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Approximate Agreement (AA) allows a set of 𝑛 parties that start with real-valued inputs to obtain values that are at most within a

parameter 𝜀 > 0 from each other and within the range of their inputs. Existing AA protocols, both for the synchronous network model

(where any message is delivered within a known delay Δ time) and the asynchronous network model, are secure when up to 𝑡 < 𝑛/3
of the parties are corrupted and require no initial setup (such as a public-key infrastructure (PKI) for signatures).

We consider AA protocols where a PKI is available, and show the first AA protocol that achieves simultaneously security against 𝑡𝑠

corruptions when the network is synchronous and 𝑡𝑎 corruptions when the network is asynchronous, for any 0 ≤ 𝑡𝑎 < 𝑛/3 ≤ 𝑡𝑠 < 𝑛/2
such that 𝑡𝑎 + 2 · 𝑡𝑠 < 𝑛. We further show that our protocol is optimal by proving that achieving AA for 𝑡𝑎 + 2 · 𝑡𝑠 ≥ 𝑛 is impossible

(even with setup). Remarkably, this is also the first AA protocol that tolerates more than 𝑛/3 corruptions in the synchronous network

model.

1 INTRODUCTION

Byzantine Agreement (BA) is an extensively studied problem of distributed computing: it allows a set of 𝑛 parties to

achieve agreement on a common value even when up to 𝑡 of the parties may be corrupted and arbitrarily deviate from

the protocol.

Despite its importance, it is well known that the problem of BA incurs certain limitations, especially when it comes

to deterministic solutions. In particular, the seminal result of Fischer, Lynch and Paterson [13] shows that BA cannot be

achieved deterministically in an asynchronous network even under the presence of a single crash failure. Even when

the network is synchronous, deterministic solutions require 𝑡 + 1 rounds [10], where 𝑡 is the corruption threshold.

These limitations led to multiple variants of BA. One of the most natural and relevant variants is that of Approximate

Agreement (AA), introduced by Dolev et al. [9]. In AA, the requirement of exact agreement is replaced by so-called

𝜀-agreement: each party holds a real value as input, and the honest parties are required to output values that differ by

at most a parameter 𝜀. Moreover, one also requires that the outputs of honest parties lie within the range of inputs

from honest parties. The problem of AA is of great interest in many practical applications, where outputting the exact

same value is not needed and it is enough that the output values are sufficiently close. This is the case, for example, in

applications for reading sensors or in protocols for clock synchronization [14, 16, 22].

The problem of AA has been widely studied in both the synchronous network model (where parties have access to

synchronized clocks and messages sent by honest parties are guaranteed to be delivered within a known delay Δ), and

the asynchronous network model (where the message delay can be arbitrary). In the synchronous model, Dolev et al.

[9] showed that AA can be achieved deterministically up to 𝑡 < 𝑛/3 corruptions, which is optimal when there is no

initial setup. Moreover, current solutions [2, 9, 11] require less than log
2
(𝛿/𝜀) synchronous communication rounds to

achieve 𝜀-agreement, where 𝛿 denotes the initial size of the inputs range; that is, the inputs get exponentially close with

the number of rounds. This is to be compared to deterministic BA protocols, which require at least 𝑡 + 1 rounds. In
the asynchronous model, Abraham et al. [1] showed that AA can be achieved deterministically against up to 𝑡 < 𝑛/3
corruptions with no setup. It is not hard to see that this bound is optimal even for protocols assuming standard setup

assumptions (such as a common random string, PKI, etc).
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In this work, we consider the problem of AA with the standard setup of a PKI for signatures. We would like to achieve

the highest level of corruption tolerance, while requiring as weaker network assumptions as possible. Concretely, we

ask the following question:

Is there an Approximate Agreement protocol (assuming setup) that tolerates up to 𝑡𝑠 < 𝑛/2 corruptions when the network

is synchronous? If so, can it also tolerate 𝑡𝑎 < 𝑛/3 corruptions when the network is asynchronous?

To the best of our knowledge, the problem of AA with setup has not been studied before, and all known synchronous

protocols tolerate up to 𝑡 < 𝑛/3 corruptions. Further note that current solutions for synchronous protocols heavily rely

on a very stable network where every message is delivered within Δ time, and completely break down even when a

single message is slightly delayed.

It is therefore desirable to construct a protocol that simultaneously achieves best-of-both-worlds guarantees: up to a

high number 𝑡𝑠 of corruptions when the network is synchronous, and a (possibly) lower number 𝑡𝑎 ≤ 𝑡𝑠 of corruptions

even when the network is asynchronous. Indeed, this has been the subject of study of a recent line of works [3, 5, 8, 19]

that studied the primitives of BA and multi-party computation.

Our Contributions.We completely characterize the feasibility of AA in the best-of-both-worlds setting, by presenting

a protocol and a matching impossibility result.

• Feasibility result: Let 0 ≤ 𝑡𝑎 < 𝑛/3 ≤ 𝑡𝑠 < 𝑛/2. We present an Approximate Agreement protocol that is secure

against 𝑡𝑠 corruptions in a synchronous network and 𝑡𝑎 corruptions in an asynchronous network, as long as

2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛, assuming a setup for digital signatures. By setting 𝑡𝑎 = 0, this is also the first AA protocol that

achieves up to 𝑡𝑠 < 𝑛/2 corruptions in the purely synchronous model.

• Impossibility result: If 2 · 𝑡𝑠 + 𝑡𝑎 ≥ 𝑛, there is no Approximate Agreement protocol secure against 𝑡𝑠 corruptions

in a synchronous network and 𝑡𝑎 corruptions in an asynchronous network, even with setup.

1.1 Related Work

Best-of-both-worlds Protocols. Designing hybrid protocols that achieve security guarantees in both synchronous

and asynchronous networks has been a subject that attracted increased attention in the recent years. Blum, Katz and

Loss [3] showed a protocol which achieves BA resilient against 𝑡𝑠 < 𝑛/2 corruptions in the synchronous model, and

also resilient against 𝑡𝑎 < 𝑛/3 corruptions in the asynchronous model when 𝑡𝑎 ≤ 𝑡𝑠 and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛, which they prove

to be optimal. In a follow-up work, the same authors extended the results to the setting of State-Machine Replication

[4]. In a subsequent work, Blum, Liu-Zhang and Loss [5] showed a protocol for Multi-Party Computation (MPC), under

the same provably optimal corruption thresholds.

The hybrid protocols of [3] and [5] require a high synchronous round complexity in comparison to the state-of-the-art

purely synchronous protocols. In a recent work, Deligios, Hirt and Liu-Zhang [8] improved the round complexity (when

the network is synchronous) for BA with the use of randomization techniques. And they also showed a protocol for

MPC, whose round complexity is independent of the circuit to evaluate. In another recent work, Momose and Ren [19]

introduced a refinement of hybrid protocols, where they also split the security guarantees (safety and liveness) for

different thresholds, in line with the work of Kastrati, Hirt and Liu-Zhang [15].
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Approximate Agreement. Approximate Agreement was introduced by Dolev et al. in [9]. The authors introduced a

synchronous protocol resilient against 𝑡 < 𝑛/3 corruptions with no setup, which is optimal when considering protocols

with no setup, and an asynchronous variant resilient against 𝑡 < 𝑛/5 corruptions. The asynchronous variant was later
improved by Abraham et al. [1] to the optimal corruption threshold 𝑡 < 𝑛/3.

The works of Fekete [11, 12] focused on obtaining asymptotically optimal convergence speed for AA protocols in

multiple failure scenarios, in both synchronous and asynchronous settings. Ben-Or et al. [2] improve the convergence

rate of [9] for 𝑡 < 𝑛/3 using a mechanism of identifying corrupted parties based on Gradecast.

There are further works that extend the definition of AA. Independently, Mendes and Herlihy [18], and Vaidya and

Garg [21] generalize the problem to multi-dimensional real inputs. The work by Nowak and Rybicki [20] defines the

Abstract AA problem on a convex space and focuses on discrete settings where the input space is described as a graph.

1.2 Comparison to Previous Works

Comparison to Approximate Agreement Protocols. To the best of our knowledge, the problem of Approximate

Agreement with setup has not been studied so far. All previous AA protocols operate in the plain model with no setup

and are only secure up to 𝑡 < 𝑛/3 corruptions. Our AA protocol assumes a public-key infrastructure and achieves a

higher corruption threshold 𝑡𝑠 when the network is synchronous, while at the same time tolerating 𝑡𝑎 corruptions when

the network is asynchronous, for thresholds satisfying 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛. In particular, our protocol achieves Approximate

Agreement up to 𝑡𝑠 < 𝑛/2 in the purely synchronous model.

In the following, we sketch the main challenges that appear in designing the hybrid protocol and our solution.

Tolerating 𝑡𝑠 < 𝑛/2 corruptions when the network is synchronous. A key technique used in many previous synchronous

protocols to ensure that the outputs of honest parties lie within the range of honest inputs is to let parties proceed

in iterations where parties distribute their current value to all other parties. Each party obtains 𝑛 values (possibly by

adding some default value to replace any value that was not received) and then it discards the lowest and highest 𝑡𝑠

values obtained. When 𝑡𝑠 < 𝑛/3, it is clear that the 𝑛 − 2 · 𝑡𝑠 remaining values lie within the range of honest inputs.

One can then take some sort of average of these values (which again lies in the honest range) and use it for the next

iteration. One can show that this procedure ensures that the values from honest parties get closer at every iteration,

given that the multisets of 𝑛 − 2 · 𝑡𝑠 values considered by different honest parties overlap. This technique does not work

in the 𝑡𝑠 < 𝑛/2 regime since 𝑛 − 2 · 𝑡𝑠 values can be as low as a single value, which may be a different value for every

honest party. As a consequence, the values from honest parties may not converge.

Our Solution. In order to tolerate 𝑡𝑠 < 𝑛/2 corruptions under a synchronous network, we first use the fact that discarding
the highest and lowest 𝑡𝑠 values is not always necessary. If 𝑛 − 𝑡𝑠 + 𝑘 values are received, it is guaranteed that at most 𝑘

of these values are from corrupted parties (since the values not received are from corrupted parties), and therefore

discarding the lowest and the highest 𝑘 values is enough to remain in the range of the honest values. Secondly, to

achieve convergence, we ensure that the multisets of values obtained by any two honest parties are consistent and

have an overlap containing all the honest values by introducing a novel primitive, which we call Overlap All-to-All

Broadcast.

In order to achieve security against 𝑡𝑎 corruptions under an asynchronous network, our Overlap All-to-All Broadcast

will also ensure that the values obtained by any two honest parties are consistent and have an overlap of at least 𝑛 − 𝑡𝑠
values (possibly containing corrupted values). In this case, 𝑡𝑎 of the values received by a party may be corrupted even if
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that party only receives 𝑛 − 𝑡𝑠 values. Since 𝑛 − 𝑡𝑠 > 2 · 𝑡𝑎 , discarding the lowest and highest 𝑡𝑎 values is secure, similar

to the previous case.

Of course, the parties do not know whether the network is synchronous or asynchronous, and therefore cannot

decide whether to crop 𝑘 or 𝑡𝑎 values. However, we show that discarding the lowest and the highest max(𝑡𝑎, 𝑘) values
received is enough to simultaneously achieve security under both networks. This is achieved with the help of a technical

lemma, which shows that the values obtained by any two honest parties after discarding the lowest and the highest

values have some common range.

Comparison to Hybrid Protocols. Our techniques differ with current works on hybrid BA protocols in two essential

aspects. First, the hybrid BA protocols make use of randomization in an essential way. In contrast, our protocols for

AA are completely deterministic. Second, all hybrid protocols for BA, SMR and MPC follow the same approach: there

is a black-box compiler that takes as input two protocols, one synchronous and one asynchronous with somewhat

enhanced security guarantees, and outputs a hybrid protocol. Our protocol differs from this compiler-approach, and we

provide a protocol completely from scratch.

2 MODEL AND DEFINITIONS

We consider a distributed system in which 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 run a protocol over a network where all the parties

are connected through pair-wise authenticated channels. The network can be synchronous or asynchronous, and the

parties are not aware of the type of the network in which the protocol is running. If the network is synchronous, any

message is delivered within a (publicly) known amount of time Δ and the parties have access to synchronized clocks.

If the network is asynchronous, these assumptions are removed: parties do not have synchronized clocks, and the

messages may be delayed arbitrarily.

We assume that all the parties have access to a public key infrastructure (PKI). That is, parties hold the same vector of

public keys (𝑝𝑘1, 𝑝𝑘2, . . . , 𝑝𝑘𝑛), and each honest party 𝑃𝑖 holds the secret key 𝑠𝑘𝑖 corresponding to 𝑝𝑘𝑖 .
1
A signature on

a value 𝑣 using secret key 𝑠𝑘 is computed as 𝜎 ← sign𝑠𝑘 (𝑣); a signature is verified relative to public key 𝑝𝑘 by calling

ver𝑝𝑘 (𝑣, 𝜎). For simplicity, we assume in our proofs that the signatures are perfectly unforgeable. When replacing the

signatures with real-world instantiations, the results hold except with a negligible failure probability.

We consider an adaptive adversary that can corrupt at any point in the protocol’s execution at most 𝑡𝑠 parties if the

network is synchronous, and at most 𝑡𝑎 parties if the network is asynchronous, causing the corrupted parties to deviate

arbitrarily. The adversary is strongly rushing: it can observe messages sent by the honest parties before choosing its

own messages. Moreover, when an honest party sends a message, the adversary can immediately corrupt that party and

replace the message with another of its choice. In addition, the adversary may schedule the delivery of the messages,

with the condition that every message is delivered at some point and, if the network is synchronous, within Δ time.

2.1 Multisets

The Approximate Agreement protocol presented in this work makes use of multisets. In this section, we describe the

notation. Let𝑀 and𝑀 ′ be multisets. We define the following:

• 𝑚𝑀 (𝑣) denotes the multiplicity of the value 𝑣 in the multiset𝑀 .

• 𝑀 ∪𝑀 ′ denotes the union of𝑀 and𝑀 ′: for any value 𝑣 in𝑀 or𝑀 ′,𝑚𝑀∪𝑀′ (𝑣) = max(𝑚𝑀 (𝑣),𝑚𝑀′ (𝑣)).
• 𝑀 ∩𝑀 ′ denotes the intersection of𝑀 and𝑀 ′: for any value 𝑣 in𝑀 or𝑀 ′,𝑚𝑀∩𝑀′ (𝑣) = min(𝑚𝑀 (𝑣),𝑚𝑀′ (𝑣)).

1
Note that keys from corrupted parties can be chosen adversarially.
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• 𝑀 ⊆ 𝑀 ′ if for every value 𝑣 in𝑀 or𝑀 ′,𝑚𝑀 (𝑣) ≤ 𝑚𝑀′ (𝑣).
•

��𝑀 �� = ∑
𝑣𝑚𝑀 (𝑣).

• range(𝑀) = [min𝑀,max𝑀].
• length(𝑀) = max𝑀 −min𝑀 .

• {{𝑣1, . . . , 𝑣𝑘 }} denotes the multiset containing the (possibly non-distinct) values 𝑣1, . . . , 𝑣𝑘 .

2.2 Approximate Agreement

We include the definition of Approximate Agreement, as presented in [1, 9].

Definition 2.1. Let Π be a protocol where initially each party 𝑃 holds a real-valued input and terminates upon

generating an output 𝑣𝑃 . We consider the following properties:

• 𝑡-Validity: The output value 𝑣𝑃 of each honest party 𝑃 is in the range of honest parties’ inputs when at most 𝑡

of the parties involved are corrupted.

• (𝑡, 𝜀)-Agreement: When at most 𝑡 of the parties involved are corrupted, for every two honest parties 𝑃 and 𝑃 ′,

it eventually holds that

��𝑣𝑃 − 𝑣 ′𝑃 �� ≤ 𝜀.

Then, Π is a 𝑡-secure Approximate Agreement protocol if it achieves 𝑡-Validity and (𝑡, 𝜀)-Agreement for any 𝜀 > 0.

2.3 Consistency Primitives

We present two primitives which will be essential in the design of our hybrid Approximate Agreement protocol.

2.3.1 Overlap All-to-All Broadcast. This primitive can be seen as some variant of all-to-all Reliable Broadcast tailored

to the hybrid setting. Each party initially holds an input and wants to distribute it to the other parties. In the end, each

party outputs a set of value-sender pairs.

Definition 2.2. Let Π be a protocol where each party 𝑃 holds an input 𝑣𝑃 and every party may output a set of

value-sender pairs O𝑃 upon termination. We consider the following properties:

• 𝑡-Termination: If there are at most 𝑡 corrupted parties involved, every honest party eventually terminates.

• 𝑡-Synchronized Termination: Assume that the network is synchronous, there are at most 𝑡 corrupted parties

involved, and all the honest parties start executing Π at the same time. Then, all the honest parties terminate

and obtain an output at the same time.

• 𝑡-Consistency: Assume that there are at most 𝑡 corrupted parties involved. If two honest parties 𝑃 and 𝑃 ′

terminate, and (𝑣, 𝑃 ′′) ∈ O𝑃 and (𝑣 ′, 𝑃 ′′) ∈ O𝑃 ′ , then 𝑣 = 𝑣 ′.

• (𝑇, 𝑡)-Overlap: Assume that there are at most 𝑡 ≤ 𝑇 corrupted parties involved. If two honest parties 𝑃 and 𝑃 ′

terminate, then

��O𝑃 ∩ O𝑃 ′ �� ≥ 𝑛 −𝑇 .
• 𝑡-Synchronized Overlap: Assume that the network is synchronous, there are at most 𝑡 corrupted parties involved

and that the honest parties start executing Π at the same time. Then, if an honest party 𝑃 terminates, then

(𝑣𝑃 ′, 𝑃 ′) ∈ O𝑃 for every honest party 𝑃 ′.

We say that Π is a (𝑡𝑠 , 𝑡𝑎)-secure Overlap All-to-All Broadcast protocol if it achieves:

• 𝑡𝑠 -Synchronized Termination, 𝑡𝑠 -Consistency, and 𝑡𝑠 -Synchronized Overlap under a synchronous network;

• 𝑡𝑎-Termination, 𝑡𝑎-Consistency and (𝑡𝑠 , 𝑡𝑎)-Overlap under an asynchronous network.
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2.3.2 Reliable Broadcast. We recall the definition of Reliable Broadcast. We make explicit the concrete running time

and simultaneous termination properties, since they will be required when the network is synchronous.

Definition 2.3. Let Π be a protocol where a designated party 𝑆 (called the sender) holds a value 𝑣𝑆 , and every party 𝑃

may output a value 𝑣𝑃 upon termination. We consider the following properties:

• 𝑡-Validity: If 𝑆 is honest and at most 𝑡 parties are corrupted, then every honest party 𝑃 eventually outputs

𝑣𝑃 = 𝑣𝑆 .

• (𝑡, 𝑐)-Synchronized Validity: Assume that 𝑆 is honest, at most 𝑡 parties are corrupted, the network is synchronous,

and the honest parties start the execution of the protocol at the same time. Then every honest party 𝑃 outputs

𝑣𝑃 = 𝑣𝑆 within 𝑐 · Δ time.

• 𝑡-Consistency: When at most 𝑡 of the parties involved are corrupted, if there exists an honest party 𝑃 that

outputs a value 𝑣𝑃 , then every honest party 𝑃 ′ eventually outputs 𝑣𝑃 ′ = 𝑣𝑃 .

• (𝑡, 𝑐)-Synchronized Consistency: Assume that at most 𝑡 of the parties involved are corrupted, the network is

synchronous, and the honest parties start the execution of the protocol at the same time. If the first honest

party that terminates obtains output 𝑣 , then every honest party outputs the same value 𝑣 within 𝑐 · Δ time.

We say that Π is a (𝑡𝑠 , 𝑡𝑎, 𝑐1, 𝑐2)-secure Reliable Broadcast protocol if it achieves:

• (𝑡𝑠 , 𝑐1)-Synchronized Validity and (𝑡𝑠 , 𝑐2)-Synchronized Consistency under a synchronous network;

• 𝑡𝑎-Validity and 𝑡𝑎-Consistency under an asynchronous network.

3 MAIN PROTOCOL

Our Approximate Agreement protocol proceeds in iterations consisting of two steps. In the first step of each iteration

it, each party distributes their current value – in the first iteration, this is their input value, and afterwards, the value

obtained in the previous iteration. The current values are distributed via an Overlap All-to-All Broadcast protocol Π𝑜𝐵𝐶

(see Definition 2.2 and Section 4 for a construction). After executing Π𝑜𝐵𝐶 , each party 𝑃 obtains a multiset of values 𝑉 ,

which contains 𝑛 − 𝑡𝑠 + 𝑘 values for some 0 ≤ 𝑘 ≤ 𝑡𝑠 .

In the second step, each party 𝑃 computes its new value as follows: 𝑃 first discards the lowest and the highest

max(𝑡𝑎, 𝑘) values from the multiset𝑉 and obtains a multiset denoted by𝑇 . Then, it obtains its new value by computing

the average between the lowest and the highest value in 𝑇 .

Intuitively, if the network is synchronous, Π𝑜𝐵𝐶 guarantees: 1) that all honest parties remain synchronized: they

obtain the output simultaneously, which in turn implies that they also start each iteration at the same time; and 2) the

multiset 𝑉 from each honest party contains all the values sent by honest parties (at least 𝑛 − 𝑡𝑠 values), and at most

𝑘 ≤ 𝑡𝑠 values from corrupted parties. In this case, discarding the highest and lowest max(𝑡𝑎, 𝑘) values ensures security.
Validity is achieved because 𝑉 contains 𝑛 − 𝑡𝑠 + 𝑘 values, so discarding the highest and lowest 𝑘 values leaves values

within the honest range of values. And the same goes for discarding 𝑡𝑎 values (note that since 𝑛 − 𝑡𝑠 > 2 · 𝑡𝑎 , there is
always at least a value remaining). Moreover, with the help of a technical lemma (see Section 3.2), we show that the

multisets of values 𝑇 and 𝑇 ′ obtained by any two honest parties 𝑃 and 𝑃 ′ after discarding the lowest and the highest

values they received have some common range, which we will show is enough for the output values to converge. In

fact, we will show that the range of values obtained by the honest parties is halved in every iteration.

If the network is asynchronous, Π𝑜𝐵𝐶 guarantees that for any two honest parties 𝑃 and 𝑃 ′, their output multisets

𝑉 and 𝑉 ′ overlap in at least 𝑛 − 𝑡𝑠 values. From this overlap, it is possible that 𝑡𝑎 of the values are from corrupted

parties. This implies that discarding the highest and lowest 𝑡𝑎 values, say, from multiset 𝑉 , trivially leaves a multiset 𝑇
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containing values within the range of honest values. Further note that discarding more values, i.e. 𝑘 ≥ 𝑡𝑎 values, leaves

a multiset𝑇 of size 𝑛 − 𝑡𝑠 − 𝑘 ≥ 𝑛 − 2 · 𝑡𝑠 > 𝑡𝑎 , which is also within the honest range. Convergence of the asynchronous

case will follow similarly to the synchronous case, with the help of the technical lemma.

We formally describe our protocol below. In the description, we assume that an upper bound 𝛿max on the length of

the input space of the honest parties is known. In practice, this assumption is reasonable since 𝛿max could be derived

from the data types used to store the values.

For simplicity, in the protocol description, we omit the identification numbers attached to the messages sent over the

network. The identification ensures that parties can identify which messages correspond to which protocol instances.

Protocol Π𝐴𝐴

Code for party 𝑃 with input 𝑣

𝑆 := ⌈log
2
(𝛿max/𝜀) ⌉

1: for it from 1 to 𝑆 do:

2: Join Π𝑜𝐵𝐶 with input (𝑣, it) and let O denote the set obtained

3: 𝑉 := {{𝑣′ | ( (𝑣′, it), 𝑃 ′) ∈ O}}
4: 𝑘 :=

��𝑉 �� − (𝑛 − 𝑡𝑠 )
5: 𝑇 := multiset obtained by discarding the lowest and highest max(𝑡𝑎, 𝑘) values from𝑉

6: 𝑣 := (min𝑇 +max𝑇 )/2
7: end for

8: Output 𝑣 and terminate

The following theorem is proven in the next subsections:

Theorem 3.1. Let 𝑛, 𝑡𝑠 , 𝑡𝑎 such that 0 ≤ 𝑡𝑎 < 𝑛/3 ≤ 𝑡𝑠 < 𝑛/2 and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛. Then, Π𝐴𝐴 is an 𝑛-party protocol that

satisfies the following properties:

(1) When Π𝐴𝐴 is run in a synchronous network, it is a 𝑡𝑠 -secure Approximate Agreement protocol.

(2) When Π𝐴𝐴 is run in an asynchronous network, it is a 𝑡𝑎-secure Approximate Agreement protocol.

3.1 Analysis

In our analysis, we use𝑈it to denote the multiset of values 𝑣 computed by the honest parties in iteration it ≥ 1, and

𝑈0 to denote the multiset containing the initial inputs of the honest parties.

3.1.1 Synchronous analysis. We first consider the case that the network is synchronous, and show that Π𝐴𝐴 is a

𝑡𝑠 -secure Approximate Agreement protocol.

Lemma 3.2. When run in a synchronous network, Π𝐴𝐴 achieves 𝑡𝑠 -Validity.

Proof. We show that, for every iteration it ≥ 1, range(𝑈it) ⊆ range(𝑈it−1): Π𝑜𝐵𝐶 guarantees that, for every

honest party 𝑃 , the multiset 𝑉 obtained in iteration it contains 𝑛 − 𝑡𝑠 honest values and 𝑘 ≥ 0 values that may be sent

by corrupted parties and may be outside range(𝑈it−1). The multiset 𝑇 is constructed by discarding the highest and the

lowest max(𝑘, 𝑡𝑎) values from 𝑉 . Note that 𝑇 is not empty, since 𝑇 has size at least min(𝑛 − 𝑡𝑠 − 2 · 𝑡𝑎, 𝑛 − 2 · 𝑡𝑠 ) ≥ 1.

Therefore range(𝑇 ) ⊆ range(𝑈it−1), and hence the value 𝑣 = (min𝑇 + max𝑇 )/2 obtained by 𝑃 in iteration it is in

range(𝑈it−1). As this result holds for any honest party 𝑃 , it follows that range(𝑈it) ⊆ range(𝑈it−1). We obtain that

𝑈𝑆 ⊆ 𝑈0, and therefore 𝑡𝑠 -Validity is achieved. □

7
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Lemma 3.3. When run in a synchronous network, Π𝐴𝐴 achieves (𝑡𝑠 , 𝜀)-Agreement.

Proof. We show that, in every iteration it ≥ 1, the range values obtained by the honest parties is halved:

length(𝑈it) ≤ length(𝑈it−1)/2.
Let 𝑃 and 𝑃 ′ denote two honest parties and let 𝑉 and 𝑉 ′ denote the multisets they obtain via Π𝑜𝐵𝐶 in iteration it.

Let 𝑣 and 𝑣 ′ denote the values obtained by 𝑃 and 𝑃 ′ at the end of iteration it. As Π𝑜𝐵𝐶 achieves 𝑡𝑠 -Consistency and 𝑡𝑠 -

Synchronized Overlap,

��𝑉∪𝑉 ′�� ≤ 𝑛 and
��𝑉∩𝑉 ′�� ≥ 𝑛−𝑡𝑠 . By applying Lemma 3.6, we obtain that

��𝑣−𝑣 ′�� ≤ length(𝑇∪𝑇 ′)/2,
where 𝑇 and 𝑇 ′ are the multisets obtained by 𝑃 and 𝑃 ′ by discarding the lowest and the highest values from 𝑉 and 𝑉 ′

respectively. We have shown in the proof of Lemma 3.2 that range(𝑇 ), range(𝑇 ′) ⊆ range(𝑈it−1). Then, we obtain that

range(𝑇 ∪𝑇 ′) ⊆ range(𝑈it−1) and hence

��𝑣 − 𝑣 ′�� ≤ length(𝑇 ∪𝑇 )/2 ≤ length(𝑈it−1)/2.
Since this result holds for any pair of honest parties 𝑃 and 𝑃 ′, it follows that length(𝑈it) ≤ length(𝑈it−1)/2 for

every iteration it ≥ 1. This implies that length(𝑈𝑆 ) ≤ length(𝑈0)/2𝑆 and hence Π𝐴𝐴 achieves (𝑡𝑠 , 𝜀)-Agreement within

𝑆 = ⌈log
2

length(𝑈0)
𝜀 ⌉ iterations. □

3.1.2 Asynchronous analysis. We now consider the case that the network is asynchronous, and show that Π𝐴𝐴 is a

𝑡𝑎-secure Approximate Agreement protocol.

Lemma 3.4. When run in an asynchronous network, Π𝐴𝐴 achieves 𝑡𝑎-Validity.

Proof. Similarly to the proof of Lemma 3.2, we show that for every it ≥ 1, range(𝑈it) ⊆ range(𝑈it−1). For any
honest party 𝑃 , Π𝑜𝐵𝐶 guarantees that 𝑃 obtains a multiset𝑉 that contains 𝑛−𝑡𝑠 +𝑘 values with 𝑘 ≥ 0. Out of these values,

at most 𝑡𝑎 are sent by corrupted parties, and hence at most 𝑡𝑎 values are outside range(𝑈it−1). Then, 𝑃 constructs the

multiset𝑇 by discarding at least the lowest and the highest 𝑡𝑎 values from𝑉 . Since𝑇 is non-empty, as𝑇 has size at least

min(𝑛 − 𝑡𝑠 − 2 · 𝑡𝑎, 𝑛 − 2 · 𝑡𝑠 ) ≥ 1, we have that range(𝑇 ) ⊆ range(𝑈it−1). Therefore, the value 𝑣 = (min𝑇 +max𝑇 )/2
obtained by 𝑃 at the end of iteration it is in range(𝑈it−1), and hence range(𝑈it) ⊆ range(𝑈it−1). It follows that
𝑈𝑆 ⊆ 𝑈0, and therefore 𝑡𝑎-Validity is achieved. □

Lemma 3.5. When run in an asynchronous network, Π𝐴𝐴 achieves (𝑡𝑎, 𝜀)-Agreement.

Proof. The proof is similar to the proof of Lemma 3.3. We show that in every iteration it ≥ 1 the range of the honest

values is halved: length(𝑈it) ≤ length(𝑈it−1)/2. Let 𝑃 and 𝑃 denote two arbitrary honest parties. Let𝑉 and𝑉 ′ denote the

multisets of values obtained by 𝑃 and 𝑃 ′ in iteration it via Π𝑜𝐵𝐶 , and let 𝑣 and 𝑣
′
denote the values they compute at the

end of iteration it. Π𝑜𝐵𝐶 guarantees that

��𝑉 ∩𝑉 ′�� ≥ 𝑛−𝑡𝑠 and
��𝑉 ∪𝑉 ′�� ≤ 𝑛, hence we can apply Lemma 3.6 and we obtain

that

��𝑣 − 𝑣 ′�� ≤ length(𝑇 ∪𝑇 ′)/2, where 𝑇 and 𝑇 ′ denote the multisets obtained by 𝑃 and 𝑃 ′ after discarding the lowest

and the highest received values. We have shown in the proof of Lemma 3.4 that range(𝑇 ), range(𝑇 ′) ⊆ range(𝑈it−1).
Then, we obtain that range(𝑇 ∪𝑇 ′) ⊆ range(𝑈it−1) and hence

��𝑣 − 𝑣 ′�� ≤ length(𝑇 ∪𝑇 )/2 ≤ length(𝑈it−1)/2.
Since this result holds for any pair of honest parties 𝑃 and 𝑃 ′, it follows that length(𝑈it) ≤ length(𝑈it−1)/2 for

every iteration it ≥ 1. This implies that length(𝑈𝑆 ) ≤ length(𝑈0)/2𝑆 and hence, Π𝐴𝐴 achieves (𝑡𝑎, 𝜀)-agreement within

𝑆 = ⌈log
2

length(𝑈0)
𝜀 ⌉ iterations. □

3.2 Technical Combinatorial Lemma

We provide a technical result that allows us to show that the values obtained by the honest parties get closer in each

iteration.

Lemma 3.6. Let 𝑛, 𝑡𝑎 , 𝑡𝑠 and such that 0 ≤ 𝑡𝑎, 𝑐 ≤ 𝑡𝑠 and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛. Let 𝑉 and 𝑉 ′ denote two multisets such that:
8
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•
��𝑉 �� = 𝑛 − 𝑡𝑠 + 𝑘 and

��𝑉 ′�� = 𝑛 − 𝑡𝑠 + 𝑘 ′, where 0 ≤ 𝑘, 𝑘 ′ ≤ 𝑡𝑠 ;

•
��𝑉 ∪𝑉 ′�� ≤ 𝑛;

•
��𝑉 ∩𝑉 ′�� ≥ 𝑛 − 𝑡𝑠 .

We construct the multisets 𝑇 and 𝑇 ′ by discarding the lowest and the highest max(𝑘, 𝑡𝑎) values from 𝑉 and respectively

by discarding the lowest and the highest max(𝑘 ′, 𝑡𝑎) values from 𝑉 ′. Let 𝑣 = min𝑇+max𝑇
2

and 𝑣 ′ = min𝑇 ′+max𝑇 ′
2

. Then,��𝑣 − 𝑣 ′�� ≤ 1

2
· length(𝑇 ∪𝑇 ′).

In order to prove this result, we arrange the values in 𝑉 ∪𝑉 ′, 𝑉 , and 𝑉 ′ in arrays, and we use the lemma below. We

use the notation 𝐴[𝑖] to refer the 𝑖-th value of the array 𝐴, where 𝑖 ≥ 1, and range(𝐴) to denote the interval [𝑎, 𝑏],
where 𝑎 and 𝑏 are the lowest and respectively highest values in the array 𝐴.

Lemma 3.7. Let 𝑛, 𝑡𝑎 , 𝑡𝑠 and 𝑐 such that 0 ≤ 𝑡𝑎, 𝑐 ≤ 𝑡𝑠 and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛. Let 𝐴 denote an array of 𝑛 − 𝑐 (possibly
non-distinct) real values ordered increasingly. Let 𝑘1, 𝑘2 such that 0 ≤ 𝑘1, 𝑘2 ≤ 𝑡𝑠 −𝑐 and (𝑡𝑠 −𝑐−𝑘1)+ (𝑡𝑠 −𝑐−𝑘2) ≤ (𝑡𝑠 −𝑐),
and let 𝐴1 and 𝐴2 denote two arrays of 𝑛 − 𝑐 values obtained from 𝐴 by replacing 𝑡𝑠 − 𝑐 − 𝑘1 and respectively 𝑡𝑠 − 𝑐 − 𝑘2
values with ⊥. We construct two arrays 𝑇1 and 𝑇2 by discarding the lowest and the highest max(𝑘1, 𝑡𝑎) non-⊥ values from

𝐴1, respectively the lowest and the highest max(𝑘2, 𝑡𝑎) non-⊥ values from 𝐴2. Then, range(𝑇1) ∩ range(𝑇2) ≠ ∅.

The figure below shows an example of the arrays described in Lemma 3.7.

𝐴 :

𝐴1 :

𝑇1 :

𝐴2 :

𝑇2 :

1

1

⊥

1

2

2

⊥

2

2

3

3

⊥

3

3

4

⊥

⊥

4

⊥

5

5

⊥

5

⊥

6

⊥

6

6

⊥

7

⊥

7

7

⊥

8

⊥

8

⊥

⊥

9

9

⊥

9

9

10

10

10

⊥

10

11

11

11

⊥

⊥ ⊥

Fig. 1. Let 𝑛 = 11, 𝑡𝑠 = 5, and 𝑡𝑎 = 0. The figure shows an example of arrays 𝐴, 𝐴1 and 𝐴2 in Lemma 3.7. Here, 𝑘1 = 4 and 𝑘2 = 1.
Then,𝑇1 is obtained by discarding the lowest and the highest 4 non-⊥ values din 𝐴1, and𝑇2 is obtained by discarding the lowest and
the highest non-⊥ value din 𝐴2. Note that, while𝑇1 and𝑇2 do not have any values in common, range(𝑇1) ∩ range(𝑇2) ≠ ∅.

Proof. Let 𝑖1,min and 𝑖1,max denote the minimum, resp. maximum, index 𝑖 such that 𝑇1 [𝑖] = 𝐴[𝑖] ≠ ⊥. Similarly, let

𝑖2,min and 𝑖2,max denote the minimum, resp. maximum, index 𝑖 such that 𝑇2 [𝑖] = 𝐴[𝑖] ≠ ⊥. (In the example shown in

Figure 1, we obtain the following values: 𝑖1,min = 6, 𝑖1,max = 7, 𝑖2,min = 2, and 𝑖2,max = 10.)

Since the values in 𝐴, and hence the values in 𝑇1 and 𝑇2, are ordered increasingly, range(𝑇1) ∩ range(𝑇2) = ∅ implies

that either 𝑖1,max < 𝑖2,min or 𝑖1,min > 𝑖2,max. We only prove that 𝑖1,max ≥ 𝑖2,min, as showing that 𝑖1,min ≤ 𝑖2,max is

analogous.

We first obtain a lower bound for 𝑖1,max. Since there are 𝑛 − 𝑡𝑠 + 𝑘1 non-⊥ values in 𝐴1 and the largest max(𝑡𝑎, 𝑘1)
values are discarded when constructing 𝑇1, we obtain that 𝑖1,max ≥ 𝑛 − 𝑡𝑠 + 𝑘1 −max(𝑡𝑎, 𝑘1).

We now obtain an upper bound for 𝑖2,min. Since the number of ⊥ values in𝐴2 is 𝑡𝑠 −𝑐 −𝑘2 and the lowestmax(𝑡𝑎, 𝑘2)
values are discarded when constructing 𝑇2, we obtain that 𝑖2,min ≤ 𝑡𝑠 − 𝑐 − 𝑘2 +max(𝑡𝑎, 𝑘2) + 1.

To prove that 𝑖2,min ≤ 𝑖1,max, we compare these bounds and show that:

𝑖2,min ≤ 𝑡𝑠 − 𝑐 − 𝑘2 +max(𝑡𝑎, 𝑘2) + 1 ≤ 𝑛 − 𝑡𝑠 + 𝑘1 −max(𝑡𝑎, 𝑘1) ≤ 𝑖1,max .

9
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It is therefore enough to prove that the following inequality holds for any valid choice of 𝑘1 and 𝑘2:

𝑡𝑠 − 𝑐 − 𝑘2 +max(𝑡𝑎, 𝑘2) < 𝑛 − 𝑡𝑠 + 𝑘1 −max(𝑡𝑎, 𝑘1) .

If 𝑘1, 𝑘2 ≤ 𝑡𝑎 , we obtain the following inequality:

𝑡𝑠 − 𝑐 − 𝑘2 + 𝑡𝑎 < 𝑛 − 𝑡𝑠 + 𝑘1 − 𝑡𝑎 ⇐⇒ 2 · 𝑡𝑎 + (𝑡𝑠 − 𝑘1) + (𝑡𝑠 − 𝑐 − 𝑘2) < 𝑛.

In this case, we use the fact that (𝑡𝑠 − 𝑐 − 𝑘1) + (𝑡𝑠 − 𝑐 − 𝑘2) ≤ 𝑡𝑠 − 𝑐 , and then it is enough to show that 2 · 𝑡𝑎 + 𝑡𝑠 < 𝑛.

This follows immediately from the fact that 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛 and 𝑡𝑎 ≤ 𝑡𝑠 .

In each of the remaining cases, the result follows from the fact that 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛:

• if 𝑘1 ≤ 𝑡𝑎 and 𝑘2 > 𝑡𝑎 , we obtain the following:

𝑡𝑠 − 𝑘2 + 𝑘2 − 𝑐 = 𝑡𝑠 − 𝑐 < 𝑛 − 𝑡𝑠 + 𝑘1 − 𝑡𝑎 ⇐⇒ 2 · 𝑡𝑠 + 𝑡𝑎 − 𝑘1 − 𝑐 < 𝑛.

• if 𝑘1 > 𝑡𝑎 and 𝑘2 ≤ 𝑡𝑎 , we obtain the following:

𝑡𝑠 − 𝑘2 + 𝑡𝑎 − 𝑐 < 𝑛 − 𝑡𝑠 + 𝑘1 − 𝑘1 = 𝑛 − 𝑡𝑠 ⇐⇒ 2 · 𝑡𝑠 + 𝑡𝑎 − 𝑘2 − 𝑐 < 𝑛.

• if 𝑘1, 𝑘2 > 𝑡𝑎 , we obtain the following:

𝑡𝑠 − 𝑘2 + 𝑘2 − 𝑐 = 𝑡𝑠 − 𝑐 < 𝑛 − 𝑡𝑠 + 𝑘1 − 𝑘1 = 𝑛 − 𝑡𝑠 ⇐⇒ 2 · 𝑡𝑠 − 𝑐 < 𝑛.

Therefore, range(𝑇1) ∩ range(𝑇2) ≠ ∅. □

We now prove Lemma 3.6 using Lemma 3.7.

Proof of Lemma 3.6. We arrange the (possibly non-distinct) values in 𝑉 ∪𝑉 ′ ordered increasingly in an array 𝐴.

As

��𝑉 ∪𝑉 ′�� ≤ 𝑛 and

��𝑉 ∩𝑉 ′�� ≥ 𝑛 − 𝑡𝑠 , we obtain that 𝐴 contains 𝑛 − 𝑐 values, where 0 ≤ 𝑐 ≤ 𝑡𝑠 . Note that 𝑘, 𝑘
′ ≤ 𝑡𝑠 − 𝑐 .

We now build the two arrays 𝐴1 and 𝐴2 representing 𝑉 and respectively 𝑉 ′. Firstly, we set every value in 𝐴1 to ⊥.
Afterwards, for every unique value 𝑣 with multiplicity𝑚𝑉 (𝑣) in 𝑉 , let 𝑖𝑣 denote the index of the first occurrence of 𝑣
in 𝐴. We set 𝐴1 [𝑖] := 𝑣 = 𝐴[𝑖] for every index 𝑖 such that 𝑖𝑣 ≤ 𝑖 ≤ 𝑖𝑣 +𝑚𝑉 (𝑣) − 1. In order to apply Lemma 3.7, the

number of ⊥ values in 𝐴1 must be 𝑡𝑠 − 𝑐 − 𝑘1, where 0 ≤ 𝑘1 ≤ 𝑡𝑠 − 𝑐 . As 𝑉 contains 𝑛 − 𝑡𝑠 + 𝑘 values from 𝑉 ∪𝑉 ′, and
hence from the array 𝐴, the obtained array 𝐴1 contains 𝑛 − 𝑡𝑠 + 𝑘 non-⊥ values and (𝑛 − 𝑐) − (𝑛 − 𝑡𝑠 + 𝑘) = 𝑡𝑠 − 𝑐 − 𝑘
values that are ⊥. Therefore, the condition is satisfied for 𝑘1 = 𝑘 . We construct the array 𝐴2 identically from𝑉 ′. Using a

similar argument, we obtain that the number of ⊥ values in 𝐴2 is 𝑡𝑠 − 𝑐 − 𝑘2, where 𝑘2 = 𝑘 ′ ≤ 𝑡𝑠 − 𝑐 .
The last condition required by Lemma 3.7 is that (𝑡𝑠−𝑐−𝑘1)+(𝑡𝑠−𝑐−𝑘2) ≤ (𝑡𝑠−𝑐). Because of the way we constructed

the arrays 𝐴1 and 𝐴2, and since

��𝑉 ∩ 𝑉 ′�� ≥ 𝑛 − 𝑡𝑠 , there are at least 𝑛 − 𝑡𝑠 indices 𝑖 such that 𝐴1 [𝑖] = 𝐴2 [𝑖] = 𝐴[𝑖],
hence at most 𝑡𝑠 − 𝑐 indices 𝑖 in which at least one of 𝐴1 [𝑖] = ⊥ and 𝐴2 [𝑖] = ⊥ holds. In addition, since every 𝑣 occurs

max(𝑚𝑉 (𝑣),𝑚′𝑉 (𝑣)) times in 𝐴, there is no index 𝑖 such that 𝐴1 [𝑖] = 𝐴2 [𝑖] = ⊥. This means that the set of (𝑡𝑠 − 𝑐 − 𝑘1)
indices 𝑖 such that 𝐴1 [𝑖] = ⊥ and the set of (𝑡𝑠 − 𝑐 − 𝑘2) indices 𝑖 such that 𝐴2 [𝑖] = ⊥ are disjoint. Therefore, the

condition (𝑡𝑠 − 𝑐 − 𝑘1) + (𝑡𝑠 − 𝑐 − 𝑘2) ≤ (𝑡𝑠 − 𝑐) holds.
We can now apply Lemma 3.7. The arrays 𝑇1 and 𝑇2 constructed as described in Lemma 3.7 contain the same real

values as the multisets𝑇 and𝑇 ′ described in our hypothesis. Therefore, range(𝑇 ) ∩ range(𝑇 ′) ≠ ∅. We assume without

loss of generality that 𝑣 ≥ 𝑣 ′. Then, max𝑇 ≥ min𝑇 ′, and, since range(𝑇 ) ∩ range(𝑇 ′) ≠ ∅, min𝑇 ≤ max𝑇 ′. We obtain

10
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that: ��𝑣 − 𝑣 ′�� = 𝑣 − 𝑣 ′ = 1

2

· (max𝑇 +min𝑇 ) − 1

2

· (max𝑇 ′ +min𝑇 ′)

=
1

2

· (max𝑇 −min𝑇 ′) − 1

2

· (max𝑇 ′ −min𝑇 )

≤ 1

2

· (max𝑇 −min𝑇 ′) ≤ 1

2

· length(𝑇 ∪𝑇 ′) .

□

4 OVERLAP ALL-TO-ALL BROADCAST

In order to achieve Overlap All-to-All Broadcast and to ensure that the honest parties output enough common values

so that the values they obtain converge, we employ the witness technique. This technique is introduced in [1] for

obtaining asynchronous Approximate Agreement resilient against 𝑡 < 𝑛/3 parties. The idea is that the parties share
their values using classical Reliable Broadcast and report each value received using channels that maintain the FIFO

property – First In, First Out: namely, the messages are delivered in the order in which they are sent. A party decides

that it can stop waiting for values when it has received via Reliable Broadcast all the values reported by 𝑛 − 𝑡 parties
named witnesses. Each witness must report at least 𝑛 − 𝑡 values. Here, the guarantee that every two honest parties have

𝑛 − 𝑡 common values comes from the fact that every two honest parties 𝑃 and 𝑃 ′ share an honest witness 𝑃 ′′. This is

because every two honest parties have at least 𝑛 − 2 · 𝑡 > 𝑡 + 1 common witnesses, so there is an honest witness whose

first 𝑛 − 𝑡 values reported via the FIFO channels are received by both parties.

Adapting the witness technique to our hybrid network setting poses several challenges.

First, the quorum argument breaks when there are more than 𝑛/3 corruptions, even if the network is synchronous.

Second, an additional subtle point is that in order to make use of this primitive in the AA protocol and overcome the 𝑛/3
bound, we will need to compose this protocol throughout sequential iterations. We achieve this by guaranteeing that all

parties have simultaneous termination when the network is synchronous.
2
More concretely, if the first value reported

by an honest party 𝑃 is sent by a corrupted party, the other honest parties would have to receive this value as well via

Reliable Broadcast, or they would never consider 𝑃 a witness. If the sender of a Reliable Broadcast invocation is corrupted,

honest parties may obtain outputs in different communication rounds, which breaks simultaneous termination.

To tolerate 𝑡𝑠 < 𝑛/2 corruptions in the synchronous model, we devise a mechanism that ensures that all honest parties

become witnesses of every party, and that the values sent by honest parties are taken into account. This mechanism

will also ensure simultaneous termination. This is achieved by observing that if the sender of a Reliable Broadcast

invocation is honest, then we can guarantee that the honest parties obtain outputs within a known constant number of

communication rounds 𝑟 . Additionally, if the sender is corrupted and an honest party outputs at time 𝜏 , then all the

honest parties output after at most Δ time, at time 𝜏 + Δ.
In addition, our protocols will retain security if the network is asynchronous.

4.1 Reliable Broadcast

Our Reliable Broadcast protocol is based on the protocol by Momose and Ren in [19], adapted to the hybrid network

setting. In a nutshell, the idea is that at each step of the protocol, the parties wait for at least Δ time. When the network

is synchronous, this ensures that 1) for an honest sender, all parties simultaneously obtain output after a fixed number

2
Composing protocols with probabilistic termination is known to pose several challenges. See [6, 7, 17] for a nice discussion.
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of rounds, and 2) for a corrupted sender, the parties output at times that differ in at most Δ time. Moreover, when the

network is asynchronous, security is retained.

Initially, each party marks the time when it starts executing the protocol in 𝜏start. At the same time, the sender

sends its signed value to all the parties.

If the network is synchronous, any message is delivered within Δ time. Hence, the honest parties wait until time

𝜏start + Δ to ensure that, if the sender is honest, every honest party has received the sender’s message before taking

any further step. Then, at time 𝜏start + Δ, the honest parties forward this signed value to all the parties. Hence, by

time 𝜏start + 2 · Δ, any inconsistent messages sent by a dishonest sender in the first step are observed. Detecting such

consistencies is the key in tolerating a higher number of corruptions.

Then, if the sender is honest, each honest party sends a signed vote message at time 𝜏start + 2 · Δ, meaning that

each honest party should always expect 𝑛 − 𝑡𝑠 vote messages by time at least 𝜏start + 3 · Δ in order to make a decision

and output a value. On the other hand, if the sender is corrupted, a party 𝑃 that receives 𝑛 − 𝑡𝑠 vote messages cannot

be certain that every honest party has received enough vote messages as well, hence 𝑃 forwards the signed votes to all

the honest parties. If this is the case, the signed votes are received after at most Δ time by every honest party. A party

can safely terminate as soon as it receives and forwards the 𝑛 − 𝑡𝑠 signed votes, hence, if the sender is honest, at time

𝜏start + 3 · Δ.
Note that, if the sender is corrupted, the honest parties may output much later than time 𝜏start + 3 · Δ. In this case,

the only guarantee is that once the first honest party outputs, every honest party outputs the same value within Δ time.

If the network is asynchronous, once an honest party outputs a value, every honest party is guaranteed to eventually

receive 𝑛 − 𝑡𝑠 vote messages and hence eventually outputs. Inconsistent messages from the sender may not be detected,

which lowers the resilience threshold in comparison to the synchronous setting.

Protocol Π𝑟𝐵𝐶

Code for sender 𝑆 on input 𝑣

1: Send (propose, 𝑣, sign𝑠𝑘𝑆 (𝑣)) to all the parties

Code for party 𝑃

1: 𝜏start := 𝜏now

2: Upon receiving the first valid (propose, 𝑣, sign𝑠𝑘𝑆 (𝑣)) from 𝑆 and when 𝜏now ≥ 𝜏start + Δ:
3: Forward (propose, 𝑣, sign𝑠𝑘𝑆 (𝑣)) to all the parties

4: When 𝜏now ≥ 𝜏start + 2 · Δ, if no valid (propose, 𝑣′, sign𝑠𝑘𝑆 (𝑣
′)) for 𝑣′ ≠ 𝑣 was received:

5: Send (vote, 𝑣, sign𝑠𝑘𝑃 (𝑣)) to all the parties

6: Upon receiving a set𝐶 (𝑣) of 𝑛 − 𝑡𝑠 valid vote messages for the same value 𝑣, and when 𝜏now ≥ 𝜏start + 3 · Δ:
7: Send𝐶 (𝑣) to all the parties, output 𝑣 and terminate

Our proof for the following result uses a similar analysis to that of Momose and Ren [19] and is included in the

appendix.

Theorem 4.1. Π𝑟𝐵𝐶 is an 𝑛-party protocol that achieves (𝑡𝑠 , 𝑡𝑎, 3, 1)-secure Reliable Broadcast for 𝑡𝑎 ≤ 𝑡𝑠 such that

2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛.
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4.2 Overlap All-to-All Broadcast protocol

In our Overlap All-to-All Broadcast protocol, the parties distribute their input value via Π𝑟𝐵𝐶 . The honest parties wait

until they have collected 𝑛 − 𝑡𝑠 values and 3 · Δ time has passed. Until both of these conditions are satisfied, they send a

report message for every value they receive.

If the network is synchronous, Π𝑟𝐵𝐶 guarantees that any value sent by an honest party is received within 3 · Δ time.

In addition, if an honest party receives a value from a corrupted party via Π𝑟𝐵𝐶 by time 3 · Δ and reports it, then every

honest party receives the report message and the same corrupted value by time 4 · Δ. Since the honest parties do not

report any new values after time 3 · Δ, it is ensured that every honest party becomes a witness for all the honest parties

by time 4 · Δ. So every honest party gathers enough witnesses to terminate at time 4 · Δ and obtains a set O containing

the value sent by each honest party.

Note that waiting Δ time at each step does not violate the security of the protocol when the network is asynchronous:

every honest party terminates and the outputs of any two honest parties contain 𝑛 − 𝑡𝑠 overlapping values.

We can now present the description of our Overlap All-to-All Broadcast protocol. In the description, we make use of

FIFO channels. Such channels can be simulated on top of regular channels: a party attaches a sequential number to

each message it sends and only considers a message received when the messages with previous sequential numbers

from the same party are received as well.

Protocol ΠoBC

Code for party 𝑃 with input 𝑣

1: 𝜏start := 𝜏now

2: O := ∅; 𝑅𝑃 ′ := ∅ for every party 𝑃 ′

3: Invoke Π𝑟𝐵𝐶 with input (value, 𝑣) and, for every party 𝑃 ′, join the invocation of Π𝑟𝐵𝐶 having 𝑃 ′ as sender

4: repeat

5: Upon obtaining (value, 𝑣) via Π𝑟𝐵𝐶 with sender 𝑃 ′:

6: FIFO-send (report, 𝑣, 𝑃 ′) and add (𝑣, 𝑃 ′) to O
7: Upon FIFO-receiving (report, 𝑣, 𝑃 ′) from 𝑃 ′′: Add (𝑣′, 𝑃 ′) to 𝑅𝑃 ′′

8: until 𝜏now > 𝜏start + 3 · Δ and

��O�� ≥ 𝑛 − 𝑡𝑠
9: repeat

10: Upon obtaining (value, 𝑣) via Π𝑟𝐵𝐶 with sender 𝑃 ′: add (𝑣, 𝑃 ′) to O
11: Upon FIFO-receiving (report, 𝑣, 𝑃 ′) from 𝑃 ′′: Add (𝑣′, 𝑃 ′) to 𝑅𝑃 ′′

12: 𝑊 := {𝑃 ′ | 𝑅𝑃 ′ ⊆ O and

��𝑅𝑃 ′
�� ≥ 𝑛 − 𝑡𝑠 }

13: until 𝜏now > 𝜏start + 4 · Δ and

��𝑊 �� ≥ 𝑛 − 𝑡𝑠
14: Output O and terminate

The next result follows from the lemmas proven in the subsections below.

Theorem 4.2. ΠoBC is an 𝑛-party protocol that achieves (𝑡𝑠 , 𝑡𝑎)-secure Overlap All-to-All Broadcast protocol for any
𝑡𝑠 < 𝑛/2 and 𝑡𝑎 < 𝑛/3 such that 𝑡𝑎 ≤ 𝑡𝑠 and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛.

4.2.1 Synchronous analysis. We first assume that the network is synchronous, and we show that ΠoBC satisfies

𝑡𝑠 -Synchronized Termination, 𝑡𝑠 -Synchronized Overlap, and 𝑡𝑠 -Consistency.
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Lemma 4.3. ΠoBC satisfies 𝑡𝑠 -Synchronized Termination and 𝑡𝑠 -Synchronized Overlap: assume that 𝑡𝑠 of the parties

involved are corrupted. If the honest parties start executing ΠoBC at the same time 𝜏 , then they terminate at the same time.

In addition, for every honest party 𝑃 , the output O contains 𝑛 − 𝑡𝑠 values sent by honest parties.

Proof. ΠrBC guarantees that every honest party receives at least all the values sent by honest parties within 3 · Δ
time. Therefore, at time 𝜏 + 3 · Δ, the set O obtained by each honest party contains 𝑛 − 𝑡𝑠 values sent by honest parties.

Hence, the honest parties exit the first loop and enter the second loop at the same time 𝜏 + 3 · Δ.
In order to show that the honest parties exit the second loop at the same time as well, it is enough to show that every

honest party gathers 𝑛 − 𝑡𝑠 witnesses by time 𝜏 + 4 · Δ.
Let 𝑃 and 𝑃 ′ denote two honest parties, and let𝑊 ′ denote the set of witnesses obtained by 𝑃 ′ in line 12. We show

that, by time 𝜏 + 4 · Δ, it holds that 𝑃 ∈ 𝑊 ′. 𝑃 sent report messages by time 𝜏 + 3 · Δ for 𝑛 − 𝑡𝑠 honest values, and
possibly for some corrupted values, which 𝑃 received by time 𝜏 + 3 · Δ. Afterwards, it stopped sending reportmessages.

Then, ΠrBC guarantees that 𝑃 ′ has received each value reported by 𝑃 by time 𝜏 + 4 · Δ. In addition, 𝑃 ′ has received the

report messages sent by 𝑃 by time 𝜏 + 4 · Δ, and therefore has added 𝑃 to its set of witnesses𝑊 ′ by time 𝜏 + 4 · Δ.
As this result holds for any pair of honest parties, it follows that every honest party obtains at least 𝑛 − 𝑡𝑠 witnesses

by time 𝜏 + 4 · Δ, and hence exits the second loop and terminates at time 𝜏 + 4 · Δ. □

The next result trivially follows from 𝑡𝑠 -Synchronized Consistency of Π𝑟𝐵𝐶 .

Lemma 4.4. ΠoBC satisfies 𝑡𝑠 -Consistency: assume that 𝑡𝑠 of the parties involved are corrupted. Let 𝑃 and 𝑃 ′ denote two

arbitrary honest parties, and let O and O′ denote their outputs ΠoBC. Then, if (𝑣, 𝑃 ′′) ∈ O, then, (𝑣 ′, 𝑃 ′′) ∉ O′.

4.2.2 Asynchronous analysis. We now assume that the network is asynchronous, and we show that ΠoBC satisfies

𝑡𝑎-Termination and (𝑡𝑠 , 𝑡𝑎)-Overlap.

Lemma 4.5. ΠoBC satisfies 𝑡𝑎-Termination: if at most 𝑡𝑎 ≤ 𝑡𝑠 of the parties involved are corrupted and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛,

every honest party eventually terminates the execution of ΠoBC.

Proof. Let 𝑃 and 𝑃 ′ denote two honest parties and assume that 𝑃 ′ has not yet terminated. 𝑃 eventually sends

report messages for at least the first 𝑛 − 𝑡𝑠 values it receives through Π𝑟𝐵𝐶 . Then, since Π𝑟𝐵𝐶 guarantees that every

value received by 𝑃 is eventually received by 𝑃 ′ as well, 𝑃 ′ eventually adds 𝑃 to its set𝑊 ′. As this result holds for

every honest party 𝑃 , the set𝑊 ′ eventually contains 𝑛 − 𝑡𝑠 parties and hence 𝑃 ′ eventually terminates the execution of

ΠoBC. □

Lemma 4.6. ΠoBC satisfies (𝑡𝑠 , 𝑡𝑎)-Overlap: let 𝑃 and 𝑃 ′ denote two arbitrary honest parties, and let O and O′ denote
their outputs in ΠoBC. If at most 𝑡𝑎 ≤ 𝑡𝑠 of the parties involved are corrupted and 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛, then it holds that��O ∩ O′�� ≥ 𝑛 − 𝑡𝑠 .

Proof. Let𝑊 and𝑊 ′ denote the sets of witnesses obtained by 𝑃 and 𝑃 ′. Note that each of𝑊 and𝑊 ′ contains at

least 𝑛 − 𝑡𝑠 parties, hence at least 𝑛 − 𝑡𝑠 − 𝑡𝑎 honest parties. As 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛, we obtain that 2 · (𝑛 − 𝑡𝑠 − 𝑡𝑎) > 𝑛 − 𝑡𝑎 ,
and hence𝑊 ∩𝑊 ′ contains at least one honest party 𝑃 ′′. Then, since the report messages are sent through channels

that have the FIFO property and the values reported are received via Π𝑟𝐵𝐶 , both O and O′ contain at least the first

𝑛 − 𝑡𝑠 value-sender pairs reported by 𝑃 ′′, which concludes the proof. □

The next result trivially follows from 𝑡𝑎-Consistency of Π𝑟𝐵𝐶 .
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Lemma 4.7. ΠoBC satisfies 𝑡𝑎-Consistency: assume that at most 𝑡𝑎 of the parties involved are corrupted. Let 𝑃 and 𝑃 ′

denote two arbitrary honest parties, and let O and O′ denote their outputs in ΠoBC. If (𝑣, 𝑃 ′′) ∈ O and (𝑣 ′, 𝑃 ′′) ∈ O′, then
𝑣 = 𝑣 ′.

5 IMPOSSIBILITY RESULT

In this section, we show that there is no Approximate Agreement protocol that is 𝑡𝑠 -secure under a synchronous

network, and 𝑡𝑎-secure under an asynchronous network, for 2 · 𝑡𝑠 + 𝑡𝑎 ≥ 𝑛. This shows that our protocol Π𝐴𝐴 achieves

the optimal corruption threshold.

Theorem 5.1. There is no 𝑛-party Approximate Agreement protocol that is 𝑡𝑠 -secure in a synchronous network and

𝑡𝑎-secure in an asynchronous network when 2 · 𝑡𝑠 + 𝑡𝑎 ≥ 𝑛.

Proof. Let Π denote any Approximate Agreement 𝑛-party protocol and let 𝑛 = 2 · 𝑡𝑠 + 𝑡𝑎 . Assume that Π achieves

𝑡𝑠 -Validity in a synchronous setting and (𝑡𝑎, 𝜀)-Agreement in an asynchronous setting.

We fix an arbitrary 𝜀 > 0 and we partition the 𝑛 parties into three sets 𝑆𝑎 , 𝑆−𝜀 , and 𝑆+𝜀 such that

��𝑆𝑎 �� = 𝑡𝑎 and��𝑆−𝜀 �� = ��𝑆+𝜀 �� = 𝑡𝑠 . The parties in 𝑆−𝜀 have input −𝜀, while the parties in 𝑆+𝜀 have input +𝜀.
We consider the following scenarios:

Scenario 1: The protocol runs in a synchronous network. The parties in 𝑆+𝜀 and 𝑆𝑎 are honest, and the parties in 𝑆𝑎

have input +𝜀. The 𝑡𝑠 parties in 𝑆−𝜀 are corrupted and do not participate in the protocol. Then, as Π achieves 𝑡𝑠 -Validity

in the synchronous setting, the honest parties in 𝑆+𝜀 and 𝑆𝑎 output +𝜀.
Scenario 2: The protocol runs in a synchronous network. The parties in 𝑆−𝜀 and 𝑆𝑎 are honest, and the parties in 𝑆𝑎

have input −𝜀. The 𝑡𝑠 parties in 𝑆+𝜀 are corrupted and do not participate in the protocol. Then, as Π achieves 𝑡𝑠 -Validity

in the synchronous setting, the honest parties in 𝑆−𝜀 and 𝑆𝑎 output −𝜀.
Scenario 3: The protocol runs in an asynchronous network. The parties in 𝑆−𝜀 and 𝑆+𝜀 are honest, while the parties

in 𝑆𝑎 are corrupted. The scheduler blocks the communication between 𝑆−𝜀 and 𝑆+𝜀 (any message sent between the two

sets is delayed until all the honest parties obtain outputs). Additionally, the scheduler ensures that any message sent

within 𝑆𝑎 ∪ 𝑆−𝜀 or 𝑆𝑎 ∪ 𝑆+𝜀 arrives immediately.

We make a virtual copy of each party in 𝑆𝑎 and we obtain two virtual sets of corrupted parties: 𝑆+𝜀𝑎 and 𝑆−𝜀𝑎 . The

virtual copies in 𝑆+𝜀𝑎 run Π correctly with input +𝜀 towards the parties in 𝑆+𝜀 , and the virtual copies in 𝑆−𝜀𝑎 run Π

correctly with input −𝜀 towards the parties in 𝑆−𝜀 .

The view of the honest parties in 𝑆+𝜀 is identical to their view in Scenario 1, therefore they output +𝜀. Similarly, the

view of the honest parties in 𝑆−𝜀 is identical to their view in Scenario 2, and therefore they output −𝜀. This contradicts
that Π achieves (𝑡𝑎, 𝜀)-Agreement if the network is asynchronous. □
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6 APPENDIX

6.1 Analysis of Π𝑟𝐵𝐶

The lemmas in the subsections below prove that, if 𝑡𝑎 ≤ 𝑡𝑠 such that 2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛, Π𝑟𝐵𝐶 achieves (𝑡𝑠 , 3)-Synchronized
Validity and (𝑡𝑠 , 1)-Synchronized Consistency when it runs in a synchronous setting, and 𝑡𝑎-Validity and 𝑡𝑎-Consistency

when it runs in an asynchronous setting. The next result follows immediately:

Theorem 4.1. Π𝑟𝐵𝐶 is an 𝑛-party protocol that achieves (𝑡𝑠 , 𝑡𝑎, 3, 1)-secure Reliable Broadcast for 𝑡𝑎 ≤ 𝑡𝑠 such that

2 · 𝑡𝑠 + 𝑡𝑎 < 𝑛.

6.1.1 Synchronous analysis. We first assume that the network is synchronous, and we show that ΠrBC satisfies (𝑡𝑠 , 3)-
Synchronized Validity and (𝑡𝑠 , 1)-Synchronized Consistency.

Lemma 6.1. Π𝑟𝐵𝐶 satisfies (𝑡𝑠 , 3)-Synchronized Validity: assume that at most 𝑡𝑠 of the parties involved are corrupted,

the sender is honest and has input 𝑣 . Then, if the honest parties start executing Π𝑟𝐵𝐶 at the same time 𝜏 , they terminate

with output 𝑣 at the same time 𝜏 ′ = 𝜏 + 3 · Δ.

Proof. Note that using unforgeable signatures guarantees that no party can forge signatures for messages on 𝑣 ′ ≠ 𝑣

on behalf of the honest sender. Hence, no honest party can output 𝑣 ′ ≠ 𝑣 .

As the sender is honest, it sends (propose, 𝑣, sign𝑠𝑘𝑆 (𝑣)) at time 𝜏 , meaning that every honest party receives this

message by time 𝜏 + Δ. Since no honest party can receive a valid propose message for a different value, every honest

party sends a vote message for 𝑣 at time 𝜏 + 2 · Δ. These messages are received by time 𝜏 + 3 · Δ. Then, at time 𝜏 + 3 · Δ,
every honest party has received the set 𝐶 (𝑣) containing at least 𝑛 − 𝑡𝑠 valid vote message for 𝑣 , sends 𝐶 (𝑣) to every
party, and, since it cannot receive a set 𝐶 (𝑣 ′) for 𝑣 ′ ≠ 𝑣 (as this would require vote messages from 𝑛 − 𝑡𝑠 > 𝑡𝑠 different

parties), it terminates with output 𝑣 . □

Lemma 6.2. Assume that at most 𝑡𝑠 of the parties involved are corrupted. If the honest parties start executing the protocol

and the same time and two certificates 𝐶 (𝑣) and 𝐶 (𝑣 ′) are formed during the execution of the protocol, then 𝑣 = 𝑣 ′.

Proof. We assume that 𝑣 ≠ 𝑣 ′. Then, since 𝑛 − 𝑡𝑠 > 𝑡𝑠 , honest parties have sent vote messages for both 𝑣 and 𝑣 ′.

Let 𝑃 denote the first honest party that sent a vote message for 𝑣 , at time 𝜏 . Similarly, let 𝑃 ′ denote the first honest

party that sent a vote message for 𝑣 ′ at time 𝜏 ′. We assume without loss of generality that 𝜏 ≤ 𝜏 ′. Then, as 𝑃 sent a

vote message for 𝑣 at time 𝜏 , 𝑃 has received and forwarded a valid propose message from 𝑆 for 𝑣 at time 𝜏 − Δ, which
𝑃 ′ has received at time 𝜏 ≤ 𝜏 ′. We obtain a contradiction since it follows that 𝑃 ′ could not have voted for 𝑣 ′. □

Lemma 6.3. Π𝑟𝐵𝐶 satisfies (𝑡𝑠 , 1)-Synchronized Consistency: assume that at most 𝑡𝑠 of the parties involved are corrupted

and that the honest parties start executing the protocol at the same time. If an honest party outputs 𝑣 at time 𝜏 , then every

honest party outputs 𝑣 by time 𝜏 + Δ.

Proof. Let 𝑃 denote the first honest party that obtains output 𝑣 , at time 𝜏 . Lemma 6.2 shows that no honest parties

can receive a valid set 𝐶 (𝑣 ′) for 𝑣 ′ ≠ 𝑣 and hence implies that no honest party can output 𝑣 ′ ≠ 𝑣 . It remains to show

that all the other honest parties can output 𝑣 by time 𝜏 + Δ.
Let 𝑃 ′ denote an honest party who has not yet terminated by time 𝜏 . 𝑃 has received a valid set 𝐶 (𝑣) at time 𝜏 and

sent it to all the parties. Then, 𝑃 ′ has received 𝐶 (𝑣) at time 𝜏 + Δ the latest, and hence forwards 𝐶 (𝑣), outputs 𝑣 and
terminates by time 𝜏 + Δ. □
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6.1.2 Asynchronous analysis. We now assume that the network is asynchronous, and we show that ΠrBC satisfies

𝑡𝑎-Validity and 𝑡𝑎-Consistency.

Lemma 6.4. Π𝑟𝐵𝐶 achieves 𝑡𝑎-Validity.

Proof. We assume that the sender is honest and has input 𝑣 . Since using unforgeable signatures guarantees that no

party can forge signatures for messages on 𝑣 ′ ≠ 𝑣 on behalf of the honest sender, no honest party can output 𝑣 ′ ≠ 𝑣 . It

remains to show that every honest party can output 𝑣 . Every party eventually receives (propose, 𝑣, sign𝑠𝑘𝑆 (𝑣)) from
the sender, and no party can receive a valid propose message for a different value. Therefore, at least every honest

party sends a vote message for 𝑣 , and hence every party eventually receives a set 𝐶 (𝑣) and no set 𝐶 (𝑣 ′) for 𝑣 ′ ≠ 𝑣

(as this would require vote messages from 𝑛 − 𝑡𝑠 > 𝑡𝑎 different parties). It follows that every honest party eventually

outputs 𝑣 and terminates. □

Lemma 6.5. If at most 𝑡𝑎 of the parties involved are corrupted and two certificates 𝐶 (𝑣) and 𝐶 (𝑣 ′) are formed during the

execution of the protocol, then 𝑣 = 𝑣 ′.

Proof. Assume that 𝑣 ≠ 𝑣 ′. Since 𝐶 (𝑣) and 𝐶 (𝑣 ′) contain vote messages from 𝑛 − 𝑡𝑠 parties each, there are

2 · (𝑛− 𝑡𝑠 ) −𝑛 > 𝑡𝑎 parties, hence at least one honest party, that sent a votemessage for both 𝑣 and 𝑣 ′, which contradicts

the steps of the protocol. □

Lemma 6.6. Π𝑟𝐵𝐶 achieves 𝑡𝑎-Consistency.

Proof. Assume that a party 𝑃 terminates with output 𝑣 . Lemma 6.5 shows that no honest party can obtain a valid

set 𝐶 (𝑣 ′) for 𝑣 ′ ≠ 𝑣 , and hence no honest party can terminate with a different output. In addition, 𝑃 forwards the valid

set𝐶 (𝑣) to all the parties. Hence all the honest parties eventually receive𝐶 (𝑣) and, since they cannot receive a valid set

𝐶 (𝑣 ′) for 𝑣 ′, they eventually output 𝑣 and terminate. □
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