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Abstract

The XTC ad-hoc network topology control algorithm intro-
duced in this paper shows three main advantages over previously
proposed algorithms. First, it is extremely simple and strictly lo-
cal. Second, it does not assume the network graph to be a Unit
Disk Graph; XTC proves correct also on general weighted net-
work graphs. Third, the algorithm does not require availability of
node position information. Instead, XTC operates with a general
notion of order over the neighbors’ link qualities. In the special
case of the network graph being a Unit Disk Graph, the resulting
topology proves to have bounded degree, to be a planar graph,
and—on average-case graphs—to be a good spanner.

1 Introduction
An ad-hoc or sensor network consists of mobile nodes featur-

ing, among other components, a processor, some memory, a wire-
less radio, and a power source; physical constraints often demand
the power source to be feeble—a weak battery or a small solar cell.

Since energy is the limiting factor for lifetime and operabil-
ity of an ad-hoc network, researchers have developed a variety of
mechanisms and algorithms to conserve energy. These mecha-
nisms and algorithms are often dubbed ”topology control.” The
currently best proposals feature an impressive list of properties.
However, these algorithms also often require many unrealistic as-
sumptions: First, most algorithms assume that all the nodes know
their exact positions, by means of a global positioning system
(GPS) for example. Second, the algorithms assume that the world
is flat and without buildings. In this paper we present the XTC1

topology control algorithm that works i) without GPS and ii) even
in a mountainous and obstructed environment. Surprisingly the
XTC algorithm features all the relevant properties of topology con-
trol while being faster than any previous proposals. We believe
that XTC is the currently most realistic topology control algorithm
available.

The paper is organized as follows: In the remainder of the In-
troduction we discuss topology control in more detail and compare
our contribution with related work. After providing preliminary
definitions in Section II, we describe the XTC algorithm in Sec-
tion III. For illustration, Section IV proves XTC’s properties when

1By the date of submission the authors have not yet been able to agree
on the meaning of the letter “X” in “XTC”. The candidate list comprises
terms such as “exotic”, “extreme”, “exceptional”, or “exemplary”, but
also “extravagant” or even “extraterrestrial”. Consensus has however been
achieved concerning the pronunciation of the algorithm name.

employed on Euclidean and Unit Disk Graphs. The algorithm’s
behavior on general weighted graphs is the subject of Section V.
The subsequent section provides an evaluation of XTC on average-
case random graphs. Section VII finally concludes the paper.

1.1 Topology Control

For two communicating ad-hoc nodes u and v, the energy con-
sumption of their communication grows at least quadratically with
their distance. Having one or more relay nodes between u and v
therefore helps to save energy.

The primary target of a topology control algorithm is to aban-
don long-distance communication links and instead route a mes-
sage over several small (energy-efficient) hops. For this purpose
each node in the ad-hoc network chooses a ”handful” of ”close-
by” neighbors ”in all points of the compass” (we are going to fill
in the details later). Clearly nodes cannot abandon links to ”too
many” far-away neighbors in order to prevent the ad-hoc network
from being partitioned or the routing paths from becoming non-
competitively long. In general there is a trade-off between network
connectivity and sparseness.

Let the graph G = (V, E) denote the ad-hoc network before
running the topology control algorithm, with V being the set of
ad-hoc nodes, and E representing the set of communication links.
There is a link (u, v) in E if and only if the two nodes u and v can
communicate directly. Running the topology control algorithm
will yield a sparse subgraph Gtc = (V, Etc) of G, where Etc

is the set of remaining links. The resulting topology Gtc should
have the following properties:

Property 1 (Symmetry) The resulting topology Gtc should be
symmetric, that is, node u is a neighbor of node v if and only
if node v is a neighbor of node u.

Asymmetric communication graphs are unpractical, because
many communication primitives become unacceptably compli-
cated. A simple ACK message confirming the receipt of a
message, for example, is already a nightmare in an asymmetric
graph [16].

Property 2 (Connectivity) Two nodes u and v are connected if
there is a path from u to v, potentially through multiple hops. If
two nodes are connected in G, then they should still be connected
in Gtc.

Although a minimum spanning tree (MST) is a sparse con-
nected subgraph, it is often not considered a good topology, since
close-by nodes in the original graph G might end up being far
away in Gtc (G being a ring, for instance). Therefore Property 2
is usually strengthened:



Property 2+ (Spanner) For any two nodes u and v, if the optimal
path between u and v in G has cost c, then the optimal path be-
tween u and v in Gtc has cost f(c). If f(c) is bounded from above
by a linear function in c, the graph Gtc is called a spanner.

Researchers have studied a selection of cost metrics, the most
popular being i) Euclidean distance and ii) various energy metrics.
The cost of a link in model i) is the Euclidean distance of the link,
in model ii) the distance is raised to a predefined power. In both
models the cost of a path is commonly defined to be the sum of the
costs of all links in the path.

As mentioned, the primary target of a topology control algo-
rithm is to abandon long-distance neighbors, or more formally:

Property 3 (Sparseness) The remaining graph Gtc should be
sparse, that is, the number of links should be in the order of the
number of nodes, i.e. |Etc| = O(|V |).

This reflects that not too many close-by nodes must be chosen,
which reduces interference and thus saves energy. Since there still
might be some nodes with many neighbors (e.g. a star graph), also
Property 3 features an improved version.

Property 3+ (Low Degree) Each node in the remaining graph Gtc

has a small number of neighbors. In particular the maximum de-
gree in the graph Gtc should be bounded from above by a constant.

Since connectivity and sparseness run against each other, topol-
ogy control has been a thriving research area. In addition to
the properties 1, 2, and 3, one can often find secondary targets.
For instance, it is popular (and often for free) to ask the remain-
ing graph to be planar in order to run a geometric (a.k.a. geo-
graphic, location-based, position-based) routing algorithm, such
as GOAFR/GOAFR+ [11, 13], or GFG/GPSR [2, 9].

1.2 Contribution
This paper features three major contributions.
First, it is agreed upon that the subgraph Gtc should not be

computed by a heavyweight global algorithm, but instead with a
distributed algorithm. To account for mobility, it is often argued
that an algorithm should not only be distributed but even local:
Each node is allowed to exchange messages with its neighbors a
few times and then must decide which links it wants to keep. Many
naive topologies such as the MST can provably not be computed
locally and are therefore not realistic. To the best of our knowl-
edge we present the fastest algorithm so far, where each node only
communicates with its neighbors twice.

Second, it is often assumed that the ad-hoc nodes are repre-
sented by points in a Euclidean plane. Two nodes are connected
in the original graph G if and only if their Euclidean distance is at
most 1 (a normalized transmission radius). The graph G is known
as the Unit Disk Graph (UDG). We believe that a UDG is a good
first step towards understanding ad-hoc algorithms. However, a
UDG is not practical, since it is based on several assumptions:

i) All nodes are homogeneous.

ii) Antennas are perfect isotropic radiators, such that all trans-
mission radii are equal.

iii) Attenuation is uniform, that is, the Euclidean plane is flat and
free of blocking objects such as walls. Radio propagation is
as in vacuum.

Especially Assumption iii) is questionable in any realistic envi-
ronment. We believe that ad-hoc network algorithms should work,
or in other words be correct, also in a more hostile environment,

that goes beyond the UDG. There was an attempt to generalize the
UDG [12]. In this paper we however even allow the original com-
munication graph G not to comply with any of the above assump-
tions. Instead G is a general graph without any geometric assump-
tions. For instance—as opposed to many other algorithms—XTC
also works correctly if nodes are located in three-dimensional
space, as in a building. When studying efficiency (not correct-
ness), analytically and by simulation, we will make geometric as-
sumptions to prove stronger results that compare better with re-
lated work. To the best of our knowledge we present the first
topology control algorithm that works for general graphs.

A third assumption that is commonly made is that the nodes
have detailed information about their neighbors. It is often as-
sumed that all the nodes know their exact coordinates in the plane,
for instance by means of a global positioning system (GPS). The
most notable exception is the cone-based topology control (CBTC)
algorithm [23], where nodes conclude information about their
neighbors merely based on their relative signal strength and the
signal arrival angle. It is in this third respect that this paper’s main
contribution lies. For the correctness of the algorithm it is suffi-
cient that the network nodes order their neighbors according to a
general concept of link quality.

We feel that the present paper represents a paradigm shift in
topology control. Where recent research tried to improve existing
algorithms by enhancing them with various new features (and thus
rendering the algorithms more complicated), we actually present
an algorithm that is simpler, faster, and works without unrealistic
assumptions.

1.3 Related Work
Early work in topology control focused on the special case of

randomly distributed nodes. Hou and Li [5] can be considered
originators of topology control following up a paper by Takagi
and Kleinrock [19].

A next wave of topology control algorithms advocated the em-
ployment of classic computational geometry structures, such as the
Delaunay Triangulation [6], the Minimum Spanning Tree [17], or
a generalized version of the Gabriel Graph [18]. Unfortunately
neither the Delaunay Triangulation nor the Minimum Spanning
Tree can be computed locally, and therefore these solutions lack
practicality. The Gabriel Graph can be computed locally and is
symmetric (Property 1) as well as an energy-spanner (Property
2+). It also features sparseness (Property 3, but not low degree
as in Property 3+), an additional property that was not paid much
attention to in [18]. Since the Gabriel Graph is similar to our al-
gorithm not only with respect to all of these properties but also
regarding its simplicity of construction—provided that node po-
sition information is available—, we compare our results against
this graph in Section 6.

The cone-based topology control algorithm (CBTC) [23] was
the first algorithm to achieve and prove several properties at the
same time: Apart from being symmetric (Property 1), an energy
spanner (Property 2+) and a sparse graph (Property 3), there is an
optional distributed (but recursive and therefore not local) second
phase that reduces the degree of the graph (Property 3+).2 There
have been a series of improvements collecting properties, some

2CBTC is often misinterpreted as being an implementation of the Yao
Graph [24]. This is not quite accurate. The Yao Graph sectorizes the plane
at each node, and tries to find a neighbor for the node in each sector. CBTC
only needs neighbors as long as not all cones contain a neighbor. This pas-
sive definition gives more flexibility and as a consequence fewer neighbors
on average.



based on CBTC [7, 14], some based on other geometric structures,
such as a local version of the Delaunay triangulation [15]. The
most recent proposal [22] features a local algorithm that computes
a planar distance (and energy) spanner with constant node degree.

Sometimes cluster-based solutions are considered to be topol-
ogy control. The most popular and promising approaches are
based on (connected) dominating sets [1, 8, 10]. In particular [10]
presents a solution to build a dominating set in a local fashion
and constant time. This is currently the only constant-time algo-
rithm with worst-case guarantees; surprisingly enough the algo-
rithm works on general graphs, not only on Unit Disk Graphs. Al-
though dominating sets also achieve symmetry (Property 1), con-
nectivity (Property 2), and sparseness (Property 3), the resulting
graphs often do not try to be distance or energy, but instead hop
spanners. Whereas distance and energy spanners are related, hop
spanners will produce orthogonal results; results so different in
fact that we would consider cluster-based solutions to be topology
control in a very broad sense only.

2 Preliminaries

This section provides formal definitions of basic concepts es-
sential for the understanding of the paper.

In a weighted graph G = (V, E) every edge (u, v) ∈ E is
attributed a weight ωuv . When referring to a weighted graph we
assume that the weights are symmetric: ωuv = ωvu.

The nodes of a Euclidean graph are assumed to be located in
a Euclidean plane. Furthermore the edge weight of an edge (u, v)
is defined to be ωuv = |uv|, where |uv| is the Euclidean distance
between the nodes u and v. Note that the definition of Euclidean
graphs does not contain a statement on the existence of certain
edges.

A Unit Disk Graph is a Euclidean graph containing an edge
(u, v) if and only if |uv| ≤ 1. Unit Disk Graphs are often em-
ployed to model an ad-hoc network where all network nodes are
placed in an unobstructed plane and have equal (normalized) trans-
mission power and isotropic antennas, that is antennas sending
with identical power in every direction of the plane.

Strongly related to edge weights is the cost of an edge. The
cost of an edge c(u, v) can be considered to represent the effort
an algorithm is required to expend in order to send a message over
(u, v). Common definitions of edge cost metrics include the hop
or link metric c(u, v) ≡ 1, the Euclidean metric c(u, v) = |uv|,
and the energy metric c(u, v) = |uv|e for an attenuation exponent
e ≥ 2.

A path p(u, v) from a node u to a node v being a sequence of
consecutively contingent edges starting at u and ending at v, the
cost of a path |p(u, v)| is accordingly defined to be the sum of the
costs of all edges contained in the path.

3 XTC Algorithm

In this section we describe our topology control algorithm
XTC. The algorithm consists of three main steps:

I) Neighbor ordering,

II) neighbor order exchange, and

III) edge selection.

In the first step each network node u computes a total order ≺u

over all its neighbors in the network graph G. From an abstract
point of view, this order is intended to reflect the quality of the

XTC Algorithm

1: Establish order ≺u over u’s neighbors in G

2: Broadcast ≺u to each neighbor in G; receive
orders from all neighbors

3: Select topology control neighbors:
4: Nu := {}; Ñu := {}
5: while (≺u contains unprocessed neighbors) {
6: v := least unprocessed neighbor in ≺u

7: if (∃w ∈ Nu ∪ Ñu : w ≺v u)

8: Ñu := Ñu ∪ {v}
9: else

10: Nu := Nu ∪ {v}
11: }

links to the neighbors. A node u will consider its neighbors in
G (in the third step of the algorithm) according to ≺u ordered
with respect to decreasing link quality: The link to a neighbor
appearing early in the order ≺u is regarded as being of higher
quality than the link to a neighbor placed later in ≺u. A neighbor
w appearing before v in order ≺u is denoted as w ≺u v. For
illustration we assume in Section 4 that ≺u corresponds to the
order of the neighbors’ Euclidean distances from u. It is however
conceivable that the neighbor order reflects a much more general
notion of link quality, such as signal attenuation or packet arrival
rate.

In the second step the neighbor order information is exchanged
among all neighbors. Typically a node u broadcasts its own neigh-
bor order while receiving the orders established by all of its neigh-
bors.

During the third step, which does not require any further com-
munication, each node locally selects those neighboring nodes
which will form its neighborhood in the resulting topology control
graph, based on the previously exchanged neighbor order informa-
tion. For this purpose a node u traverses ≺u with decreasing link
quality: “Good” neighbors are considered first, “worse” ones later.
Informally speaking, a node u only builds a direct communication
link to a neighbor v if u has no “better” neighbor w that can be
reached more easily from v than u itself.

Although the XTC algorithm is executed at all nodes, the de-
tailed description as shown in the above box assumes the point of
view of a node u. Lines 1 and 2 correspond to Steps I) and II).
Lines 3-11 define Step III) in more detail: First the two sets Nu

and
�

Nu are initialized to be empty. Now the neighbor ordering
≺u established in Line 1, is traversed in increasing order. In Line
7 the neighbor order ≺u of the currently considered neighbor v is
examined: If any of u’s neighbors w already processed appears in
v’s order before u (w ≺v u) node v is included in

�

Nu (Line 8);
otherwise v is added to Nu (Line 10).

After completion of the algorithm, the set Nu contains u’s
neighbors in the topology control graph GXTC . More formally,
the edge set EXTC of the graph GXTC = (V, EXTC) is
EXTC = {(u, v)| ∃u : v ∈ Nu}.

In the algorithm as described above, each node constructs in
Step I) a total order over all its neighbors in G. In a variant of
the algorithm a node u could apply a growing radius technique—
starting with the “best” neighbor— to decide on a neighbor v’s
inclusion in Nu or

�

Nu—based on ≺v—immediately when iden-



tifying v as the next “worse” neighbor found so far. Applying
such interleaving of steps I), II) and III), u could terminate earlier,
that is, as soon as having found “enough” neighbors (where The-
orem 4.2 would provide a termination criterion in the case of G
being a Unit Disk Graph).

Property 1 as described in the Introduction, that is symmetry
of the resulting graph, often has to be enforced by topology con-
trol algorithms (for instance by a propose-accept cycle) [21, 23].
The following theorem shows that in contrast XTC is guaranteed
to “automatically” compute a graph with Property 1, without any
assumptions whatsoever on the neighbor orders:

Theorem 3.1 (Symmetry). The edges in GXTC are symmetric:
A node u includes a neighbor v in Nu if and only if v includes u
in Nv .

Proof. Assume for the sake of contradiction that u includes v in
Nu (Assumption 1), whereas v does not include u in Nv (As-
sumption 2). According to Assumption 2, there exists a node
w ∈ Nv ∪

�

Nv when v decides to include u in
�

Nv in Line 8
(w ≺v u), such that w ≺u v (Line 7). Since w ≺u v holds,
w ∈ Nu ∪

�

Nu at the point of time when u decides about v’s in-
clusion in Nu; together with w ≺v u, it follows that v is included
in

�

Nu, which is a contradiction to Assumption 1.

4 XTC on Euclidean Graphs
The main purpose of this section is to provide an illustration of

the graph resulting from the topology control algorithm. We make
three assumptions:

i) Every node u has a unique identifier idu. The identifiers are
comparable, that is, there exists a total order “<” defined
over the set of all identifiers.

ii) The nodes are placed in a Euclidean plane.

iii) Every edge (u, v) is attributed a weight defined to be the
triple (|uv|, min(idu, idv), max(idu, idv)), where |uv| is
the Euclidean distance between nodes u and v. The neighbor
orders computed in Step I) of the XTC algorithm are based
on the lexicographic order3 of these edge weights, that is

w ≺u v ⇐⇒ (|uw|, min(idu, idw), max(idu, idw))

< (|uv|, min(idu, idv), max(idu, idv))
Assumption i) is common in the context of distributed al-

gorithms and viable for practical networks. Assumption ii)—
although often made in order to model ad-hoc networks—is less
realistic; nevertheless we adopt this assumption in this section for
the sake of illustration.

Assumption iii) can for instance be realized by having each
node initially transmit a control signal together with a message
containing information on the control signal transmission power.
With the additional assumption that the employed antennas are
isotropic and that the signal can propagate without obstruction, the
control signal receivers can compute an order over the Euclidean
distances to the senders from the receive and transmission power
levels. If all nodes send with equal transmission power, the or-
der ≺u is even equivalent to the relative order of only the receive
power levels sensed at a node u.

3The lexicographic order of two triples is defined according to the order
of the first components, or—if the first components are equal—according
to the second components, or—if both the first and the second components,
respectively, are equal—according to the third components. Formally:
(a1, b1, c1) < (a2, b2, c2) ⇐⇒ (a1 < a2) ∨ ((a1 = a2) ∧ (b1 <
b2)) ∨ ((a1 = a2) ∧ (b1 = b2) ∧ (c1 < c2)).

u v

πα 3<

w

Figure 1. As described in the proof for Theorem 4.2, if
α < π/3 and |uv| < |uw|, it follows that |vw| <
|uw|.

The following theorem proves Property 2 as defined in the
Introduction, that is connectivity of the topology control graph
GXTC . Note that this theorem does not require G to be a Unit
Disk Graph; G being a Euclidean Graph is sufficient.

Theorem 4.1 (Connectivity). Given a Euclidean Graph G, two
nodes u and v are connected in GXTC if and only if they are
connected in G. Consequently, the graph GXTC is connected if
and only if G is connected.

Proof. Since XTC exclusively considers edges in G, u and v can
only be connected if they are connected in G. In order to prove the
opposite direction of the above equivalence, we assume for con-
tradiction that GXTC contains at least one pair of non-connected
nodes that are connected in G. Consider the pair u, v with
minimum value (|p(u, v)|, min(idu, idv), max(idu, idv)), where
|p(u, v)| is the Euclidean cost of the shortest path connecting u
and v on G, among all pairs of nodes u and v that are not con-
nected in GXTC but connected in G. The nodes u and v must be
connected directly by the edge (u, v) in G; otherwise a different
pair of nodes w, x lying on the path connecting u and v would
have a value |p(w, x)| less than |p(u, v)|, and u, v would not be
the pair with minimum |p(u, v)|. Since the edge (u, v) is in G,
the cost of the shortest path connecting u and v is their Euclidean
distance: |p(u, v)| = |uv|. According to the assumption, u in-
cludes v in

�

Nu, that is, at the moment u decides so, there is a node
w ∈ Nu ∪

�

Nu such that w ≺v u. Since w ∈ Nu ∪
�

Nu, we also
have w ≺u v, or (|uw|, min(idu, idw), max(idu, idw)) <
(|uv|, min(idu, idv), max(idu, idv)). Since
(|uv|, min(idu, idv), max(idu, idv)) is the least such value
for any pair of non-connected nodes in GXTC , and as u and w
are connected in G (w is contained in ≺u), u and w must also
be connected in GXTC . For the same reason and since w ≺v u,
also v and w must be connected in GXTC , which contradicts the
assumption that u and v are not connected in GXTC .

For the remainder of this section we assume that G is a Unit
Disk Graph. The following theorem proves that in this case GXTC

does not only feature sparseness (Property 3, as described in the
Introduction), but even bounded degree (Property 3+):

Theorem 4.2 (Bounded Degree). Given a Unit Disk Graph G,
GXTC has degree at most 6.

Proof. We prove that no two adjacent edges in GXTC en-
close an angle less than π/3, from which the theorem fol-
lows. Assume for contradiction that the two edges (u, v)
and (u, w) enclose an angle α < π/3 at node u. Further-
more let v be u’s neighbor that was included in Nu before
w, that is v ≺u w or (|uv|, min(idu, idv), max(idu, idv)) <



−>
π
2β

v

w

x

u

Figure 2. The quadrangle uvwx from the proof of Theo-
rem 4.3 contains at least one angle β ≥ π/2. It follows
that if G is a Unit Disk Graph, the edge (u, w) is not
contained in G ����� .

(|uw|, min(idu, idw), max(idu, idw)). Since |uv| ≤ |uw| and
α ≤ π/3, it follows that |vw| < |uw| (cf. Figure 1). G being a
Unit Disk Graph, also the edge (v, w) is in G, as |vw| < |uw| ≤

1. Consequently v ≺w u, implying that u included w in
�

Nu,
which is however a contradiction to the assumption that the edge
(u, w) is in GXTC .

As an additional property, GXTC contains no two intersecting
edges, which allows its employment for geometric routing.

Theorem 4.3 (Planarity). Given a Unit Disk Graph G, GXTC is
planar, that is, it contains no two intersecting edges.

Proof. Suppose for the sake of contradiction that the two edges
(u, w) and (v, x) intersect in GXTC (cf. Figure 2. Of the quad-
rangle uvwx, at least one angle has size not less than π/2. Let
this angle be w.l.o.g. β, adjacent to node v. Since β ≥ π/2,
|uv| < |uw| and |vw| < |uw|. When node u considered the in-
clusion of w in Nu, v was consequently already in Nu ∪

�

Nu and
v ≺w u, causing u to include w in

�

Nu, which is however a con-
tradiction to the assumption that the edge (u, w) is in GXTC .

In the following theorem we describe the relationship between
GXTC and the Relative Neighborhood Graph of G [20]. The Rel-
ative Neighborhood Graph is defined to contain all edges (u, v) ∈
G, such that there exists no node w with |uw| < |uv| ∧ |vw| <
|uv| (cf. Figure 4(a)).

Theorem 4.4. Given a Unit Disk Graph G, GXTC is a subgraph
of the Relative Neighborhood Graph computed on G. If G con-
tains no node having two or more neighbors at exactly the same
distance, GXTC is identical to the Relative Neighborhood Graph.

Proof. The subgraph relationship follows from the fact that if
GXTC contains an edge (u, v), there exists no node w with
|uw| < |uv| ∧ |vw| < |uv|, which implies that (u, v) is also
contained in the Relative Neighborhood Graph RNG. Furthermore
XTC excludes an edge (u, v) that is preserved in RNG—there
is no w with |uw| < |uv| ∧ |vw| < |uv|—only if there exists
a node w with w ≺u v ∧ w ≺v u, which is in total possible
only if |uw| = |uv| and the enclosing angle � vuw ≤ π/3 or
|vw| = |uv| and the enclosing angle � uvw ≤ π/3.

5 XTC on General Weighted Graphs
In realistic ad-hoc networks nodes are not located in a plane

and received transmission power does not only depend on the dis-
tance to the sender, but above all on physical obstacles between

v

u

w

Figure 3. The edge weights ω ��� , ω ��	 , and ω �
	 reflect
that signal propagation between u and w is impaired by
a physical obstacle (wall, building, hill): ω ��� < ω ��	
and ω �
	 < ω ��	 . In contrast to typical topology con-
trol algorithms based on node positions, XTC does not
include the edge (u, w) in its result graph, but exploits
that a better connection exists via node v.

sender and receiver. As one of the main properties of such real
ad-hoc networks, however, symmetry of physics is preserved: The
attenuation factor of a link between two network nodes is identical
to signal propagation in either direction. Accordingly an ad-hoc
network can be modeled by a weighted graph, where each edge
is attributed a weight representing the corresponding signal atten-
uation factor (cf. Figure 3). More abstractly the edge weights
can be considered qualities of links between node pairs. Assum-
ing isotropic antennas, a node can obtain its neighbor order with
a technique similar to the one described in Section 4 by sending a
control signal. If the edge weights are considered link quality indi-
cators in a more general sense, these weights and consequently the
neighbor ordering can be established by exchange of probe mes-
sages.

In this section we show that the XTC algorithm computes a
connected topology even in general weighted graphs modeling re-
alistic ad-hoc networks. We assume that the neighbor order of a

(b)

v u vu

(a)

Figure 4. Definitions of the Relative Neighborhood Graph
(a) and the Gabriel Graph (b). In the Relative Neighbor-
hood Graph the edge (u, v) exists if and only if the
hatched lune (excluding its boundary) does not contain
a third node. In the Gabriel Graph the edge (u, v) exists
if and only if the hatched circle (including its boundary)
does not contain a third node.



Figure 5. The Unit Disk Graph G (left), the Gabriel Graph of G (center), and G ����� of 1400 nodes placed randomly and
uniformly on a square field of 20 units side length.

node u—as employed in the algorithm—corresponds to the order
over the weights of the edges adjacent to u.

Theorem 5.1 (Connectivity). Given a general weighted graph G,
two nodes u and v are connected in GXTC if and only if they are
connected in G. Consequently, the graph GXTC is connected if
and only if G is connected.

Proof. This theorem can be proved in analogy to the proof of The-
orem 4.1, substituting edge weights for Euclidean distances.

What furthermore can be stated for G being a general weighted
graph with respect to GXTC ’s sparseness (Property 3), is that
GXTC cannot contain cycles of length three:

Theorem 5.2. Given a general weighted graph G, GXTC has
girth 4, that is, the shortest cycle in GXTC is of length 4.

Proof. It is sufficient to show that GXTC does not contain any
cycles of length 3. We suppose for contradiction that there exists
such a cycle through the nodes u,v, and w, that is, all three edges
(u, v), (v, w), and (u, w) are contained in GXTC . Let us further
assume w.l.o.g. that w ≺u v, or ωuw < ωuv, where ωuv is the
weight of the edge (u, v). At the point of time when u considered
the inclusion of v in Nu, w had already been processed, which
means that since (u, v) is in GXTC , u ≺v w must hold, and con-
sequently also ωuv < ωvw . Applying the same argument from v’s
point of view yields that also v ≺w u or ωvw < ωuw must hold,
which provokes a contradiction.

Although GXTC has girth 4, it does not feature sparseness:
Constructed on a general weighted graph G, GXTC can have de-
gree Θ(n) and contain Θ(n2) edges. An example for such a graph
is Kn/2,n/2, the complete bipartite graph with n/2 nodes in each
partition set, in which each node has degree n/2 and which con-
sequently contains n2/4 edges in total. Network graphs resulting
from real ad-hoc networks can however be expected to be consid-
erably sparser.

6 Average-Case Evaluation
In this section we present the properties of the topology con-

trol graph GXTC on average-case Euclidean graphs, that is on

graphs generated by randomly and uniformly placing nodes in a
given field. In particular we study the spanner and bounded degree
properties—Properties 2+ and 3+, as stated in the Introduction—in
the context of average graphs. The bounded degree property hav-
ing been shown to hold for GXTC in Section 4, we demonstrate in
this section that also the spanner property holds on average graphs.
Since, GXTC being a planar graph, it lends itself to geometric
routing, we furthermore examine the influence of GXTC on such
routing algorithms.

In order to model the physical network in our average-case
evaluation we adopt the Unit Disk Graph definition, in which an
edge exists if and only if its Euclidean length is less than one unit.
To assess the average-case properties of GXTC , we compare it
with the Gabriel Graph [4]. Being one of the most prominent
topology control structures on the one hand, the Gabriel Graph
is on the other hand particularly well suited for comparison with
respect to the spanner property, since it is not only a spanner with
respect to the energy metric, but even contains the energy-minimal
path between any pair of points.

The Gabriel Graph is—similarly to the Relative Neighborhood
Graph—defined such that the presence of an edge (u, v) depends
on whether a certain geometric area contains a third node w or not.
In the case of the Gabriel Graph this geometric area is the circle
(including the boundary) having the line segment uv as a diameter
(cf. Figure 4(b)).

Figure 5 illustrates the Gabriel Graph and GXTC constructed
from a sample Unit Disk Graph. The figure shows well that, in-
formally speaking, areas with high edge density in the Unit Disk
Graph are thinned out by topology control, while preserving con-
nectivity of the graph. This tendency can be observed even more
clearly for GXTC than for the Gabriel Graph.

As studied in percolation theory [3], network density is an im-
portant parameter influencing the properties of average-case net-
works. The transition between the two extremes with respect to
network density—very low densities, where hardly any pair of
nodes is connected, and very high densities, where disconnection
of the network is extremely improbable—takes place in a rela-
tively narrow critical density range roughly around 5 nodes per
unit disk. In order to account for this effect we acquired our mea-
surements and simulation results over a spectrum of network den-
sities. For each considered network density the number of nodes
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Figure 6. Stretch factors of G ����� with respect to en-
ergy (solid) and Euclidean (dotted) metric, stretch fac-
tor of Gabriel Graph with respect to Euclidean metric
(dashed) over network density spectrum. Mean values
are plotted in black, maximum values in gray. The Gabriel
Graph contains the energy optimal path; its stretch factor
curve (≡ 1, light gray) is plotted for reference.

corresponding to the density was randomly and uniformly placed
on a square field with side length 20 units.

6.1 Spanner Property
In order to study the spanner property of GXTC on randomly

generated networks we calculated the stretch factor of a pair of
nodes u, v

s(u, v) :=
|ptc(u, v)|

|p(u, v)|
,

that is the ratio between cost of the shortest path between u and
v on the topology control graph and the shortest path on the Unit
Disk Graph G. For each considered network density we generated
2000 networks and also randomly selected a pair of nodes u, v
to calculate s(u, v). As topology control graphs we employed
GXTC and the Gabriel Graph. Edge and correspondingly path
costs were considered with respect to Euclidean edge length |uv|
and to energy with an attenuation exponent 2, that is |uv|2.

Figure 6 depicts our results over the considered network den-
sity range. Since the Gabriel Graph contains the energy-minimal
path connecting any pair of nodes, the line s(u, v) ≡ 1 is plot-
ted for reference. Although GXTC is not an energy spanner in
the strict sense, the results show that this graph has a good energy
spanning property on average graphs: The corresponding mean
value of the stretch factor does not exceed 1.06, whereas even the
maximum value stays below 1.9. With respect to the Euclidean
metric, the mean value curves for both the Gabriel Graph and
GXTC remain—throughout the density range—almost constant at
low values of below 1.1 and 1.25, respectively; the correspond-
ing maximum curve for GXTC is less stable than for the Gabriel
Graph, but only rarely reaches values above 3.

In summary, the results show that GXTC is a good average-
case spanner with respect to the Euclidean metric, but especially
for the energy metric.

6.2 Bounded Degree Property
GXTC being shown to have degree at most 6 in Theorem 4.2,

we study here its average-case behavior with respect to node
degree by comparison with the corresponding behavior of the
Gabriel Graph. The results therefor were obtained similarly as for
the spanner property. From each of the 2000 random networks—
generated for each considered network density—a randomly cho-
sen node was examined regarding its degree in the Unit Disk
Graph, the Gabriel Graph G, and GXTC .

Figure 7 shows the acquired results. Mean and maximum de-
gree values for the Unit Disk Graph rise in accordance with net-
work density. The mean degree curves for GXTC and the Gabriel
Graph increase slowly for very low densities, remain however—
once beyond the critical density range—constant at approximately
2.5 and 3.9, respectively. Although inherently less stable, the
maximum degree numbers for GXTC and the Gabriel Graph stay
within a narrow range from 4 to 5 and between 7 and 9. The low
degree values of GXTC suggest its suitability to reduce interfer-
ence in ad-hoc networks.

6.3 Performance of Geometric Routing
GXTC ’s planarity property enables it to be employed for geo-

metric routing. We study its influence on geometric routing again
by comparison with the Gabriel Graph.

For this purpose the results were obtained by simulation of the
GOAFR+ algorithm [11] on GXTC and the Gabriel Graph of 2000
randomly generated networks for each considered network den-
sity. In particular, the performance measure for the algorithm A
routing from a source s to a destination t on a network G (in our
case s and t having been chosen randomly from G) is defined as

perfA(G, s, t) :=
|pA(G, s, t)|d
|p∗(G, s, t)|d

,

that is the number of steps taken by the algorithm normalized by
the hop length of the shortest path from s to t on G.
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Figure 7. Node degree of G ��� � (solid), Gabriel Graph
(dashed), and Unit Disk Graph (dotted) over network den-
sity spectrum. Mean values are plotted in black, maxi-
mum values in gray.
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Figure 8. Mean performance of the GOAFR+ routing al-
gorithm onG ����� (solid), on the Gabriel Graph (dotted),
and of the GFG/GPSR algorithm on the Gabriel Graph
(dashed). For reference, the network connectivity rate is
plotted against the right y axis.

Figure 8 shows the typical bell-shaped characteristic of the
mean algorithm performance curves around the critical density
range. The critical network density range is additionally identified
by the sharp increase of the network connectivity rate, that is the
frequency with which a randomly chosen node pair at a given net-
work density is connected. The figure depicts that above all in the
critical density range the performance of the GOAFR+ algorithm
on GXTC is slightly worse than on the Gabriel Graph. In light
of the performance curve of the well-known GFG/GPSR routing
algorithm, however, the degradation of GOAFR+ employed on
GXTC compared to the Gabriel Graph can be considered negli-
gible.

7 Conclusion

In this paper we introduce the XTC topology control algorithm.
Compared to previous proposals for topology control XTC has
three main advantages. First, it is not only simple, but also lo-
cal: Every node communicates with its neighbors in the network
not more than twice. Second, unlike many other topology con-
trol algorithms, XTC does not require the network graph to be
a Euclidean Graph, let alone a Unit Disk Graph. Also for the
global case of the network graph being a general weighted graph,
XTC proves correct and computes a resulting subgraph maintain-
ing connectivity. Third, while previously proposed topology con-
trol algorithms commonly assumed that exact node and neighbor
position information is available, XTC does not require this as-
sumption. The algorithm works with a general notion of a quality
order over a node’s neighbors. Whereas correctness of the algo-
rithm can be shown even without any strict assumptions on this
neighbor order, the resulting topology features the bounded de-
gree property provided that the neighbor order corresponds to Eu-
clidean distances and that the network is a Unit Disk Graph. On
average-case random Unit Disk Graphs the resulting graph also

shows good spanner properties, above all with respect to the en-
ergy metric. Being planar, the proposed topology is finally also
suitable for geometric routing.
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