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ABSTRACT
We suggest a framework to determine optimal trading fees for

constant function market makers (CFMMs) in order to maximize

liquidity provider returns. In a setting of multiple competing liquid-

ity pools, we show that no race to the bottom occurs, but instead

pure Nash equilibria of optimal fees exist. We theoretically prove

the existence of these equilibria for pools using the constant prod-

uct trade function used in popular CFMMs like Uniswap. We also

numerically compute the equilibria for a number of examples and

discuss the effects the equilibrium fees have on capital allocation

among pools. Finally, we use our framework to compute optimal

fees for real-world pools using past trade data.

CCS CONCEPTS
•Applied computing→Economics; •Theory of computation
→Market equilibria.

KEYWORDS
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mal fees

1 INTRODUCTION
In the past year, blockchains capable of executing smart contracts

and decentralized finance (DeFi) applications built on top of them

have seen tremendous growth in use. One particularly popular

and novel kind of applications are constant function market makers
(CFMMs) such as Uniswap, Balancer or Curve.

These decentralized exchanges (DEXs) allow users to trade to-

kens in a fully decentralized and non-custodial manner. Moreover,

they constitute a completely new type of market design compared

to traditional exchanges using central limit order books: Instead of

matching orders of traders to liquidity providers’ orders in the order

book, they let traders swap tokens directly with a smart contract

that holds the reserves of the liquidity providers. For any pair of

tokens, liquidity providers can create a pool and deposit reserves of
both tokens into the contract. Traders can then send an amount of

one of the tokens to the contract and receive a certain amount of

the other token in return. The exact amount received is determined

by a trade function depending on the reserves in the contract. In

the case of Uniswap, the amount is chosen such that the product of

the reserves in the pool stays constant. For every trade, the trader

pays a small trading fee which is distributed pro rata among all

liquidity providers contributing to the pool.

With the trading volume of CFMMs growing rapidly and already

rivaling that of many centralized exchanges [6], it becomes essential

to better understand this novel kind of market. Since the number of

CFMMs and liquidity pools is also growing quickly, a particularly

relevant aspect is to examine how these markets compete with each

other. How should the pools optimally set their trading fees in order

to attract the maximal possible fee revenue? And how should liq-

uidity providers allocate their liquidity among the growing number

of pools? In this paper, we suggest a framework to answer these

questions.

We study the optimal fee problem in a setting of multiple liq-

uidity pools competing with each other for trade volume. In such

a scenario, one might expect a race to the bottom: all pools suc-

cessively lowering their fees until they are almost zero. We find

that this is not the case. Instead, we prove that pure Nash equilibria

exist, i.e. configurations of optimal fees for which no pool can gain

anything by changing its fees, neither by increasing nor decreasing

them. For pools using the constant product trade function, such as

Uniswap, we theoretically prove the existence of such pure Nash

equilibria. We also numerically compute these equilibria for several

examples. Here we find that larger pools can charge higher fees than

smaller pools in the equilibria. However, we somewhat surprisingly

find that in the equilibria smaller pools earn a higher amount of

fees relative to their size compared to larger pools. In other words,

the return on investment is better for smaller pools. This means

liquidity is not always incentivized to concentrate: current or new

liquidity providers would prefer to invest in smaller pools or might

even create a new pool.

Using past trade data, we can also estimate optimal fees for two

real-world pools. We find that equilibrium fees are significantly

lower than today’s standard fee of 0.3% suggesting that competition

should lead to lower fees in the future. In particular, we see that

the pools would profit from unilaterally lowering their fees.

In game theoretic terms, we study a continuous 𝑛-person game

where the liquidity pools are the players and the fees they choose

to charge are their strategies. The utility of each pool is given by

the amount of fees it receives. Due to the nature of CFMMs, we

can calculate from the pool reserves and fees how traders should

optimally execute their trades using all available pools. This makes

it is possible to exactly quantify the change in trading volume

the pools experience when changing their fees. Note it can be

advantageous to split a trade among multiple pools especially for

balanced pools with similar fees. In practice, aggregators such as

1inch or Matcha help traders find and execute these optimal trades.

2 RELATEDWORK
The concept of automated market makers, i.e. mechanisms that

automated the process of providing liquidity to a market, has been

around for quite some time, e.g. in form of the logarithmic mar-

ket scoring rule (LMSR) [13] which is used in prediction markets.

The recently popularized decentralized exchanges such as Uniswap

use a new type of automated market maker design called constant

function market maker (CFMM) [2]. General properties of these

markets, in particular how they behave alongside traditional cen-

tralized exchanges, have been studied in [4] and [5]. Furthermore,

[3] analyzes how the curvature of a CFMM, i.e. the choice the of



the constant function, influences liquidity provider returns. For

a comparison between traditional limit order book systems and

constant product market makers, in particular how the latter can

be emulated with certain order book shapes, see [15].

The question of finding the optimal fees for constant function

market makers has been discussed using a different model in [10]:

Here arbitrage trading between the CFMM and an external refer-

ence market is considered. For asset prices following a geometric

Brownian motion, it is proven that it is optimal from the liquidity

provider’s perspective to set the fees arbitrarily low but not equal

to zero. The returns and no-arbitrage prices of liquidity provider

shares in CFMMs have also been studied in [14] and [9]. In contrast

to these works, we study "real", i.e. non-arbitrage trades (these are

sometimes referred to as uninformed trades since the traders do

not have an information advantage over liquidity providers as arbi-

trageurs do). More precisely, we consider traders that simply want

to execute a planned trade at the best possible price.

In this note, we briefly touch on the problem of finding the

optimal trade across multiple CFMM pools. This problem of opti-

mally routing trades though a network of constant function market

makers is studied in detail in [7].

3 MODEL
Wemodel the problem separately for each trading pair of tokens. For

a pair of tokens, we consider a number of CFMM pools competing

with each other for trade volume. All trades are uninformed, i.e.

the trader simply wants to swap a certain amount of the source
token for the greatest possible amount of the target token using all

available pools. We assume that all pools are balanced before the

trade. This means that an arbitrarily small amount can be swapped

for the same price in all pools. This is a reasonable assumption

as arbitragers will always keep the pools close to balanced. Small

remaining imbalances (e.g. caused by fees preventing arbitrage)

can be ignored as their effects will average out since trades will be

made in both possible directions in the pool.

First, we consider a single trade from the source token to the

target token of a certain size (in the source token). This trade is ex-

ecuted optimally using all available pools, i.e. split among the pools

to maximize the amount of target tokens received. Later we will

extend the model by assuming the size of the next trade is chosen

from a distribution of trade sizes. This could be the distribution of

trades observed in the recent past.

We assume pool fees are charged as a fixed percentage of the

trade size (this is the norm on centralized and decentralized ex-

changes). For each pool, we look for the optimal such percentage

from the liquidity provider’s perspective, i.e. the fee that maximizes

the total amount of fees the pool collects from the trade(s).

Each pool has a trade function 𝑟 : R≥0 → R≥0 associated with it.

This indicates for any non-negative amount of source tokens, how

many target tokens a trader can receive in exchange in this pool.

A trade function naturally satisfies 𝑟 (0) = 0, is monotonically in-

creasing and continuous. Furthermore, it is concave as the marginal

price is increasing, and bounded since the liquidity in the pool is

finite. We theoretically prove the existence of pure Nash equilibria

for the constant product trade function used by Uniswap and most

other CFMMs [1]. The numerical calculation of the equilibrium

fees in the second part of the paper can be performed for any trade

function as previously defined.

A Uniswap-like pool with reserves (𝐴, 𝐵) and a fee of 𝑠 has the

trade function

𝑟 (𝑥) = 𝐵 − 𝐴𝐵

𝐴 + (1 − 𝑠)𝑥 .

Assume we are dealing with 𝑛 pools and let the 𝑖-th pool have

reserves (𝐴𝑖 , 𝐵𝑖 ) and a fee of 𝑠𝑖 . Since we assumed that the pools

are balanced, we have𝐴𝑖/𝐵𝑖 = 𝐴 𝑗/𝐵 𝑗 for all 𝑖, 𝑗 ∈ [1, 𝑛]. W.l.o.g. we

can choose the unit of measurement for the target token such that

𝐴𝑖 = 𝐵𝑖 for all pools. Hence, the 𝑖-th pool has the trade function

𝑟𝑖 (𝑥) = 𝐴𝑖 −
𝐴2

𝑖

𝐴𝑖 + (1 − 𝑠𝑖 )𝑥
. (1)

In particular, we only need the numbers𝐴𝑖 and 𝑠𝑖 to fully character-

ize a pool. We measure the size of a pool in source tokens meaning

we say that the size of the 𝑖-th pool is 2𝐴𝑖 .

Lastly, we do not consider any fees besides the pool fees. In

particular, we do not consider blockchain transaction fees. This

means, we assume there is no extra cost for trading with a greater

instead of a smaller number of pools. While transaction fees are

currently relatively high and only negligible for large trades on

some blockchains, technological improvements are expected to

lower transaction fees in the near future making this assumption

reasonable.

4 OPTIMAL TRADE
We use the following example to illustrate the next steps.

Example 4.1. For a pair of tokens, there are two pools of sizes

2,000,000 and 4,000,000, respectively. Both pools have a trading fee

of 0.3%. A trader wants to swap 1,000 source tokens for as many

target tokens as possible.

Figure 1 shows howmany target tokens the trader receives when

swapping a certain fraction of the trade in pool 1 and the remaining

part in pool 2. In this example, it is optimal to execute 1/3 of the
trade in pool 1 and 2/3 in pool 2.

Notice that it is always optimal to split a trade across all pools if

all fees are equal: Since we assumed the pools are balanced before

the trade, the marginal price of an unused pool is always strictly

lower than that of a used pool. Hence, moving an arbitrarily small

amount to an unused pool leads to a better trade. Formally, the

problem of finding the optimal trade can be stated as follows.

Definition 4.2 (Optimal Trade Problem). Given 𝑛 pools with trade

functions 𝑟1, . . . , 𝑟𝑛 and a trade of size 𝑡 , finding the optimal trade

means solving

maximize 𝑟1 (𝑥1) + . . . + 𝑟𝑛 (𝑥1)
subject to 𝑥1 + . . . + 𝑥𝑛 = 𝑡 (OTP)

𝑥1, . . . , 𝑥𝑛 ≥ 0

This problem can easily be solved numerically since all 𝑟𝑖 are

naturally concave. We use (multidimensional) ternary search to

find the optimum. This technique does not require any specific

knowledge about the trade functions, in particular not their deriva-

tive.



Figure 1: For Example 4.1, the graph shows how many tar-
get tokens the trader receives for 1000 source tokens when
executing a certain fraction of the trade in pool 1 and the
remaining part in pool 2.

Figure 2 shows the fraction of the trade that will optimally be

traded in pool 1 for different fees in pool 1. (Note that while the

graph looks piece-wise linear, it is not as the calculations below

will show.)

Figure 2: For Example 4.1, the graph shows which propor-
tion of the optimal trade is executed in pool 1 for various
fees of pool 1.

In order to prove the existence of Nash equilibria, we will solve

(OTP) analytically. For our purpose, it suffices to solve the problem

ignoring the constraint 𝑥1, . . . , 𝑥𝑛 ≥ 0. To see this, note that in

every Nash equilibrium the pools will choose fees such that the

optimal trade satisfies the constraint 𝑥1, . . . , 𝑥𝑛 > 0: Independent

of all other fees, every pool can always attract a positive fraction of

the trade (and consequently a positive amount of fees) by setting its

fees arbitrarily close to 0. The derived formula will coincide with

the actual solution shown in Figure 2 between about 0.1% and 0.4%

while differing otherwise.

When ignoring the constraint, (OTP) can be solved using a La-

grange multiplier. This yields the equations 𝑟 ′
𝑖
(𝑥𝑖 ) − 𝜆 = 0 for

𝑖 = 1, . . . , 𝑛 in addition to 𝑥1 + . . . +𝑥𝑛 = 𝑡 . For the constant product

trade function (1), the former equation becomes

𝐴2

𝑖

(𝐴𝑖 + (1 − 𝑠𝑖 )𝑥𝑖 )2
(1 − 𝑠𝑖 ) − 𝜆 = 0.

Solving this for 𝑥𝑖 yields

𝑥𝑖 =
𝐴𝑖√
1 − 𝑠𝑖

1

√
𝜆
− 𝐴𝑖

1 − 𝑠𝑖
. (2)

Summing over all 𝑖 leads to

𝑡 =
©­«

𝑛∑
𝑗=1

𝐴 𝑗√
1 − 𝑠 𝑗

ª®¬ 1

√
𝜆
−

𝑛∑
𝑗=1

𝐴 𝑗

1 − 𝑠 𝑗
.

By solving this for 1/
√
𝜆 and inserting the result back into (2), we

conclude

𝑥𝑖 =
𝐴𝑖√
1 − 𝑠𝑖

(∑𝑛
𝑗=1

𝐴 𝑗

1−𝑠 𝑗

)
+ 𝑡∑𝑛

𝑗=1

𝐴 𝑗√
1−𝑠 𝑗

− 𝐴𝑖

1 − 𝑠𝑖
. (3)

It can be quickly checked that if the fees are equal in all pools, i.e.

𝑠1 = 𝑠2 = . . . = 𝑠𝑛 , the term in (3) simplifies to 𝑥𝑖 = (𝐴𝑖/
∑𝑛

𝑗=1𝐴 𝑗 )𝑡 .
This implies the following observation.

Corollary 4.3. For Uniswap pools with identical fees, it is optimal
for the trader to split the trade proportional to the pool sizes.

5 OPTIMAL FEE GAME
We now study how the pools optimize their fees while competing

with each other. In other words, we study how the pools play the

optimal fee game. In game theoretic terms, we can think of the

situation as a continuous 𝑛-person game in which each of the 𝑛

pools tries to maximize the amount of fees it collects. More precisely,

each pool chooses a strategy 𝑠𝑖 (its fee) from the set 𝑆𝑖 = [0, 1] of
possible strategies. We write 𝑠 = (𝑠1, . . . , 𝑠𝑛), and denote 𝑠−𝑖 for the
vector of the strategies of all pools except pool 𝑖 , i.e. 𝑠−𝑖 = 𝑠/𝑠𝑖 .

The 𝑖-th pool will then receive a trade of size 𝑥𝑖 according to (3)

leading to a total of 𝑠𝑖𝑥𝑖 in fees. So the utility function of player 𝑖

is given by 𝑢𝑖 (𝑠) = 𝑠𝑖𝑥𝑖 . Figure 3 shows the amount of fees pool

1 collects depending on its fee. The optimal strategy for pool 1 in

these circumstances is to set its fee to about 0.2%.

As a response to pool 1 optimally adjusting its fees, pool 2 might

also decide to optimize its fees. This could in turn change the opti-

mal fee for pool 1 again. This motivates us to find a configuration of

fees such that none of the pools can gain anything from changing

its fees, in other words: a pure Nash equilibrium. Before numeri-

cally calculating these equilibria, we first theoretically prove their

existence for the case of Uniswap-like pools.

Theorem 5.1. For any number 𝑛 ∈ N pools using the constant
product trade function and any trade size 𝑡 > 0, a Nash equilibrium
exists in the optimal fee game.

Proof. We use the following sufficient condition due to Debreu

[8], Fan [11] and Glicksberg [12]. In a continuous 𝑛-person game,



Figure 3: For Example 4.1, the graph shows the amount of
fees pool 1 receives for various fees of pool 1.

let 𝑆𝑖 be the strategy set and let 𝑢𝑖 be the utility function of the 𝑖-th

player for 𝑖 = 1, . . . , 𝑛. Then a pure Nash equilibrium exists if for

every 𝑖 = 1, . . . , 𝑛

• 𝑆𝑖 is compact and convex,

• 𝑢𝑖 (𝑠) is continuous in 𝑠 , and

• 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) quasiconcave in 𝑠𝑖 .

In our setting, the set of strategies 𝑆𝑖 = [0, 1] is clearly compact

and convex and 𝑢𝑖 is continuous. So it only remains to prove the

quasiconcavity of𝑢𝑖 . (Remember that𝑢𝑖 = 𝑠𝑖𝑥𝑖 with 𝑥𝑖 given by (3).)

We consider a fixed 𝑠−𝑖 and write 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) as 𝑢𝑖 (𝑠𝑖 ) for simplicity.

By introducing the constants (in 𝑠𝑖 )

𝐶 =
©­«
∑
𝑗≠𝑖

𝐴 𝑗

1 − 𝑠 𝑗

ª®¬ + 𝑥,

𝐷 =
∑
𝑗≠𝑖

𝐴 𝑗√
1 − 𝑠 𝑗

,

we can write 𝑢𝑖 as

𝑢𝑖 (𝑠𝑖 ) = 𝑠𝑖
©­« 𝐴𝑖√

1 − 𝑠𝑖

𝐴𝑖

1−𝑠𝑖 +𝐶
𝐴1√
1−𝑠𝑖

+ 𝐷
− 𝐴𝑖

1 − 𝑠𝑖

ª®¬
= 𝐴𝑖𝑠𝑖

𝐶
𝐷

− 1√
1−𝑠𝑖

𝐴𝑖

𝐷
+
√
1 − 𝑠𝑖

.

(4)

To prove that𝑢𝑖 is quasiconcave, we need to show that 𝐿(𝛼) = {𝑠𝑖 ∈
[0, 1] | 𝑢𝑖 (𝑠𝑖 ) ≥ 𝛼} is convex for all 𝛼 ∈ R. This means we need

to prove that 𝐿(𝛼) is a single (possibly empty) interval. First, note

that the multiplicative constant of 𝐴𝑖 in (4) can be ignored for this

purpose. Furthermore, let us introduce 𝐶 ′ = 𝐶/𝐷 and 𝐷 ′ = 𝐴𝑖/𝐷 .
Finally, we substitute 𝑡𝑖 =

√
1 − 𝑠𝑖 . Since the inverse 𝑠𝑖 = 1 − 𝑡2

𝑖
is continuous and strictly decreasing on [0, 1], the set 𝐿(𝛼) is an
interval if and only if

𝐿′(𝛼) =
{
𝑡𝑖 ∈ [0, 1]

��� (1 − 𝑡2𝑖 )
(
𝐶 ′ − 1

𝑡𝑖

)
1

𝐷 ′ + 𝑡𝑖
≥ 𝛼

}

is. The latter inequality is equivalent to

𝑓 (𝑡𝑖 ) := 𝐶 ′𝑡3𝑖 + (𝛼 − 1)𝑡2𝑖 + (𝛼𝐷 ′ −𝐶 ′)𝑡𝑖 + 1 ≤ 0. (5)

Now we distinguish two cases. If 𝛼𝐷 ′ − 𝐶 ′ ≥ 0, then 𝛼 > 0 and

consequently (𝛼 − 1)𝑡2
𝑖
+ 1 > 0. Thus, the left-hand side of (5) is

always positive meaning the set 𝐿′(𝛼) is empty.

Otherwise, if 𝛼𝐷 ′ −𝐶 ′ < 0, consider 𝑓 ’s derivative

𝑓 ′(𝑡𝑖 ) = 3𝐶 ′𝑡2𝑖 + 2(𝛼 − 1)𝑡𝑖 + 𝛼𝐷 ′ −𝐶 ′. (6)

We see that 𝑓 (0) = 1 ≰ 0. So in order for 𝐿′(𝛼) not to be a single

interval, the function 𝑓 must attain the value 0 at least three times

on [0, 1]. In particular, this implies that its derivative has two zeros

in [0, 1]. This together with (6) means it can be written as 𝑓 ′(𝑡𝑖 ) =
3𝐶 ′(𝑡𝑖 −𝑧1) (𝑡𝑖 −𝑧2) with 𝑧1, 𝑧2 ∈ [0, 1]. However, this would imply

𝛼𝐷 ′ −𝐶 ′ = 3𝐶 ′𝑧1𝑧2 ≥ 0 which is a contradiction.

□

In order to find the Nash equilibria, we consider the best response
function of each pool. The best response function of a player returns
the optimal strategy for this player for a given set of strategies of

the other players.

Formally, it is defined as 𝑏𝑖 (𝑠−𝑖 ) = argmax𝑠𝑖 ∈𝑆𝑖 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ). A
Nash equilibrium 𝑠∗ then satisfies 𝑠∗

𝑖
= 𝑏𝑖 (𝑠∗−𝑖 ) for all 𝑖 = 1, . . . , 𝑛.

We will numerically compute the equilibria by repeatedly applying

𝑠𝑖 = 𝑏𝑖 (𝑠−𝑖 ) for 𝑖 = 1, . . . , 𝑛 until 𝑠 converges.

6 EQUILIBRIUM FEES
We will now look at the fee equilibria for several examples. Figure

4 shows the equilibrium fees for two Uniswap-like pools with a

varying difference in size.

We see from the two curves in the upper graph that the larger of

the two pools can always set a higher fee than the smaller one. That

was to be expected as the larger pool has greater market power.

By only looking at the blue curve, we see a pool’s equilibrium fee

is high either when the pool is particularly large compared to its

competitor or when it is particularly small. As one might expect,

the lowest effective fee for the trader occurs when both pools have a

similar size, i.e. when competition between the pools is "strongest".

Somewhat surprisingly, the lower graph shows that the smaller

of the two pools earns a larger amount of fees relative to its size. So

the liquidity providers providing liquidity to the smaller pool earn

a higher return on their investment. This incentivizes liquidity to

move from the larger to the smaller pool. An equilibrium of this

process is reached when both pools have the same size.

Next we consider three pools competing with each other. We

vary the sizes of the first two pools while keeping the size of the

third pools fixed.

Figure 5 show that for three pools, we see similar effects as in the

previous scenario with two pools: Larger pools can charge higher

fees while smaller pools earn more fees relative to their liquidity.

Furthermore, we can compare two-pool and three-pool scenarios

and reason about when it is advantages for one pool to split up

into two new pools or for two pools to merge into one. The relative

fees of pools 2 and 3 for values on the 𝑥-axis close to 0 in Figure

5 show the situation when we have two pools with size 3,000,000

each. We see that as long as the fraction of liquidity in pool 1 is

between about 10% to 90%, the relative fees of pools 1 and 2 are both



Figure 4: The two pools have a total size of 6,000,000 and the trade size is 1,000. The x-axis shows howmuch of the total liquidity
is in pool 1, the rest is in pool 2. The upper graph plots the equilibrium fees while the lower graph shows the amount of fees
the pool receives relative to its size.

Figure 5: Pools 1 and 2 together have size 3,000,000. The x-axis indicates the part of this liquidity is in pool 1, the remaining
part is in pool 2. Pool 3 has size 3,000,000. The dashed black line in the lower chart shows the (weighted) average of the relative
fees in pools 1 and 2.

lower than the relative fees in the two-pool scenario. So in these

cases, it is beneficial for pools 1 and 2 to merge into a single pool.

In the remaining cases however, the smaller pool is better off alone.

This also implies that for two equal-sized pools, it is beneficial for

a small fraction of one of the pools to split off into a new pool. On

the other hand, the fact that the (weighted) average relative fee of



pools 1 and 2 (the dashed black line) attains its maximum at 0 and

100 means that for the total liquidity in pools 1 and 2 as a whole it

is always best to be combined in a single pool.

7 TRADE SIZE DISTRIBUTION
Obviously, in reality not all trades are of equal size. Accordingly, we

now generalize our framework to more than a single trade size. We

assume trades are chosen from a discrete distribution, i.e. trade size

𝑡 𝑗 occurs with a certain probability 𝑝 𝑗 for 𝑗 ∈ 𝐽 . This distribution

could be derived from all trades observed in the recent past for a

certain pair of tokens. For a fee 𝑠𝑖 and a trade size 𝑡 𝑗 , let 𝑥
∗
𝑖
(𝑠𝑖 , 𝑡 𝑗 )

be the solution of (OTP). Then the expected fees for pool 𝑖 are

𝑢𝑖 (𝑠𝑖 ) =
∑
𝑗 ∈𝐽

𝑝 𝑗𝑠𝑖𝑥
∗
𝑖 (𝑠𝑖 , 𝑡 𝑗 ) . (7)

Using this utility function, we can calculate optimal fees from past

trade data for real CFMM pools. We consider the latest 1000 trades

before block 12,000,000 (which occurred on 8 March 2021) from

both the Uniswap and Sushiswap WETH-USDC pool, i.e. a sample

of 2000 trades. The liquidity of these pools stood at about $262

million and $401 million, respectively, at that time. Assuming all

these trades are executed optimally with the current 0.3% fees, the

Uniswap and Sushiswap pools would have received $80,044 and

$122,051 in fees, respectively.

If the Sushiswap fee stays fixed, the best option for Uniswap

would have been to lower its fee to 0.245%. This would have in-

creased its earnings to $102,892 with Sushiswap receiving $76,225.

On the other hand, assuming Uniswap’s fee remains untouched,

Sushiswap’s optimal fee choice would have been 0.27% leading to

$53,285 and $134,094 in earnings, respectively.

When considering more than one trade, it is no longer clear that

a pure Nash equilibrium exists. We can however use the average

trade size of our sample to get an idea of the equilibrium-like fees.

Note that the formula for 𝑥𝑖 in (2) is actually linear in 𝑡 , so using this

formula with the utility function (7) is equivalent to simply using

the average trade size. However, this is not completely accurate for

multiple trade sizes: To arrive at the formula for 𝑥𝑖 we assumed

that all pools attract a positive fraction of the trade in an equilib-

rium. But this is only true for a single trade at a time. Nonetheless,

taking the average trading size should give a reasonable estimate,

in particular for relatively narrow distributions. Using the average

trade size, the equilibrium fee is 0.039% and 0.045% for Uniswap

and Sushiswap, respectively. These fees would mean $11,875 and

$16,867 in collected fees.

8 CONCLUSION
In this paper, we introduced a framework that allows us to de-

termine optimal CFMM fees and reason about how the liquidity

allocation among CFMM pools might evolve. Of course, this does

not answer the question of how to optimally set CFMM fees once

and for all: Other aspects such as attracting fees from arbitrage

trading (see related work) also need to be considered. Also, trading

fees for volatile tokens should be higher than for stable tokens to

reward liquidity providers for the extra risk. In any case, the situ-

ation of multiple pools for the same trading pair competing with

each other is a relevant aspect of the problem. So the equilibria we

find do give an indication how market forces could shape the fees.
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