks
that can be executed in parallel. Consequently, state of the art systems do not employ helping.

2Transactions are sometimes called jobs, and machines are sometimes called cores.
3In case the running time depends on the state/value of the resources and therefore the duration varied by a factor of

c, the guarantees for our algorithms (see Section 6) would worsen only by the same factor c.

/ Theoretical Computer Science 00 (2010) 1–14 5

If a transaction gets aborted due to a conflict, it restores the values of all modified resources,
frees its resources and restarts from scratch with its first operation. A transaction can request
different resources in different executions or change the requested resource while waiting for
another transaction.

Usually conflicts are handled in a lazy or eager way. We assume that conflicts are handled
eagerly, i.e. once a transaction tries to access a resource that is held by another transaction.
For lazy conflict handling a conflict is dealt with once a conflicting transaction tries to commit.
Depending on the scenario, experimental evaluation showed that one or the other way leads
to a shorter makespan. Even for “typical” cases neither consistently outperforms the other. A
transaction keeps a resource locked until commit, i.e. no early release. By introducing additional
writes in our examples, any transaction indeed cannot release its resources before commit.

A schedule shows for each processor P at any point in time whether it executes some trans-
action T ∈ S T or whether it is idle. The makespan of a schedule for a set of transactions S T is
defined as the duration from the start of the schedule until all transactions S T have committed.
We say a schedule for transactions S T is optimal, if its makespan is minimum possible. We
measure the quality of a contention manager in terms of the makespan. A contention manager is
optimal, if it produces an optimal schedule for every set of transactions S T .

4. Lower Bounds

Before elaborating on the problem complexity of contention management, we introduce some
notation related to graph theory and scheduling. We show that even coarse approximations are
NP-hard to compute. We give a lower bound of Ω(n) for the competitive ratio of algorithms
Polka, SizeMatters and Greedy, which holds even if resource requirements remain the same over
time. We consider both eager and lazy conflict handling.

4.1. Notation

We use the notion of a conflict graph G = (S , E) for a subset S ⊆ S T of transactions executing
concurrently, and an edge between two conflicting transactions. The neighbors of transaction
T in the conflict graph are denoted by NT and represent all transactions that have a conflict
with transaction T in G. The degree dT of a transaction T in the graph corresponds to the
number of neighbors in the graph, i.e., dT = |NT |. We have dT ≤ |S | ≤ min{m, n}, since at
most m transactions can run in parallel, and since there are at most n transactions, i.e., |S T | = n.
The maximum degree ∆ denotes the largest degree of a transaction, i.e., ∆ := maxT∈S dT . The
term tNT denotes the total time it takes to execute all neighboring transactions of transaction T
sequentially without contention, i.e., tNT :=

∑
K∈NT

tK . The time t+NT
includes the execution of T ,

i.e., t+NT
= tNT + tT . Note that the graph G is highly dynamic. It changes due to new or committed

transactions or even after an abort of a transaction. Therefore, by dT we refer to the maximum
size of a neighborhood of transaction T that might arise in a conflict graph due to any sequence
of aborts and commits. If the number of processors equals the number of transactions (m = n),
all transactions can start concurrently. If, additionally, the resource requirements of transactions
stay the same, then the maximum degree dT can only decrease due to commits. However, if the
resource demands of transactions are altered by an adversary, new conflicts might be introduced
and dT might increase up to |S T |.

/ Theoretical Computer Science 00 (2010) 1–14 6

4.2. Problem Complexity
If an adversary is allowed to change resources after an abort, such that all restarted transac-

tions require the same resource R, then for all aborted transactions T we can have dT = min{m, n}.
This means that no algorithm can do better than a sequential execution (see lower bound in [1]).

We show that even if the adversary can only choose the initial conflict graph and does not
influence it afterwards, it is computationally hard to get a reasonable approximation of an optimal
schedule. Even, if the whole conflict graph is known and fixed, the best approximation of the
schedule obtainable in polynomial time can be exponentially worse than the optimal for certain
graphs. The claim follows from a straight forward reduction to coloring.

Theorem 1. If the optimal schedule requires time k, it is NP-hard to compute a schedule of
makespan less than max(k · n1−1/ logε n, n) (for any constant ε > 0), even if the conflict graph is
known and transactions do not change their resource requirements.

Proof. Assume all accesses to resources are writes. There are n transactions of unit length,
running on n processors, each transaction requires its resources on start up. Consider a coloring
of the conflict graph G = (S , E). Every set Ci ⊆ S of transactions of color i forms an independent
set (i.e., no nodes in Ci are neighbors) and thus all transactions in Ci can execute in parallel
without facing any conflicts. The makespan of an optimal schedule is equal to the chromatic
number χ(G), i.e., the minimum number of colors that is needed to color graph G. If this was not
the case then the independent sets IS i of the allegedly faster schedule of length l with l < χ(G)
colors, formed a coloring with Ci = IS i and l colors. In [8] it was shown that computing an
optimal coloring given complete knowledge of the graph is NP-hard. Even worse, computing an
approximation within a factor of n1−1/ logε n (for any constant ε > 0 and k ≤ n1/ logε n4) is NP-hard
as well.

As an approximation it seems reasonable to schedule transactions M, such that M is a max-
imum independent set (MaxIS, i.e an independent set of maximum cardinality) in G = (S , E).
Once all transactions in M have committed, the next MaxIS is scheduled. Iteratively scheduling
a MaxIS yields a 4-approximation for the average response time or equivalently for the minimum
sum of the transactions completion times [2]. Unfortunately, approximating the MaxIS problem
within a factor of nc for c > 0 is NP-hard [8]. Instead of a MaxIS one could try to schedule a
maximal independent set (MIS, i.e., an independent set not extendable by adding a transaction).
This yields a O(∆ · tmax

S) approximation. The factor tmax
S is a bound on how long it takes at most

until the next MIS can be scheduled. So, how to obtain a MIS without any knowledge about the
conflict graph? The well-known distributed algorithm by Luby [9] computes a MIS with high
probability (i.e., 1− 1

n) in time O(tmax
S · log n). Unfortunately, it requires the degree of each trans-

action. Our Algorithm RandomizedRounds works for dynamic conflict graphs, does not need any
information about them and can also be bounded by O(tmax

S · log n). Thus, the total approximation
ratio is O(∆ · tmax

S · log n). In fact, for conflict graphs where no new edges (conflicts) are added, it
can be improved to O(max{∆, log n} · tmax

S).

4.3. Power of the Adversary
We show that if the conflict graph can be modified, the competitive ratio is proportional to

the possible change of a transaction’s degree. Initially, a contention manager is not aware of

4In case k · n1−1/ logε n ≥ n all transactions execute sequentially, thus the makespan is always at most n

/ Theoretical Computer Science 00 (2010) 1–14 7

any conflicts. Thus, it is likely to schedule (many) conflicting transactions. All transactions that
faced a conflict (and aborted) change their resources on the next restart and require the same
resource. Thus, they must run sequentially. The contention manager might schedule transactions
arbitrarily – in particular it might delay any transaction for an arbitrary amount of time (even
before it executed the first time). The adversary has control of the initial transactions and can
state how they are supposed to behave after an abort (i.e. if they should change their resource
requirements). During the execution, it cannot alter its choices. Furthermore, we limit the power
of the adversary as follows: Once the degree of a transaction T has increased by a factor of
k, no new conflicts will be added for T , i.e. all initial proposals by the adversary for resource
modifications augmenting the degree of T are ignored from then on.

Theorem 2. If the conflict graph can be modified by an oblivious adversary such that the de-
gree of any transaction is increased by a factor of k, any deterministic contention manager has
competitive ratio Ω(k) and any randomized has Ω(min{k,

√
m}).

Proof. We run m transactions on m parallel threads. In the initial conflict graph each transaction
faces only one conflict and all transactions have the same duration t. Thus, we have m/2 pairs
{U,T } ⊆ S T of conflicting transactions. For each pair {U,T } both transactions read the same
resource RUT on start-up and write it before their commits. Therefore, if two conflicting transac-
tions start within time t − ε for some constant ε > 0, both must have read RUT and only one of
them can commit while the other must abort. For every pair {U,T }we can choose one transaction
and let it change its resource demands after an abort, i.e. any (chosen) aborted transaction will
write to resource R on startup until k transactions write to R. Thus, if k aborts take place, any
schedule will be of length at least kt.

The scheduled transactions are known for a deterministic algorithm. Therefore, we can fix the
transactions’ resource requirements (before the start of the algorithm) such that (enough) aborts
happen. Assume the algorithm schedules x > 2 transactions at at time. Since, the algorithm has
no information about the conflicts, at least x/3 can be made to abort (in case three transactions
are scheduled concurrently, two transactions can commit and one has to abort). We can set the
aborted transactions, such that at least min{x/3, k} transactions write to the same resource R on
startup. Thus, either a deterministic strategy schedules at most two transactions at a time or at
least 1/3 of the transactions are aborted and therefore we can choose min{m/3, k} of them and
let them write to the same resource R on startup. Therefore, the total time for a deterministic
manager is min{m/3, k} · t. The optimal contention manager being aware of all conflicts finishes
within time 2 · t.

Assume a randomized algorithm schedules a set X > 4 ·
√

m of transactions at a time. Clearly,
if the algorithm chooses transactions in a non-uniform manner, i.e. the chance that a pair {U,T } ⊆
S T is scheduled together is larger than a pair {V,T } ⊆ S T the adversary can make use of this
knowledge. Thus, the algorithm is best off by treating all transactions equally. The chance that a
transaction T ∈ X does not face a conflict is given by (1 − 1/m)|X|−1. The chance that none of the
transactions in X is involved in a conflict is given by (1−1/m)|X|−1 · (1−1/m)|X|−2 · (1−1/m)|X|−3 ·

... · 1 = (1 − 1/m)
∑|X|−1

i=1 i = (1 − 1/m)|X|·(|X|−1)/2 ≤ (1 − 1/m)8m ≤ 1/e8. Assume two transactions
{U,T } conflict. The algorithm must decide on one of the transactions to abort. Assume it aborts
U with probability p ≥ 1/2. Then the adversary lets U be the transaction that chooses resource R
on startup. The overall chance that out of X transactions with |X| > 4 ·

√
m one transaction aborts

and chooses resource R on startup is 1/2 · (1− 1/e8). If k · 4 ·
√

m transactions run in parallel then
we expect at least a constant fraction of them to abort. Thus, either the algorithm schedules less

/ Theoretical Computer Science 00 (2010) 1–14 8

than 4 ·
√

m at a time or we expect in total up to Ω(min{k,
√

m}) transactions to choose the same
resource on startup.

4.4. Visible vs. Invisible Reads
We show: If an optimal contention manager is employed for a set of transactions, which do

not alter their resource requirements over time, a system using visible reads can be linearly faster
than a system with invisible reads. This is due to the fact that for invisible reads all aborts might
take place without the influence of a contention manager, since read-write conflicts might not be
handled by a contention manager, but can simply force a transaction to abort. It underlines the
importance of detecting all conflicts and resolving them by a contention manager.

Theorem 3. The competitive ratio of a system employing invisible reads is a factor Ω(n) worse
than a system using visible reads, if both make use of an optimal contention manager.

Proof. Suppose we have n processors and schedule 2 · n transactions, i.e., transactions T Pi
0 and

T Pi
1 on processor Pi. All transactions T Pi

0 with 0 ≤ i ≤ n − 1 start at the same time, read resource
Ri on startup and have duration n + 2 · i · ε. Transactions T Pi

1 with 0 ≤ i ≤ n − 1 write to all
resources R j i < j ≤ n − 1 on startup and have duration ε.

For invisible reads transaction T P0
0 commits after time n and T P1

0 after time n+ε. A transaction
T Pi

0 with 1 ≤ i ≤ n − 1 will abort at time n + 2 · i · ε. After time 2 · (n + 2 · ε) transaction T P2
0

commits and ε time units later T P2
1 . Again all transactions T Pi

0 with 2 ≤ i ≤ n − 1 abort. Thus, all
transactions T Pi

0 with 0 ≤ i ≤ n − 1 execute sequentially. The time it takes until all transactions
have committed is lower bounded by Ω(n2).

For visible reads, the contention manager decides to give all transactions T Pi
0 with 0 ≤ i ≤

n − 1 higher priority. Afterwards all transactions T Pi
1 with 0 ≤ i ≤ n − 1 execute sequentially.

Therefore, the makespan equals n + 3 · n · ε = O(n).

4.5. Competitive Ratio of Algorithm Greedy
The next theorem states that for certain problem instances algorithm Greedy [5] executes a

large fraction of transactions entirely sequentially, even if a large amount of them could be run in
parallel. In contrast to the lower bound in [1], our lower bound holds even if transactions do not
modify their resource requirements after an abort (i.e. the adversary must not alter the demanded
resources of a transaction). In algorithm Greedy each transaction gets a unique time stamp on
start up and keeps it until commit. In case of a conflict, the older transaction proceeds. The
younger aborts, if it has already acquired the resource needed by the older transaction, otherwise
it waits. A waiting transaction is always aborted.

Theorem 4. Algorithm Greedy [5] has competitive ratio of Ω(n) even if transactions do not alter
their resource requests over time.

Proof. Consider the dining philosophers problem (see Section 2) and assume eager conflict han-
dling. Suppose all transactions have unit length and transaction i requires its first resource Ri at
time 0 and its second R(i+1) mod n at time 1 − i · ε. Since the algorithm is deterministic, we know
the time stamp of each transaction. Let transaction i have the ith oldest time stamp. At time
1 − i · ε transaction i + 1 with i ≥ 1 will get aborted by transaction i and only transaction 1 will
commit at time 1. After every abort transaction i restarts ε time units before transaction i − 1.

/ Theoretical Computer Science 00 (2010) 1–14 9

Since transaction i − 1 acquires its second resource (i − 1) · ε time units before its termination,
transaction i − 1 will abort transaction i at least i − 1 times. Thus, after i − 1 aborts transaction i
can commit. The total time until the algorithm is done is bounded by the time transaction n stays
in the system, i.e.,

∑n
i=1(1 − i · ε) = Ω(n). An optimal schedule requires only O(1) time.

For lazy conflict handling, we let transaction i have duration 1 and require its second resource
at time 1

2 . Let all transactions start with their first operation at the same time. Just before commit
every transaction i acquires resource i at the same time and also each transaction i with i < n
aborts transaction i + 1 concurrently. The transaction with the oldest time stamp commits. All
other transactions start again at the same time and the process repeats.

4.6. Competitive Ratio of Algorithm SizeMatters

SizeMatters[10] decides a conflict in favor of the transaction, that has accessed (read or writ-
ten) more unique bytes, i.e. an access to a memory cell is only counted once during an execution.
Thus, if the same byte is accessed multiple times, the overall increase of the priority is only 1.
The priority is reset to 0 on restart. After a threshold c of restarts, it reverts to time-stamp. Un-
fortunately, the authors in do not explain how the time-stamps are chosen. Thus, we assume that
a transaction running on processor Pi gets the ith smallest time-stamp.

Theorem 5. Algorithm SizeMatters [10] has competitive ratio of Ω(n) even if transactions do
not alter their resource requests over time.

Proof. We use the same transactions as in the proof of Theorem 4 and say that an access of
resource Ri equals an access to n − i bytes. The rest is analogous to the proof of Theorem 4.
Transaction i will always have larger priority than i + 1, independent of whether the priority is
calculated using time-stamps or the number of accessed bytes.

4.7. Competitive Ratio of Algorithm Polka

Algorithm Polka works as follows: A transaction increases its priority by one for every ac-
quired object until commit (it keeps its priority on abort). A transaction with higher priority can
abort a lower priority one. If a transaction with lower priority wants a resource held by a transac-
tion with higher priority, Polka waits for a number of intervals given by the difference in priority
between the two conflicting transactions. The length of interval i has mean 2i according to a
fixed distribution chosen by the algorithm designer. For instance, assume transaction A wants a
resource held by B and the difference in priorities is 2. After having tried to access the resource
the first time, transaction A waits for a (random) time interval with mean 21. Then it tries to
access the resource again. If it fails, it waits for a time interval with mean 22. If it was not able
to access the resource again, transaction B is aborted, frees the resource and A can access it.

Theorem 6. Algorithm Polka has at least competitive ratio Ω(n).

Proof. Consider eager conflict handling and the probability that the back off time XB is more than
n time units. First, assume p(XB ≥ n) ≥ 1

n . Assume n transactions of unit length run on n pro-
cessors. Each transaction i faces only one conflict on startup, i.e., transaction 1 with transaction
2, transaction 2 with transaction 3 etc. Therefore, directly after startup half the transactions will
acquire a resource and they have priority 1, whereas the rest will wait for an interval of random
length with mean 2. The probability that no transaction waits for n time units is (1 − 1

n)
n
2 ≤ 1

√
e .

Therefore the expected schedule is at least n · (1 − 1
√

e). An optimal schedule is of length 2.

/ Theoretical Computer Science 00 (2010) 1–14 10

Now assume p(XB ≥ n) < 1
n and consider two transactions T1,T2 of length 3 · n. Let them start

simultaneously and conflict after running for time n due to resource R. Assume transaction T1
acquires resource R and thus it has priority 1. Transaction T2 will wait in expectation for 2 time
units before aborting T1 and increasing its priority to 1. Once T1 aborted it will conflict again
after time n with T2. Both will have priority 1 and T1 aborts T2 and sets its priority to 2. The
process repeats: Again T2 will execute for n time units and then wait in expectation for 2 time
units. The chance that T2 waits until T1 completed, i.e., at least time n, is less than 1

n . Therefore
in expectation n trials of duration n are needed until transaction T2 waits long enough. In total
expected time O(n2) is needed. The optimal requires time O(n).

For lazy conflict handling assume that there are two transactions of equal length starting at
the same time. Transaction T1 writes to resources R1 and R2. So does transaction T2 but in the
opposite order. Just before trying to commit transaction T1 acquires R1 and at the same time
transaction T2 acquires R2. Then T1 aborts T2 and concurrently T2 aborts T1, since both have the
same priority and thus do not back off before aborting another transaction. Again, both start at
the same time and the scenario repeats. Therefore the system will livelock and the competitive
ratio becomes unbounded.

5. Algorithms

Our first algorithm CommitRounds (Section 5.1) gives assertions for the response time of
individual transactions, i.e., how long a transaction needs to commit. Although we refrain from
using global data and we can still give guarantees on the makespan, the result is not satisfying
from a performance point of view, since the worst-case bound on the makespan is not better
than a sequential execution. Therefore we derive a randomized algorithm RandomizedRounds
(Section 5.2) with better performance.

Algorithm Commit Rounds (CommitRounds)

On conflict of transaction T Pi with transaction T P j :
cmax

Pi
:= max{cmax

Pi
, cmax

P j
}

cmax
P j

:= cmax
Pi

if cPi < cP j ∨ (cPi = cP j ∧ Pi < P j)
then Abort transaction T P j

else Abort transaction T Pi

end if

After commit of transaction T P:
cmax

P := cmax
P + 1

cP := cmax
P

5.1. Deterministic Algorithm CommitRounds
The idea of Algorithm CommitRounds is to assign priorities to processors, i.e. a transaction

T P running on a processor P inherits P’s priority, which stays the same until the transaction
committed. When T commits, P’s priority is altered, such that any transaction K having had a
conflict with transaction T will have higher priority than all following transactions running on P.

/ Theoretical Computer Science 00 (2010) 1–14 11

Furthermore, transaction T will inform every transaction (more precisely, processor) with which
T conflicts, that it should set its priority (after a commit) such that transaction K can abort it. To
do so every processor P maintains two variables: (i) Variable cP represents the priority, such that
the smaller cP the higher transaction T ’s priority, and (ii) Variable cmax

P holds the next priority for
a transaction running on processor P. In case a conflict occurs between transactions T Pi and T P j ,
the transaction running on the processor P with smaller cP proceeds. In case both processors
have the same value (cPi = cP j), the transaction running on the processor with smaller identifier
obtains the resource. The variable cmax

P + 1 is the next value for cP, i.e., on commit we increment
cmax

P and set cP := cmax
P . The value of cmax

Pi
should be such that after a commit of a transaction

running on Pi, the next transaction running on Pi should have lower priority than any transaction
running on some processor P j, that got previously aborted by the committed transaction executed
on Pi, i.e. cPi > cP j . Thus, on every conflict we set cmax

Pi
:= cmax

P j
:= max{cmax

Pi
, cmax

P j
}. Additionally,

once the transaction running on Pi commits, we increment cmax
P and set cP := cmax

P . For the first
execution of the first transaction on processor Pi, the variable cmax

Pi
and cPi are initialized with 0.

Algorithm Randomized Rounds (RandomizedRounds)

procedure Abort(transaction T , K)
Abort transaction K
K waits for T to commit or abort before restarting

end procedure

On (re)start of transaction T :
xT := random integer in [1,m]

On conflict of transaction T with transaction K:
if xT < xK then Abort(T , K)

else Abort(K, T)
end if

5.2. Randomized Algorithm RandomizedRounds
For our randomized Algorithm RandomizedRounds a transaction chooses a discrete number

uniformly at random in the interval [1,m] on start up and after every abort. In case of a conflict
the transaction with the smaller random number proceeds and the other aborts. The routine
Abort(transaction T , K) aborts transaction K. Moreover, K must hold off on restarting until T
committed or aborted.

To incorporate priorities set by a user, a transaction simply has to modify the interval from
which its random number is chosen. For example, if one transaction chooses from [1, bm

2 c]
instead of [1,m], it doubles the chance of succeeding in a round.

6. Analysis

We study two classic efficiency measures of contention management algorithms, the
makespan (the total time to complete a set of transactions) and the response time of the sys-
tem (how long it takes for an individual transaction to commit).

/ Theoretical Computer Science 00 (2010) 1–14 12

6.1. Deterministic Algorithm CommitRounds
Theorem 7. Any transaction will commit after being in the system for a duration of at most
2 · m · tmax

S T
.

Proof. When transaction T Pi runs and faces a conflict with a transaction T P j having lower prior-
ity than T Pi i.e., cPi < cP j or cPi = cP j and also Pi < P j, then T P j will lose against T Pi . If not,
transaction T P j will have cmax

P j
≥ cmax

Pi
≥ cPi after winning the conflict. Thus, at latest after time

tmax
S T

one of the following two scenarios will have happened: The first is that T P j has committed
and all transactions running on processor P j later on will have cP j > cmax

P j
≥ cmax

Pi
≥ cPi . The

second is that T P j has had a conflict with another transaction T Pk for which will also hold that
cmax

Pk
≥ cmax

Pi
after the conflict. After time tmax

S T
either a processor has got to know cmax

Pi
(or a larger

value) or committed knowing cmax
Pi

(or a larger value). In the worst-case one processor after the
other gets to know cmax

Pi
within time tmax

S T
, taking time at most m · tmax

S T
and then all transactions

commit one after the other, yielding the bound of 2 · m · tmax
S T

.

6.2. Randomized Algorithm RandomizedRounds
To analyze the response time, we use a complexity measure depending on local parameters,

i.e., the neighborhood in the conflict graph (for definitions see Section 4.1).

Theorem 8. The time span a transaction T needs from its first start until commit is O(dT · tmax
N+

T
·

log n) with probability 1 − 1
n4 .

Proof. Consider an arbitrary conflict graph. The chance that for a transaction T no transaction
K ∈ NT has the same random number given m discrete numbers are chosen from an interval
[1,m] is: p(@K ∈ NT |xK = xT) = (1 − 1

m)dT ≥ (1 − 1
m)m ≥ 1

e . We have dT ≤ min{m, n} (Section
4.1). The chances that xT is at least as small as xK of any transaction K ∈ NT is 1

dT +1 . The chance
that xT is smallest among all its neighbors is at least 1

e·(dT +1) . If we conduct y = 64·e·(dT +1)·log n
trials, each having success probability 1

e·(dT +1) , then the probability that the number of successes
X is less than 16 · log n becomes (using a Chernoff bound): p(X < 16 · log n) < e−4·log n = 1

n4

The duration of a trial, i.e., the time until T can pick a new random number, is at most the
time until the first conflict occurs, i.e., the duration tT plus the time T has to wait after losing a
conflict, which is at most tmax

NT
. The duration of a trial is bounded by 2 · tmax

N+
T

.

Theorem 9. If n transactions S = {T P0 , ...,T Pn } run on n processors, then the makespan of the
schedule by algorithm RandomizedRounds is O(maxT∈S T (dT · tmax

N+
T

) · log n) + tlast with probability

1 − 1
n , where tlast is the time, when the latest transaction started to execute.

Proof. Once all transactions are executing, we can use Theorem 8 to show that p(∃K ∈

S finishing after O(maxT∈S (dT · tmax
N+

T
) · log n) < 1

n . In the proof of Theorem 8, we showed
that for the probability p(ET) of the event ET for any transaction T holds: p(ET) =

p(T finishes before O(dT ·tmax
N+

T
·log n) > 1− 1

n4 . Since O(dT ·tmax
N+

T
·log n) ≤ O(maxT∈S (dT ·tmax

N+
T

)·log n)

we have p(ET) ≥ p(T finishes before O(maxT∈S (dT · tmax
N+

T
) · log n) > 1 − 1

n4 . The probability
p(not ET1 |ET2) for two transactions T1 and T2 that given ET2 has occurred, ET1 does not happen,
is at most 2

n4 , since in the worst case ET1 and ET2 are maximal negatively correlated. That is to
say, all outcomes for ET1 that are excluded due to the occurrence ET2 would cause ET1 to occur.

/ Theoretical Computer Science 00 (2010) 1–14 13

Since ET2 only excludes outcomes of probability 1/n4 its impact on the probability of ET1 is also
only 1/n4. In the same manner, we have for p(not ET1 |ET2 ∧ ET3) ≤ 3/n4, since due to ET2 a
fraction 1/n4 of all possibilities for ET1 to occur are excluded and due to ET3 the same amount.
In general for p(not ET1 |ET2 ∧ ... ∧ ETn) ≤ 1/n4 + (n − 1)/n4 ≤ 1/n3. Thus, the probability
that no transaction out of all n transactions exceeds the bound of O(maxT∈S (dT · tmax

N+
T

) · log n) is

(1 − 1
n3)n ≥ 1 − 1

n .

The theorem shows that if an adversary can increase the maximum degree dT by a factor of k
the running time also increases by the same factor. The bound still holds if an adversary can keep
the degree constantly at dT despite committing transactions. In practice, the degree might also be
kept at the same level due to new transactions entering the system. In case, we do not allow any
conflicts to be added to the initial conflict graph, the bound of Theorem 9 (and also the one of
Theorem 8) can be improved to O(maxT∈S T (max{dT , log n} · tmax

N+
T

)), with an analogous derivation
as in [14]. The idea of the proof is as follows: After time dT · tmax

N+
T

we can show that the new
maximum degree d′T is at most c · dT for a constant c < 1, i.e. it is reduced by a constant factor.
This is because every transaction has constant probability to commit if it runs dT times. To again
reduce d′T by a constant factor requires time d′T · t

max
N+

T
) time, i.e. a factor c less as before. Thus,

the total time until the degree is less than one is given by
∑O(log n)

i=0 cidT · tmax
N+

T
) = O(log n · tmax

N+
T

)).
Let us consider an example to get a better understanding of the bounds. Assume we have n

transactions starting on n processors having equal length t. All transactions only need a constant
amount of resources exclusively and each resource is only required by a constant number of
transactions, i.e., dT is a constant for all transactions T – as is the case in the dining philosophers
problem mentioned in Section 2. Then the competitive ratio is O(log n), whereas it is O(n) for
the Greedy and SizeMatters algorithms (see Sections 4.5 and 4.6). For the Polka contention
management strategy, the examples used in the proof of Theorem 6 disclose an exponential gap
between RandomizedRounds and Polka, since the makespan of Algorithm RandomizedRounds
for both examples is within a factor of O(log n) of the optimal with high probability.

A frequently used heuristic for contention management algorithms is to base the priority of a
transaction on some measure of the work it has already completed. Since algorithm Randomize-
dRounds does not use any information about the progress of a transaction such as the number of
accessed resources, it looks like RandomizedRounds does not follow this heuristic at all. How-
ever, we show that the probability that a transaction T has high priority increases with every
transaction aborted due to T . Assume a set W of transactions has aborted due to T . Then the
probability that the randomly chosen priority xT is less than a ∈ [1,m] is:

p(xT ≤ a) = 1 − p(xT > a)
= 1 − p(xK > a,∀K ∈ (W ∪ T))

= 1 − (1 −
a
m

)|W |+1

This indicates that in general the more conflicts a transaction has won the higher are its chances
to succeed in the next one as well.

7. Conclusions

In the quickly growing field of transactional memory, most research has been based on prac-
tical concerns on current systems, frequently neglecting future trends, such as the possibly fast

/ Theoretical Computer Science 00 (2010) 1–14 14

growth of the number of cores per chip. Furthermore, evaluation has been often limited to a
few selected scenarios, reflected in a couple of benchmarks. In this paper we have analyzed
some well-known algorithms in the field of contention management. Additionally, we derived
two algorithms that improve on existing algorithms. Our algorithms avoid using global data,
which limits scalability. Our randomized algorithm improves on the (worst-case) performance
of previous work dramatically, e.g. exponentially, if sufficient parallelism is possible. Due to the
reduction to coloring a further improvement is difficult and for some scenarios computationally
not feasible.

References

[1] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention management as a non-clairvoyant
scheduling problem. In Proceedings of the 25th ACM Symp. on Principles of Distributed Computing (PODC),
2006.

[2] A. Bar-Noy, M. Bellare, M. M. Halldorsson, H. Shachnai, and T. Tamir. On chromatic sums and distributed resource
allocation. Information and Computation, 140(2):183–202, 1998.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid transactional memory. In Proc.
of the Int. Conferernce on Architectural Support for Programming Languages and Operating Systems(ASPLOS),
2006.

[4] G. Even, M. M. Halldorsson, L. Kaplan, and D. Ron. Scheduling with conflicts: online and offline algorithms. In
Journal of Scheduling, 2008.

[5] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional contention managers. In Proceedings
of the 24th ACM Symp. on Principles of Distributed Computing (PODC), 2005.

[6] D. Hasenfratz, J. Schneider, and R. Wattenhofer. Transactional memory: How to perform load adaption in a simple
and distributed manner. In Proc. of the 210 International Conf. on High Performance Computing & Simulation
(HPCS), 2010.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional memory for dynamic-sized data
structures. In Proceedings of the 22nd ACM Symp. on Principles of Distributed Computing (PODC), 2003.

[8] S. Khot. Improved Inapproximability Results for MaxClique, Chromatic Number and Approximate Graph Color-
ing. In 20th Annual Symposium on Foundations of Computer Science (FOCS), 2001.

[9] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM Journal on Computing,
15:1036–1053, 1986.

[10] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and E. Witchel. MetaTM/TxLinux: transactional
memory for an operating system. In Symp. on Computer Architecture, 2007.

[11] T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional Memory with Scalable Time Bases. In Parallel
Algorithms and Architectures, 2007.

[12] W. Scherer and M. Scott. Advanced contention management for dynamic software transactional memory. In
Proceedings of the 24th ACM Symp. on Principles of Distributed Computing (PODC), 2005.

[13] J. Schneider and R. Wattenhofer. Bounds On Contention Management Algorithms. In Proc. of the 20th Interna-
tional Symposium on Algorithms and Computation (ISAAC), 2009.

[14] J. Schneider and R. Wattenhofer. Coloring Unstructured Wireless Multi-Hop Networks. In Proceedings of the 28th

ACM Symp. on Principles of Distributed Computing (PODC), 2009.
[15] J. Schneider and R. Wattenhofer. A New Technique For Distributed Symmetry Breaking. In Symp. on Principles

of Distributed Computing(PODC), 2010.
[16] G. Sharma, B. Estrade, and C. Busch. Window-based greedy contention management for transactional memory. In

Proc. of the 24th Int. Symposium on Distributed Computing (DISC), 2010.

