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When in Rome … 



Navigating in Zurich  



Zurich: Full of one-way streets…  



Formal Model 

• Given a strongly connected directed graph 𝐺 = (𝑉, 𝐸) 

– All 𝑚 edges have non-negative weights 

– All 𝑛 nodes have a unique ID 

 

• A searcher starts from some node 𝑠 

– With unlimited memory and computational power 

– Has to explore the graph 

 

• A graph is called explored, if the searcher has visited all 𝑛 nodes and 
returned to the starting node 𝑠 

 

• When the searcher arrives at a node, she knows all outgoing edges, 
including their cost and the ID of the node at the end of the edges 
  

cf. [Kalyanasundaram & Pruhs 1994, Megow et. al. 2011] 

 

 

 



How good is a tour, how good is a strategy? 

• Cost of a tour:   Sum of traversed edge weights 

 

 

Competitive ratios for: 

 

• a tour 𝑇:     
𝑐𝑜𝑠𝑡 𝑜𝑓 𝑇

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟
 

 

• deterministic algorithms:  max
∀𝑡𝑜𝑢𝑟𝑠 𝑇  

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑇

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟
 

 

• randomized algorithms:  max
∀𝑡𝑜𝑢𝑟𝑠 𝑇  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑇

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟
 

 

 



Applications of Graph Exploration 

• One of the fundamental problems of robotics  
 cf. [Burgard et. al. 2000, Fleischer & Trippen 2005] 

 

• Exploring the state space of a finite automaton 
 cf. [Brass et. al. 2009] 

 

• A model for learning 
 cf. [Deng & Papadimitriou 1999] 
 

 

 

 

 

 

 

 



Some Related Work 

• Offline: Asymmetric Traveling Salesman problem 

– Approximation ratio of 
2

3
log2 𝑛 [Feige & Singh 2007] 

 

Undirected graph exploration: 

• General case: 𝑂(log 𝑛) [Rosenkrantz et. al. 1977] 

– Best known lower bound: 2.5 − 𝜀 [Dobrev et. al. 2012] 

• Planar graphs: 16 [Kalyanasundaram & Pruhs 1994] 

• Genus at most 𝑔 : 16(1 + 2𝑔) [Megow et. al. 2011] 

• Unweighted: 2 (l. b. : 2 − 𝜀, [Miyazaki et. al. 2009]) 

 

• Does randomization help? 

 

 

 

    Directed Case 

 

 

Θ(𝑛) 
 

 

 

 factor of 4 at most 



Exploring with a Greedy Algorithm 

• Achieves a competitive ratio of 𝒏 − 𝟏 

 

• Proof sketch: 

– Greedy  uses 𝑛 − 1 paths to  new nodes and then returns 

– The greedy path 𝑃𝑣𝑤 from  𝑣 to a not yet visited node 𝑤  is a shortest path 

– Let 𝑇  be an opt. Tour inducing a cyclic ordering of all 𝑛 nodes in 𝐺, with the 
tour consisting of 𝑛 segments. 

– The path 𝑃𝑣𝑤 has by definition at most the cost of the whole part 𝑇𝑣𝑤 of the 
tour 𝑇, which consists of at most 𝑛 − 1  segments. 

– Therefore, the cost of each of the 𝑛 segments  
in 𝑇 has to be used at most 𝑛 − 1  times for the  
upper cost bound of the greedy algorithm. 

 

 

 

 

 



Exploring with a Greedy Algorithm – Unweighted Case 

• Achieves a competitive ratio of  
𝒏

𝟐
+
𝟏

𝟐
−
𝟏

𝒏
  

 

• Proof sketch: 

– The cost to reach the first new node is 1, then at most 2, then at most 3, … 

– If we sum this up, we get an upper bound of 
 

    1 + 2 + 3…+ 𝑛 − 2 + 𝑛 − 1 + 𝑛 − 1  

= −1 + 𝑖

𝑛

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 

 

– The cost of an optimal tour is at least 𝑛. 

 

 

 

 

 

 



Lower Bounds for Deterministic Online Algorithms 

 

 

 

 

 

 
 

 

• No better competitive ratio than 𝒏 − 𝟏 is possible. 

 

• Unweighted case: No better competitive ratio than 
𝒏

𝟐
+
𝟏

𝟐
−
𝟏

𝒏
 is possible.  

 

• Both results are tight. 

 

 

 

 

 

 

 



Lower Bounds for Randomized Online Algorithms 

 

 

 

 
 

• No better competitive ratio than 
𝒏

𝟒
 is possible. 

 

• Proof sketch: 

– When being at a node 𝑣𝑖 , with 1 ≤ 𝑖 ≤
𝑛

2
− 2, for the first time, then the 

“correct” edge can be picked with a probability of at most 𝑝 = 0.5. 

– Expected amount of “wrong” decisions: 0.5
𝑛

2
− 2 =

𝑛

4
− 1. 

– The cost of an optimal tour is 1. 

 

• Unweighted case: No better competitive ratio than 
𝒏

𝟖
+
𝟑

𝟒
−
𝟏

𝒏
 is possible.  

 

 

 

 



Variations of the Model 

• Randomized starting node? 

• Choosing best result from all starting nodes? 

 

 

 

 

 

 

 

• Possible solution: Duplicate the graphs, connect their starting nodes 

 

• No better competitive ratio possible than 

–
𝑛

4
    (deterministic online algorithms) 

–
𝑛

16
  (randomized online algorithms) 

 

 

 

 

 



Variations of the Model 

• What if the searcher also sees incoming edges? 

 

 

 

 
 

 

 

 

• What if the searcher does not see the IDs of the nodes at the end of 
outgoing edges, but knows the IDs of outgoing and incoming edges? 

– Greedy algorithm still works with same ratio (all nodes have been visited if 
 all edges have been seen as incoming and outgoing edges) 

– Lower bound examples also still work 

 

 

 

 

 

 

 

 

 

decreases lower bound 

by a factor of less than 2 

decreases lower bound 

by a factor of less than 1.5 



Searching for a Node 

 

• Not feasible in weighted graphs: 

 

 

• In unweighted graphs, lower bounds for competitive ratios: 

 

 

 

 

 

 

 

 

• A greedy algorithm has a competitive ratio of 
𝑛2

4
−
𝑛

4
∈ Ο(𝑛2)  

 

 

 

 

Deterministic 

𝑛 − 1 2

4
−
𝑛 − 1

4
−
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2
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Randomized 
𝑛 − 1

4
+
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+
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∈ Ω(𝑛) 



Overview of our Results 
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