
A Self-Repairing Peer-to-Peer System
Resilient to Dynamic Adversarial Churn∗

Fabian Kuhn, Stefan Schmid, Roger Wattenhofer
{kuhn, schmiste, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Abstract

We present a dynamic distributed hash table where peers may join
and leave at any time. Our system tolerates a powerful adver-
sary which has complete visibility of the entire state of the system
and can continuously add and remove peers. Our system provides
worst-case fault-tolerance, maintaining desirable properties such as
a low peer degree and a low network diameter.

1 Introduction

Storing and handling data in an efficient way lie at the heart
of any data-driven computing system. Compared to a tra-
ditional client/server approach, decentralized peer-to-peer
(P2P) systems have the advantage to be more reliable, avail-
able, and efficient. P2P systems are based on common desk-
top machines (“peers”), distributed over a large-scale net-
work such as the Internet. These peers share data (as well as
the management of the data) that is conventionally stored on
a central server. Usually, peers are under control of individ-
ual users who turn their machines on or off at any time. Such
peers join and leave the P2P system at high rates (“churn”), a
problem that is not existent in orthodox distributed systems.
In other words, a P2P system consists of unreliable compo-
nents only. Nevertheless, the P2P system should provide a
reliable and efficient service.

Most P2P systems in the literature are analyzed against an
adversary who can crash a functionally bounded number of
random peers. After crashing a few peers the system is given
sufficient time to recover again. The scheme described in
this paper significantly differs from this in two major aspects.
First, we assume that joins and leaves occur in a worst-case
manner. We think of an adversary which can remove and add
a bounded number of peers. The adversary cannot be fooled

∗Research (in part) supported by the Hasler Stiftung under grant number
1828 and the Swiss National Science Foundation. A short version of this
paper has been published at the 4th International Workshop on Peer-To-Peer
Systems (IPTPS), Ithaca, New York, USA, 2005.

by any kind of randomness. It can choose which peers to
crash and how peers join.1 Note that we use the term “ad-
versary” to model worst-case behavior. We do not consider
Byzantine faults. Second, the adversary does not have to
wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash
peers while the system is trying to stay alive. Indeed, our
system is never fully repaired but always fully functional. In
particular, our system is resilient against an adversary which
continuously attacks the “weakest part” of the system. Such
an adversary could for example insert a crawler into the P2P
system, learn the topology of the system, and then repeat-
edly crash selected peers, in an attempt to partition the P2P
network. Our system counters such an adversary by continu-
ously moving the remaining or newly joining peers towards
the sparse areas.

Clearly, we cannot allow our adversary to have unbounded
capabilities. In particular, in any constant time interval, the
adversary can at most add and/or remove O(log n) peers, n
being the total number of peers currently in the system. This
model covers an adversary which repeatedly takes down ma-
chines by a distributed denial of service attack, however only
a logarithmic number of machines at each point in time. Our
algorithm relies on messages being delivered timely, in at
most constant time between any pair of operational peers. In
distributed computing such a system is called synchronous.
Note that if nodes are synchronized locally, our algorithm
also runs in an asynchronous environment. In this case, the
propagation delay of the slowest message defines the notion
of time which is needed for the adversarial model.

The basic structure of our P2P system is a hypercube.
Each peer is part of a distinct hypercube node; each hyper-
cube node consists of Θ(log n) peers. Peers have connec-
tions to other peers of their hypercube node and to peers
of the neighboring hypercube nodes. In the case of joins
or leaves, some of the peers have to change to another hy-

1We assume that a joining peer knows a peer which already belongs to
the system. This is known as the bootstrap problem.

1

percube node such that up to constant factors, all hypercube
nodes own the same number of peers at all times. If the total
number of peers grows or shrinks above or below a certain
threshold, the dimension of the hypercube is increased or de-
creased by one, respectively.

The balancing of peers among the hypercube nodes can
be seen as a dynamic token distribution problem [13] on the
hypercube. Each node of a graph (hypercube) has a certain
number of tokens, the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with the
same or almost the same number of tokens. While tokens are
moved around, an adversary constantly inserts and deletes to-
kens. Our P2P system builds on two basic components: i) an
algorithm which performs the described dynamic token dis-
tribution and ii) an information aggregation algorithm which
is used to estimate the number of peers in the system and to
adapt the dimension accordingly.

Based on the described structure, we get a fully scal-
able, efficient P2P system which tolerates O(log n) worst-
case joins and/or crashes per constant time interval. As in
other P2P systems, peers have O(log n) neighbors, and the
usual operations (e.g. search) take time O(log n). In our
view a main contribution of the paper, however, is to pro-
pose and study a model which allows for dynamic adversar-
ial churn. We believe that our basic algorithms (dynamic
token distribution and information aggregation) can be ap-
plied to other P2P topologies, such as butterflies, skip graphs,
chordal rings, etc. It can even be used for P2P systems that
go beyond distributed hash tables (DHT).

The paper is organized as follows. In Section 2 we discuss
relevant related work. Section 3 gives a short description of
the model. A detailed discussion of our P2P system is given
in Sections 4 and 5. Finally, the paper is concluded in Section
6.

2 Related Work
A plethora of different overlay networks with various inter-
esting technical properties have been proposed over the last
years (e.g. [1, 3, 5, 6, 9, 10, 12, 15, 16, 20, 23]). Due to
the nature of P2P systems, fault-tolerance has been a prime
issue from the beginning. The systems usually tolerate a
large number of random faults. However after crashing a few
peers the systems are given sufficient time to recover again.
From an experimental point of view, churn has been studied
in [17], where practical design tradeoffs in the implementa-
tion of existing P2P networks are considered.

Resilience to worst-case failures has been studied by Fiat,
Saia et al. in [8, 18]. They propose a system where, w.h.p.,
(1 − ε)-fractions of peers and data survive the adversarial
deletion of up to half of all nodes. In contrast to our work

the failure model is static. Moreover, if the total number of
peers changes by a constant factor, the whole structure has to
be rebuilt from scratch.

Scalability and resilience to worst-case joins and leaves
has been addressed by Abraham et al. in [2]. The focus
lies on maintaining a balanced network rather than on fault-
tolerance in the presence of concurrent faults. In contrast to
our paper, whenever a join or leave happens, the network has
some time to adapt.

The only paper which explicitly treats arbitrarily concur-
rent worst-case joins and leaves is by Li et al. [11]. In con-
trast to our work, Li et al. consider a completely asynchro-
nous model where messages can be arbitrarily delayed. The
stronger communication model is compensated by a weaker
failure model. It is assumed that peers do not crash. Leaving
peers execute an appropriate “exit” protocol and do not leave
before the system allows this; crashes are not allowed.

3 Model
We consider the synchronous message passing model. In
each round, each peer can send a message to all its neigh-
bors. Additionally, we have an adversary A(J, L, λ) which
may perform J arbitrary joins and and L arbitrary leaves
(crashes) in each interval of λ rounds.

We assume that a joining peer π1 contacts an arbitrary peer
π2 which already belongs to the system; π2 then triggers the
necessary actions for π1’s integration. A peer may be con-
tacted by several joining peers simultaneously. In contrast
to other systems where peers have to do some finalizing op-
erations before leaving, we consider the more general case
where peers depart or crash without notice.

4 Algorithm
In this section, we describe the maintenance algorithm which
maintains the simulated hypercube in the presence of an ad-
versary which constantly adds and removes peers. The goal
of the maintenance algorithm is twofold. It guarantees that
each node always contains at least one peer which stores the
node’s data. Further, it adapts the hypercube dimension to
the total number of peers in the system.

This is achieved by two basic components. First, we
present a dynamic token distribution algorithm for the hy-
percube. Second, we describe an information aggregation
scheme which allows the nodes to simultaneously change the
dimension of the hypercube.

4.1 Dynamic Token Distribution
The problem of distributing peers uniformly throughout a hy-
percube is a special instance of a token distribution prob-

2

lem, first introduced by Peleg and Upfal [13]. The prob-
lem has its origins in the area of load balancing, where the
workload is modeled by a number of tokens or jobs of unit
size; the main objective is to distribute the total load equally
among the processors. Such load balancing problems arise in
a number of parallel and distributed applications including
job scheduling in operating systems, packet routing, large-
scale differential equations and parallel finite element meth-
ods. More applications can be found in [19].

Formally, the goal of a token distribution algorithm is
to minimize the maximum difference of tokens at any two
nodes, denoted by the discrepancy φ. This problem has been
studied intensively; however, most of the research is about
the static variant of the problem, where given an arbitrary
initial token distribution, the goal is to redistribute these to-
kens uniformly. In the dynamic variant on the other hand, the
load is dynamic, that is, tokens may arrive and depart during
the execution of the token distribution algorithm. In our case,
peers may join and leave the simulated hypercube at arbitrary
times, so the emphasis lies on the dynamic token distribution
problem on a d-dimensional hypercube topology.

We use two variants of the token distribution problem: In
the fractional token distribution, tokens are arbitrarily divisi-
ble, whereas in the integer token distribution tokens can only
move as a whole. In our case, tokens represent peers and
are inherently integer. However, it turns out that the study of
the fractional model is useful for the analysis of the integer
model.

We use a token distribution algorithm which is based on
the dimension exchange method [7, 14]. Basically, the al-
gorithm cycles continuously over the d dimensions of the
hypercube. In step s, where i = s mod d, every node
u := β0...βi...βd−1 having a tokens balances its tokens with
its adjacent node in dimension i, v := β0...βi...βd−1, having
b tokens, such that both nodes end up with a+b

2 tokens in the
fractional token distribution. On the other hand, if the tokens
are integer, one node is assigned da+b

2 e tokens and the other
one gets ba+b

2 c tokens.
It has been pointed out in [7] that the described algorithm

yields a perfect discrepancy φ = 0 after d steps for the static
fractional token distribution. In [14], it has been shown that
in the worst case, φ = d after d steps in the static integer
token distribution. We can show that if the decision to which
node to assign da+b

2 e and to which node to assign ba+b
2 c

tokens is made randomly, the final discrepancy is constant in
expectation. However, we do not make use of this because it
has no influence on our asymptotic results.

In the following, the dynamic integer token distribution
problem is studied, where a “token adversary” A(J, L, 1)
adds at most J and removes at most L tokens at the begin-
ning of each step. In particular, we will show that if the initial

distribution is perfect, i.e., φ = 0, our algorithm maintains
the invariant φ ≤ 2J + 2L + d at every moment of time.

Lemma 4.1. The dimension exchange algorithm yields a
perfect discrepancy φ = 0 after d steps for the static frac-
tional token distribution.

Proof. We prove by induction that after the ith iteration, all
nodes with the same postfix of length d−1− i have the same
number of tokens.

i = 0: Let v be node 0α having a tokens and u its neighbor
1α having b tokens, for an arbitrary d− 1 bit vector α. After
balancing, both nodes have a+b

2 tokens.
i → i + 1: Consider two i-dimensional sub-cubes H0

and H1 consisting of all nodes with postfixes 0α and 1α
respectively, where α is an arbitrary bit string of length
d − 1 − (i + 1). By the induction hypothesis, all nodes in
H0 have the same number of tokens, say a, and all nodes in
H1 have the same number of tokens, say b. After step i + 1,
all nodes in V (H0)∪V (H1) — sharing the postfix α — will
have a+b

2 tokens. To see this, consider the nodes v0 = ζ0α,
v1 = η0α ∈ V (H0), and u0 = ζ1α, u1 = η1α ∈ V (H1),
where ζ and η are arbitrary bit vectors of length i+1. During
the exchange of round i+1, v0 balances with u0 and v1 with
u1. Obviously, all four nodes end up with a+b

2 tokens.

For the dynamic fractional token distribution, the tokens
inserted and deleted at different times can be treated indepen-
dently and be superposed. Therefore, the following lemma
holds.

Lemma 4.2. For the dynamic fractional token distribution,
the number of tokens at a node depends only on the token
insertions and deletions of the last d steps and on the total
number of tokens in the system.

Proof. Assume that a total amount of T tokens are distrib-
uted in two different ways on the d-dimensional hypercube.
According to Lemma 4.1, each node has exactly T

2d tokens
after d steps in the absence of an adversary. On the other
hand, the token insertions and removals of the adversary that
happen in-between can be treated as an independent super-
position, as the corresponding operations are all linear.

We can now bound the discrepancy of the integer token
distribution algorithm by comparing it with the fractional
problem.

Lemma 4.3. Let v be a node of the hypercube. Let τv(t)
and τv,f (t) denote the number of tokens at v for the inte-
ger and fractional token distribution algorithms at time t,
respectively. We have ∀t : |τv(t)− τv,f (t)| ≤ d

2 .

3

Proof. For t = 0, we have τv(t) = τv,f (t). For sym-
metry reasons, it is sufficient to show the upper bound
τv(t) ≤ τv,f (t) + d

2 . We first prove by induction that
τv(t) ≤ τv,f (t) + t

2 at time t.
For the induction step, we consider two neighbors u and v

which exchange tokens. We have

τv(t + 1) ≤
⌈

τv(t) + τu(t)
2

⌉

≤
⌈⌊

τv,f (t) + t
2

⌋
+

⌊
τu,f (t) + t

2

⌋

2

⌉

≤
⌊
τv,f (t) + t

2

⌋
+

⌊
τu,f (t) + t

2

⌋

2
+

1
2

≤ τv,f (t + 1) +
t + 1

2
.

The second inequality follows from the induction hypothe-
sis and the fact that τv(t) and τu(t) are integers. Note that
adding or removing tokens has no influence on the differ-
ence between τv and τv,f because it modifies τv and τv,f in
the same way.

So far, we have seen that the number of integer tokens can
deviate from the number of fractional tokens by at most d

2
after the first d steps. In order to show that this holds for all
times t, we consider a fractional token distribution problem
τ̂v,f for which τ̂v,f (t − d) = τv(t − d). Using the above
argument, we have τv(t − d) ≤ τ̂v,f (t) + d

2 and by Lemma
4.2, we get τ̂v,f (t) = τv,f (t). This concludes the proof.

Let φf and φi be the discrepancies of the fractional and
the integer token distribution algorithms, respectively. From
Lemma 4.3, we get Corollary 4.4.

Corollary 4.4. At all times, φi − φf ≤ d.

Lemma 4.5. In the presence of an adversary A(J, L, 1), it
always holds that the integer discrepancy φ ≤ 2J + 2L + d.

Proof. We show that the fractional discrepancy φf is
bounded by 2J +2L. Together with Corollary 4.4, the claim
follows. Let Jt ≤ J and Lt ≤ L be the insertions and
deletions that happen at the beginning of step t. First, we
consider the case of joins only, i.e., Lt = 0. Assume that
all Jt tokens are inserted at node v = β0...βi...βd−1 where
i := t mod d. In the upcoming paragraph, all indices are
implicitly modulo d. In step t, according to the token dis-
tribution algorithm, v keeps Jt/2 tokens and sends Jt/2 to
node u = β0...βi...βd−1. In step t+1, Jt/4 are sent to nodes
β0...βiβi+1...βd−1 and β0...βiβi+1...βd−1, and so on. Thus,
after step t + d− 1, every node in the d-dimensional hyper-
cube has the same share of Jt

2d tokens from that insertion. We
conclude that a node can have at most all insertions of this

step, half of the insertions of the last step, a quarter of all
insertions two steps ago and so on:

Jt +
Jt−1

2
+

Jt−2

4
+ ... +

Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+
Jt−d

2d
+

Jt−(d+1)

2d
+

Jt−(d+2)

2d
+ ...

︸ ︷︷ ︸
shared by all nodes

Since Jt−i ≤ J for i = 0, 1, 2, . . ., we have φf ≤ 2J .
For the case of only token deletions, the same argument can
be applied, yielding a discrepancy of at most 2L. Finally, if
there are both insertions and deletions which do not cancel
out each other, we have φf ≤ 2J + 2L.

4.2 Information Aggregation
When the total number of peers in the d-dimensional
hypercube system exceeds a certain threshold, all nodes
β0 . . . βd−1 have to split into two new nodes β0 . . . βd−10
and β0 . . . βd−11, yielding a (d + 1)-dimensional hyper-
cube. Analogously, if the number of peers falls beyond a
certain threshold, nodes β0 . . . βd−20 and β0 . . . βd−21 have
to merge their peers into a single node β0 . . . βd−2, yielding a
(d− 1)-dimensional hypercube. Based on ideas also used in
[4, 21, 22], we present an algorithm which provides the same
estimated number of peers in the system to all nodes in every
step allowing all nodes to split or merge synchronously, that
is, in the same step. The description is again made in terms
of tokens rather than peers.

Assume that in order to compute the total number of to-
kens in a d-dimensional hypercube, each node v = β0...βd−1

maintains an array Γv[0...d], where Γv[i] for i ∈ [0, d] stores
the estimated number of tokens in the sub-cube consisting
of the nodes sharing v’s prefix β0...βd−1−i. Further, assume
that at the beginning of each step, an adversary inserts and
removes an arbitrary number of tokens at arbitrary nodes.
Each node v = β0...βd−1−i...βd−1 then calculates the new
array Γ′v[0...d]. For this, v sends Γv[i] to its adjacent node
u = β0...βd−1−i...βd−1, for i ∈ [0, d−1]. Then, Γ′v[0] is set
to the new number of tokens at v which is the only node with
prefix β0...βd−1. For i ∈ [1, d], the new estimated number
of tokens in the prefix domain β0...βd−1−(i+1) is given by
the total number of tokens in the domain β0...βd−1−i plus
the total number of tokens in domain β0...βd−1−i provided
by node u, that is, Γ′v[i + 1] := Γv[i] + Γu[i].

Lemma 4.6. Consider two arbitrary nodes v1 and v2 of the
d-dimensional hypercube. Our algorithm guarantees that
Γv1 [d] = Γv2 [d] at all times t. Moreover, it holds that this

4

value is the correct total number of tokens in the system at
time t− d.

Proof. We prove by induction that at time t + k, all nodes
sharing the prefix β0...βd−1−k for k ∈ [0, d] store the same
value Γv[k] which represents the correct state of that sub-
domain in step t.

k = 0: There is only one node having the prefix β0...βd−1,
so the claim trivially holds.

k → k + 1: By the induction hypothesis, all nodes v
with prefix β0...βd−1−(k+1)βd−1−k share the same value
Γv[k] which corresponds to the state of the system k steps
earlier, and the same holds for all nodes u with prefix
β0...βd−1−(k+1)βd−1−k. In step k+1, all these nodes having
the same prefix β0...βd−1−(k+1) obviously store the same
value Γ′v[k + 1] = Γ′u[k + 1] = Γv[k] + Γu[k].

5 Simulated Hypercube
Based on the components presented in the previous sections,
both the topology and the maintenance algorithm are now
described in detail. In particular, we show that, given an ad-
versaryA(d+1, d+1, 6) which inserts and removes at most
d+1 peers in any time interval of 6 rounds, 1) the out-degree
of every peer is bounded by Θ(log2 n) where n is the total
number of peers in the system, 2) the network diameter is
bounded by Θ(log n), and 3) every node of the simulated
hypercube has always at least one peer which stores its data
items, so no data item will ever be lost.

5.1 Topology
We start with a description of the overlay topology. As al-
ready mentioned, the peers are organized to simulate a d-
dimensional hypercube, where the hypercube’s nodes are
represented by a group of peers. A data item with identi-
fier id is stored at the node whose identifier matches the first
d bits of the hash-value of id .

The peers of each node v are divided into a core Cv of
at most 2d + 3 peers and a periphery Pv consisting of the
remaining peers; all peers within the same node are com-
pletely connected (intra-connections). Moreover, every peer
is connected to all core peers of the neighboring nodes (inter-
connections). Figure 1 shows an example for d = 2.

The data items belonging to node v are replicated on all
core peers, while the peripheral peers are used for the bal-
ancing between the nodes according to the peer distribution
algorithm and do not store any data items. The partition into
core and periphery has the advantage that the peers which
move between nodes do not have to replace the data of the
old node by the data of the new nodes in most cases.

Figure 1: A simulated 2-dimensional hypercube with four nodes,
each consisting of a core and a periphery. All peers within the same
node are completely connected to each other, and additionally, all
peers of a node are connected to all core peers of the neighboring
nodes. Only the core peers store data items, while the peripheral
peers may move between the nodes to balance biased adversarial
changes.

5.2 6-Round (Maintenance) Algorithm
The 6-round (maintenance) algorithm maintains the simu-
lated hypercube topology described in the previous section
given an adversary A(d + 1, d + 1, 6). In particular, it en-
sures that 1) every node has at least one core peer all the
times and hence no data is lost; 2) each node always has be-
tween 3d + 10 and 45d + 86 peers; 3) only peripheral peers
are moved between nodes, thus the unnecessary copying of
data is avoided.

In the following, we refer to a complete execution of all
six rounds (ROUND 1 – ROUND 6) of the maintenance algo-
rithm as a phase. Basically, the 6-round algorithm balances
the peers across one dimension in every phase according to
the token distribution algorithm as described in Section 4.1;
additionally, the total number of peers in the system is com-
puted with respect to an earlier state of the system by the
information aggregation algorithm of Section 4.2 to expand
or shrink the hypercube if the total number of peers exceeds
or falls below a certain threshold. In our system, we use
the lower threshold LT := 8d + 16 and the upper threshold
UT := 40d + 80 for the total number of peers per node on
average.2

While peers may join and leave the system at arbitrary
times, the 6-round algorithm considers the (accumulated)
changes only once per phase. That is, a snapshot of the sys-
tem is made in ROUND 1; ROUNDS 2 – 6 then ignore the
changes that might have happened in the meantime and de-
pend solely on the snapshot at the beginning of the phase.

2Note that since we consider the threshold on average, and since these
values are provided with a delay of d phases in a d-dimensional hypercube
(see Lemma 4.6), the number of peers at an individual node may lie outside
[LT ,UT].

5

ROUND 1

Outline: Each node v makes a snapshot of the currently ac-
tive peers, denoted by the ID set Sv . The later rounds will
only be based on these sets.

Sent Messages: Each peer of a node v sends a packet with
its own ID and the (potentially empty) ID set of its joiners to
all adjacent peers within v.

ROUND 2

Outline: Based on the snapshot of ROUND 1, the core peers
of a node v know the total number of peers in the node,
size(v) := |Sv|. This information is needed for the peer
distribution algorithm (see Section 4.1) and for the estima-
tion of the total number of peers in the system (see Section
4.2).

Local Computations: The core peers compute
size(v) := |Sv|.

Sent Messages: Each peer informs its joiners about Sv .
The core peers Cv additionally send the number size(v) to
their neighboring core Cu, where node u is v’s neighbor in
dimension i — the node with which v has to balance its peers
in this phase. The core also exchanges the new estimated to-
tal number of peers in its domains with the corresponding
adjacent cores (according to the algorithm presented in Sec-
tion 4.2).

ROUND 3

Outline: At the beginning of this round, every peer within
a node v knows Sv , and the transfer for the peer distribu-
tion algorithm can be prepared. Let v again be an arbitrary
node and u its adjacent node in dimension i. We assume
that size(v) > size(u); the case where size(v) ≤ size(u)
is analogous and not described further here. The ID set T
of peers that have to move from node v to node u are the
size(v)−size(u)

2 (arbitrarily rounded) peers in the periphery
Pv having the smallest identifiers.

Local Computations: The peers in each node v compute
the new peripheryPv := Sv\Cv . The core remains the same.

Sent Messages: All cores forward the information about
the new estimated total number of peers in the system to their
peripheral peers. Moreover, the core of the larger node Cv

sends the identifiers of the to be transferred peers T to Cu,
and the number size(v)−size(u)

2 to the new periphery Pv .

ROUND 4

Outline: The transfer for the peer distribution algorithm is
continued. Moreover, this round prepares the dimension re-
duction if necessary.

Sent Messages: The core Cu informs the peers in T about
all neighboring cores Cuj , where uj is the neighbor of u in
dimension j for j ∈ [0, d− 1], about Cu itself, about Su and
about its peripheral peers Pu. Moreover, Cu informs its own
periphery Pu about the newcomers T .

If the estimated total number of peers in the system is be-
yond the threshold, the core peers of a node v which will be
reduced send their data items plus the identifiers of all their
peripheral peers (with respect to the situation after the trans-
fer) to the core of their adjacent node v.

ROUND 5

Outline: This round finishes the peer distribution, estab-
lishes the new peripheries, and prepares the building of a
new core. If the hypercube has to grow in this phase, the
nodes start to split, and vice versa if the hypercube is going
to shrink.

Local Computations: Given the number size(v)−size(u)
2 ,

the peripheral peers Pv can compute the set T selecting the
size(v)−size(u)

2 smallest elements in Pv . From this, the new
periphery Pv := Pv \ T is computed. Analogously, the
peers in node u (including T) can compute the new periphery
Pu := Pu ∪ T .

Then, all peers of each node v calculate the new core
Cnew

v : It consists of the peers of the old core which have
still been alive in ROUND 1, i.e., Cold

v := Cv ∩ Sv , plus the
2d + 3 − |Cv ∩ Sv| smallest IDs in the new periphery Pv ,
denoted by C4v . Hence, the new core is given by Cnew

v :=
Cold

v ∪ C4v , and the new periphery by Pnew
v := Pv \ C4v .

If the hypercube has to grow in this phase, the smallest
2d + 3 peers in the new periphery Pnew

v become the new
core of the expanded node, Cv . Half of the remaining pe-
ripheral peers, the ones with the smaller identifiers, build the
new periphery Pv , and the other half becomes Pv . All these
operations can be computed locally by every peer.

Sent Messages: The old core Cold
v informs all its neigh-

boring nodes (i.e., their old cores) about the new core Cnew
v .

Moreover, Cold
v sends its data items to the peers in C4v .

If the hypercube is about to grow, Cold
v sends the necessary

data items to the core peers of the new node, Cv . Moreover,
Cold

v informs its neighboring (old) cores about the IDs of its
expanded core Cv .

If the hypercube is about to shrink, all cores Cold
v inform

their periphery about the peers arriving from the expanded
node and the peers in the expanded node about the new core
Cnew

v and its periphery. Cold
v copies also the data items of

Cold
v to the peers C∆

v .

6

ROUND 6

Outline: Building the new cores and accomplishing the di-
mension change if necessary.

Local Computations: If the hypercube has been reduced,
every peer can now compute the new periphery Pv .

Sent Messages: The old core Cold
v forwards the informa-

tion about the new neighboring cores to the peers C∆
v ∪ Pv .

If the hypercube has grown, Cold
v forwards the expanded

cores of its neighboring nodes to all peers in its expanded
node v. Note that his requires that Cold

v remembers the pe-
ripheral peers that have been transferred to v in ROUND 5.

Theorem 5.1. Given an adversary A(d + 1, d + 1, 6) which
inserts and removes at most d + 1 peers per phase, the de-
scribed 6-round algorithm ensures that 1) every node always
has at least one core peer and hence no data is lost; 2) each
node has between 3d + 10 and 45d + 86 peers, yielding a
logarithmic network diameter; 3) only peripheral peers are
moved between nodes, thus the unnecessary copying of data
is avoided.

Proof. We first consider a simpler system without the sep-
aration into core and periphery, where the maintenance al-
gorithm simply runs the peer distribution algorithm and the
information aggregation algorithm to count the total num-
ber of peers in the system, and expands or reduces the hy-
percube with respect to the thresholds LT = 8d + 16 and
UT = 40d + 80 presented above. Moreover, assume that
these operations are performed in quiet phases, where the
adversary may remove at most d + 1 and add at most d + 1
peers only in-between.

For this simpler system, it holds that every node in the
simulated d-dimensional hypercube has at least 3d + 10 and
at most 45d + 86 peers at every moment of time. Moreover,
after the hypercube has changed its dimension from dold to
dnew, the dimension will remain stable for at least 2dnew +1
phases. We will now prove these properties.

We consider the cases where the average number of peers
per node µ falls beyond the lower threshold 8dold + 16 or
exceeds the upper threshold 40dold + 80 in turn. Note that
such an event will lead to a dimension change with a delay
of dold phases only, see Lemma 4.6. We prove that after the
change, µ ∈[8dnew +16, 40dnew +80] for at least dnew +1
phases. The dimension remains stable for at least 2dnew + 1
phases which implies — together with Lemma 4.5 — that the
discrepancy before the next change is limited by 2(dnew +
1) + 2(dnew + 1) + dnew = 5dnew + 4.

Case µ < 8d + 16: At time t − dold, it held that µ <
8dold +16 while at time t−dold−1 we had µ ≥ 8dold +16.
In dold + 1 phases, there are at most (dold + 1)(dold + 1) =
d2

old +2dold +1 leaves, so µ ≥ 8dold +16− d2
old+2dold+1

2dold
>

8dold+14 before merging. Clearly, there must be a node with
more than 8dold + 14 peers, hence, given the discrepancy
of 5dold + 4 (see Lemma 4.5), every node has more than
3dold + 10 peers before merging.

What about the maximum? At time t− dold, µ < 8dold +
16, and there have been at most dold(dold + 1) joins in dold

steps, so µ < 8dold + 16 + dold(dold+1)

2dold
< 8dold + 18 before

merging, and µ < 16dold + 36 afterwards. The maximum
node has less than 21dnew + 61 peers.

Next, we show that µ ≥ 8dnew +16 for the next dnew +1
phases after a reduction. At time t − dold − 1, µ ≥ 8dold +
16 = 8dnew+24. The reduction doubles the average number
of peers per node, so µ ≥ 16dnew + 48. Further, there are
at most (dold + 1)(dold + 1) + (dnew + 1)(dnew + 1) =
2d2

new +6dnew +5 leaves in the meantime, so µ ≥ 16dnew +
48− 2d2

new+6dnew+5
2dnew

> 16dnew + 41 > 8dnew + 16.
Finally, µ ≤ 40dnew + 80 for dnew + 1 phases. At

time t − dold, µ < 8dnew + 24, so µ < 16dnew + 48
after the reduction. There are at most dold(dold + 1) +
(dnew + 1)(dnew + 1) = 2d2

new + 5dnew + 3 joins, so
µ < 16dnew + 48 + 2d2

new+5dnew+3
2dnew

< 16dnew + 54 <
40dnew + 80.

Case µ > 40d + 80: At time t− dold, µ > 40dold + 80 =
40dnew +40, so µ > 20dnew +20 after splitting; there are at
most dold(dold + 1) = d2

new − dnew leaves in dold steps, so
µ > 20dnew+20− d2

new−dnew

2dnew
> 20dnew+19. According to

Lemma 4.5, the minimum node has more than 15dnew + 15
peers after splitting. At time t− dold − 1, µ ≤ 40dold + 80,
and there are at most (dold +1)(dold +1) = d2

old +2dold +1
joins. So before splitting, µ ≤ 40dold +80+ d2

old+2dold+1

2dold
<

40dold +82, and the maximum node has at most 45dold +86
peers.

Next, we show that µ ≥ 8dnew + 16 for the next
dnew + 1 phases after the expansion. At time t − dold,
µ > 40dold + 80 = 40dnew + 40, so µ > 20dnew + 20
after the expansion. Moreover, there are at most dold(dold +
1) + (dnew + 1)(dnew + 1) = 2d2

new + dnew + 1 leaves,
and µ > 20dnew + 20 − 2d2

new+dnew+1
2dnew

> 20dnew + 17 ≥
8dnew +16. Finally, µ ≤ 40dnew +80 for the next dnew +1
steps: At time t−dold−1, µ ≤ 40dold +80 = 40dnew +40,
so µ ≤ 20dnew +20 after the expansion; moreover, there are
at most (dold+1)(dold+1)+(dnew+1)(dnew+1) = 2d2

new+
2dnew + 1 joins, so µ ≤ 20dnew + 20 + 2d2

new+2dnew+1
2dnew

<
20dnew + 24 < 40dnew + 80.

In our real system, repairing takes six rounds and runs
concurrently to the adversary. However, as all operations
in the whole phase are based upon the state of ROUND 1, a
phase can be considered as running uninterruptedly, that is,
as if the adversary inserted d + 1 and removed d + 1 peers
only between the phases. Thus, the properties shown above

7

also hold in our system. However, we additionally have to
postulate that there is always at least one core peer. We
know that it is always possible to select 2d + 3 core peers
in ROUND 5 with respect to the state of ROUND 1. These
peers have to survive until ROUND 6 of the next phase, so
for twelve normal rounds in total; however, as the adversary
Aadv(d + 1, d + 1, 6) may remove at most 2d + 2 peers in
twelve rounds, this clearly holds.

Finally, we show that there are indeed enough peripheral
peers in ROUND 3 such that core peers do not have to change
the node for the peer distribution, that is: In ROUND 3, it
holds that |Pv| > size(v)−size(u)

2 . From the considerations
made above, we know that size(v) ≥ 3d+10 and size(u) ≥
3d+10. As v has at most 2d+3 core peers, we have |Pv| ≥
size(v)− (2d + 3) ≥ size(v)− size(u) > size(v)−size(u)

2 .

In order to enhance clarity, we described a scheme which
is as simple as possible. Instead of a complete bipartite graph
between adjacent hypercube nodes one could e.g. use a bipar-
tite matching. This reduces the node degree from O(log2 n)
to O(log n). Apart from better node degrees, all our results
still hold up to constant factors.

6 Conclusions

We presented a first distributed hash table which provably
tolerates dynamic worst-case joins and leaves. We believe
that our approach opens several exciting P2P research chal-
lenges. For example: How well perform classic P2P pro-
posals when studied with a dynamic failure model or what
is the adversary/efficiency tradeoff when studying dynamic
models?

References
[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Infor-

mation Systems. In Proc. 9th Int. Conference on Cooperative Infor-
mation Systems (CoopIS), pages 179–194, 2001.

[2] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and
E. Pavlov. A Generic Scheme for Building Overlay Networks in Ad-
versarial Scenarios. In Proc. 17th Int. Symp. on Parallel and Distrib-
uted Processing (IPDPS), page 40.2, 2003.

[3] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε)
Locality-Aware Networks for DHTs. In Proc. 15th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 550–559, 2004.

[4] K. Albrecht, R. Arnold, M. Gähwiler, and R. Wattenhofer. Aggregat-
ing Information in Peer-to-Peer Systems for Improved Join and Leave.
In 4th IEEE Int. Conference on Peer-to-Peer Computing (P2P), 2004.

[5] J. Aspnes and G. Shah. Skip Graphs. In Proc. 14th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 384–393, 2003.

[6] B. Awerbuch and C. Scheideler. The Hyperring: A Low-Congestion
Deterministic Data Structure for Distributed Environments. In Proc.
15th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
318–327, 2004.

[7] G. Cybenko. Dynamic Load Balancing for Distributed Memory Mul-
tiprocessors. Journal on Parallel Distributed Computing, 7:279–301,
1989.

[8] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Ad-
dressable Networks. In Proc. 13th Symp. on Discrete Algorithms
(SODA), 2002.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. SkipNet: A Scalable Overlay Network with Practical Locality
Properties. In Proc. 4th USENIX Symp. on Internet Technologies and
Systems (USITS), 2003.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-scale Persistent Storage. In
Proc. of ACM ASPLOS, November 2000.

[11] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology
Maintenance. In Proc. 18th Ann. Conference on Distributed Comput-
ing (DISC), 2004.

[12] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dy-
namic Emulation of the Butterfly. In Proc. 21st Ann. Symp. on Princi-
ples of Distributed Computing (PODC), pages 183–192, 2002.

[13] D. Peleg and E. Upfal. The Token Distribution Problem. SIAM Journal
on Computing, 18(2):229–243, 1989.

[14] C. G. Plaxton. Load Balancing, Selection and Sorting on the Hy-
percube. In Proc. 1st Ann. ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 64–73, 1989.

[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. In
Proc. 9th Ann. ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 311–320, 1997.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content Addressable Network. In Proc. of ACM SIGCOMM
2001, 2001.

[17] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in
a DHT. In Proc. USENIX Ann. Technical Conference, 2004.

[18] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically
Fault-Tolerant Content Addressable Networks. In Proc. 1st Int. Work-
shop on Peer-to-Peer Systems (IPTPS), 2002.

[19] B. A. Shirazi, K. M. Kavi, and A. R. Hurson. Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer Sci-
ence Press, 1995.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions. In Proc. ACM SIGCOMM Conference, 2001.

[21] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust
and Scalable Technology for Distributed System Monitoring, Manage-
ment, and Data Mining. ACM Transactions on Computing Systems,
21(2):164–206, 2003.

[22] R. van Renesse and A. Bozdog. Willow: DHT, Aggregation, and Pub-
lish/Subscribe in One Protocol. In Proc. 3rd Int. Workshop on Peer-
To-Peer Systems (IPTPS), 2004.

[23] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D. Kubiatow-
icz. Tapestry: A Resilient Global-scale Overlay for Service Deploy-
ment. IEEE Journal on Selected Areas in Communications, 22(1),
2004.

8

