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Abstract16

We investigate the problem of Min-cost Perfect Matching with Delays (MPMD) in which requests17

are pairwise matched in an online fashion with the objective to minimize the sum of space cost18

and time cost. Though linear-MPMD (i.e., time cost is linear in delay) has been thoroughly19

studied in the literature, it does not well model impatient requests that are common in practice.20

Thus, we propose convex-MPMD where time cost functions are convex, capturing the situation21

where time cost increases faster and faster. Since the existing algorithms for linear-MPMD are22

not competitive any more, we devise a new deterministic algorithm for convex-MPMD problems.23

For a large class of convex time cost functions, our algorithm achieves a competitive ratio of O(k)24

on any k-point uniform metric space. Moreover, our deterministic algorithm is asymptotically25

optimal, which uncover a substantial difference between convex-MPMD and linear-MPMD which26

allows a deterministic algorithm with constant competitive ratio on any uniform metric space.27
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1 Introduction32

Online matching has been studied frantically in the last years. Emek et al. [10] started33

the renaissance by introducing delays and optimizing the trade-off between timeliness and34

quality of the matching. This new paradigm leads to the problem of Min-cost Perfect35

Matching with Delays (MPMD for short), where requests arrive in an online fashion and36

need to be matched with one another up to delays. Any solution experiences two kinds of37

costs or penalty. One is for quality: Matching two requests of different types incurs cost38

as such do not match well, while requests of the same type should be matched for free.39

The other is for timeliness: Delay in matching a request causes a cost that is an increasing40

function, called the time cost function, of the waiting time. The overall objective is to41

minimize the sum of the two kinds of costs.42
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Tractable in theory and fascinating in practice, the MPMD problem has attracted more43

and more attention and inspired an increasing volume of literature [10, 11, 4, 3, 2]. However,44

these existing work in this line only studied linear time cost function, meaning that penalty45

grows at a constant rate no matter how long the delay is. This sharply contrasts to much of46

our real-life experience. Just imagine a dinner guest: waiting a short time is no problem – but47

eventually, every additional minute becomes more annoying than ever. The discontentment48

is experiencing convex growth, an omnipresent concept in biology, physics, engineering, or49

economics.50

Actually, such convex growth of discontentment appears in various real-life scenarios of51

online matching. For instance, online game platforms often have to match pairs of players52

before starting a game (consider chess as an example). Players at the same, or at least53

similar, level of skills should be paired up so as to make a balanced game possible. Then54

it would be better to delay matching a player in case of no ideal candidate of opponents.55

Usually it is acceptable that a player waits for a short time, but a long delay may be more56

and more frustrating and even make players reluctant to join the platform again. Another57

example appears in organ transplantation: An organ transplantation recipient may be able58

to wait a bit, but waiting an extended time will heavily affect its health. One may think that59

organ transplantation would be better modeled by bipartite matching rather than regular60

matching as considered in this paper; however, organ-recipients and -donors usually come in61

incompatible pairs that will be matched with other pairs, e.g., two-way kidney exchange1.62

More real-life examples include ride sharing (match two customers), joint lease (match two63

roommates), just mention a few.64

On this ground, we study the convex-MPMD problem, i.e., the MPMD problem with65

convex time cost functions. To the best of our knowledge, this is the first work on online66

matching with non-linear time cost.67

Convexity of the time cost poses special challenges to the MPMD problem. An important68

technique in solving linear-MPMD, namely, MPMD with linear time cost function, is to69

minimize the total costs while sacrifice some requests by possibly delaying them for a long70

period (see, e.g., the algorithms in [4, 11, 2]). Because the time cost increases at a constant71

rate, it is the total waiting time, rather than waiting time of individual requests, that is of72

interest. Hence, keeping a request waiting is not too harmful. The case of convex time costs73

is completely different, since we cannot afford anymore to delay old unmatched requests, as74

their time costs grow faster and faster. Instead, early requests must be matched early. For75

this reason, existing algorithms for the linear-MPMD problem do not work any more for76

convex-MPMD, as confirmed by examples in Section 4.77

In this paper, we devise a novel algorithm A for the convex-MPMD problem which is78

deterministic and solves the problem optimally. More importantly, our results disclose a79

separation: the convex-MPMD problem, even when the cost function is just a little different80

from linear, is strictly harder than its linear counterpart. Specifically, our main results are81

as follows, where f -MPMD stands for the MPMD problem with time cost function f :82

I Theorem 1. For any f(t) = tα with α > 1, the competitive ratio of A for f -MPMD on83

k-point uniform metric space is O(k).84

One may wonder whether the result in Theorem 1 can be further improved because of85

the known result:86

1 https://www.hopkinsmedicine.org/transplant/programs/kidney/incompatible/paired_kidney_
exchange.html

https://www.hopkinsmedicine.org/transplant/programs/kidney/incompatible/paired_kidney_exchange.html
https://www.hopkinsmedicine.org/transplant/programs/kidney/incompatible/paired_kidney_exchange.html
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I Theorem 2 ([4, 2]). There exists a deterministic online algorithm that solves linear-87

MPMD on uniform metrics and reaches an O(1) competitive ratio.88

However, we can show that for a large family of functions f : R+ → R+, the f -MPMD89

problem has no deterministic algorithms of competitive ratio o(k).90

I Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, con-91

tinuous and satisfies f(0) = f ′(0) = 0. Then any deterministic algorithm for f -MPMD on92

k-point uniform metric space has competitive ratio Ω(k).93

Numerous natural convex functions over the domain of nonnegative real numbers satisfy94

the conditions of Theorem 3. Examples include monomial f(t) = tα with α > 1, f(t) =95

eαt−αt−1 with α > 1, and so on. This, together with Theorem 1, establishes the optimality96

of our deterministic algorithm. Note that family of functions satisfying the conditions of97

Theorem 3 is closed under multiplication and linear combination where the coefficients are98

positive. Hence, Theorem 3 is of general significance.99

2 Related Work100

Matching has became one of the most extensively studied problems in graph theory and101

computer science since the seminal work of Edmonds [9, 8]. Karp et al. [15] studied the102

matching problem in the context of online computation which inspired a number of different103

versions of online matching, e.g., [13, 16, 18, 19, 6, 12, 1, 7, 17, 20, 21]. In these online104

matching problems, underlying graphs are assumed bipartite and requests of one side are105

given in advance.106

A matching problem where all requests arrive in an online manner was introduced by107

[10]. This paper also introduced the idea that requests are allowed to be matched with delays108

that need to be paid as well, so the problem is called Min-cost Perfect Matching with Delays109

(MPMD). They presented a randomized algorithm with competitive ratio O(log2 k+ log ∆)110

where k is the size of the underlying metric space known before the execution and ∆ is111

the aspect ratio. Later, Azar et al. [4] proposed an almost-deterministic algorithm with112

competitive ratio O(log k). Ashlagi et al. [2] analyzed Emek et al.’s algorithm in a simplified113

way, and improved its competitive ratio to O(log k). They also extended these algorithms114

to bipartite matching with delays (MBPMD). The best known lower bound for MPMD is115

Ω(log k/ log log k) and MBPMD Ω(
√

log k/ log log k) [2]. In contrast to our work, all these116

papers assume that the time cost of a request is linear in its waiting time.117

In contrast to this previous work, we focus on the uniform metric, i.e., the distance118

between any two points is the same. While this is only a special case, it is an important one.119

In the existing linear-MPMD algorithms, a common step is to first embed a general metric to120

a probabilistic hierarchical separated tree (HST), which is actually an offline approach, and121

then design an online algorithm on the HST metric. The online algorithms on HST metrics122

are essentially algorithms on uniform metrics (or aspect-ratio-bounded metrics which can123

also be handled by our results) because every level of an HST can be considered as a uniform124

metric. Uniform metrics are known to be tricky, e.g., Emek et al. [11] study linear-MPMD125

with only two points. Uniform metrics also play an important role in the field of online126

computation [14]. For example, the k-server problem restricted to uniform metrics is the127

well-known paging problem.128

The idea of delaying decisions has been around for a long time in the form of rent-or-buy129

problems (most prominently: ski rental), but [10] showed how to use delays in the context130

of combinatorial problems such as matching. In the classical ski rental problem [14], one131
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can also consider the variation that the renting cost rate (to simplify our disucssion, let’s132

consider the continuous case) may change over time. If the purchase price is a constant, the133

renting cost rate function does not change the competitive ratio since a good deterministic134

online algorithm is always to buy it when the renting fee is equal to the purchase price.135

Azar et al. [5] considered online service with delay, which generalizes the k-server prob-136

lem. As mentioned in their paper, delay penalty functions are not restricted to be linear137

and even different requests can have different penalty functions. However, different delay138

penalty functions there do not make the service with delay problem much different, and139

there is a universal way to deal with these different, unlike the online matching problems.140

3 Preliminaries141

In this section, we formulate the problem and introduce notation.142

3.1 Problem Statement143

Let R+ stands for the set of nonnegative real numbers.144

A metric space S = (V, µ) is a set V , whose members are called points, equipped with a145

distance function µ : V 2 → R+ which satisfies146

Positive definite: µ(x, y) ≥ 0 for any x, y ∈ V , and “=” holds if and only if x = y;147

Symmetrical: µ(x, y) = µ(y, x) for any x, y ∈ V ;148

Subadditive: µ(x, y) + µ(y, z) ≥ µ(x, z) for any x, y, z ∈ V .149

Given a function f : R+ → R+, the problem f -MPMD is defined as follows, and f is150

called the time cost function.151

For any finite metric space S = (V, µ), an online input instance over S is a set R of152

requests, with any ρ ∈ R characterized by its location `(ρ) ∈ V and arrival time t(ρ) ∈ R+.153

Each request ρ is revealed exactly at time t(ρ). Assume that |R| is an even number. The154

goal is to construct a perfect matching, i.e. a partition into pairs, of the requests in real155

time without preemption.156

Suppose an algorithm A matches ρ, ρ′ ∈ R at time T . It pays the space cost µ(`(ρ), `(ρ′))157

and the time cost f(T − t(ρ)) + f(T − t(ρ′)). The space cost of A on input R, denoted by158

costsA(R), is the total space cost caused by all the matched pairs, and the time cost costtA(R)159

is defined likewise. The objective of the f -MPMD is to find an online algorithm A such that160

costA(R) = costsA(R) + costtA(R) is minimized for all R.161

As usual, the online algorithm A is evaluated through competitive analysis. Let A∗ be162

an optimum offline algorithm2. For any finite metric space S, if there are a, b ∈ R+ such163

that costA(R) ≤ costA∗(R)a+ b for any online input instance R over S, then A is said to be164

a-competitive on S. The minimum such a is called the competitive ratio of A on S. Note165

that both a and b can depend on S.166

This paper will focus on monomial time cost functions f(t) = tα, α > 1 and uniform167

metric spaces. A metric space (V, µ) is called δ-uniform if µ(u, v) = δ for any u, v ∈ V .168

3.2 Notations and Terminologies169

Any pair of requests ρ, ρ′ in the perfect matching is called a match between ρ and ρ′ and170

denoted by 〈ρ, ρ′〉 or 〈ρ′, ρ〉 interchangeably. A match 〈ρ, ρ′〉 is said to be external if `(ρ) 6=171

2 An offline algorithm knows the whole input instance at the beginning and outputs any pair ρ, ρ′ ∈ R
at time max{t(ρ), t(ρ′)}.
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Figure 1 The input instance of Example 4. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy I, while (b) is an offline solution.

`(ρ′), and internal otherwise. For any request ρ, let T (ρ) be the time when ρ is matched; ρ172

is said to be pending at any time t ∈ (t(ρ), T (ρ)) and active at any time t ∈ [t(ρ), T (ρ)]. At173

any moment t, a point v ∈ V is called aligned if the number of pending requests at v under174

A and that under A∗ have the same parity, and misaligned otherwise. The derivative of any175

differentiable function f : R+ → R+ is denoted by f ′.176

4 Algorithm and Analysis177

4.1 Basic Ideas178

A natural idea to solve f -MPMD is to prioritize internal matches and to create an external179

match only if both requests have waited long enough (say, as long as θ). However, for180

any monomial time cost function f(t) = tα, α > 1, the strategy (called Strategy I) is not181

competitive, as illustrated in Example 4.182

I Example 4. For any positive integer n and small real number ε > 0, construct an online183

instance as follows. A request ρ2i arrives at u at time i · θ for any 0 ≤ i ≤ n, while a request184

ρ2i−1 arrives at u at time i · θ − ε for any 1 ≤ i ≤ n. Point v gets a request ρ′ at time 0.185

By Strategy I, as in Figure 1(a), each ρ2i is matched with ρ2i+1 for any 0 ≤ i < n, and186

ρ′ and ρ2n are matched, causing cost at least n · f(θ − ε) + f(nθ) + δ. Consider the offline187

solution consisting of 〈ρ′, ρ0〉 and 〈ρ2i−1, ρ2i〉 for 1 ≤ i ≤ n, , as in Figure 1(b), which has cost188

δ+n·f(ε). When n approaches infinity and ε approaches 0, n·f(θ−ε)+f(nθ)+δ � δ+n·f(ε),189

meaning that Strategy I is not competitive.190

A plausible way to improve Strategy I is to accumulate the time costs of all the co-located191

requests which arrive after the last external match involving the point, and to enable an192

external match if both points have accumulated enough costs (say, as large as θ). Though193

applicable to the scenario in Example 4, this improvement (called Strategy II) remains not194

competitive for any time cost function f(t) = tα, α > 1, as shown in the next example.195

I Example 5. Again, consider two points u, v of distance δ. Arbitrarily fix an even integer196

n > 0 and a small real number ε > 0. Arbitrarily choose τ ∈ R+ such that θ−ε < n
2 f(τ) < θ.197

Suppose that a request ρ′ arrives at v at time 0, while a request ρi arrives at u at time iτ for198

any 0 ≤ i ≤ n. Hence there are totally n+2 requests. As illustrated in Figure 2(a), applying199

Strategy II results in the matches 〈ρ′, ρn〉 and 〈ρi, ρi+1〉 for any even number 0 ≤ i < n,200

causing cost at least n
2 f(τ) + f(nτ) + δ. On the other hand, consider the offline solution201

〈ρ′, ρ0〉 and 〈ρi, ρi+1〉 for any odd number 0 < i < n, as shown in Figure 2(b). It has cost202

n
2 f(τ) + δ. Thus the cost of A∗ is at most n

2 f(τ) + δ. When n approaches infinity and ε203

approaches 0, we have n
2 f(τ) + f(nτ) + δ � n

2 f(τ) + δ, implying that Strategy II is not204

competitive.205
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Figure 2 The input instance of Example 5. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy II, while (b) is an offline solution.

Figure 3 The input instance of Example 6. A blue dot stands for a request, an area surrounded
by dash lines stands for a part of the instance, and a thick line or curve for a match. (a) is the
matching produced by Strategy III, while (b) is an offline solution.

Since the trouble may be rooted at the double-counter-enabling mechanism, we further206

improve the strategy by enabling an external match if one of the two points has high ac-207

cumulated cost (say, as high as θ). This improvement (called Strategy III) defeats both208

Examples 4 and 5, but the following example shows that it remains not competitive for any209

monomial time cost function f(t) = tα, α > 1.210

I Example 6. Choose τ ∈ R+ and odd integer n > 0 such that f(nτ) = θ. Arbitrarily211

choose real number T0 > f−1(θ). Consider a uniform metric space S = ({u, v, w}, δ). Let212

m > 0 be an arbitrary integer. Construct an online input instance R which is the union of213

m+ 1 parts R0, · · · , Rm, as illustrated in Figure 3.214

The part R0 has 5n+ 3 requests. Specifically, u receives a request ρu0,−1 at time 0, ρu0,0215

at time T0, and ρu0,i at time T0 + (n + i)τ for any 1 ≤ i ≤ 2n. v receives a request ρv0,i at216

time T0 + iτ for any 1 ≤ i ≤ 2n. w receives a request ρw0,−1 at time 0 and a request ρw0,n+i at217

time T0 + iτ for any 1 ≤ i ≤ n. Let T1 = T0 + (2n+ 1)τ, Tj = Tj−1 + 3nτ for any 2 ≤ j ≤ m.218

For any 1 ≤ j ≤ m, the part Rj has 6n requests as follows: ρuj,i arrives at u at time219

Tj + (2n+ i− 1)τ , ρvj,i arrives at v at time Tj + (n+ i− 1)τ , and ρwj,i arrives at w at time220

Tj + (i− 1)τ , for every 1 ≤ i ≤ 2n.221

Actually, we can very slightly perturb the arrival time of some requests so that Strategy222

III results in exactly the following external matches: 〈ρu0,−1, ρ
w
0,−1〉, 〈ρu0,0, ρv0,n〉, 〈ρuj,n, ρwj,2n〉223

for 1 ≤ j ≤ m, 〈ρui,2n, ρvi+1,n〉 and 〈ρvi,2n, ρwi+1,n〉 for 1 ≤ i < m, and 〈ρum,2n, ρvm,2n〉, as224
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illustrated in Figure 3(a). The cost of Strategy III is at least 3m(δ+ θ). On the other hand,225

consider the offline solution SOL which has no external matches, as indicated in Figure 3(b).226

It has cost at most 2f(T0 + τ) + 6mn+5n−1
2 f(τ). When τ approaches zero and m approaches227

infinity, we have 3m(δ+ θ)� 2f(T0 + τ) + 6mn+5n−1
2 f(τ), implying that Strategy III is not228

competitive.229

Let’s look closer at the example. Consider an arbitrary (except the first) external match230

〈ρ, ρ′〉 of Strategy III. It is of misaligned-aligned pattern in the sense that `(ρ) and `(ρ′)231

have opposite alignment status when the match occurs. Suppose `(ρ) is misaligned. Then232

it has accumulated high cost, mainly due to the long delay of ρ. On the contrary, SOL233

has accumulated little cost at `(ρ), because SOL has no pending request there while ρ is234

pending. Hence, a match of misaligned-aligned pattern can significantly enlarge the gap235

between online/offline costs. To be worse, such a match does not change the number of236

aligned/misaligned points, making it possible that this pattern appears again and again,237

enlarging the gap infinitely. As a result, we establish a set which consists of points that are238

likely to be misaligned, and prioritize matching those requests that are located outside the239

set. The algorithm is described in detail as follows.240

4.2 Algorithm Description241

Our algorithm maintains a subset Ψ ⊆ V and a counter zv ∈ R+, which is initially set to242

0, for every point v ∈ V . The algorithm proceeds round by round, and Ψ is reset to be243

the empty set ∅ at the beginning of each round. The first round begins when the algorithm244

starts. Let k = |V |. Whenever 2k external matches are output, the present round ends245

immediately and the next one begins. At any time t, the following operations are performed246

exhaustively, i.e., until there is no possible matching according to the following rules.247

1. Every zv increases at rate f ′(t− t0) if there is an active request ρ at v with t(ρ) = t0.248

2. Match any pair of active requests ρ and ρ′ if `(ρ) = `(ρ′).249

3. For any pair of active requests ρ, ρ′ with u , `(ρ) 6= v , `(ρ′), match them and reset250

zu = zv = 0 if there is x ∈ {u, v} satisfying251

a. zx ≥ 2δ, or252

b. δ ≤ zx < 2δ and {u, v}
⋂

Ψ = ∅.253

Arbitrarily choose such an x ∈ {u, v}, and we say that x initiates this match. Reset Ψ254

to be (Ψ \ {u, v})
⋃
{x} if either u /∈ Ψ or v /∈ Ψ.255

Priority rule: in applying Operation 3, the requests located outside Ψ are prioritized.256

4.3 Competitive Analysis257

Throughout this subsection, arbitrarily fix a time cost function f(t) = tα with α > 1, a258

uniform metric space S = (V, δ) of k points, and an arbitrary online input instance R over259

S. For ease of presentation, we assume that the arrival times of the requests are pairwise260

different. This assumption does not lose generality since the arrival times can be arbitrarily261

perturbed and timing in practice is up to errors. Let A stands for our algorithm and262

A∗ for an optimum offline algorithm solving f -MPMD. We start competitive analysis by263

introducing notation.264
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4.3.1 Notations265

For any request ρ ∈ R and subset I ⊆ R+ of time, the time cost of A∗ incurred by ρ during
I is defined to be

Ctime(ρ, I,A∗) =
∫

(t(ρ),T∗(ρ)]
⋂
I

f ′(t− t(ρ))dt,

where T ∗(ρ) is the time when ρ gets matched by A∗. For any v ∈ V , define

Ctime(v, I,A∗) =
∑

ρ∈R,`(ρ)=v

Ctime(ρ, I,A∗).

Let Cspace(v, I,A∗) be δ
2 times the number of requests at v that are externally matched by266

A∗ during I.267

Define Γ = {t ∈ R+ : at time t,A has a pending request ρ with z`(ρ) > 2δ}. We will268

analyze time cost of A∗ inside and outside Γ separately.269

Our algorithm A runs round by round. Specifically, the round starting at time t0 and270

ending at time t1 is referred to as the time period (t0, t1]. Let Π be the set of rounds of A.271

For any π ∈ Π, define round_costtime(π,A∗) =
∑
v∈V Ctime(v, π \ Γ,A∗) which stands272

for the time cost of A∗ during π \ Γ, and round_costspace(π,A∗) =
∑
v∈V Cspace(v, π,A∗)273

which is the space cost of A∗ during π.274

For any v ∈ V , we divide time into phases based on A’s behavior as follows. The first275

phase begins at time t = 0. Whenever an external match involving v occurs, the current276

phase of v ends and the next phase of v begins. Specifically, the phase of v starting at277

time t0 and ending at time t1 is referred to as the period (t0, t1] spent by v. For any278

v ∈ V , let Φv be the set of phases of v, and Φ =
⋃
v∈V Φv. For any φ ∈ Φv, define279

the value of φ, denoted by σ(φ), to be the value of zv at the end of φ. For an external280

match m of A initiated by v, the phase of v ending with m is called the phase of m, de-281

noted by φm. For any round π ∈ Π, let Φπ be the set of phases ending in π. For any282

round π ∈ Π, define phase_costtime(π,A∗) =
∑
v∈V

∑
φ∈Φπ

⋂
Φv Ctime(v, φ \ Γ,A∗), and283

phase_costspace(π,A∗) =
∑
v∈V

∑
φ∈Φπ

⋂
Φv Cspace(v, φ,A

∗).284

We say that a phase of v is good, if the alignment status of v does not change during the285

phase. Furthermore, a round π is good if all the phases in Φπ are good. A phase or a round286

is said to be bad if it is not good.287

A phase is called complete if it ends with an external match of A, while a round is288

complete if A outputs 2k external matches during it. Obviously, any round other than the289

final one is complete.290

4.3.2 Competitive Ratio of Our Algorithm291

Basically, we show that in every round, the incremental cost of A and that of A∗ do not292

differ too much. This is reduced to two tasks. First, if all the counters are always small293

(say, no more than 4δ), the incremental cost of A in every round is O(kd), so it suffices to294

show that the cost of A∗ increases by Ω(d). This is the main task of this subsection and295

presented in Lemma 8. Second, to deal with the case that some counter zv is large, we have296

to show that the accumulated cost of A∗ in the phase increases nearly proportionately with297

zv, as claimed in Lemma 9.298

The following is a key lemma, stating that in every good complete round of A, the cost299

of the optimum offline algorithm A∗ is not small.300

I Lemma 7. In every good complete round π, we have either round_costtime(π,A∗) ≥301

f(f−1(2δ)− f−1(δ)), or round_costspace(π,A∗) ≥ δ, or phase_costtime(π,A∗) ≥ δ.302
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Up to now, we have focused on good rounds. The next lemma indicates that the cost of303

A∗ in bad rounds can be ignored in some sense.304

I Lemma 8. The number of bad rounds of A is at most twice the number of external matches305

of A∗.306

For any phase φ ∈ Φ, define its truncated value to be

σ′(φ) =
{

0 if σ(φ) ≤ 2δ
f(f−1(σ(φ))− f−1(2δ)) otherwise

.

We will use truncated phase values to give a lower bound of the time cost of A∗.307

I Lemma 9. costtA∗(R) ≥
∑
π∈Π phase_costtime(π,A∗) +

∑
φ∈Φ σ

′(φ).308

The following technical lemmas will be needed.309

I Lemma 10. For any c1, · · · , cn ≥ c0 > c > 0 and α > 1, we have∑n
j=1(cj − c)∑n

j=1( α
√
cj − α

√
c)α
≤ c0 − c

( α
√
c0 − α

√
c)α

.

I Lemma 11. If A has only one round on the instance R, costA(R)/costA∗(R) = O(k).310

Now we are ready to prove the main result.311

I Theorem 1. For any f(t) = tα with α > 1, the competitive ratio of A for f -MPMD on312

k-point uniform metric space is O(k).313

Proof. Suppose that A has m rounds on the online input instance R, namely |Π| = m. By314

Lemma 11, we assume that m > 1.315

In every round, there are at most 2k external matches and each of them ends two316

complete phases. So, there are altogether at most 4km complete phases. Considering that317

there are totally at most k incomplete phases, |Φ| ≤ (4m + 1)k ≤ 5mk. Let Φ′ = {φ ∈318

Φ : σ(φ) ≥ 4δ}. It holds that costA(R) = costsA(R) + costtA(R) ≤ 2kmδ +
∑
φ∈Φ σ(φ) ≤319

22kmδ +
∑
φ∈Φ′(σ(φ)− 4δ) ≤ 22kmδ +

∑
φ∈Φ′(σ(φ)− 2δ).320

On the other hand, as to the cost of A∗, we have costA∗(R) = costsA∗(R) + costtA∗(R) ≥321

costsA∗(R)+
∑
π∈Π phase_costtime(π,A∗)+

∑
φ∈Φ σ

′(φ) by Lemma 9. Trivially we also have322

costA∗(R) ≥
∑
π∈Π[round_costtime(π,A∗) + round_costspace(π,A∗)]. Let Π′ be the set of323

good complete rounds and m′ = |Π′|. Let m′′ be the number of bad rounds. An easy324

observation is that m′ +m′′ ≥ m− 1. By Lemma 8, A∗ has at least m′′

2 external matches.325

Hence,326

2costA∗(R) ≥ costsA∗(R) +
∑
π∈Π phase_costtime(π,A∗) +

∑
φ∈Φ σ

′(φ)
+

∑
π∈Π[round_costtime(π,A∗) + round_costspace(π,A∗)]

≥ m′′

2 δ +
∑
φ∈Φ σ

′(φ) +
∑
π∈Π′ [phase_costtime(π,A∗)

+round_costtime(π,A∗) + round_costspace(π,A∗)]
≥ m′′

2 δ +
∑
φ∈Φ σ

′(φ) + f(f−1(2δ)− f−1(δ))m′
≥ m−1

2 ( α
√

2− 1)αδ +
∑
φ∈Φ′ σ

′(φ)

327

where the third equality is due to Lemma 7.328

Altogether, costA(R)
costA∗ (R) ≤

22kmδ+
∑

φ∈Φ′
(σ(φ)−2δ)

m−1
4 ( α
√

2−1)αδ+ 1
2

∑
φ∈Φ′

σ′(φ)
, which is O(k) by Lemma 10. J329
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5 Lower Bound for Deterministic Algorithms330

This section is devoted to showing that any deterministic algorithm for the convex-MPMD331

problem on k-point uniform metric space must have competitive ratio Ω(k), meaning that332

our algorithm is optimum, up to a constant factor.333

Let’s begin with a convention of notation. Let f : R+ 7→ R+ be a nondecreasing,334

unbounded, continuous function satisfying f(0) = f ′(0) = 0. Let S = (V, δ) be a uniform335

metric space with V = {v0, v1, ...vk}. Suppose that A is an arbitrary deterministic online336

algorithm for the f -MPMD problem. Let T ∈ R+ be such that f(T ) = kδ. Arbitrarily337

choose a real number τ > 0 such that n = T
τ is an even number.338

We construct an instance R of online input to A and show that the competitive ratio of339

A is at least Ω(k). The instance R is determined in an online fashion: Roughly speaking,340

based on the up-to-now behavior of A, we choose when and where to input next requests so341

as to force A to have many external matches.342

Specifically, R is determined in m round, where m is an arbitrary positive integer. The343

first round begins at time T1 = 0. Some requests arrive in the manner as described in the344

next four paragraphs. At arbitrary time T2 after these requests are all matched, finish the345

first round and start the second round. Repeat this process until we have finished m rounds.346

All the requests form the instance R.347

Now we describe the requests that arrive during the rth round, namely in the interval348

[Tr, Tr+1), for any 1 ≤ r ≤ m. Basically, at v0 there is just one request, denoted by ρ00,349

which arrives at time Tr, while a request ρij arrives at every point vi at time Tr + jτ , for350

any integers 1 ≤ i ≤ k and j ≥ 1. We will iteratively specify when requests should stop351

arriving at the points other than v0.352

Define G0 = (V, ∅) to be the graph on V with no edges. Let C0 = {v0}.353

Starting with h = 1, iterate the following process until no more requests will arrive.354

At time Tr + hT , construct an undirected graph Gh on V . It has an edge between any355

pair of vertices vi 6= vi′ if and only if by time Tr +hT , A has matched one request at vi and356

another at vi′ both of which arrived during the period [Tr, Tr + hT ]. Let Ch be the set of357

the vertices in the connected component of Gh containing v0. We proceed case by case:358

Case 1: Ch−1 6= Ch = V . Then no more requests except ρi,hn+1 will arrive, where i is359

arbitrarily chosen such that vi ∈ Ch \ Ch−1. Denote this h by hr.360

Case 2: Ch−1 = Ch. Then no more requests except ρi,hn+1 will arrive, where i is arbitrarily361

chosen such that vi ∈ V \ Ch. Denote this h by hr.362

Case 3: otherwise. Then no more requests will arrive at any vi ∈ Ch, while requests continue363

arriving at points in V \ Ch. Increase h by 1 and iterate.364

Arbitrarily fix 1 ≤ r ≤ m in the rest of this section.365

Let Rr be the set of requests that arrive in the first r rounds, and Nr be the number of366

requests in Rr \Rr−1, where R0 = ∅. Let R = Rm. It is easy to see four facts:367

Fact 1: Nr ≤ k2n+ 2.368

Fact 2: Rr \Rr−1 has exactly one request at v0, and has an odd number of requests at the369

point where the last request arrives, respectively.370

Fact 3: Rr \Rr−1 has an even number of requests at any other point.371

Fact 4: No match occurs between requests of different rounds.372

Some lemmas are needed for proving the main result.373

I Lemma 12. costA∗(Rr) ≤ (δ + k2n
2 f(τ) + f(τ))r.374

I Lemma 13. costA(Rr) ≥ kδr.375
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I Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, con-376

tinuous and satisfies f(0) = f ′(0) = 0. Then any deterministic algorithm for f -MPMD on377

k-point uniform metric space has competitive ratio Ω(k).378

Proof. Suppose there are a = a(k, δ) and b = b(k, δ) such that for any m ≥ 1,

costA(R) ≤ a · costA∗(R) + b.

Fix k and δ. Dividing both sides of inequality by m and letting m approach infinity, by Lem-379

mas 12 and 13, we get f(nτ) ≤ (δ+ k2n
2 f(τ)+f(τ))a, which means that a ≥ f(nτ)

δ+ k2n
2 f(τ)+f(τ)

=380

kδ
2 + 1

2 f(nτ)
δ+ k2n

2 f(τ)+f(τ)
.381

Let τ approach zero. One has limτ→0 f(τ) = 0, and382

lim
τ→0

f(nτ)
k2nf(τ) = lim

τ→0

1
k2
f(nτ)
nτ

τ

f(τ) = lim
τ→0

1
k2
f(T )
T

τ

f(τ) = +∞ since f ′(0) = 0383

384

This means limτ→0 k
2nf(τ) = 0, since f(nτ) = kδ is a constant when k and δ are fixed. As385

a result, a = limτ→0 a ≥ limτ→0
kδ
2 + 1

2 f(nτ)
δ+ k2n

2 f(τ)+f(τ)
= kδ

δ = k. J386

6 Conclusion387

We have designed an optimum deterministic online algorithm that solves f -MPMD for any388

monomial function f(t) = tα with α > 1. It is remarkable that the algorithm remains389

optimum if only f : R+ 7→ R+ is an increasing and convex polynomial function with f(0) = 0.390

Actually, following Subsection 4.3.2, one can easily see that the competitive ratio is at most391

max
{

120kδ
f(f−1(2δ)−f−1(δ)) , supc≥4δ

c−2δ
f(f−1(c)−f−1(2δ))

}
, which is O(k) by elementary calculus,392

when f is fixed.393

An interesting future direction is to design a randomized algorithm for convex-MPMD. A394

randomized algorithm is usually more competitive than a deterministic one when considering395

oblivious adversaries. We conjecture that there is a randomized algorithm for convex-MPMD396

with competitive ratio O(log k) but no such algorithm with competitive ratio O(1). If this397

turns out true, there is still a clear separation between linear-MPMD and convex-MPMD in398

the context of randomized algorithms.399

In contrast to convex functions, concave functions may model the fact that in some400

applications the delay cost grows slower and slower, which encourages matching two new401

requests instead of matching old requests. It seems not difficult to design an algorithm with402

bounded competitive ratio for these concave cost functions, but to design a good one, i.e.,403

with a very small competitive ratio, seems still challenging.404
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A Omitted Proofs in Section 4462

Let’s begin with some technical lemmas that will be frequently used.463

I Lemma 14. Let h : R+ 7→ R+ be an invertible increasing convex function. The inequality464

h(h−1(ξ)− h−1(η)) + ζ ≥ h(h−1(ξ + ζ)− h−1(η)) holds for any ξ, η, ζ ∈ R+ with ξ ≥ η.465

Proof. Let x = h−1(ξ), y = h−1(η), z = h−1(ξ+ζ). Note that y ≤ x ≤ z. Then h(z)−h(z−466

y) =
∫

(z−y,z] h
′(t)dt =

∫
(x−y,x] h

′(t+ z − x)dt. By convexity of h, h′ is increasing, implying467

that h(z)−h(z−y) ≥
∫

(x−y,x] h
′(t)dt = h(x)−h(x−y). As a result, h(x−y)+h(z)−h(x) ≥468

h(z − y), which is exactly the desired inequality. J469

I Lemma 15. Suppose that ρ1, · · · , ρn ∈ R with T (ρi) < t(ρi+1) for any 1 ≤ i < n470

are successive pending requests at v ∈ V . Let γ and λ be the value of zv at some time471

t1 ∈ (t(ρ1), T (ρ1)] and Tn ∈ (t(ρn), T (ρn)], respectively. Let ti = t(ρi) for 1 < i ≤ n and472

Tj = T (ρj) for 1 ≤ j < n. Then
∑n
i=1 f(Ti − ti) ≥ f(f−1(λ)− f−1(γ)).473

Proof. For any 1 ≤ i ≤ n, let ci be the increment of zv during Ii = (ti, Ti], i.e. ci ,474 ∫
Ii
f ′(t− t(ρi))dt. Then we have λ− γ ≤

∑n
i=1 ci.475

When i > 1, ci = f(Ti − ti) because t(ρi) = ti.476

Now it comes to i = 1. Since zv = γ at time t1, f(t1−t(ρ1)) =
∫

(t(ρ1),t1] f
′(t−t(ρ1))dt ≤ γ.477

Because c1 =
∫

(t1,T1] f
′(t− t(ρ1))dt = f(T1 − t(ρ1))− f(t1 − t(ρ1)), T1 − t1 = f−1(c1 + x)−478

f−1(x) where x = f(t1−t(ρ1)). By convexity of f and x ≤ γ, we have f−1(c1+x)−f−1(x) ≥479

f−1(c1 + γ) − f−1(γ). Then
∑n
i=1 f(Ti − ti) ≥ f(f−1(c1 + γ) − f−1(γ)) + c2 + · · · + cn ≥480

f(f−1(γ + c1 + c2 + · · ·+ cn)− f−1(γ)) = f(f−1(λ)− f−1(γ)), where the second inequality481

follows from Lemma 14. J482

I Corollary 16. In a round π, if a point v is aligned throughout a phase φ ∈ Φπ
⋂

Φv, then483

phase_costtime(π,A∗) ≥ min{σ(φ), 2δ}.484

Proof. Let ρ1, · · · , ρn ∈ R with T (ρi) < t(ρi+1) for any 1 ≤ i < n be the requests at v485

that are successively pending during π. Without loss of generality, assume that σ(φ) ≤ 2δ.486

Since v is aligned throughout φ, A∗ has requests ρ′1, · · · , ρ′n ∈ R at v with t(ρ′i) ≤ t(ρi)487

and T (ρ′i) ≥ T (ρi) for any 1 ≤ i ≤ n. Then by Lemma 15, phase_costtime(π,A∗) ≥488 ∑n
i≥1 f(T (ρi)− t(ρi)) = σ(φ). J489

I Lemma 17. In any good round π, if A has an external match that is initiated by an490

aligned point, then phase_costtime(π,A∗) ≥ δ.491

Proof. Arbitrarily choose an external match m in π that is initiated by an aligned point v.492

Since π is a good round, v is aligned throughout the phase φm. The lemma immediately493

follows from Corollary 16. J494

I Lemma 18. In any good round π, if Ψ has a misaligned point, then phase_costtime(π,A∗) ≥495

δ or round_costspace(π,A∗) ≥ δ.496

Proof. Let v be the first misaligned point in Ψ during the round π, namely, any points in497

Ψ is aligned before v gets misaligned, during the round π. Then we proceed case by case.498

Case 1: v is misaligned when it goes into Ψ. By the rule of updating Ψ, v goes into Ψ499

due to an external match m in π initiated by v. Hence, before m occurs, v is aligned. Then500

phase_costtime(π,A∗) ≥ δ by Lemma 17.501

Case 2: v is aligned when it goes into Ψ, but gets misaligned due to an external match502

of A∗. Obviously, round_costspace(π,A∗) ≥ δ.503
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Case 3: v is aligned when it goes into Ψ, but gets misaligned due to an external match504

m of A. Then before m occurs, v is aligned. Again by the rule of updating Ψ, m must505

be initiated either by v or by another point u ∈ Ψ. Anyway, the initiating point must be506

aligned before m occurs, since v be the first misaligned point in Ψ during this round. As a507

result, phase_costtime(π,A∗) ≥ δ by Lemma 17. J508

Roughly speaking, the next lemma claims that under some conditions, even if an ex-509

ternal match between requests located in Ψ and outside Ψ, the cost of A∗ must increase510

substantially.511

I Lemma 19. In any good round π, if there is an external match m between requests located512

at v /∈ Ψ and v′ ∈ Ψ such that m is initiated by v and φm ⊆ π, then round_costtime(π,A∗) ≥513

f(f−1(2δ)− f−1(δ)), round_costspace(π,A∗) ≥ δ, or phase_costtime(π,A∗) ≥ δ.514

Basic idea of the proof: Since m is between v /∈ Ψ and v′ ∈ Ψ and initiated by v, it holds515

that zv ≥ 2δ when m occurs. All we have to prove is that in the process that zv increases516

from δ to 2δ, whenever A has a pending request ρ at v, A∗ also has a request ρ′ that stays517

pending for a period no shorter than ρ does. Then the proof ends due to Lemma 15.518

Proof. If there exists a misaligned point in Ψ during π, according to Lemma 18, the assertion519

follows. If v is aligned in the phase φm, according to lemma 17, the assertion also follows.520

The lemma also holds if A∗ has an external match during π.521

The rest of the proof focuses on the other case, namely, all points in Ψ are aligned522

throughout π, v is misaligned in φm, and A∗ has no external match during π. Let ρ1, ..., ρn523

with t(ρi) < t(ρi+1) for each i be the pending requests at v that cause zv to increase from524

δ to 2δ. Choose t(ρ1) ≤ a1 < T (ρ1) and t(ρn) < bn ≤ T (ρn) such that zv = δ at time a1525

and zv = 2δ at time bn. Let ai = t(ρi) for any 1 < i ≤ n, bi = T (ρi) for any 1 ≤ i < n, and526

Ii = (ai, bi] for any 1 ≤ i ≤ n. Then
∑n
i=1

∫
Ii
f ′(t− t(ρi))dt = 2δ − δ = δ.527

Now we have three observations.528

1. During each time interval Ii, no point outside Ψ
⋃
{v} has pending request. Suppose529

there is a pending request ρ′ at u /∈ Ψ in Ii. Since δ ≤ zv ≤ 2δ and A has a pending530

request ρ at v during Ii, A should match ρ and ρ′ in Ii, which is a contradiction.531

2. During each time interval Ii, no requests arrive at any point outside Ψ
⋃
{v}. Suppose532

on the contrary that a request ρ arrives at u /∈ Ψ
⋃
{v} during Ii. By Observation 1,533

among points outside Ψ, only v has a pending request, which must get matched with ρ534

due to the priority rule. This means that m is between requests outside Ψ, contradictory535

to the assumption of the lemma.536

3. During each time interval Ii, Ψ remains unchanged. First, we argue that no point is537

added to Ψ. Suppose on the contrary that some u is added to Ψ during Ii. This means538

that an external match m′ = 〈ρ, ρ′〉 initiated by u occurs during Ii. Without loss of539

generality, assume u = `(ρ), w = `(ρ′). Since at any moment at most one request arrives,540

either ρ or ρ′ is pending when m′ occurs. By Observation 1, when m′ occurs, ρ′ must be541

pending and w ∈ Ψ, which contradicts the priority rule of A.542

Second, we show that no point is removed from Ψ. Suppose on the contrary that some543

u is removed from Ψ during Ii. Since no point is added to Ψ during Ii, the size of Ψ544

decreases by one when u is removed, which is contradictory to the rule of updating Ψ.545

Since the number of misaligned points is even and v is misaligned, at any moment in546 ⋃n
i=1 Ii there must be a misaligned point outside Ψ

⋃
{v}. By the above observations and547

the definition of alignment status, for any 1 ≤ i ≤ n, A∗ must have a request ρ′i that is548

pending throughout Ii. For any 1 ≤ i ≤ n, let ui = `(ρ′i).549



X. Liu, Z. Pan, Y. Wang, and R. Wattenhofer XX:15

Since each ρ′i is pending throughout Ii and f ′ is increasing, Ctime(ui, Ii,A∗) ≥
∫
Ii
f ′(t−550

t(ρ′i))dt ≥
∫
Ii
f ′(t− ai)dt = f(bi − ai).551

Then, round_costtime(π,A∗) ≥
∑n
i=1 Ctime(ui, Ii,A∗) ≥

∑n
i=1 f(bi−ai) ≥ f(f−1(2δ)−552

f−1(δ)), where the last inequality follows from Lemma 15. J553

It is time to prove Lemma 7, stating that in every good complete round of A, the cost554

of the optimum offline algorithm A∗ is not small.555

Proof of Lemma 7. LetM be the set of external matchesA outputs during π. By definition,556

|M| = 2k. Let M′ = {m ∈M : m causes |Ψ| to increase by one} and M′′ = M \M′. Since557

any m ∈ M′′ does not change |Ψ| and |Ψ| ≤ k − 1, we have |M′| ≤ k − 1, which in turn558

implies |M′′| ≥ k + 1. There must be a point v ∈ V which initiates at least two external559

matches in M′′. Let m ∈M′′ be the second external match in M′′ initiated by v. Obviously,560

the phase φm satisfies φm ⊆ π. Now we proceed case by case.561

Case 1: v ∈ Ψ during φm. If v is aligned during φm, we have phase_costtime(π,A∗) ≥562

δ by Lemma 17. Otherwise, by Lemma 18, it holds that phase_costtime(π,A∗) ≥ δ or563

round_costspace(π,A∗) ≥ δ.564

Case 2: v /∈ Ψ during φm. Assume m = 〈ρ, ρ′〉 and v = `(ρ), u = `(ρ′). Since m ∈M′′,565

it must hold that u ∈ Ψ when m occurs. Applying Lemma 19, we finish the proof. J566

Proof of Lemma 8. An external match of A∗ changes the alignment status of at most two567

points, hence causing at most two bad phases, which in turn incur at most two bad rounds.568

J569

Recall Γ = {t : at time t,A has a pending request ρ with z`(ρ) > 2δ}. For any v ∈ V and570

φ ∈ Φv, let Γφ = {t ∈ φ : at time t,A has a pending request at v with zv > 2δ}. Obviously,571

Γ =
⋃
φ∈Φ Γφ and all the Γφ’s are pairwise disjoint. We now give a lower bound of the time572

cost of A∗ on every Γφ.573

I Lemma 20. For any phase φ with σ(φ) > 2δ,
∑
u∈V Ctime(u,Γφ,A∗) ≥ f(f−1(σ(φ)) −574

f−1(2δ)).575

Proof. Basically, the proof is similar to that of Lemma 19.576

Suppose that φ ∈ Φv and Γφ consists of disjoint intervals Ii = (ai, bi] for 1 ≤ i ≤ n, and577

bi < ai+1 for 1 ≤ i < n. Then there are pending requests ρ1, · · · , ρn at v such that578

T (ρi) = bi for 1 ≤ i ≤ n, t(ρi) = ai for 1 < i ≤ n, t(ρ1) ≤ a1, and579 ∑n
i=1 ci = σ(φ)− 2δ, where ci =

∫
Ii
f ′(t− t(ρi))dt for 1 ≤ i ≤ n.580

At any time t ∈ Ii, A has no pending requests at points other than v, meaning that totally581

an odd number of requests have arrived by time t. Since a match consumes two requests,582

A∗ must also have pending requests throughout each time interval Ii. Furthermore, note583

that no requests arrive at any time ai < t < bi. Hence, for each 1 ≤ i ≤ n, A∗ has a584

request ρ′i at some ui that is pending throughout Ii. Considering that f ′ is increasing,585

Ctime(ui, Ii,A∗) ≥
∫
Ii
f ′(t− t(ρ′i))dt ≥

∫
Ii
f ′(t− ai)dt = f(bi − ai).586

By Lemma 15, round_costtime(π,A∗) ≥
∑n
i=1 Ctime(ui, Ii,A∗) ≥

∑n
i=1 f(bi − ai) ≥587

f(f−1(σ(φ))− f−1(δ)). J588

Proof of Lemma 9. It is easy to see that589

costtA∗(R) =
∑
v∈V

∑
φ∈Φv

Ctime(v, φ,A∗)590

=
∑
v∈V

∑
φ∈Φv

Ctime(v, φ \ Γ,A∗) +
∑
v∈V

∑
φ∈Φv

Ctime(v, φ
⋂

Γ,A∗)591

592
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On the one hand, since Φv =
⋃
π∈Π Φv

⋂
Φπ,593 ∑

v∈V

∑
φ∈Φv

Ctime(v, φ \ Γ,A∗) =
∑
v∈V

∑
π∈Π

∑
φ∈Φv

⋂
Φπ

Ctime(v, φ \ Γ,A∗)594

=
∑
π∈Π

∑
v∈V

∑
φ∈Φv

⋂
Φπ

Ctime(v, φ \ Γ,A∗)595

=
∑
π∈Π

phase_costtime(π,A∗).596

597

On the other hand,598 ∑
v∈V

∑
φ∈Φv

Ctime(v, φ
⋂

Γ,A∗) =
∑
v∈V

Ctime(v,Γ,A∗)599

=
∑
v∈V

Ctime(v,
⋃
φ∈Φ

Γφ,A∗)600

=
∑
φ∈Φ

∑
v∈V

Ctime(v,Γφ,A∗) ≥
∑
φ∈Φ

σ′(φ).601

602

where the third equality is because the Γφ’s are pairwise disjoint, and the inequality follows603

from Lemma 20.604

Altogether, we finish the proof. J605

Proof of Lemma 10. It suffices to prove that a−b
( α
√
a− α√

b)α decreases with a when a > b. This606

is equivalent to showing g(x) = xα−yα
(x−y)α decrease with x when x > y. The claim holds since607

g′(x) = α · y(yα−1−xα−1)
(x−y)α+1 ≤ 0. J608

Proof of Lemma 11. Denote the round of A by π. We proceed case by case.609

Case 1: Both A and A∗ have no external matches. Then they must behave on R in the610

same way. Hence costA(R)/costA∗(R) = 1.611

Case 2: A has no external matches while A∗ has. For any v ∈ V , let cv = σ(φv)612

where φv is the unique phase of v. We have costA(R) =
∑
v∈V cv. On the other hand,613

costA∗(R) = costsA∗(R) + costtA∗(R) ≥ δ +
∑
v∈V c

′
v with c′v = σ′(φv), where the inequality614

is due to Lemma 9 and the assumption that A∗ has external matches. Let V ′ = {v ∈ V :615

cv > 4δ}. Then costA(R)
costA∗ (R) ≤

4kδ+
∑

v∈V ′
(cv−2δ)

δ+
∑

v∈V ′
c′v

. By Lemma 10, costA(R)
costA∗ (R) = O(k).616

Case 3: A has external matches. If A∗ has no external matches, the first external match617

m of A must be initiated by a point that is aligned throughout the phase φm. Since σ(φm) ≥618

δ, we have round_costtime(π,A∗) ≥ δ by Corollary 16. As a result, either costsA∗(R) ≥ δ or619

round_costtime(π,A∗) ≥ δ.620

On the one hand, A has at most 2k external matches in a round, so costA(R) ≤ 2kδ +621 ∑
φ∈Φ σ(φ). Let Φ′ = {φ ∈ Φ : σ(φ) > 4δ}. Because there are at most 4k complete phases622

and k incomplete ones, |Φ| ≤ 5k, which implies that costA(R) ≤ 22kδ +
∑
φ∈Φ′(σ(φ)− 2δ).623

On the other hand, as to the cost of A∗, we have costA∗(R) = costsA∗(R) + costtA∗(R) ≥624

costsA∗(R) + round_costtime(π,A∗) +
∑
φ∈Φ σ

′(φ) ≥ δ +
∑
φ∈Φ′ σ

′(φ), where the first in-625

equality follows from Lemma 9.626

Hence, costA(R)
costA∗ (R) ≤

22kδ+
∑

φ∈Φ′
(σ(φ)−2δ)

δ+
∑

φ∈Φ′
σ′(φ)

. By Lemma 10, costA(R)
costA∗ (R) = O(k). J627
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B Omitted Proofs in Section 5628

Proof of Lemma 12. It suffices to show that the cost that A∗ pays for any round is at629

most δ + k2n
2 f(τ) + f(τ)). Without loss of generality, we prove this for the first round and630

assume that the last request of this round is located at vk. By Facts 2 and 3, the requests631

of this round can be paired up in this way: 〈ρ00, ρk1〉, 〈ρij , ρi,j+1〉 for odd numbers j ≥ 1632

and 1 ≤ i ≤ k− 1, and 〈ρkj , ρk,j+1〉 for even numbers j ≥ 2. Since A∗ is an optimum offline633

algorithm, its cost is at most the cost of this matching. J634

Proof of Lemma 13. By Fact 4, it is equivalent to show that the cost that A pays for635

requests in Rr \Rr−1 is at least kδ.636

On the one hand, assume Case 2 in this round does happen. We have three observations:637

After time (hr − 1)T , no request arrives at any v ∈ Chr = Chr−1.638

The total number of requests that have arrived at Chr is an odd number. Hence, there639

must be a request ρ such that (1) `(ρ) ∈ Chr and (2) A eventually matches ρ with640

another request ρ′ satisfying `(ρ′) /∈ Chr .641

The request ρ is pending throughout the interval (Tr + ((hr − 1)T, Tr + hT ], incurring642

time cost at least f(T ) = kδ.643

On the other hand, assume that Case 1 happens, namely, Chr = V . Then A has at least644

k external matches in this round.645

Altogether, the cost A pays for this round is at least kδ. J646
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