
Optimus: Warming Serverless ML Inference via
Inter-Function Model Transformation

Zicong Hong¶ Jian Lin † Song Guo𝜁 Sifu Luo‡

Wuhui Chen‡$ Roger Wattenhofer§ Yue Yu$
¶Hong Kong Polytechnic University †Shantou University 𝜁The Hong Kong University of Science and Technology

‡Sun Yat-sen University §ETH Zurich $Peng Cheng Laboratory
zicong.hong@connect.polyu.hk,20jlin3@alumni.stu.edu.cn,songguo@cse.ust.hk,luosf@mail2.sysu.edu.cn,

chenwuh@mail.sysu.edu.cn,wattenhofer@ethz.ch,yuy@pcl.ac.cn

Abstract

Serverless ML inference is an emerging cloud computing par-
adigm for low-cost, easy-to-manage inference services. In
serverless ML inference, each call is executed in a container;
however, the cold start of containers results in long inference
delays. Unfortunately, most existing works do not work well
because they still need to load models into containers from
scratch, which is the bottleneck based on our observations.
Therefore, this paper proposes a low-latency serverless ML
inference system called Optimus via a new container man-
agement scheme. Our key insight is that the loading of a
new model can be significantly accelerated when using an
existing model with a similar structure in a warm but idle
container. We thus develop a novel idea of inter-function
model transformation for serverless ML inference, which
delves into models within containers at a finer granularity of
operations, designs a set of in-container meta-operators for
both CNN and transformer model transformation, and devel-
ops an efficient scheduling algorithm with linear complexity
for a low-cost transformation strategy. Our evaluations on
thousands of models show that Optimus reduces inference
latency by 24.00% ∼ 47.56% in both simulated and real-world
workloads compared to state-of-the-art work.

CCS Concepts: • Computer systems organization →
Cloud Computing.

Keywords: Serverless computing, ML inference, cold start

∗Zicong Hong and Jian Lin contributed equally to this research;
Wuhui Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’24, April 22–25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629567

ACM Reference Format:

Zicong Hong¶ Jian Lin † Song Guo𝜁 Sifu Luo‡ and Wuhui
Chen‡$ Roger Wattenhofer§ Yue Yu$. 2024. Optimus: Warm-
ing Serverless ML Inference via Inter-Function Model Transfor-
mation. In European Conference on Computer Systems (EuroSys

’24), April 22–25, 2024, Athens, Greece. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3627703.3629567

1 Introduction

Serverless computing is a paradigm shift for cloud comput-
ing, offering scalability, flexibility, and cost-effectiveness [1,
5, 7, 34]. With the growing adoption of machine learning
(ML) across industries, there is an increasing demand for
faster and easier ways to deploy trained models and deliver
ML services at scale. This new demand and the benefits of
serverless computing are motivating data scientists to try
deploying their trained models on the serverless computing
platform for a new ML serving paradigm, namely serverless

ML inference [3, 4, 18, 42, 43]. This approach has been adopted
by major cloud providers, including Google Cloud Platform
(GCP) [27], Amazon Web Services (AWS) [33], and Microsoft
Azure [6]. In addition, according to a recent case study [41],
serverless ML inference often outperforms traditional cloud
services in terms of cost and performance.
In the workflow of serverless ML inference, the system

receives inference requests from users and invokes the func-
tions composed of trained models. Each function call must
either create a new container (this is called cold start) or
reuse an already running (“warm”) container (warm start).
As shown in Figure 1, a cold start might be substantially
slower than a warm start due to the need to create a con-
tainer and load application logic into memory [20]. Due to
resource limitations, it is impossible to maintain enough run-
ning warm containers for each type of model, and a cold start
is inevitable. The long cold start latency significantly hinders
the promotion and application of serverless ML inference.
Mitigating the cold start overhead is a key challenge in

serverless computing, but there are some existing techniques.
Some works design prewarming or keep-alive strategies for
containers of each function type based on resource and us-
age characteristics [12, 32, 35]. Another class maintains a

1039

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629567&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

VGG16 Model
Loading

VGG16 Inference
Computation

Sandbox & Runtime
Initialization

trans
form

Model X

Function C

Model Y

Function D

installpkg 1
pkg 2

Function A

pkg 1
pkg 2
pkg 3

Function B

Cold Start
Warm Start

1.960s (74.67%) 0.277s (10.55%)0.388s (14.78%)

Existing works Optimus (Ours)

Fun

p

Fun Fun Fun

Container

Step 1 Step 2 Step 3

Figure 1. Timeline of serverless ML inference and the opti-
mization direction of the existing works and ours.

shared pool of warm containers with some common pack-
ages [19, 20, 25]. It transforms awarm container in the shared
pool into the destination container by importing extra pack-
ages. The latest work, Pagurus [20], allows every container
to be one in the shared pool, which means a container for a
function can be transformed into one for another function.
For example, as shown in Figure 1, given a warm container
with Package 1 and 2 for Function A, the container can ad-
ditionally install Package 3 to execute Function B’s request.
The second approach [19, 20, 25] achieves high resource effi-
ciency based on the idea of sharing. Our work builds on top
of the second approach.

Unfortunately, we find that the existing works for server-
less computing perform poorly when it comes to ML infer-
ence. We take the serverless ML inference for VGG16 as
an example. As shown in Figure 1, more than 74% of the
startup latency is caused by loading the ML model rather
than the packages. (A larger-scale evaluation will be pro-
vided in § 3.1.) Therefore, the existing works that focus on
managing packages gain little for serverless ML inference.
An intuitive solution is to develop a container manage-

ment scheme specific to ML models. The scheme is expected
to transform a model into another one in a container similar
to that for a set of packages. However, this is challenging. As
shown in Figure 1, in terms of traditional serverless comput-
ing, every package clearly describes its name and version.
It is easy to compare the difference between package sets
required by different functions, and there are many mature
packagemanagers to install or uninstall packages and resolve
conflicts conveniently. Unlike the packages, each model is
monolithic, meaning the existing technique can only delete
the old model in a container and load a new one into the
container to provide the inference service of the new model.

To solve this problem, we propose a new serverless ML in-
ference system called Optimus with low cold-start overhead
via a new container management scheme for ML models. It
is based on several insights from the real-world workload of

serverless ML inference. First, model structure loading is re-
sponsible for most of the model loading latency in serverless
ML inference functions. Nonetheless, loading a model struc-
ture can reuse some structural state of the existing model
in the container. For example, one model structure can be
transformed into another by reshaping the weight matrix
or channel number, reordering model operations, adding or
removing operations, and so on, instead of loading the entire
new model from scratch. This can significantly speed up the
loading of a new model when using an existing model with
a similar model structure already stored in a warm container.
In addition, structurally similar models are common to exist-
ing ML applications, opening up opportunities for reusing
this model structure between functions.

Therefore, we develop a novel idea of inter-function model

transformation, which delves into the model required by each
function at the granularity of model operations, and supports
model transformation within a warm but idle container for
other functions lacking warm containers. For example, as
shown in Figure 1, given a container with Model X for Func-
tion C, Optimus can transform Model X into Model Y to
execute Function D’s requests at a low cost.
We summarize our contributions as follows.
• We observe the performance bottleneck and optimiza-
tion opportunity of serverless ML inference, and we
propose the idea of inter-function model transforma-
tion to mitigate the cold start problem.

• We design a set of in-container transformation meta-
operators to disassemble models into the granularity
of operations and transform the operations of CNN
and transformer models in warm containers.

• We propose an efficient scheduling algorithm for a
nearly optimal transformation strategy with a linear
complexity of 𝑂 (𝑁) where 𝑁 is the total number of
operations for the two models of each transformation.

• We implement a prototype system of Optimus. The
experimental results show that Optimus reduces the
serving latency by 24.00% ∼ 47.56% compared with
the state-of-the-art serverless ML inference platforms.

2 Related Work

2.1 Serverless ML Inference

In serverless computing, applications are built using small,
stateless functions that run on-demand without dedicated
cloud server instances or infrastructure management. Cloud
providers automatically scale resources based on demand
and charge only for what is used, enabling faster time to
market and greater agility for developers. This approach
allows developers to focus on building their applications
rather than managing servers. In addition to web and mobile,
serverless computing has been widely adopted in data ana-
lytics [23, 26, 30] and high-performance computing [28, 29].

1040

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

As the popularity of ML continues to grow, serverless ML
inference is a relatively new approach to deploying and oper-
ating well-trained models in production environments [41].
Traditionally, ML models have been deployed on dedicated
servers or cloud instances, requiring a significant upfront
investment in infrastructure and ongoing maintenance. With
serverless ML inference, ML models are deployed as server-
less functions that can be executed on-demand, and data
scientists can focus on building and improving their models.
In the following, we summarize the existing work on

serverless ML inference. Zhang et al. [43] propose MArk, a
hybrid ML inference system using AWS EC2 and a serverless
system, where the serverless system handles arrival bursts.
Ali et al. [3] propose BATCH, a serverless framework with
adaptive batching for efficient ML serving. However, BATCH
only uses a single buffer to collect requests and a serverless
function to process batches, which results in high latency
and cost penalties for the heterogeneous workload due to
the high time and monetary cost caused by the batching
overhead. To solve this problem, Ali et al. [4] propose MBS, a
multi-buffer serverless framework for serving heterogeneous
inference workloads. To improve the throughput of server-
lessML inference, Yang et al. [42] propose INFless, which pro-
vides a unified, heterogeneous resource abstraction between
CPU and accelerators and achieves high throughput using
built-in batching and non-uniform scaling mechanisms.
Most existing serverless ML systems focus on computa-

tional efficiency (i.e., the third step in Figure 1). Instead, our
Optimus mitigates the cold start problem of serverless ML
inference by improving the model loading efficiency (i.e., the
second step in Figure 1). The existing work most related to us
is Tetris [18]. In Tetris, if the models of two containers share
an operation of the same type, size, and weight, the contain-
ers can share a copy of the operation in memory for memory
efficiency. Although Tetris also speeds up model loading
by transforming models that have identical operations, its
performance is severely limited by the strict requirement of
exactly the same operations, which will be evaluated in our
experiment in § 8. In contrast, our Optimus excels in trans-
forming heterogeneous models. Optimus, featuring its in-
container meta-operators and linear complexity scheduling
algorithm, proves superior in a more practical scenario with
diverse models. Tens of thousands of models are proposed
yearly (for example, there are 287,202 pre-trained models in
HuggingFace), underscoring the need for our Optimus.

2.2 Cold start Mitigation for Serverless Computing

In serverless computing, functions run on instances, such
as containers. When a function is invoked for the first time,
or if a warm container is not available to run the function,
the system must start a new container to encapsulate the
function’s runtime, initialize the software environment, load
application-specific code, and execute the function. This

process, known as a cold start [8, 16], can take several sec-
onds [40], significantly increasing the latency of server-
less functions. This overhead is particularly pronounced for
short-running tasks (on the order of seconds), exacerbating
the problem of long latency.
There are two classes of work that have attempted to

mitigate the cold start problem. The first class focuses on
pre-warming or keep-alive strategies for customized con-
tainers of each function based on resource and usage char-
acteristics. For example, Shahrad et al. [35] characterize the
serverless workloads on Azure function trace. They propose
a practical resource management policy for keep-alive and
pre-warming based on the observation. Inspired by the idea
of caching, Fuerst et al. [12] propose FaasCache, a greedy
dual keep-alive framework. Roy et al. [32] develop IceBreaker,
which proposes a pre-warming and keep-alive strategy for
serverless functions that fully exploits a heterogeneous mix
of high-end and low-end servers. Du et al. [11] propose Cat-
alyzer, which restores container images from checkpoints
to accelerate the cold startup. For the second class, some
works maintain a shared warm container pool consisting
of containers with common packages for all types of func-
tions. For example, Akkus et al. [2] propose SAND, which
allows instances of the same application function to share
the sandbox containing the function codes and their pack-
ages. Mohan et al. [22] propose PCPM, which launches a
new function from a network-ready empty container for
low startup latency. Oakes et al. [25] propose SOCK, which
borrows the idea of Zygotes from Android systems for Java
applications. The system identifies the set of packages most
commonly used by functions based on the real-world dataset,
caches some warm containers with pre-imported packages,
and launches a new function from a warm container with
low startup latency. Our work is complementary to the first
class and can be combined with solutions of this type for
further performance improvement.

Instead, we follow the second class. In the second class, the
work most related to us is Pagurus [20], an efficient server-
less computing system based on the idea of inter-function
container sharing. Specifically, rather than booting a new
container for a function from scratch, Pagurus alleviates
the cold start by re-purposing a warm but idle container
from another function. Repurposing is done by uninstalling
the packages in the container and installing the additional
packages for the new function. However, Pagurus only fo-
cuses on runtime initialization (i.e., the first step in Figure 1).
This cannot solve the cold start problem of serverless ML
inference since the bottleneck is the model loading instead
of runtime initialization, as discussed in § 1. Our Optimus
shares the same idea of inter-function container sharing but
proposes a new container management system for serverless
ML inference via model transformation.

1041

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

VGG11
VGG16

VGG19
ResNet50

ResNet101

ResNet152
0

2

4

6

8

10

La
nt

ec
y

(s
)

Runtime Initialization
Model Loading
Inference Computation

0

500ms

(a) Request processing time

VGG11
VGG16

VGG19
ResNet50

ResNet101

ResNet152
0

50

100

Pe
rc

en
ta

ge
 (%

) Runtime Initialization
Model Loading
Inference Computation

(b) Every step proportion

Model VGG11 VGG16 VGG19 ResNet50 ResNet101 ResNet152

Params 132.9M 138.4M 143.7M 25.6M 44.7M 60.4M
Size (MB) 506 528 549 98 171 232

(c) Number of parameters and size of varying models

Figure 2. Request processing time for varying models in
serverless ML inference.

3 Background & Motivation

In this section, we analyze the serverless ML inference life
cycle, find out its main bottleneck, and show the optimiza-
tion opportunity of mitigating its cold start problem, which
motivates the design of Optimus.

3.1 Serverless ML Inference Latency

A complete process of each serverless ML inference request
includes three steps, i.e., sandbox and runtime initialization,
model loading, and inference computation. Specifically, sim-
ilar to serverless computing for other applications, the first
step in serverless ML inference aims to create a sandbox
containing both the runtime libraries and the wrapped pro-
gram [11]. Then, within the sandbox, the wrapped program
reads the serialized model file and deserializes the model file
into a computational graph. Finally, the wrapped program
executes the computational graph for the inference result
of the request input. To investigate the performance bottle-
neck of serverless ML inference, we conduct a preliminary
experiment for the two popular model families (VGG [36]
and ResNet [14]) on our serverless computing testbed as
described in § 8 and get the following insight.

Insight 1. The model loading latency dominates the total

latency of serverless ML inference functions.

Figure 2 depicts the request processing time for VGG and
ResNet, the percentage of different steps, and the number of
parameters and model size of VGG and ResNet. First, accord-
ing to the results, model loading accounts for more than half
of the total time, indicating that model loading is the major
bottleneck of serverless ML inference. Second, in the same
model family, themodel loading latency increases as the num-
ber of model layers increases. For example, the load latency
of ResNet101 is slower than ResNet50 because ResNet101 has

0 20 40 60 80 100
Model ID

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 (%

)

Deserialize Model File Load Model Structure Assign Weights

Figure 3. Latency of each step in the model loading for 100
models from Imgclsmob [37] in serverless ML inference.

about twice the number of layers. Also, notice that the load-
ing latency of the ResNet family is close to that of the VGG
family, even though (according to Figure 2c) the number of
parameters and model size of the ResNet family is far less
than that of the VGG family. Therefore, the number of pa-
rameters and model size do not directly determine the model
loading latency. This preliminary experiment motivates us to
optimize model loading in a serverless ML inference system.

3.2 Diving into Model Loading

We first dive into the process of model loading by taking
TensorFlow as an example. The process can be divided into
three parts: deserializing the model file, loading the model
structure and assigning weights to the structure [38]. Specif-
ically, the system first deserializes the serialized model file,
such as TensorFlow SavedModel and HDF5. Next, accord-
ing to the deserialization result, the system loads a model
structure specifying the layers the model contains and how
they are connected. Finally, the system loads a set of weights,
i.e., the “state of the model”, into the model structure. We
evaluate the latency of these parts in the model loading for
varying models on our testbed and get the following insight.

Insight 2. The model structure loading latency dominates the

model loading latency of serverless ML inference functions.

Figure 3 depicts the percentages of different parts for
model loading. We randomly choose 100 models from Img-
clsmob [37], a popular model zoo that includes ResNet, VGG,
DenseNet, MobileNet, etc., for various functionality (e.g.,
classification, segmentation, detection, and pose estimation).
According to the results, the deserialization latency is negligi-
ble. The model structure loading takes up most of the model
loading time (89.66% on average), while assigning weights
only accounts for 10.28% of the whole loading time on aver-
age. Thus, loading the model structure is the bottleneck of
the model loading, motivating us to minimize the overhead
of model structure loading in serverless ML inference.
We also evaluate the model structure loading at a finer

granularity. In a top-down view, each model comprises sev-
eral layers and each layer comprises one or more operations,
e.g., convolution (CONV), pooling and activation.

1042

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

Activ
ation

AveragePooling2D

MaxPooling2D

ZeroPadding2D Add

CONV 3 × 3, 64

CONV 3 × 3, 256
Dense

CONV 3 × 3, 512
0

5

10

La
te

nc
y

(m
s)

Figure 4. Loading latency for varying operations in
ResNet50 in serverless ML inference.

We evaluate the loading time of varying operations in
ResNet50; the results are given in Figure 4. First, the load-
ing time for different types of operations varies widely. For
example, loading a CONV operation takes up to ten times
longer than an activation operation. Second, the operations
containing weights information (e.g., CONV, dense) have
longer loading times than those without weights informa-
tion (e.g., activation, pooling, and add). Third, the same type
of operation needs different loading times if the operations
have different shapes. For example, the loading of a CONV
operation with a kernel size of 3×3 and an output size of 512
costs 78.67% more time than that of a CONV with a kernel
size of 3 × 3 and an output size of 64.

Insight 3. Structurally similar models are common for exist-

ing ML applications.

In parallel with the rapid adoption of ML and user complex
and individualized needs, the number of models increases.
However, structurally similar models are common in many
model zoos [17], e.g., NASBench [10], Imgclsmob [37], and
HuggingFace [15]. It is because most models rely on similar
structure designs but with wider/deeper layers, branches, or
different weights trained from different datasets. For exam-
ple, CONV and attention operations are widely used in CV
and NLP models, respectively.

3.3 A Strawman System: Optimization Opportunity

of Model Loading

According to our three insights, we propose a strawman sys-
tem to reduce the startup latency in serverless ML inference
by minimizing the model structure loading. The strawman
system is based on an idea of inter-function container sharing,
which has been adopted by the existing serverless comput-
ing works [20]. In particular, the system aims to reduce the
startup overhead by transforming the warm but idle con-
tainers of one function to help other functions that tend to
experience cold container startup. However, the transfor-
mation of traditional serverless computing applications can
be completed by uninstalling and installing packages. Thus,
to extend the idea for a model transformation in serverless

ResNet18
ResNet50

ResNet101
VGG13

VGG16
VGG19

0

1

2

3

4

5

La
nt

ec
y

(s
)

Cold start
Our strawman system

(a) Transformation for varying mod-
els with the same structure.

C
O

N
V 5

5, 64

C
O

N
V 1

1, 64

Input

O
utput

Model A

C
O

N
V 5

5, 64

C
O

N
V 5

5, 64

Input

O
utput

Model B

(b) An example for the models with
slightly different structure.

(c) In-container scaling of CONV operations with varying kernel sizes. The
diagonal element indicates the loading time of different CONV operations,
and the non-diagonal element (𝑖 , 𝑗) indicates the scaling time of the 𝑖-th
CONV operation to the 𝑗-th CONV operation.

Figure 5. Evaluation results on the proposed strawman sys-
tem. For a CONV operation represented by 𝑥 × 𝑦, 𝑘 , 𝑥 × 𝑦
denotes kernel size and 𝑘 is the number of kernels.

ML inference, our strawman system has two designs for the
following cases.
Case 1: Same model structure. If the structure of the

models for two functions is the same, the strawman system
only replaces the old weights in the container with the new
ones rather than starting a new container from scratch or
loading the new model. We evaluate the case for VGG and
ResNet and the results are given in Figure 5a. Despite be-
ing a simple and intuitive design, it reduces the latency of
serverless ML inference by 79.83% on average.
Case 2: Different model structures. Given that two

serverless ML inference functions have slightly different

model structures. The “slightly different” means that they
have the same number, type, and order of operations, but the
kernel size of their CONV operations may be different, such

1043

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

as the two models 𝐴 and 𝐵 in Figure 5b. To transform one
function’s container into another function’s, the strawman
system transforms the old model inside the container into a
new model by adjusting the kernel size of the mismatching
CONV operations in the computational graph. For example,
in Figure 5b, to transformModel𝐴 to Model 𝐵, the strawman
system can scale up the kernel size of the first CONV opera-
tion from 1 × 1 to 5 × 5. Such a transformation reduces the
operation loading latency by 60.18%, as shown in Figure 5c.

We evaluate the transformation time between CONV op-
erations with varying kernel sizes, and the results are shown
in Figure 5c. First, as the filter size increases (i.e., the size of
the weights matrix of the operation increases), the loading
time of the CONV operation increases. Second, the value
of the diagonal element is much larger than the other ele-
ments of the column. Take column 2 as an example, i.e. the
CONV operations of different filter sizes are converted to
the representation required for a filter size of 5 × 5. Directly
loading the CONV operation with filter size 5 × 5 consumes
0.011s, while the transformation by CONV with other filter
sizes takes only about 0.004s. That is, the transformation
takes only one-third of the loading time. Therefore, the in-
container scaling of CONV operations is better than loading
the operations from scratch.
Challenges. Despite the performance improvement pro-

vided by the proposed strawman system, we find several
challenges in extending our strawman system to a general
case. First, the difference between model structures varies
widely; thus, it is challenging to achieve transformation be-
tween a wide set of models (e.g., CNN and transformers).
Second, there are many possible transformation strategies
between two models in serverless ML inference; thus, it is
challenging to determine an optimal strategy with the least
transformation overhead.

4 Methodology & System Design

4.1 System Architecture Overview

To solve the above challenges, we propose a serverless ML
inference system namedOptimus and its architecture is high-
lighted in Figure 6. Similar to existing ML cloud platforms
(e.g. AWS SageMaker and Google AI Platform), the cloud
provider should take responsibility for resource manage-
ment, so it is the system manager. Each client in the system
can send query requests specifying the input data and model
type via APIs. The arrived requests are dispatched to the
corresponding containers. Different functions have differ-
ent numbers of warm containers. The workload of every
function may be highly dynamic and sporadic, periodic and
bursty [35, 42]. Moreover, the number of warm containers is
limited in each worker node to save resource consumption;
thus, the system cannot provide enough warm containers
for every model type. Therefore, for some requests involving
the models which do not have idle containers, the traditional

Gateway

Function database

…
Model X

Function A

Model Y

Function B

Inter-function container scheduler
Tensor transformation

meta-operations
Inter-function

transformation algorithm

Container
pool

Container
pool

Worker 1

W
or

ke
r N

-1

W
or

ke
r N

Clients Query requests

Input: Model:

Busy container

Idle container

Identify Compute Transform

Figure 6. System architecture overview of Optimus.

serverless ML inference platforms need to start a new con-
tainer from scratch. To mitigate the cold start overhead, a
core component of Optimus is the inter-function container

scheduler, which can efficiently transform the model of a
warm container to another model. The scheduler is com-
prised of an idle container identification mechanism (see
§ 4.2 and Figure 6-�), a set of in-container transformation
meta-operators (see § 4.3 and Figure 6-�), and a scheduling
algorithm for inter-function model transformation (see § 4.4
and Figure 6-�).

4.2 Idle Container Identification Mechanism

To identify the idle containers in each node, Optimus uses
a timer design for each container, similar to Pagurus [20].
For a container, its timer is reset to 0 when a new request is
routed to it. When its timer exceeds a predefined threshold
(such as 60 seconds), the container is considered idle, and the
model maintained in the container can be transformed into
the models of other functions that lack warm containers.

4.3 In-container Transformation Meta-operators

To achieve a transformation between models in a container,
we design five in-container transformation meta-operators.
Each meta-operator acts on the source model and aims to
transform it into a new one more similar to the destination
model. Their functionality and examples are described below.
1) Replace: For the transformation that preserves the

structure of an operation while replacing only its weights,
we propose a meta-operator Replace, i.e. the new weights
directly overwrite the existing weights in the container. For
example, as shown in Figure 7-�, a CONV operation with
a kernel size 4 × 4 and the weights of a matrix of nines is
replaced by the new weights of a matrix of ones.

1044

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

Scale Up

Scale Down

CONV 4 4, 3

CONV 5 5, 3

CONV 3 3, 3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

CONV 4 4, 1

9 9 9 9

9 9 9 9

9 9 9 9

9 9 9 9

CONV 4 4, 1

Replace Operator

Reshape Operator

Add Operator

Reduce Operator

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 2

2, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 2

2, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

C
O

N
V 2

2, 3

C
O

N
V 4

4, 3

C
O

N
V 4

4, 3

Figure 7. Illustration of in-container transformation meta-
operators. For a CONV operation represented by 𝑥 × 𝑦, 𝑘 ,
𝑥×𝑦 denote kernel size, and 𝑘 denotes the number of kernels.

2) Reshape: If two operations in the source model and
destination model are of the same type but have different
properties (e.g., kernel size, kernel number, and stride length
for CONV), we propose a meta-operator Reshape that can
modify its properties without regenerating a new operation.
For example, as shown in Figure 7-�, we can enlarge the
kernel size of a CONV operation from 4 × 4 into 5 × 5; or
reduce it from 4 × 4 to 3 × 3.
3) Reduce: For the operations in the source model that

cannot be matched to any operations in the destination
model, we propose a meta-operator Reduce to delete them
without affecting the other operations. For example, as shown
in Figure 7-�, we delete the last CONV operation.
4) Add: If any operations of the source model cannot

be transformed into the destination model via the meta-
operators Replace and Reshape, we propose a meta-operator
Add to add a new operation in the source model. For example,
as shown in Figure 7-�, we can create a CONV operation
with kernel size 2 × 2 at the end layer of the model.

5) Edge: Each edge of a model denotes the data flow
between two adjacent operations. To change/remove/add
an edge between any two operations, we propose a meta-
operator Edge. For example, as shown in Figure 7-�, we can
change the edges to switch the order of the operations in the
model via the meta-operators. Besides, for the two models
as shown in Figure 7-� and �, we need to remove and add
the last edge of the model, respectively.

We emphasize that although we take CONV as an example
in the above, the idea of in-container transformation meta-
operators can be extended to other operations in CNN and
transformer model [9], which we will discuss in § 5.2.

4.4 Scheduling Algorithm for Inter-function Model

Transformation

Although executing meta-operators is faster than loading
models from scratch, it inevitably introduces latency. To effi-
ciently transform models between functions, we aim to find
a sequence of meta-operators with low overhead. Thus, we
first model each model structure as a graph in which model
operations (e.g., CONV, dense) are nodes and data flows are
directed edges, and the model transformation between func-
tions can be considered as a graph transformation. We then
formulate the model transformation as a new graph edit dis-
tance problem and minimize the graph edit overhead. The
graph editing operators are the proposed meta-operators in
§ 4.3, and their cost is the execution time.

Towards the goal, Optimus includes three modules: offline

profiling for meta-operators, transformation planning, and
online transformation execution. We next describe details.
Module 1: Offline Profiling for Meta-operators. Be-

fore computing the planning solution, we first measure the
execution time of different types of meta-operators ahead of
time. We show the execution time of possible meta-operators
for ResNet50 as an example in Figure 8, and we summarize
several observations as follows. First, the execution time of
meta-operators Replace depends on the size of the weights
in the destination model operation. Second, the execution
time of meta-operators Add depends on the type and prop-
erties of the destination model operation. For example, a
meta-operator Add for CONV or dense incurs a longer la-
tency than that for the other operations, which is also proved
in Figure 4. A meta-operator Add for a CONV operation
with a larger kernel needs a longer latency, as shown in Fig-
ure 5c and Figure 8, respectively. Third, the execution time
of meta-operators Reshape depends on the magnitude of
the destination operations’ shape change. Forth, the execu-
tion time of meta-operators Reduce is constant and that of
meta-operators Edge can be negligible.

Module 2: Planning forModel Transformation.Given
twomodels𝑔1 and𝑔2, we define a sequence ofmeta-operators
that can transform 𝑔1 to 𝑔2 as e = {𝑒1, 𝑒2, ...}. 𝑒𝑖 ∈ e denotes
one of the meta-operators described in § 4.3 and performs at
step 𝑖 . Its estimated cost 𝑐 (𝑒𝑖) can be collected from the offline
profiling. Thus, the cost of e is defined as

∑
𝑒𝑖 ∈e 𝑐 (𝑒𝑖). We

denote the set of all feasible meta-operator sequences from
𝑔1 to 𝑔2 as E(𝑔1, 𝑔2). Note that the order of meta-operators
in a sequence e does not change the cost. Our objective is to
find an optimal meta-operator sequence e∗ which satisfies

e
∗ ∈ arg min

e∈E (𝑔1,𝑔2)

∑

𝑒𝑖 ∈e
𝑐 (𝑒𝑖). (1)

1045

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

5

10

Add

2

2

3
Replace

0

1

2

3

4
Edge

0

1

2

3

4
Reduce

3

4

Reshape

0.2 0.4 0.6 0.8 1.0
Meta-operator ID

0.00

0.23

0.4

0.6

0.85

1.0

Ti
m

e
(m

s)

Figure 8. Execution time of
varying meta-operators.

3

1

2

4

5

3

1

2

4

5

Source Model

Target et Model

3

1

2

4

5

1

2

4

5

6

Reshape Reduce

Add

ReplaceEdge

1

2

4

5

6

3

1

2

4

5

6

3

Figure 9. An example of inter-function
model transformation.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(1,) ∞ ∞ ∞ ∞∞ (2,) ∞ ∞ ∞∞ ∞ (3,) ∞ ∞∞ ∞ ∞ (4,) ∞∞ ∞ ∞ ∞ (5,)
(, 1) ∞ ∞ ∞ ∞∞ (, 2) ∞ ∞ ∞∞ ∞ (, 4) ∞ ∞∞ ∞ ∞ (, 5) ∞∞ ∞ ∞ ∞ (, 6)

(1,1) (1,2) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,4) (5,5) (5,6)

Figure 10. The transformation cost matrix of
the example.

To solve the problem, we propose a basic algorithm for
the inter-function model transformation as follows.

First, we define a cost matrix for the inter-function model
transformation. Taking the source model and destination
model as shown in Figure 9 as an example, its cost matrix is
provided in Figure 10. The 𝑖-row, 𝑗-column element 𝑐 (𝑖, 𝑗) in
the left top corner denotes the cost of transformingOperation
𝑖 in the source model to Operation 𝑗 in the destination model
via a meta-operator Replace or Reshape. 𝑐 (𝑖, 𝜖) in the right
top corner denotes the cost of deleting Operation 𝑖 in the
source model via a meta-operator Reduce; 𝑐 (𝜖, 𝑗) in the left
bottom corner denotes the cost of inserting a new Operation
𝑗 into the source model via a meta-operator Add.
Then, based on the cost matrix, the optimal solution can

be computed. Specifically, each operation of model 𝑔1 ei-
ther transforms to an operation of model 𝑔2 (top left cor-
ner of cost matrix) or is deleted (top right corner of cost
matrix). Conversely, each operation of model 𝑔2 is either
transformed from an operation of model 𝑔1 (top left cor-
ner of cost matrix) or added from scratch (bottom left cor-
ner of cost matrix). Thus, a feasible solution is of the form
𝑃 = {(1, 𝑝1), (2, 𝑝2), · · · , (𝑛+𝑚, 𝑝 (𝑛+𝑚))}, where𝑛 is the num-
ber of operations in the source model,𝑚 is the number of
operations in the destination model, and 𝑝1, 𝑝2, · · · , 𝑝𝑛+𝑚
is one of the permutations for 1, 2, · · · , 𝑛 +𝑚. The system
can compute an optimal solution in a brute-force manner
by enumerating all permutations and selecting the one that
minimizes the cost with a time complexity of 𝑂 ((𝑛 +𝑚)!).
Also, the optimal solution can be computed via Munkres
algorithm with a time complexity of 𝑂 ((𝑛 +𝑚)3) proposed
by Riesen et al. [31].

Finally, if the algorithm outputs {(1, 1), (2, 2), (3, 8), (4, 3),
(5, 4), (6, 6), (7, 7), (8, 9), (9, 10), (10, 5)} for the example in
Figure 9, we transform the model in the following steps.

We first reshape Operation 2 in the source model to have
the same shape as that in the destination model via a meta-
operator Reshape. Then, we delete Operation 3 in the source
model via a meta-operator Reduce and add Operation 6 via a
meta-operator Add. Next, we reassign weights to Operation
2 and Operation 6 in the destination model because their
weights differ from those in the source model. When all
operations are ready in the destination model, we can use a
meta-operator Edge to modify the data flows in the model.
Module 2+: Efficient Planning Algorithm. Although

the basic algorithm above can find the optimal transforma-
tion solution, it introduces an unacceptable computation
time for real-world models due to the time complexity of
𝑂 ((𝑛 +𝑚)!) or 𝑂 ((𝑛 +𝑚)3). Thus, in the following, we in-
troduce an efficient approximate algorithm based on some
observations for real-world models.

We observe the following characteristics of model opera-
tions in our inter-function model transformation. First, only
operations of the same type can be transformed at a low cost,
while operations of different types either cannot be trans-
formed in the implementation or always require a higher cost
than loading them directly from scratch. Second, in most
models, the operation form often increases from the first
layer to the last layer, which can capture more complex and
abstract features. For example, as one moves deeper into a
VGG or ResNet model, the number of kernels in a CONV op-
eration increases. Third, most operations in a model do not
contain weights (e.g., there are 347 operations in ResNet101,
of which only 101 operations have weights), and the cost of
transformation between operations of the same type without
weights can be considered a constant.

We then propose an efficient group-based transformation
algorithm. (1) Based on the first observation, we first group
all operations of the source model (or destination model)

1046

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

by their type. For example, the activation operations and
the CONV operations are assigned to two groups. (2) We
match two operations sequentially, one by one, between two
groups of the same operation type in the source and desti-
nation models. This heuristics design is motivated by the
second and third observations above. Specifically, for the op-
erations with weights, based on the second observation, the
operation shape in a group shows a similar tendency. For the
operations without weights, based on the third observation,
the operation transformation can be performed arbitrarily.
(3) The transformation between two matching operations
is performed via a meta-operator Replace or Reshape. (4)
After that, if there are unmatched operations in a group of
the source model, we remove them via meta-operators Re-
duce. (5) If there are unmatched operations in a group of the
destination model, we create them via meta-operators Add.
(6) Finally, we can use meta-operators Edge to modify the
data flows in the model.

The computational time complexity of the proposed algo-
rithm is𝑂 (𝑛 +𝑚) because we can iterate over the operations
in the source and destination models for two rounds, i.e., one
for grouping and one for matching.
Module 3: Online model transformation execution.

To achieve real-time transformation while the system is run-
ning, Optimus does the planning offline and executes the
strategies online. The details are described below.
Planning strategy caching. When a new model registers

in the global model repository of Optimus, the system mea-
sures the transformation overhead between the new model
and the existing models in the repository and caches the
transformation strategy based on the planning algorithm.
When a request for model transformation arrives as de-
scribed in § 4.2, the manager can read the cached transforma-
tion strategy, based on which the model can be transformed.

Safeguard design. According to the experiment in § 8.4, in
some cases, the overhead of our inter-function model trans-
formation is higher than that of loading models from scratch.
Thus, in these cases, the system loads a new model from
scratch like traditional works. In other words, the perfor-
mance of Optimus can be guaranteed in the worst case.

5 Design Refinement

5.1 Model Sharing-aware Load Balancer

Similar to the existing serverless systems, the function distri-
bution on each node has a great influence on the efficiency of
Optimus. However, the inter-function model transformation
of Optimus introduces a new requirement for scheduling
functions to the nodes. For example, if the model structures
of functions on a node vary widely, the inter-function model
transformation within the node will be expensive. At the
same time, if the demand dynamics of functions on a node
are similar, few idle containers can assist the functions suf-
fering from a cold start, and the transformation benefit will

be limited. Thus, a new serverless load balancer considering
the similarity of model structure and the complementarity of
demand dynamics is needed in Optimus. Unfortunately, ex-
isting serverless systems often route user requests to nodes
based on hash-based or resource usage-based methods [21],
poorly suited for serverless ML inference.
To solve this problem, in Optimus, we develop a model

sharing-aware load balancer that considers the similarity of
model structure and the complementarity of demand dynam-
ics between serverless ML inference functions. The proposed
scheduler aims to deploy functions with similar model struc-
tures and different demand dynamics on the same node via
K-medoids clustering. It takes functions as different points
and measures the distance of any two functions according
to their model editing distance in § 4.4 and demand dynam-
ics difference. Specifically, given two functions for Model
𝐴 and 𝐵, their model editing distance (transformation cost)
D(𝐴, 𝐵) can be calculated based on the planning algorithm
in § 4.4. We calculate the complementarity of their demand
dynamics K(𝐴, 𝐵) based on the covariance of their histori-
cal record. According to their historical demand dynamics
{𝑙𝐴𝑡 }𝑡 ∈𝑇 and {𝑙𝐵𝑡 }𝑡 ∈𝑇 for 𝑇 time slots, we can get K(𝐴, 𝐵) =
𝑐𝑜𝑟𝑟 (𝐴, 𝐵) =

∑𝑇
𝑡=1 (𝑙𝐴𝑡 − ¯𝑙𝐴) (𝑙𝐵𝑡 − ¯𝑙𝐵)√∑𝑇

𝑡=1 (𝑙𝐴𝑡 − ¯𝑙𝐴)2
√∑𝑇

𝑡=1 (𝑙𝐵𝑡 − ¯𝑙𝐵)2
in which ¯𝑙𝐴 and ¯𝑙𝐵

are the means of 𝑙𝐴𝑡 and 𝑙𝐵𝑡 , respectively. Next, the distance
of the two functions is defined as 𝛾𝑖D(𝐴, 𝐵) + 𝛾 𝑗K(𝐴, 𝐵) in
which the hyper-parameters 𝛾𝑖 , 𝛾 𝑗 ∈ [0, 1]. Finally, by taking
the distance of any two functions (i.e., data points) as input,
K-medoids can minimize the distance between data points
and their cluster centre and output multiple function clusters.
The load balancer tends to distribute the functions in the
same cluster to the same node. Moreover, the load balancer
should consider the load of nodes; thus, each function cluster
is supported by a set of nodes, and the number of nodes will
be adjusted along with the load change.

Additionally, there is much room for improvement of the
proposed load balancer, such as hypothesis testing of the his-
torical data, consideration of heterogeneous resource usage
characteristics of models and functions, and design of online
scheduling algorithms, which is left as future work.

5.2 Extension to Transformer Models

Transformer models are one of the most exciting new devel-
opments in ML. They are widely used in natural language
processing [39] and computer vision [13]. Although our pre-
liminary experiments in § 3 and the above design take CNN
as an example, the idea of our inter-function model trans-
formation can be easily applied to serverless ML inference
of transformer models. In the following, we dive into trans-
former models and show how our idea is compatible.
In a top-down view, a transformer model consists of an

embedding block and multiple (often identically parameter-
ized) attention blocks. An attention block consists of several

1047

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

layers: an attention layer, a normalization layer, and sev-
eral (typically two) fully connected layers. The attention
layer consists of Query (Q), Key (K), Value (V), and Output
(O) operations with weights, and Logit (L) and Attend (A)
operations without weights.

Despite the transformer models having their own unique
operations, the in-container meta-operators proposed in § 4.3
can work on these new operations. Transformer models’
transformation can be realized by adjusting the operation
shape, removing redundant operations, or adding new oper-
ations similar to CNN transformation. We describe how the
proposed meta-operators work with the new operations in
transformer models with the following four common cases.

Case 1: Transformation between transformer models with
embedding blocks of different sizes (e.g., BERT-Cased and
BERT-Uncased) can be achieved by scaling up or down their
weights matrix with meta-operator Reshape. Moreover, the
transformation between transformer models with Q/K/V/O
operations of different shapes can be achieved by scaling up
or down their weights matrix with meta-operator Reshape.
Case 2: Transformation between models with different num-
bers of attention blocks can be achieved by adding or remov-
ing attention blocks with meta-operators Add or Reduce.
Case 3: The steps performed by meta-operators Replace and
Edge on transformer models are similar to those of CNN.
Case 4: The downstream task models (e.g., sequence classi-
fication and question answering) of the transformer usually
add some specific layers (e.g., fully connected layers, con-
ditional random field layers) on top of pre-trained models.
The transformation between downstream task models can
be achieved by transforming these specific layers like CNN.

We discuss two common examples of inter-function trans-
former transformations as follows. Example 1: Transfor-

mation between BERT variants with different sizes.

There are kinds of BERT with different sizes. Take the trans-
formation from BERT-Base to BERT-Mini as an example.
BERT-Base has 12 attention blocks, 768 hidden units and 12
self-attention heads. BERT-Mini has 4 attention blocks, 256
hidden units and 4 self-attention heads. The transformation
can be achieved by reshaping the Q/K/V/O operations in the
reused attention blocks via meta-operators Reshape, remov-
ing redundant attention blocks via meta-operators Reduce,
and using meta-operators Replace and Edge like CNN. Ex-
ample 2: Transformation between BERT variations for

different downstream tasks. Bert can be used as a base
model for many downstream tasks. Take the transformation
from BERT-SC for sequence classification to BERT-QA for
question answering as an example. The transformation can
be achieved by adding a fully connected layer via a meta-
operator Add and updating the weights via a meta-operator
Replace since BERT-SC and BERT-QA have one and two
fully connected layers on top of BERT, respectively.

Additionally, Optimus supports CNN and transformer
models so far, but there are massive newmodels yearly. How-
ever, we believe the idea of our in-functionmodel transforma-
tion (i.e., the loading time of a newmodel can be significantly
accelerated when using an existing model with similar model
structures in the warm containers) can be extended to most
of the new models, which is left as future work.

6 Limitations & Future Work

Fine-grained Resource Allocation. Optimus allocates
the same and sufficient resources to each container. However,
there are two limitations. First, such homogeneous resource
allocation leads to wasted resources when considering the
different model sizes in the practice. For example, if an idle
container with 4GB of memory for a large model is converted
to one for a small model, some memory resources are wasted
because the small model may only require 2GB of memory.
Second, container resources may be insufficient. Increasing
the number of containers increases the benefits of resource
sharing, if the containers have sufficient capacity to host
different models, because the likelihood of idle containers
increases. Excessive numbers of containers that exceed the
capacity to host certain models will reduce these benefits.

Online Profiling. While Optimus provides offline profil-
ing for meta-operators in § 4.4, the execution time of meta-
operators may vary with the workload and resource allo-
cation of containers; thus transformation plans generated
based on outdated offline profiling may be inefficient. In fu-
ture work, we will discuss online profiling, where the system
periodically updates profile data while the system is running.

Privacy Issue. In Optimus, the provider keeps track of
the status of containers (e.g., running models) as it should
take responsibility for the resource management, and users
need to provide metadata (e.g., models of functions) to the
provider. However, there can be concerns about exposing
key private model details to a cloud provider.

7 Implementation

We have implemented a prototype of Optimus with about
8K lines of Python code. Optimus API and communication
between clients and the gateway are implemented in REST
API format. Clients can invoke an inference procedure by
sending an HTTP request containing the model name and
input data. Optimus stores the trained models in a Docker
volume that is attached directly to each container created
by the system. Models are deployed to the Docker volume
in HDF format. Model structure information and model-to-
model transformation planing are stored with the models in
JSON format. On the host machine, a gateway service runs
as the container manager. It uses the Docker SDK for Python
to create, run, and remove containers in the local Docker

1048

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

environment. It also runs a Flask HTTP server that accepts
client requests and sends them to containers.

1 from optimus import trans_plan , trans_exec

2 # Offline: transformation planning between models

3 strategy = trans_plan(source_info ,

destination_info)

4 # Online: transformation execution in containers

5 trans_exec(model_in_container , strategy)

6 # The execution calls meta -operator interfaces

7 def trans_exec (...):

8 for s in strategy:

9 ... # call add_oper (...) or reduce_oper (...)

or replace_weights (...) or reshape_oper (...)

or generate_edge (...)

Listing 1. Code snippet of Optimus APIs.

Each container runs a Docker image built from our modi-
fied Tensorflow. For five in-container transformation meta-
operators in § 4.3, we implement the corresponding inter-
faces that take tf.keras.layer (e.g., tf.keras.layer.Conv2D) and
operation-related data (e.g., the kernel size of CONV) as in-
put and the destination layer as output. The interface design
is compatible with ML operations in most models, including
CNN, RNN, and transformer. For transformation planning,
we take the source model and the transformation strategy
as input, and the output is the destination model. The imple-
mentation logic is extensible to other similar ML frameworks
(e.g. Pytorch). When deployed, it runs a scheduler service
that accepts requests from the gateway service. The sched-
uler determines whether to load a new model or perform a
transformation based on its content in the memory.

8 Experiment

8.1 Experimental Setup

Node setup. We evaluate Optimus using two servers: one
is equipped with Intel Xeon Gold 5320 CPU with 104 cores
and 128GB of memory, and the other is equipped with Intel
Xeon E5-2650 v4 CPU with 48 cores, 64GB of memory and 4
NVIDIA GeForce GTX 1080 Ti. The machines are intercon-
nected via a 10 Gbps, full-bisection bandwidth Ethernet. The
servers are running Ubuntu 22.04.2 and Docker 23.0.1.

Workloads. The serverless ML inference services to evalu-
ate Optimus are based on the following widely-used models.

• Imgclsmob [37]: a model zoo including 389 models
with various functionality (e.g., classification, segmen-
tation, detection, and pose estimation). It includes ResNet,
VGG, DenseNet, MobileNet, etc.

• BERT [9]: a kind of transformer model pre-trained on
a large corpus comprising books and Wikipedia. We
choose 10 variations with different model sizes (i.e.,
BERT-Tiny, BERT-Mini, and BERT-Small), those for
different inputs (i.e., BERT-Cased and BERT-Uncased),

and those for various tasks, e.g., sequence classifica-
tion (BERT-SC), token classification (BERT-TC), ques-
tion answering (BERT-QA), next sentence prediction
(BERT-NSP), and multiple choice (BERT-MC).

• NASBench [10]: a model zoo with thousands of light-
weight models generated and evaluated from a fixed
graph-based search space for image classification.

Moreover, the function invocation arrival pattern of the
workload is generated from the following data.

• Poisson distribution: We send queries to each server-
less inference service, following a Poisson distribution.
To simulate frequent, middle, and infrequent work-
loads, 𝜆 is set as 10−3.5, 10−2, and 10−2.5, respectively.

• Azure Function: To simulate production-like workload
arrival patterns and characteristics, we use a two-week
Microsoft Azure Function trace [44] collected from
Microsoft production systems in 2021.

Comparison systems. We compare Optimus with the
following serverless ML inference systems. For a fair com-
parison, all systems adopt a 10-minute keep-alive strategy.

• OpenWhisk: A serverless ML inference system starts
a new container from scratch.

• Pagurus [20]: A serverless ML inference system starts
a new container based on an idle container with com-
mon packages for ML inference.

• Tetris [18]: A serverless ML inference system starts a
new container by mapping the address of runtime and
operations with the same weights and structures in
the running containers to the new container.

8.2 Inter-function Model Transformation

We evaluate the latency of inter-function model transfor-
mation. As a representative example, we pick ResNet, VGG,
MobileNet, DenseNet, Xception, and Inception in Imgclsmob
and all models in our BERT model zoo, and the results are
given in Figure 11. We have the following observations.
First, compared with loading models from scratch (as

shown in the last column) like the existing serverless ML
inference systems, the inter-function model transformation
reduces the latency by up to 99.08%. The transformation
between models with more similar structures in terms of
operation type and scale takes less time. In particular, the
transformation between models in the same model family is
commonly faster than that between models from different
families. For example, as shown in Figure 11, for a model
in the VGG family, transforming from models in the VGG
family will be faster than from models in the other family.
Second, the latency of transformation between any two

models is asymmetric. In most cases, transforming from a
large model to a small one is faster than transforming from
a small model to a large one. It is because the former often
involves more meta-operators Reduce, meta-operators Add
for small new operations, and meta-operators Reshape to

1049

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Destination Model

1. ResNet18

2. ResNet50

3. ResNet101

4. VGG13

5. VGG16

6. VGG19

7. MobileNet

8. DenseNet121

9. DenseNet169

10. Xception

11. InceptionV3

12. BERT-Tiny

13. BERT-Mini

14. BERT-Small

15. BERT-Cased

16. BERT-Uncased

17. BERT-SC

18. BERT-TC

19. BERT-QA

20. BERT-NSP

21. BERT-MC

22. Empty

So
ur

ce
 M

od
el

0.06 0.71 1.50 0.72 0.76 0.80 0.29 3.45 4.97 0.84 1.39 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.27 0.11 1.34 0.77 0.81 0.85 0.33 3.41 4.86 0.72 1.26 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.27 0.55 0.20 0.74 0.79 0.83 0.32 3.21 4.63 0.82 1.08 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.32 0.81 1.58 0.50 0.64 0.71 0.35 3.54 4.96 0.93 1.45 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.30 0.79 1.55 0.58 0.50 0.68 0.33 3.52 4.94 0.90 1.43 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.28 0.77 1.53 0.59 0.62 0.52 0.32 3.53 5.03 0.89 1.41 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.27 0.75 1.54 0.72 0.76 0.83 0.04 3.53 4.99 0.85 1.46 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.32 0.69 1.30 0.76 0.83 0.88 0.36 0.20 3.23 0.85 1.17 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.35 0.75 1.42 0.79 0.85 0.91 0.40 2.00 0.27 0.92 1.31 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.24 0.59 1.42 0.73 0.76 0.80 0.24 3.41 4.83 0.13 1.32 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

0.28 0.60 1.22 0.74 0.78 0.83 0.33 3.19 4.63 0.83 0.15 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.02 0.22 0.31 1.07 1.05 1.09 1.08 1.19 1.09 1.08

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.09 0.04 0.17 0.98 0.94 0.99 0.98 0.99 0.97 0.98

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.12 0.15 0.08 0.98 0.91 0.95 0.97 1.05 0.98 0.97

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.12 0.17 0.20 0.24 0.22 0.26 0.26 0.26 0.25 0.25

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.12 0.17 0.20 0.28 0.22 0.27 0.28 0.28 0.29 0.27

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.12 0.16 0.18 0.24 0.22 0.24 0.24 0.24 0.24 0.24

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.11 0.16 0.19 0.23 0.22 0.22 0.23 0.24 0.24 0.24

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.11 0.16 0.18 0.24 0.21 0.24 0.24 0.23 0.23 0.24

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.10 0.16 0.18 0.25 0.22 0.25 0.23 0.24 0.24 0.24

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 0.11 0.15 0.17 0.26 0.21 0.22 0.23 0.23 0.22 0.23

1.57 2.07 2.87 1.91 2.01 2.06 1.59 5.06 6.85 2.20 2.76 2.44 2.57 2.72 3.52 3.44 3.42 3.43 3.43 3.43 3.48

Figure 11. Inter-function model transformation latency (in seconds) between 21 repre-
sentative models in Optimus. The element in the 𝑖-th row and 𝑖-th column denotes the
transformation between models 𝑖 with different weights. The element in the 𝑖-th row and
𝑗-th column denotes the transformation from model 𝑖 to model 𝑗 . The element in the 22-th
row and 𝑗-th column denotes loading model 𝑗 from scratch.

0 100 200 300 400 500
ID

0

2

4

6

Ti
m

e
(s

)

Max: 7.41

Min: 0.03

Avg: 1.47

(a) Transformation in Imgclsmob

0 100 200 300 400 500
ID

0.0

2.5

5.0

7.5

10.0

Ti
m

e
(s

)

Max: 10.5

Min: 1.35

Avg: 3.12

(b) Loading in Imgclsmob

0 100 200 300 400 500
ID

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

Max: 0.23

Min: 0.03

Avg: 0.08

(c) Transformation in NASBench

0 100 200 300 400 500
ID

1.2

1.4

1.6

Ti
m

e
(s

)

Max: 1.6

Min: 1.29

Avg: 1.45

(d) Loading in NASBench

Figure 12. Large-scale evalua-
tion on transformation latency
between models in Optimus.

scale down the operations. They often take less time than
other meta-operators, according to Figure 5c and Figure 8.

Third, the transformation between models with the same
structure but different weights costs the least time. This is be-
cause it only involves meta-operators Replace, the execution
of which is rapid according to Figure 8. Moreover, in some
cases, the latency of the inter-function model transformation
is the same as that of loading models from scratch due to
the safeguard mechanism in § 4.4. Particularly, the transfor-
mation between a CNN model and a transformer model is
always more costly than loading models from scratch; thus,
the safeguard mechanism chooses the latter.
Fourthly, we conduct a large-scale evaluation of the la-

tency of inter-function model transformation in Imgclsmob
and NASBench. Because of the space limit, we randomly pick
500 transformation cases from Imgclsmob and NASBench,
and their latency is shown in Figure 12a and Figure 12c, re-
spectively. We also randomly pick 500 cases loading models

from scratch in Imgclsmob and NASBench, and their latency
is shown in Figure 12b and Figure 12d, respectively. Accord-
ing to the results, the inter-function model transformation
can reduce the model loading latency by 52.88% and 94.48%
in Imgclasmob and NASBench, respectively.
Besides, the CPU consumption of the model transforma-

tion is negligible as Optimus reads the cached transformation
strategy directly (see § 4.4) without any online computation.
The IO consumption of Optimus is similar to that of tradi-
tional serverless ML platforms. This is because the model
parameters comprise a high percentage of the model size.
Thus, parameters loading, which our Optimus does not opti-
mize, still dominates the total IO consumption in Optimus.

8.3 Serverless ML Inference Latency

To evaluate the performance of Optimus for the workload
described in § 8.1, wemeasure the latency of serverlessML in-
ference requests in Optimus and the state-of-the-art works.

1050

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

Infrequent Middle Frequent Azure
0

1

2

3

4

In
fe

re
nc

e
La

te
nc

y
(s

)

OpenWhisk
Pagurus

Tetris
Optimus (Ours)

Figure 13. Average service time of serverless ML inference
requests under the Poisson and Azure workloads.

Infrequent Middle Frequent Azure
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) 0

OpenWhisk
Cold

Pagurus
Transformation

Tetris
Warm

Optimus (Ours)

Figure 14. Percentage of cold start, model transformation,
and warm start of serverless ML inference requests under
the Poisson and Azure workloads.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Latency (s)

3. ResNet50 to ResNet101

2. ResNet101 to ResNet50

1. ResNet50 to VGG19 Reshape
Add
Reduce
Replace
Edge0 1 2 3

1e−5

3
2
1

Figure 15. Latency proportion of varying meta-operators for
three inter-function model transformation cases in Optimus.

The latency of an ML inference request is the sum of ini-
tialization time, computation time, and wait time. Accord-
ing to Figure 13, Optimus reduces the inference latency by
24.00% ∼ 47.56% compared to the existing serverless ML
inference systems. Besides, the reason that the performance
of Pagurus is better than that of OpenWhisk is that it can
save the sandbox and runtime initialization latency. Figure 14
shows the percentages of cold startups under the Poisson
distribution and Azure Function. The idea of inter-function
container sharing adopted by Pagurus, Tetris, and our Opti-
mus replaces the cold start with container transformation,
thus reducing the cold start ratio.

8.4 Micro-benchmark

Figure 15 shows the proportion of varying meta-operators’
latency in three inter-function model transformation cases
in Optimus. According to the results, the proportion of
every type of meta-operator’s latency differs for different

Table 1. Latency of planning and execution for three inter-
function model transformation cases in Optimus.

Basic (Module 2) Improved (Module 2+)
Transformation case Planning Execution Planning Execution

VGG16 to VGG19 12.54s 0.60s 0.6ms 0.60s
VGG16 to ResNet50 171.33s 0.70s 1.1ms 0.72s
ResNet50 to VGG19 50.95s 0.72s 1.0ms 0.72s

Infrequent Middle Frequent Azure
0

2

4

6

8

10

In
fe

re
nc

e
La

te
nc

y
(s

)

OpenWhisk
Pagurus

Tetris
Optimus (Ours)

Figure 16. Average service time of serverless ML inference
requests in the servers with the support of GPU.

transformation cases. The transformation from ResNet50 to
ResNet101 involves more meta-operators Add since there are
more CONV operations in the latter. And the transformation
from ResNet101 to ResNet50 reuses the existing CONV oper-
ations; thus, it removes the redundant operations via meta-
operators Reduce and does not involve any meta-operators
Add. Moreover, the total latency of meta-operators Replace
in a transformation depends on the number of weights of
the destination model as shown in Figure 2c.
Table 1 shows the latency of planning and execution for

three inter-function model transformation cases in Optimus.
“Basic” denotes the basic algorithm based on Munkres algo-
rithm (i.e.,Module 2 in § 4.4) and “Improved” denotes the
improved algorithm (i.e., Module 2+ in § 4.4). As discussed
in § 4.4, the basic algorithm can achieve an optimal solution
but spends a long time on planning. The improved algorithm
for efficient transformation planning reduces the time cost
of planning by about 99.99% with a nearly optimal solution.
The above results exclude the overhead of downloading

images from remote registries since the images are pulled
from local registries or caches in our implementation as
described in § 7, incurring minimal costs. However, when a
new node joins the system, it needs to pull an image with a
size of 1.08 GB from remote registries at a time cost of about
8 seconds through a gigabit network.

8.5 GPU Support

Optimus is still effective for GPU inference, and we utilize
NVIDIA Container Toolkit [24] to enable containers to ac-
cess GPU. We evaluate the performance of Optimus in a
GPU-enabled server regarding the latency of serverless ML
inference requests. As shown in Figure 16, Optimus reduces
the inference latency by 26.93% ∼ 57.08% compared to the
existing systems. The reason that the inference latency in

1051

EuroSys ’24, April 22–25, 2024, Athens, Greece Zicong Hong and Jian Lin, et al.

the GPU-enabled server is longer than that in the CPU-only
server is the high overhead of GPU-related runtime initial-
ization and model loading in GPU.

9 Conclusion

We present Optimus, a new serverless ML inference system
with low cold-start overhead based on a novel idea of inter-
function model transformation. We implement a prototype
that supports serverless ML inference queries on CNN and
transformer models. The results show that Optimus reduces
the average service time by 24.00% ∼ 47.56% on a Poisson
simulated workload and a real workload from Azure com-
pared to the existing serverless ML inference systems. The
reason for the performance improvement is that our inter-
function model transformation reduces the model loading
latency in containers by up to 99.08% compared to loading
models from scratch in the existing systems.

Acknowledgments

This research was supported by funding from the Key-Area
Research and Development Program of Guangdong Province
(No. 2021B0101400003), Hong Kong RGC Research Impact
Fund (No. R5060-19, No. R5034-18), Areas of Excellence
Scheme (AoE/E-601/22-R), General Research Fund (No. 15220
3/20E, 152244/21E, 152169/22E, 152228/23E), Shenzhen Sci-
ence and Technology Innovation Commission (JCYJ20200109
142008673), the Pearl River Talent Recruitment Program (No.
2019QN01X130), the Major Key Project of PCL (PCL2023AS7-
1).We thank all anonymous reviewers and our shepherd, who
helped improve the paper.

References
[1] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Go-

har Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S. Berger,
and Rodrigo Fonseca. 2023. Palette Load Balancing: Locality Hints for
Serverless Functions. In Proceedings of the Eighteenth European Con-

ference on Computer Systems (EuroSys ’23). Association for Computing
Machinery.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In Proceedings of

the 2018 USENIX Conference on Usenix Annual Technical Conference

(Boston, MA, USA) (USENIX ATC ’18). USENIX Association, USA,
923–935.

[3] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020.
BATCH: Machine Learning Inference Serving on Serverless Platforms
with Adaptive Batching. In SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis. 1–15. https:
//doi.org/10.1109/SC41405.2020.00073

[4] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2022.
Optimizing Inference Serving on Serverless Platforms. Proc. VLDB
Endow. 15, 10 (jun 2022), 2071–2084. https://doi.org/10.14778/3547305.

3547313

[5] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg.
2023. Groundhog: Efficient Request Isolation in FaaS. In Proceedings

of the Eighteenth European Conference on Computer Systems (EuroSys

’23). Association for Computing Machinery.

[6] Azure. 2023. Azure Functions: Execute event-driven serverless code
functions with an end-to-end development experience. Retrieved
March 20, 2023 from https://azure.microsoft.com/en-us/products/

functions/

[7] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Ro-
drigues. 2023. With Great Freedom Comes Great Opportunity: Re-
thinking Resource Allocation for Serverless Functions. In Proceedings

of the Eighteenth European Conference on Computer Systems (EuroSys

’23). Association for Computing Machinery.
[8] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander

Slominski. 2019. The Rise of Serverless Computing. Commun. ACM

62, 12 (nov 2019), 44–54. https://doi.org/10.1145/3368454

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL]

[10] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the
Scope of Reproducible Neural Architecture Search. In International

Conference on Learning Representations (ICLR). https://openreview.

net/forum?id=HJxyZkBKDr

[11] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing
Machinery, New York, NY, USA, 467–481. https://doi.org/10.1145/

3373376.3378512

[12] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping
Serverless Computing Alive with Greedy-Dual Caching. In Proceedings
of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (Virtual, USA)
(ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA, 386–400. https://doi.org/10.1145/3445814.3446757

[13] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo,
Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui
Yang, Yiman Zhang, and Dacheng Tao. 2023. A Survey on Vision Trans-
former. IEEE Transactions on Pattern Analysis and Machine Intelligence

45, 1 (2023), 87–110. https://doi.org/10.1109/TPAMI.2022.3152247

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[15] HuggingFace. 2021. HuggingFace Model Hub. Retrieved March 20,
2023 from https://huggingface.co/models?sort=downloads

[16] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019.
Formal Foundations of Serverless Computing. Proc. ACM Program.

Lang. 3, OOPSLA, Article 149 (oct 2019), 26 pages. https://doi.org/10.

1145/3360575

[17] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and Mosharaf Chowdhury.
2023. ModelKeeper: Accelerating DNN Training via Automated Train-
ing Warmup. In 20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23). USENIX Association, Boston, MA, 769–
785. https://www.usenix.org/conference/nsdi23/presentation/lai-fan

[18] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022.
Tetris: Memory-efficient Serverless Inference through Tensor Sharing.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX
Association, Carlsbad, CA. https://www.usenix.org/conference/atc22/

presentation/li-jie

[19] Yuepeng Li, Deze Zeng, Lin Gu, Mingwei Ou, and Quan Chen. 2023.
On Efficient Zygote Container Planning toward Fast Function Startup
in Serverless Edge Cloud. In IEEE INFOCOM 2023 - IEEE Conference on

Computer Communications. 1–9.
[20] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze

Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo.
2022. Help Rather Than Recycle: Alleviating Cold Startup in Server-
less Computing Through Inter-Function Container Sharing. In 2022

1052

Optimus: Warming Serverless ML Inference via Inter-Function Model Transformation EuroSys ’24, April 22–25, 2024, Athens, Greece

USENIX Annual Technical Conference (USENIX ATC 22). USENIX As-
sociation, Carlsbad, CA, 69–84. https://www.usenix.org/conference/

atc22/presentation/li-zijun-help

[21] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bingsheng He, and
Minyi Guo. 2022. The Serverless Computing Survey: A Technical
Primer for Design Architecture. ACM Comput. Surv. 54, 10s, Article
220 (sep 2022), 34 pages. https://doi.org/10.1145/3508360

[22] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In 11th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 19). USENIX Association, Renton, WA. https:

//www.usenix.org/conference/hotcloud19/presentation/mohan

[23] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:
Interactive Data Analytics on Cold Data Using Serverless Cloud In-
frastructure. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 115–130.
https://doi.org/10.1145/3318464.3389758

[24] NVIDIA. 2023. NVIDIA Container Toolkit. Retrieved March 20, 2023
from https://github.com/NVIDIA/nvidia-docker

[25] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical

Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
USA, 57–69.

[26] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel
Madden. 2020. Starling: A Scalable Query Engine on Cloud Functions.
In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 131–141. https://doi.

org/10.1145/3318464.3380609

[27] Google Cloud Platform. 2021. Machine Learning on Google Cloud
Platform. Retrieved March 20, 2023 from https://github.com/

GoogleCloudPlatform/ml-on-gcp

[28] Bartłomiej Przybylski, Maciej Pawlik, Paweł Zuk, Bartłomiej Łagosz,
Maciej Malawski, and Krzysztof Rzadca. 2022. Using Unused: Non-
Invasive Dynamic FaaS Infrastructure with HPC-Whisk. In Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press,
Article 40, 15 pages.

[29] Bartłomiej Przybylski, Maciej Pawlik, Paweł Zuk, Bartłomiej Łagosz,
Maciej Malawski, and Krzysztof Rzadca. 2022. Using Unused: Non-
Invasive Dynamic FaaS Infrastructure with HPC-Whisk. In Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press,
Article 40, 15 pages.

[30] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.

usenix.org/conference/nsdi19/presentation/pu

[31] Kaspar Riesen andHorst Bunke. 2009. Approximate graph edit distance
computation by means of bipartite graph matching. Image and Vision

computing 27, 7 (2009), 950–959.
[32] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:

Warming Serverless Functions Better with Heterogeneity. In Proceed-

ings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 753–767. https://doi.org/10.1145/3503222.3507750

[33] Amazon Web Services. 2022. Machine learning inference at
scale using AWS serverless. Retrieved March 20, 2023
from https://aws.amazon.com/cn/blogs/machine-learning/machine-

learning-inference-at-scale-using-aws-serverless/

[34] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Server-
less Computing: A Survey of Opportunities, Challenges, and Appli-
cations. ACM Comput. Surv. 54, 11s, Article 239 (nov 2022), 32 pages.
https://doi.org/10.1145/3510611

[35] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX Conference on Usenix

Annual Technical Conference (USENIX ATC’20). USENIX Association,
USA, Article 14, 14 pages.

[36] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[37] Oleg Sémery. 2021. Sandbox for training deep learning networks.
Retrieved March 20, 2023 from https://github.com/osmr/imgclsmob

[38] TensorFlow. 2022. Save and load Keras models. Retrieved March 20,
2023 from https://www.tensorflow.org/guide/keras/save_and_serialize

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-

cessing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[40] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 133–146. https://www.usenix.org/

conference/atc18/presentation/wang-liang

[41] Yuncheng Wu, Tien Tuan Anh Dinh, Guoyu Hu, Meihui Zhang,
Yeow Meng Chee, and Beng Chin Ooi. 2022. Serverless Data Science -
Are We There Yet? A Case Study of Model Serving. In Proceedings of

the 2022 International Conference on Management of Data (Philadelphia,
PA, USA) (SIGMOD ’22). Association for Computing Machinery, New
York, NY, USA, 1866–1875. https://doi.org/10.1145/3514221.3517905

[42] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless
System for Low-Latency, High-Throughput Inference. In Proceedings

of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 768–781. https://doi.org/10.1145/3503222.3507709

[43] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In 2019 USENIX Annual Technical Con-

ference (USENIX ATC 19). USENIX Association, Renton, WA, 1049–
1062. https://www.usenix.org/conference/atc19/presentation/zhang-

chengliang

[44] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo
Fonseca, Sameh Elnikety, Christina Delimitrou, and Ricardo
Bianchini. 2021. Faster and Cheaper Serverless Computing
on Harvested Resources. In Proceedings of the International

Symposium on Operating Systems Principles (SOSP). ACM.
https://www.microsoft.com/en-us/research/publication/faster-

and-cheaper-serverless-computing-on-harvested-resources/

,

1053

