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ABSTRACT
In this paper we analyze the complexity of scheduling wire-
less links in the physical interference model with analog net-
work coding capability. We study two models with different
definitions of network coding. In one model, we assume that
a receiver is able to decode several signals simultaneously,
provided that these signals differ in strength significantly.
In the second model, we assume that routers are able to for-
ward the interfering signal of a pair of nodes that wish to
exchange a message, and nodes are able to decode the “col-
lided” message by subtracting their own contribution from
the interfered signal. For each network coding definition,
we construct an instance of the scheduling problem in the
geometric SINR model, in which nodes are distributed in
the Euclidean plane. We present NP-completeness proofs
for both scenarios.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometri-
cal Problems and Computations, Sequencing and Scheduling ;
H.1.1 [Models and Principles]: Systems and Information
Theory

General Terms
Theory.

1. INTRODUCTION
The problem of scheduling link transmissions in wireless

networks has received a lot of attention in the last years.
A variety of interference models have been studied, ranging
from graph-based, such as the protocol interference model,
to more realistic representation of signal propagation, such
as the physical interference model [7]. An important issue
is the complexity of scheduling problems. How much com-
putation is it needed to find a minimum length schedule for
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a given set of communication requests? Is this a hard prob-
lem, even in a simplified model? Recently, it was shown
that this problem is NP-complete in the geometric physical
interference model, where nodes live in a Euclidean space [5].

One of the key concepts on which wireless interference
models rely is the definition of a successful transmission. It
has typically been assumed that a receiver successfully de-
codes one, and only one, message at a time. In graph-based
models, a typical pre-condition for a set of links to be sched-
uled concurrently is that they form some sort of independent
set, i.e., only one link is allowed to transmit at a time in its
neighborhood. In physical interference models, this require-
ment of spatial separation is not always necessary. In [18],
for example, it was shown that, with appropriate power con-
trol, two sender-receiver pairs, being one positioned in the
transmission line of the other, can be scheduled without a
collision, i.e., a receiver ri can successfully decode a message
from a sender si in spite of another concurrently transmit-
ting sender sj positioned closer to ri than si. For such a
scenario to work, the signal-to-interference-plus-noise-ratio
at ri must exceed a certain threshold, i.e., only the strongest
signal can be decoded by the receiver.

More recently, the fact that wireless interference is harm-
ful and that a receiver can only decode the strongest signal
at a time has been revised. Techniques such as cochan-
nel separation and network coding have radically changed
the definition of a successful transmission. Cochannel sep-
aration techniques allow the receiver to decode several sig-
nals simultaneously under the assumption that these signals
differ significantly in their strength. Analog network cod-
ing makes it possible to simultaneously decode two signals
of similar strength, under the assumption that the receiver
knows one of the interfered signals by having overheard or
forwarded it earlier [12].

Network coding brought a lot of revision to the building
blocks of models used to study the problem of scheduling
wireless links. Most of the results in network coding have
typically concentrated on capacity improvements in graph-
based models and on feasibility of practical protocol design,
but have not addressed the fundamental issue of complexity
of scheduling in the physical interference model. Does the
fact that a receiver is able to decode more than one signal
simultaneously make the problem easier? Does the problem
remain NP-complete? Does it open possibilities for better
approximation algorithms?

This work presents some initial steps into the study of
these issues. We analyze two models with different defini-
tions of analog network coding. In one model, we assume



that a receiver is able to decode several signals simultane-
ously, provided that these signals differ in strength signif-
icantly. In the second model, we assume that routers are
able to forward the superposition of two interfering signals
of nodes that wish to exchange a message, and nodes are able
to decode the “collided” message by subtracting their own
contribution from the interfered signal. For each network
coding definition, we construct an instance of the schedul-
ing problem in the geometric physical interference model,
in which nodes are distributed in the Euclidean plane, and
present NP-completeness proofs for both scenarios.

In Section 2 we discuss some related work. In Section 3
we define two different models of analog network coding. To
the first model we refer as analog coding by filtering and to
the second model we refer as analog coding by signal mix-
ing. To the scheduling problems defined in each of these
models we refer as Scheduling with Analog Coding by Fil-
tering (SACF) and Scheduling with Analog Coding by Sig-
nal Mixing (SACSM). In Sections 4 and 5 we present NP-
completeness proofs for SACSM and SACF, respectively. Fi-
nally, in Section 6 we discuss some conclusions.

2. RELATED WORK
The complexity of scheduling wireless requests without

network coding has been extensively studied in many mod-
els. Most of the hardness results are derived in graph-based
models [11, 15] or in non-geometric physical interference
models, where the values in the gain (or path-loss) matrix
are chosen arbitrarily, i.e., are not constrained by triangular
inequality [2, 14, 16]. More recently, scheduling has been
shown to be NP-complete in the more restricted, geometric
SINR model [5].

Network coding is a recent concept, which extends the
traditional definition of routing by allowing routers to not
just forward copies of received messages, but to mix the bits
in packets before forwarding them. The main initial result
states that full capacity can be achieved in a graph where
one source multicasts information to other nodes in a multi-
hop fashion and any node in the network is allowed to encode
all its received data before passing it on [1]. In [17] it was
shown that linear codes are sufficient to achieve multicast
capacity. In [19] it was shown that encoding and decoding
can be done in polynomial time. In [10] it was shown that
multicast capacity can be achieved in a distributed manner,
by using random linear codes over a sufficiently large finite
field. In [22] it was shown that the minimum energy-per-
bit multicast in a graph-based wireless network model can
be solved as a linear program. In [13] network coding was
made practical, being developed into a link layer enhance-
ment scheme for multi-hop wireless networks. A mixing en-
gine was introduced into the nodes, operating between the
MAC and the network layer, in order to identify opportuni-
ties to make bitwise XORs of different packets and sending
them in a single transmission.

Network coding in the physical layer, or analog network
coding, is similar in spirit to digital network coding. How-
ever, it operates on the raw analog signal, instead of first de-
coding and then mixing packets in a bitwise manner. Some
techniques, such as cochannel signal separation, explore dif-
ferences in the characteristics of interfered signals, such as
signal’s strength, to decode several signals simultaneously [8,
9]. Other analog coding techniques exploit the fact that,
in a wireless network, often a receiver has prior knowledge

about some packets destined to other nodes, by having over-
heard or forwarded them earlier. In [21] the impact of such
knowledge in combination with nested coding on the capac-
ity region was analyzed. In [12, 23] pairs of nodes that wish
to exchange packets through a relay node are encouraged to
transmit simultaneously. The relay node, without decoding
the collided signal, amplifies and forwards it. The desti-
nation nodes then extract the packet destined to them by
filtering out their own contribution from the mixed signal.
The algorithms in [12, 23] have focused on decoding only
two signals that interfered with each other, mainly in the
canonical 2-way relay topology.

3. MODELS

In this work we study the problem of scheduling wire-
less requests in the physical interference model. In order
to capture analog network coding capability, we work with
two different definitions of a successful transmission: analog
coding by filtering and analog coding by signal mixing.

In both scenarios we assume that nodes live in a Euclidean
plane and that the received power Pr(s) of a signal trans-
mitted by sender s at receiver r is

Pr(s) =
P

d(r, s)α
, (1)

where P is the transmission power and d(r, s)−α is the prop-
agation attenuation (link gain). The path-loss exponent
α > 2 is a constant, whose exact value depends on external
conditions of the medium, such as humidity, obstacles, etc.

In the traditional physical interference model, a receiver r
successfully decodes a transmission from a sender sx if and
only if

SINR(r) =
Pr(sx)

Ir +N
=

Pr(sx)∑
y 6=x Ir(sy) +N

=

P
d(r,sx)α∑

y 6=x
P

d(r,sy)α
+N

≥ β, (2)

where Ir is the interference, or power, perceived by r from
all concurrent transmissions in the network, and β is the
minimum signal-to-interference-plus-noise-ratio (SINR) re-
quired for a successful message decoding. Typically, it is
assumed that β ≥ 2.

In this work we assume that all nodes transmit with the
same power level. This assumption is also referred to as
uniform power assignment scheme [6]. This kind of power
assignment has been widely adopted in practical systems
and has been studied in depth in [20].

Next, we introduce the definitions of successful transmis-
sion used in this work.

3.1 Analog Coding by Filtering
In this model, we assume that a receiver r is able to decode

several signals simultaneously, provided that these signals
differ in strength significantly. This kind of model has been
studied in the context of cochannel signal separation [8, 9].

Consider a set of k signals (sorted in decreasing order of
power received at r): Υ = {Pr(s1), Pr(s2), · · · , Pr(sk)}. We
assume that receiver r is able to decode all k signals in Υ if
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Figure 1: Analog network coding by signal mixing.

and only if the following condition holds ∀x ∈ {1, · · · , k}:

Pr(sx)∑
Pr(sy)∈Υ,

Pr(sy)<Pr(sx)

Pr(sy) +
∑
Pr(sz)/∈Υ Pr(sz) +N

≥ β, (3)

where the first component of the denominator is the accu-
mulated interference caused by transmissions in Υ, which
have weaker power level than Pr(sx); the second compo-
nent of the denominator is the accumulated interference of
all other concurrent transmissions in the network, which are
not in Υ; N is the ambient noise; and β is the minimum
SINR threshold.

The idea is that, one by one, each signal Pr(sx) ∈ Υ can be
“filtered out” from the accumulated interference, provided
that the SINR between this signal and the remaining inter-
ference is above the threshold β. The key point here is that
a receiver r is able to decode not only the strongest signal,
as in the traditional physical model, but also a relatively
weak signal, provided that each of the stronger signals have
been filtered out. Therefore, a signal Pr(sx) can be correctly
decoded if and only of all stronger signals Pr(sy) > Pr(sx)
obey the following constraints:

Pr(sy)

Pr(sx) +
∑
Pr(sz)<Pr(sy) Pr(sz) +N

≥ β,

∀Pr(sy) > Pr(sx), and (4)

Pr(sx)∑
Pr(sz)<Pr(sx) Pr(sz) +N

≥ β. (5)

3.2 Analog Coding by Signal Mixing
Our second definition of analog network coding was intro-

duced in [23, 12]. This model explores the fact that in a wire-
less network, when two packets collide, nodes often know one
of the colliding packets due to having forwarded it earlier or
having overheard it. Consider a situation where two nodes
A and B wish to send a message to each other (see Fig. 1).
Due to the interference of concurrent transmissions or due
to the ambient noise, A and B cannot communicate directly,
but only through a relay node R. Instead of scheduling 4
sequential transmissions A→ R,R→ B,B → R,R→ A, as
in the traditional approach, by using analog network cod-
ing, A and B can transmit simultaneously, allowing their
transmissions to interfere at R. The router, not being able
to decode the collided packets, can simply amplify and for-
ward the interfered signal. It has been shown in [12] that A
(as well as B) is able to decode B’s packet by subtracting
the contribution of its own packet from the interfered signal,
even if the two transmissions are not fully synchronized and
the wireless channel distorts the signals. As a result, only
two time slots are sufficient to schedule these requests.

In order for such a signal mixing to result in two successful
transmissions, the following SINR conditions must hold in

two time slots ti, tj , j > i:

PR(A)∑
sy 6=A
sy 6=B

IR(sy) +N
≥ β, in ti (6)

PR(B)∑
sy 6=A
sy 6=B

IR(sy) +N
≥ β, in ti (7)

PA(R)∑
sy 6=R IA(sy) +N

≥ β, in tj (8)

PB(R)∑
sy 6=R IB(sy) +N

≥ β, in tj . (9)

This means that in order for A (and B) to be able to
decode the mixed signal (PR(A) + PR(B)) amplified and
forwarded by R, the signals received by R from both B and
A must have, individually, an SINR ≥ β. Note that the
relative signal strength (SIR) of A and B must not exceed
any threshold. In fact, it has been shown in [12] that even
when SIR(A,B) = 0, i.e., when PR(A) = PR(B), the signals
can still be correctly decoded by their receivers. However,
note that the mixed signal sent byRmust still have SINR ≥
β at both receivers A and B.

For those transmission that occur without employing sig-
nal mixing, we define a successful transmission as in tradi-
tional physical interference model (see Eq. 2).

For the sake of simplicity, in the following analysis sec-
tions, we set N = 0 and ignore the influence of noise in the
calculation of SINR. However, this has no significant effect
on the results.

4. COMPLEXITY OF SACSM
In this section we prove that scheduling with analog cod-

ing by signal mixing is NP-complete in the physical interfer-
ence model, where nodes live in a Euclidean space (geometric
SINR model).

To see that the decision version of the problem is in NP
is straightforward. To decide whether a schedule of a given
size T is feasible, we have to verify, for every transmission,
whether it employed signal mixing at a relay node or not.
If yes, conditions (6) through (9) must be satisfied for each
triple of participating nodes A, B, R. If a transmission was
scheduled without network coding, then only the condition
(2) has to be verified. Since computing the SINR level for
each transmission in its time slot can be done in O(n2) time,
a schedule is an efficiently verifiable witness for this problem.

The hardness proof is by reduction from the well known
NP-complete numerical matching with target sums problem
(NMTS) [4], which can be formulated as follows: Given 3
sets A, B, C of positive integers, is it possible to match each
element i ∈ A to a distinct element j ∈ B, such that their
sum (i + j) equals to each of the elements k ∈ C? The
triples (i, j, k) must form a partition in the sense that they
are disjoint and cover A ∪ B ∪ C.

NMTS problem: Find q triples triplel = (i, j, k), i ∈ A =
{i1, · · · , iq}, j ∈ B = {j1, · · · , jq}, k ∈ C = {k1, · · · , kq},
such that:

triple1 ∩ triple2 ∩ · · · ∩ tripleq = ∅, (10)

triple1 ∪ triple2 ∪ · · · ∪ tripleq = A ∪ B ∪ C, (11)

(i+ j) = k, ∀(i, j, k) ∈ triplel, ∀l ∈ {1, · · · , q}.(12)
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Figure 2: Reduction from NMTS: all 4q links can be
scheduled successfully in 2q time slots if and only if
senders a1, · · · , aq, b1, · · · , bq, c1, · · · , cq, are partitioned
into q triples (ai, bj , ck) such that (i+ j) = k.

Note that, for a solution to exist, we need:∑
i∈A

i+
∑
j∈B

j =
∑
k∈C

k. (13)

Theorem 4.1. NMTS is reducible to SACSM in polyno-
mial time.

Proof. The proof proceeds as follows. First, we define
a many-to-one reduction from any instance of NMTS to an
instance of SACSM. Then, we argue that the instance of
SACSM cannot be scheduled in T ≤ 2q time slots, but can
be scheduled in T = 2q time slots if and only if there is a
solution to the NMTS problem instance.

Consider any instance of NMTS defined by A =
{i1, · · · , iq},B = {j1, · · · , jq}, C = {k1, · · · , kq}. The in-
stance of SACSM is constructed by placing (4q + 2) nodes
in the plane in the following way (see Figure 2). First, two
nodes R and R2 are placed at positions (0, r(R)) and (0, 0),
respectively. Thereafter, q nodes, corresponding to integers
j ∈ B are placed on a straight line originating at R2 at an-
gle (π/2− θb); q nodes, corresponding to integers i ∈ A are
placed on a line originating at R2 at angle (π/2 + θa); and q
nodes, corresponding to integers k ∈ C are placed on a line
originating at R2 at angle −π/2. The polar coordinates of
each of these 3q + 2 nodes are:

r(R) = max(amax, bmax) + ε, θ(R) = π/2, (14)

r(R2) = 0, θ(R2) = 0, (15)

r(ai) =

(
1

i

)1/α

, θ(ai) = π/2 + θa, ∀i ∈ A, (16)

r(bj) =

(
1

j

)1/α

, θ(bj) = π/2− θb, ∀j ∈ B, (17)

r(ck) =

(
1

βk

)1/α

, θ(ck) = −π/2, ∀k ∈ C, (18)

where ε is a small positive constant, and angles are defined

as follows:

θa = min(θ1
a, θ

2
a), θb = min(θ1

b , θ
2
b ), where (19)

θ1
a = arccos

(
β

2
α (a2

min + r(R)2)− a2
min − r(el)2

2β
2
α aminr(R) + 2aminr(el)

)
(20)

θ2
a = arccos

a2
min + r(R)2 −

(
cmin+r(R)

β1/α

)2

2aminr(R)

, (21)

θ1
b = arccos

(
β

2
α (b2min + r(R)2)− b2min − r(el)2

2β
2
α bminr(R) + 2bminr(el)

)
(22)

θ2
b = arccos

 b2min + r(R)2 −
(
cmin+r(R)

β1/α

)2

2bminr(R)

, (23)

where amin = (1/imax)1/α, imax = maxi∈A(i), bmin =

(1/jmax)1/α, jmax = maxj∈B(j), cmin = (1/kmax)1/α, kmax =

maxk∈C(k), amax = (1/imin)1/α, imin = mini∈A(i), bmax =

(1/jmin)1/α, jmin = minj∈B(j).
Next we position the last q nodes {e1, · · · , eq} at the fol-

lowing location:

r(el) =
r(R)

β
1
α

, θ(el) = −π/2, l ∈ {1, · · · , q}. (24)

The communication requests are defined as follows: nodes
{c1, · · · , cq, e1, · · · , eq} all demand to transmit to the same
receiver R2; nodes {a1, · · · , aq} and {b1, · · · , bq} are grouped
into two groups A and B, respectively, and wish to transmit
q messages {m(a1), · · · ,m(aq)} from group A to group B
and q messages {m(b1), · · · ,m(bq)} from group B to group
A. The exact recipient of a message m(ai) is not set, being
enough to transmit successfully to any node bj ∈ B. The
same holds for a message m(bj), originated at node bj ∈ B,
which has to be transmitted to any node ai ∈ A.

Having defined the geometric instance of SACSM for any
instance of NMTS, we show that it cannot be scheduled in
T < 2q time slots using signal mixing analog coding.

It is enough to look at the 2q transmissions from nodes
{c1, · · · , cq, e1, · · · , eq} to receiver R2. Given that signal
mixing analog coding allows simultaneous decoding of two
signals only when one of the signals is already known by the
receiver, and at time t = 0 receiver R2 does not know any
of the considered 2q signals, it needs at least 2q time slots
to receive and successfully decode each of them.

We proceed by showing that the problem instance defined
in equations (14) through (24) can be scheduled in T = 2q
time slots using signal mixing analog coding if and only if
there is a solution to the NMTS problem.

(⇒) For the first part of the claim, assume we know q
triples (i, j, k), i ∈ A, j ∈ B, k ∈ C, such that conditions (10)
through (13) are satisfied. To construct a 2q-slot schedule,
we assign transmissions ai → R, bj → R, ck → R2, ∀(i+j) =
k to every odd slot {t1, t3, · · · , t2q−1}. Note that the relay
node R receives a collided signal (PR(ai) + PR(bj)). To
every even slot {t2, t4, · · · , t2q} we assign the transmissions
R → {ai, bj} and el → R2. In this way we schedule all 4q
requests in 2q time slots. Now we prove that the obtained
schedule is valid, i.e., all messages are decoded successfully.

First we look at the odd time slots. The SINR at receiver



R2 is equal to:

SINR(R2) =
PR2(ck)

PR2(ai) + PR2(bj)

=

P
r(ck)α

P
r(ai)α

+ P
r(bj)α

=
Pβk

P (i+ j)
= β (25)

Now we check the conditions (6) and (7):

PR(ai)∑
sj 6=ai
sj 6=bj

IR(sj)
=
PR(ai)

PR(ck)
=
d(ck, R)α

d(ai, R)α
=

(r(R) + r(ck))α

(r(ai)2 + r(R)2 − 2r(ai)r(R) cos θa)
α
2
≥

(r(R) + cmin)α

(a2
min + r(R)2 − 2aminr(R) cos θa)

α
2

= β. (26)

The last inequality holds by plugging in the value of θa,
defined in (19) (here we assume that θa is acute enough,
s.t. d(R, amin) > d(R, amax).). Condition (7) is proved as in
(26), using bi instead of ai and θb instead of θa.

Now we look at the even time slots. The SINR at receiver
R2 is equal to:

SINR(R2) =
PR2(el)

PR2(R)
=

P
r(el)

α

P
r(R)α

= β (27)

And finally we check the conditions (8) and (9):

Pai(R)∑
sj 6=R Iai(sj)

=
Pai(R)

Pai(el)
=
d(el, ai)

α

d(R, ai)α
=

(
r(ai)

2 + r(el)
2 − 2r(ai)r(el) cos (π − θa)

)α
2

(r(ai)2 + r(R)2 − 2r(ai)r(R) cos θa)
α
2

≥(
a2

min + r(el)
2 + 2aminr(el) cos θa

)α
2

(a2
min + r(R)2 − 2aminr(R) cos θa)

α
2

= β.(28)

Condition (9) is proved in the same way, only using bi in-
stead of ai and θb instead of θa.

To sum up, we showed that in every odd time slot, condi-
tions (6) and (7) hold for every relay node R participating
in signal mixing; in every even time slot, conditions (8) and
(9) hold for every sender ai and bj participating in signal
network coding; every mixed packet forwarded by the relay
node R can be decoded by at least one node in each group A
and B, since exactly one node in every group is the sender
of one of the mixed packets; and condition (2) holds for ev-
ery transmission {c1, · · · , cq, e1, · · · , eq} → R not employing
network coding. This proves that our schedule guarantees
successful decoding for all transmissions scheduled in each
time slot t ∈ {t1, · · · , t2q}.

(⇐) For the second part of the claim, we need to show
that if no solution to the NMTS problem exists, we cannot
find a 2q-slot schedule for the SACSM instance. No solu-
tion to NMTS implies that for at least one triple (i, j, k), i ∈
A, j ∈ B, k ∈ C, it holds that (i + j) > k. Assume we
could still find a valid schedule with only 2q slots. As
we have already pointed out, transmissions from nodes
{c1, · · · , cq, e1, · · · , eq} to receiver R2 have to be scheduled
sequentially. So let’s assume we have q time slots, in which
senders {c1, · · · , cq} are scheduled, and another q time slots,
in which senders {e1, · · · , eq} are scheduled. We will show
that there is no way to schedule the remaining senders

{a1, · · · , aq, b1, · · · , bq} in parallel. First we look at time
slots with an assigned sender el. Assume that at least one
sender ai or bj transmits simultaneously. The SINR at R2

would be:

SINR(R2) =
PR2(el)

PR2(ai/bi)
=

P
r(el)

α

P
r(ai/bi)α

≤

P(
max(amax,bmax)+ε

β
1
α

)α
P

a/bαmax

< β, (29)

where ai/bi and a/b is an abuse of notation, meaning “ai or
bi” and “amax or bmax”, respectively.

This means that all 2q senders {a1, · · · , aq, b1, · · · , bq}
have to be scheduled in the remaining q time slots, together
with senders {c1, · · · , cq}. Since signal mixing analog coding
only applies to 2 simultaneous transmissions, one from set
A and another from set B, exactly 2 senders {ai, bj} have to
be scheduled in each of these q time-slots. Now consider the
time slot t, correspondent to triple (ai, bj , ck)|(i + j > k).
The SINR at receiver R2 is:

SINR(R2) =
PR2(ck)

PR2(ai) + PR2(bj)

=

P
r(ck)α

P
r(ai)α

+ P
r(bj)α

=
Pβk

P (i+ j)
< β, (30)

i.e., at least one transmission ck → R2 cannot be decoded
correctly within 2q time slots if there is no solution to the
NMTS problem. This completes the proof.

5. COMPLEXITY OF SACF
In this section we prove that scheduling with analog cod-

ing by filtering is also NP-complete in the geometric SINR
model.

To see that the decision version of the problem is in NP
is straightforward. To decide whether a schedule of a given
size T is feasible, we have to verify, for every transmission,
whether there is a time slot assigned to it and if the condi-
tions (4) and (5) are satisfied, considering the concurrently
scheduled transmissions in each time-slot. Since computing
the SINR level for each transmission in its time slot can
be done in O(n2) time, a schedule is an efficiently verifiable
witness for this problem.

We proceed by presenting a polynomial-time reduction
from 3-partition, a problem closely related to the subset
sum problem. 3-partition was proved to be NP-complete
by Garey and Johnson in 1975 [3] and can be formulated as
follows: Given a set I of integers, is it possible to partition
this set into m subsets I1, · · · , Im, such that the sum of the
numbers in each subset is equal? The subsets I1, · · · , Im
must form a partition in the sense that they are disjoint
and they cover I. Let σ denote the (desired) sum of each
subset Ii, or equivalently, let the total sum of the numbers
in I be mσ. The 3-partition problem remains NP-complete
when every integer in I is strictly between σ/4 and σ/2,
in which case, each subset Ii is forced to consist of exactly
three elements [3].

3-partition problem: Find I1, · · · , Im ⊂ I = {i1, . . . , in}
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Figure 3: Reduction from 3-partition: all (K ·m+n)
links can be scheduled successfully in m time slots if
and only if the senders s1, · · · , sn, corresponding to
the integers i1, · · · , in, are partitioned into m subsets,
each summing up to exactly σ.

s.t.:

I1 ∩ I2 ∩ · · · ∩ Im = ∅,
I1 ∪ I2 ∪ · · · ∪ Im = I, and∑

ij∈I1

ij =
∑
ij∈I2

ij = · · · =
∑
ij∈Im

ij =
1

m

∑
ij∈I

ij .

Theorem 5.1. 3-partition is reducible to SACF in poly-
nomial time.

Proof. The proof proceeds as follows. First, we define
a many-to-one reduction from any instance of 3-partition to
a geometric (Euclidean) instance of SACF. Then, we argue
that the instance of SACF cannot be scheduled in T ≤ m
time slots, but can be scheduled in T = m time slots if and
only if the instance of 3-partition is solved.

Consider a set I = {i1, . . . , in} of positive integers, where

n∑
j=1

ij = m · σ, ij <
σ

2
, ∀ij ∈ I. (31)

The instance of SACF is constructed by placing (K ·m+n)
senders and (n + 1) receivers in the plane in the following
way (see Figure 3). First, one receiver R is placed at posi-
tion (0, 0). Thereafter, K circles are drawn around R, and
m senders are placed on each circle’s circumference. The
outermost circle CK has radius (P/β · σ)1/α. Each inner
circle’s radius is recursively determined as

r(CK) =

(
1

β · σ

) 1
α

(32)

r(Ci) = β
1
α ·

(
k∑

j=i+1

1

r(Cj)α
+ σ

) 1
α

,

∀i ∈ {K − 1, · · · , 1}. (33)

The polar coordinates of each of m senders si,1, · · · , si,m

placed on circumference Ci are:

r(si,j) = r(Ci), (34)

∀i ∈ {1 · · ·K}, j ∈ {1 · · ·m},
θ(si,j) is free.

All the positioned m · K senders have as intended re-
ceiver the receiver R. Now we place the remaining n senders
s1, · · · , sn and n receivers r1, · · · , rn.

For each integer ij in I, we set the radial coordinate of sj
to (P/ij)

1/α and leave its angular coordinate free.

r(si) =

(
1

ij

)1/α

, ∀ij ∈ I, (35)

θ(si) is free.

Next we position the receivers ri, 1 ≤ i ≤ n at distance
dmin to their corresponding senders si:

r(ri) = r(si) + dmin, where (36)

dmin =

1

(imax−1)1/α
− 1

i
1/α
max

1 + ((n+K − 1)β)
1
α

(37)

θ(ri) is free,

and imax is the maximal value of the integers in set I.
Having defined the geometric instance of SACF for any

instance of 3-partition, we proceed by showing that it can-
not be scheduled in T < m time slots using analog coding
by filtering. For that, consider any pair of senders si,x, si,y
positioned at the same circumference Ci. Since they are
equidistant from their intended receiver R, the power per-
ceived at R is the same:

PR(si,x)

PR(si,y)
= 1 < β, ∀si,x, si,y ∈ Ci, i ∈ {1 · · ·K}.

Given that the power levels of any pair of such transmis-
sions do not differ, SINR conditions (4) and (5) cannot be
fulfilled, and R cannot decode them simultaneously. Since
this argument applies to any pair of senders belonging to the
same circumference, and that there are m senders in each
circumference, at least m time slots are needed to schedule
any m-tuple of such requests.

To proceed with the proof, we first need Lemma 5.2, in
which we show that each receiver ri ∈ {r1, . . . , rn}, cor-
responding to an integer i ∈ I, is close enough to its re-
spective sender to guarantee successful transmission, regard-
less of other links scheduled simultaneously. Since no two
senders si,x, si,y positioned at the same circumference Ci
can be scheduled simultaneously, we assume that at most
(K + n) senders are scheduled in the same time slot as ri,
i.e., one sender in each of K circumferences, plus n senders
si, corresponding to the n integers in I.

Lemma 5.2. Consider a time slot t, in which (n + K)
senders are scheduled to transmit (one sender in each of
K circumferences, plus n senders si, corresponding to the
n integers in I). It holds that for every receiver ri ∈
{r1, . . . , rn}, ri decodes its message successfully, i.e., con-
straints (4) and (5) are satisfied.

Proof. We start by establishing a minimal distance be-
tween a receiver ri ∈ {r1, . . . , rn} and any interfering server
sj , j 6= i or sx,y, x ∈ {1, · · · ,K}, y ∈ {1, · · · ,m}.



Since the positions of senders s1, . . . , sn depend on the
integers i1, . . . , in, we can determine the minimum distance
between two sender nodes si, sj .

d(si, sj) = |d(si, R)− d(sj , R)|

=

∣∣∣∣∣
(

1

ii

) 1
α

−
(

1

ij

) 1
α

∣∣∣∣∣
≥ 1

(imax − 1)1/α
− 1

i
1/α
max

= dmin

(
1 + ((n+K − 1)β)

1
α

)
. (38)

We proceed by showing that any sender sx,y positioned on
a circumference Cx, x ∈ {1, · · · ,K}, is even farther away:

d(si, sx,y) = |d(si, R)− d(sx,y, R)|

≥ 1

i
1/α
max

− 1

(β · σ)1/α
(39)

≥ 1

(imax − 1)1/α
− 1

i
1/α
max

(40)

= min (d(si, sj)),

where (39) and (40) hold because σ > 2 · imax, β > 1, and
imax ≥ 1. (i.e., ((σ · β)− imax) ≥ (imax − (imax − 1)))

By triangular inequality, we have:

d(sj , ri) ≥ d(si, sj)− dmin

= dmin · ((n+K − 1)β)
1
α ,

∀i, j ∈ I, i 6= j. (41)

This suffices to show that constraints (4) and (5) are sat-
isfied for any receiver ri, i ∈ {1, · · · , n}. Since d(sj , ri) >
dmin = d(si, ri), the power received at ri from si is stronger
than from any other concurrent transmissions. Therefore,
constraint (4) does not apply, and we only need to show
that constraint (5) is satisfied:

Pri(si)∑
Pri (sj)<Pri (si)

Pri(sj)
≥ (42)

P
dαmin

(n+K − 1) · P
d(sj ,ri)α

≥ (43)

1
dαmin

(n+K−1)(
dmin·((n+K−1)β)

1
α

)α = β. (44)

Having proved that successful transmission is guaranteed
for receivers r1, . . . rn under concurrent transmission of K
senders sx,y positioned at different circumferences Cx, x ∈
{1, · · · ,K} and any number of senders sj , j ∈ {1, · · · , n}
corresponding to the integers in the 3-partition instance, we
now return to the proof of Theorem 5.1.

We claim that there exists a solution to the 3-partition
problem if and only if there exists an m-slot schedule for the
problem instance defined in equations (32) through (37).

(⇒) For the first part of the claim, assume we know m
subsets I1, · · · , Im ⊂ I, whose elements sum up to σ. To
construct an m-slot schedule, ∀ij ∈ I1, we assign the cor-
responding sender sj to time slot 1, along with K senders
s1,1, s2,1, · · · , sK,1. For every ij ∈ I2, we assign the cor-
responding sender sj to time slot 2, along with K senders

s1,2, · · · , sK,2. And so on until senders sj corresponding to
ij ∈ Im are assigned to time slot m, along with K senders
s1,m, · · · , sK,m. In this way we scheduled all mK + n re-
quests in m time slots. Now we prove that the obtained
schedule is valid, i. e., all messages are decoded successfully.

Due to Lemma 5.2, we can assume that all senders si, i ∈
{1, · · · , n} transmit successfully and focus our analysis on
the senders s1,t, · · · , sK,t, t ∈ {1, · · · ,m}. Since in each time
slot t only K senders positioned on distinct circumferences
are scheduled together, the situation is the same in each t.
Therefore, we only look at one time slot and show that all
K transmissions are decoded successfully at receiver R.

The signal power R receives from each sender si,t, i ∈
{1, · · · ,K} is equal to

PR(si,t) =
P

r(si)α
=

P

β ·
(∑K

j=i+1
1

r(Cj)α
+ σ

) . (45)

The interference R experiences from concurrently scheduled
senders is

IR(si,t) =

K∑
j=i+1

PR(sj,t) +
∑
sj∈It

PR(sj)

=

K∑
j=i+1

P

r(sj,t)α
+
∑
sj∈It

P · ij

= P ·

(
K∑

j=i+1

1

r(Cj)α
+ σ

)
, (46)

Therefore, using the notation introduced in Section 3, we
show that condition (3) holds ∀sx,t ∈ Υ = {s1,t, · · · , sK,t}
and, therefore, all K senders in Υ transmit successfully to
receiver R in time slot t:

PR(sx,t)∑
PR(sy,t)∈Υ,

PR(sy,t)<PR(sx,t)

PR(sy,t) +
∑
PR(sz)/∈Υ PR(sz)

=

PR(si,t)

IR(si,t)
=

P

β·
(∑K

j=i+1
1

r(Cj)
α +σ

)
P ·
(∑K

j=i+1
1

r(Cj)α
+ σ

) = β,

which, in combination with Lemma 5.2, proves that our
schedule guarantees successful decoding for all transmissions
scheduled in each time slot t ∈ {1, · · · ,m}.

(⇐) For the second part of the claim, we need to show
that if no solution to the 3-partition problem exists, we can-
not find an m-slot schedule for our scheduling instance. No
solution to 3-partition implies that for every partition of I
into m subsets, the sum of one set It is greater than σ.
Assume we could still find a schedule with only m slots.
As we have already pointed out, senders positioned on the
same circumference Ci, i ∈ {1, · · · ,K} have to be scheduled
separately. Therefore, in each time slot t ∈ {1, · · · ,m}, ex-
actly one sender positioned on each circumference Ci has to
be scheduled. We argue that it is not possible to schedule
n senders sj correspondent to the integers ij ∈ {1, · · · , n}
concurrently. Consider a time slot t, a sender sK,t, posi-
tioned on the outermost circumference CK , and a subset It
of integers such that

∑
ij∈It ij > σ. To prove that sK,t’s

transmission cannot be decoded correctly at receiver R, we
can ignore the (K − 1) senders positioned on inner circum-
ferences and only analyze the senders sj correspondent to



the integers ij ∈ It. We show that neither condition (4) nor
(5) are satisfied at receiver R. To show that (4) does not
hold, we observe that the ratio of the power levels of sK,t
and sj is always below β and, therefore, sj ’s signal cannot
be filtered out at receiver R, ∀ij ∈ It.

PR(sj)

PR(sK,t)
≤

P(
1

i
1/α
max

)α
P(
1

(βσ)1/α

)α =
imax

βσ
< β, (47)

where the last inequality holds since imax < σ/2.
Now we show that (5) also does not hold, since the sum

of set It is greater than σ.

PR(sK,t)∑
sj∈It PR(sj)

=

P(
1

(βσ)1/α

)α
P
∑
ij∈It

1(
1/i

1/α
j

)α <
βσ

σ
= β, (48)

Since neither condition (4) nor (5) are satisfied for link
sK,t → R when the sum of subset It is greater that σ, the
transmission cannot be decoded successfully and the sched-
ule needs more than m time slots. This completes the proof
of Theorem 5.1.

6. CONCLUSION
In this work we wanted to obtain some understanding of

the complexity of scheduling wireless links with analog net-
work coding capability. Given that network coding changes
the definition of a successful transmission, allowing a re-
ceiver to decode several messages simultaneously, it is inter-
esting to analyze whether the complexity of the scheduling
problem is altered. By showing that the problem remains
NP-complete, we can conclude that the basic difficulties of
scheduling wireless requests in a global interference model,
such as geometric SINR, remain challenging even with cod-
ing capability.

The question whether network coding opens possibilities
to better approximation algorithms is an interesting subject
for future research. To the extent of our knowledge, there
is no constant approximation algorithm to schedule wireless
links in the physical interference model, assuming nodes can
be arbitrarily (not uniformly at random) distributed in the
Euclidean plane.
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