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Abstract9

We study the stabilization time of a wide class of processes on graphs, in which each node can10

only switch its state if it is motivated to do so by at least a 1+λ
2 fraction of its neighbors, for11

some 0 < λ < 1. Two examples of such processes are well-studied dynamically changing colorings12

in graphs: in majority processes, nodes switch to the most frequent color in their neighborhood,13

while in minority processes, nodes switch to the least frequent color in their neighborhood. We14

describe a non-elementary function f(λ), and we show that in the sequential model, the worst-case15

stabilization time of these processes can completely be characterized by f(λ). More precisely,16

we prove that for any ε > 0, O(n1+f(λ)+ε) is an upper bound on the stabilization time of any17

proportional majority/minority process, and we also show that there are graph constructions where18

stabilization indeed takes Ω(n1+f(λ)−ε) steps.19
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1 Introduction26

Many natural phenomena can be modeled by graph processes, where each node of the graph27

is in a state (represented by a color), and each node can change its state based on the states28

of its neighbors. Such processes have been studied since the dawn of computer science, by,29

e.g., von Neumann, Ulam, and Conway. Among the numerous applications of these graph30

processes, the most eminent ones today are possibly neural networks, both biological and31

artificial.32

Two fundamental graph processes are majority and minority processes. In a majority33

process, each node wants to switch to the most frequent color in its neighborhood. Such34

a process is a straightforward model of influence spreading in networks, and as such, it35

has various applications in social science, political science, economics, and many more36

[29, 9, 12, 18, 23].37

In contrast, in aminority process, each node wants to switch to the least frequent color in its38

neighborhood. Minority processes are used to model scenarios where the nodes are motivated39

to anti-coordinate with each other, like frequency selection in wireless communication, or40

differentiating from rival companies in economics [24, 6, 7, 11, 8].41

Majority and minority processes have been studied in several different models, the most42

popular being the synchronous model (where in each step, all nodes can switch simultaneously)43

and the sequential model (where in each step, exactly one node switches). Since in many44

application areas, it is unrealistic to assume that nodes switch at the exact same time, we45

focus on the sequential model in this paper. We are interested in the worst-case stabilization46

time of such processes, i.e. the maximal number of steps until no node wants to change its47

color anymore.48

Our main parameter describes how easily nodes will switch their color. Previously, the49

processes have mostly been studied under the basic switching rule, when nodes are willing50

switch their color for any small improvement. However, it is often more reasonable to assume51

a proportional switching rule, i.e. that nodes only switch their color if they are motivated52

by at least, say, 70% of their neighbors to do so. In general, we describe such proportional53

processes by a parameter λ ∈ (0, 1), and say that a node is switchable if it is in conflict with54

a 1+λ
2 portion of its neighborhood. The stabilization time in such proportional processes55

(possibly as a function of λ) has so far remained unresolved.56

The reason we can analyze proportional majority and minority processes together is57

that both can be viewed as a special case of a more general process of propagating conflicts58

through a network, where the cost of relaying conflicts through a node is proportional to the59

degree of the node. This more general process could also be used to model the propagation of60

information, energy, or some other entity through a network. This suggests that our results61

might also be useful for gaining insights into different processes in a wide range of other62

application areas, e.g. the behavior of neural networks.63

In the paper, we provide a tight characterization of the maximal possible stabilization time64

of proportional majority and minority processes. We show that for maximal stabilization,65

a critical parameter is the portion ϕ of the neighborhood that nodes use as ‘outputs’, i.e.66

neighbors they propagate conflicts to. Based on this, we prove that the stabilization time of67

proportional processes follows a transition between quadratic and linear time, described by68

the non-elementary function69

f(λ) := max
ϕ∈(0, 1−λ

2 ]

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (1)70
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More specifically, for any ε > 0, we show that on the one hand, O(n1+f(λ)+ε) is an upper71

bound on the number of steps of any majority/minority process, and on the other hand,72

there indeed exists a graph construction where the processes last for Ω(n1+f(λ)−ε) steps.73

2 Related Work74

Various aspects of both majority and minority processes on two colors have been studied75

extensively. This includes basic properties of the processes [17, 36], sets of critical nodes76

that dominate the process [12, 15, 20], complexity and approximability results [21, 3, 10],77

threshold behavior in random graphs [14, 26], and the analysis of stable states in the process78

[16, 33, 4, 5, 34, 24]. Modified process variants have also been studied [35, 25], with numerous79

generalizations aiming to provide a more realistic model for social networks [2, 1].80

However, the question of stabilization time in the processes has almost exclusively been81

studied for the basic switching rule (defined in Section 3.2). Even for the basic rule, apart82

from a straightforward O(n2) upper bound, the question has remained open for a long time83

in case of both processes. It has recently been shown in [13] and [27] that both processes can84

exhibit almost-quadratic stabilization time in case of basic switching, both in the sequential85

adversarial and in the synchronous model. On the other hand, the maximal stabilization86

time under proportional switching has remained open so far.87

It has also been shown that if the order of nodes is chosen by a benevolent player, then88

the behavior of the two processes differs significantly, with the worst-case stabilization time89

being O(n) for majority processes [13] and almost-quadratic for minority processes [27]. In90

weighted graphs, where the only available upper bound on stabilization time is exponential, it91

has been shown that both majority and minority can indeed last for an exponential number92

of steps in various models [22, 28]. The result of [28] is the only one to also study the93

proportional switching rule, showing that the exponential lower bound also holds in this case;94

however, since the paper studies weighted graphs with arbitrarily high weights, this model95

differs significantly from our unweighted setting.96

Stabilization time has also been examined in several special cases, mostly assuming the97

synchronous model. The stabilization of a slightly different minority process variant (based98

on closed neighborhoods) has been studied in special classes of graphs including grids, trees99

and cycles [30, 31, 32]. The work of [19] describes slightly modified versions of minority100

processes which may take O(n5) or O(n6) steps to stabilize, but provide better local minima101

(stable states) upon termination. For majority processes, stabilization has mostly been102

studied from a random initial coloring, on special classes of graphs such as grids, tori and103

expanders [14, 26].104

Various aspects of majority processes have also been studied under the proportional105

switching rule, including sets of critical nodes that dominate the process, and sets of nodes106

that always preserve a specific color [38, 37]. However, to our knowledge, the stabilization107

time of the processes with proportional switching has not been studied before.108

3 Model and Notation109

3.1 Preliminaries110

We define our processes on simple, unweighted, undirected graphs G(V,E), with V denoting111

the set of nodes and E the set of edges. We denote the number of nodes by n = |V |. The112

neighborhood of v is denoted by N(v), the degree of v by deg(v) = |N(v)|.113
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We also use simple directed graphs in our proofs. A directed graph is called a DAG if it114

contains no directed cycles. A dipartitioning of a DAG is a disjoint partitioning (V1, V2) of115

V such that each source node is in V1, and all edges between V1 and V2 all go from V1 to V2.116

We refer to the set of edges from V1 to V2 as a dicut.117

Given an undirected graph G with edge set E, we also define the directed edge set of G118

as Ê = {(u, v), (v, u) | (u, v) ∈ E}, i.e. the set of directed edges obtained by taking each edge119

with both possible orientations.120

A coloring is a function γ : V → {black, white}. A state is a current coloring of G. Under121

a given coloring, we define Ns(v) = {u ∈ N(v)|γ(v) = γ(u)} and No(v) = {u ∈ N(v)|γ(v) 6=122

γ(u)} as the same-color and opposite-color neighborhood of v, respectively.123

We say that there is a conflict on edge (u, v), or that (u, v) is a conflicting edge, if124

u ∈ No(v) in case of a majority process, and if u ∈ Ns(v) in case of a minority process.125

In general, we denote the conflict neighborhood by Nc(v), meaning Nc(v) = No(v) and126

Nc(v) = Ns(v) in case of majority and minority processes, respectively. We occasionally also127

use N¬c(v) = N(v) \Nc(v).128

If a node v has more conflicts than a predefined threshold (depending on the so-called129

switching rule in the model, discussed later) in the current state, then v is switchable.130

Switching v changes its color to the opposite color. If edge (u, v) becomes (ceases to be) a131

conflicting edge when node v switches, then we say that v has created this conflict (removed132

this conflict, respectively).133

A majority/minority process is a sequence of steps (states), where each state is obtained134

from the previous state by a set of switchable nodes switching. In this paper, we examine135

sequential processes, when in each step, exactly one node switches. Such a process is stable136

when there are no more switchable nodes in the graph. By stabilization time, we mean the137

number of steps until a stable state is reached.138

3.2 Model and switching rule139

We study the worst-case stabilization time of majority/minority processes, that is, the140

maximal number of steps achievable on any graph, from any initial coloring. In other words,141

we assume the sequential adversarial model, when the order of nodes (i.e., the next switchable142

node to switch in each time step) is chosen by an adversary who maximizes stabilization143

time.144

It only remains to specify the condition that allows a node to switch its color. The most145

straightforward switching rule is the following:146

B Rule I (Basic Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| > 0.147

An equivalent form of this rule is |Nc(v)| > 1
2 · deg(v). This rule is shown to allow up148

to Θ̃(n2) stabilization time for both majority [13] and minority [27] processes. However, it149

is often more realistic to assume a proportional switching rule, based on a real parameter150

λ ∈ (0, 1):151

B Rule II (Proportional Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| ≥ λ · deg(v).152

Since we have |Nc(v)|+ |N¬c(v)| = deg(v), this is equivalent to saying that v is switchable153

exactly if |Nc(v)| ≥ 1+λ
2 · deg(v). In the limit when λ is infinitely small (or, equivalently, as154

1+λ
2 approaches 1

2 from above), we obtain Rule I as a special case of Rule II.155

In case of Rule I, whenever a node v switches, it is possible that the total number of156

conflicts in the graph decreases by 1 only. On the other hand, Rule II implies that the157

switching of v decreases the total number of conflicts at least by λ · deg(v) (we say that158
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Figure 1 Plot of f(λ) and ϕ∗(λ) for λ ∈ (0, 1)

v wastes these conflicts), so in case of Rule II, the total number of conflicts can decrease159

more rapidly, allowing only a smaller stabilization time. Our findings show that the maximal160

number of steps is different for every distinct λ.161

3.3 On the f(λ) function162

While the processes have a symmetric definition on each edge by default, it turns out that in163

order to maximize stabilization time, each edge has to be used in an asymmetric way. The164

most important parameter at each node v is the ratio of neighbors v uses as ‘inputs’ and as165

‘outputs’. That is, the optimal behavior for each node v is to select ϕ · deg(v) of its neighbors166

as outputs (for some ϕ ∈ (0, 1)), and create all new conflicts on the edges leading to these167

output nodes, and similarly, mark the remaining (1− ϕ) · deg(v) neighbors as inputs, and168

only remove conflicts from the edges coming from these input nodes. Note that with Rule169

II, whenever a node switches, it can create at most
(
1− 1+λ

2
)
· deg(v) = 1−λ

2 · deg(v) new170

conflicts, so it is reasonable to assume ϕ ∈
(
0, 1−λ

2
]
.171

Our results show that if all nodes select ϕ as their output rate, then the maximal172

achievable stabilization time is a function of173

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (2)174

As such, the largest stabilization time can be achieved by maximizing this expression by175

selecting the optimal ϕ value, as shown in the definition of f in Equation 1. We denote176

the optimal value of ϕ (i.e., the argmax of Equation 2) by ϕ∗. The function f has no177

straightforward closed form, as such a form would require solving178

(λ+ 1) · ϕ · log
(

1− ϕ
ϕ

)
= (λ+ ϕ) log

(
1− ϕ
λ+ ϕ

)
,179

for ϕ, with λ as a parameter. A more detailed discussion of f is available in Appendix C.180

Figure 1 shows the values of f and ϕ∗ as a function of λ. The figure shows that both181

f(λ) and ϕ∗(λ) are continuous, monotonically decreasing and convex.182
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It is visible that limλ→0 f(λ) = 1 and limλ→1 f(λ) = 0. This is in line with what we183

would expect: the simple switching rule allows a stabilization time up to Θ̃(n2) [13, 27], while184

even for any large λ < 1, it is still straightforward to present a graph with Ω(n) stabilization185

time. Our main result is showing that f(λ) describes the continuous transition between these186

two extremes.187

4 General intuition behind the proofs188

Note that initially, each node v can have at most deg(v) conflicts on its incident edges, and189

each time when v switches, it wastes λ · deg(v) conflicts. Therefore, if each node were to ‘use’190

its own initial conflicts only, then each node could switch at most 1
λ times, and stabilization191

time could never go above O(n).192

Instead, the idea is to take the high number of conflicts initially available at high-degree193

nodes, and use these conflicts to switch the less wasteful low-degree nodes many times.194

Specifically, we could have a set of Θ(n)-degree nodes that initially have Ω(n2) conflicts195

altogether on their incident edges, and somehow relay these conflicts to another set of O(1)-196

degree nodes, which only waste O(1) conflicts at each switching. However, due to the large197

difference both in degree and in the number of switches, it is not possible to connect these198

two sets directly; instead, we need to do this through a range of intermediate levels, which199

exhibit decreasing degree and increasingly more switches. In order to maximize stabilization200

time, our main task is to move conflicts through these levels as efficiently (i.e., wasting as201

few conflicts in the process) as possible.202

The formula of f(λ) describes the efficiency of this process. The rate of inputs to outputs203
1−ϕ
ϕ determines the factor by which the degree decreases at every new level. If ϕ is chosen204

small, then 1−ϕ
ϕ is high, so we only have a few levels until we reach constant degree, and205

hence the number of switches is increased only a few times. On the other hand, the increase206

in the number of switches per level is expressed by 1−ϕ
λ+ϕ , which is a decreasing function of ϕ.207

If ϕ is too large, then although we execute this increase more times, each of these increases208

is significantly smaller.209

With a degree decrease rate of 1−ϕ
ϕ , we can altogether have about log 1−ϕ

ϕ
(n) levels until210

the degree decreases from Θ(n) to Θ(1). If we increase the number of switches by a factor of211
1−ϕ
λ+ϕ each time, then the O(1)-degree nodes will exhibit212

(
1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) ≤ nf(λ) (3)213

switches, with an equation only if ϕ = ϕ∗(λ). Having Θ̃(n) nodes in the last level, this sums214

up to about n1+f(λ) switches altogether.215

4.1 Conflict propagation systems216

The upper bound on stabilization time is easiest to present in a general form that only focuses217

on this flow of conflicts in the graph. We define a simpler representation of the processes218

which only keeps a few necessary concepts to describe the flow of conflicts, and ignores e.g.219

the color of nodes or the timing of the switches at each node. In fact, we only require the220

number of times s(v) each v ∈ V switches, and the number c(u, v) of conflicts that were221

created by node u and then removed by node v, for each (u, v) ∈ Ê.222

For simplicity, given a function c : Ê → N, let us introduce the notation cin(v) :=223 ∑
u∈N(v) c(u, v) and cout(v) :=

∑
u∈N(v) c(v, u).224

ICALP 2020
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I Definition 1 (Conflict Propagation System, CPS). Given an undirected graph G, a225

conflict propagation system is an assignment s : V → N and c : Ê → N such that226

1. for each v ∈ V , we have cin(v) + deg(v) ≥ λ · deg(v) · s(v) + cout(v),227

2. for each v ∈ V , we have cout(v) ≤ 1−λ
2 · deg(v) · s(v), and228

3. for each (u, v) ∈ Ê, we have c(u, v) ≤ s(u).229

With the choice of s(v) and c(u, v) described above, any proportional majority or minority230

process indeed satisfies these properties, and thus provides a CPS. Hence if we upper bound231

the stabilization time (i.e. the total number of switches
∑
v∈V s(v)) of any CPS, this232

establishes the same bound on the stabilization time of any majority/minority process.233

Condition 1 is the most complex of the three; it expresses the amount of ‘input conflicts’234

cin(v) required to switch v an s(v) times altogether. Every time after v switches, it has235

at most 1−λ
2 · deg(v) conflicts on the incident edges, so it needs to acquire λ · deg(v) new236

conflicts to reach the threshold of 1+λ
2 · deg(v) and be switchable again; this results in the237

λ · deg(v) · s(v) term. Moreover, if in the meantime, the neighboring nodes remove some238

of the conflicts from the incident edges (expressed by cout(v)), then this also has to be239

compensated for by extra input conflicts. Finally, the extra deg(v) term comes from the (at240

most) deg(v) conflicts that are already on the incident edges in the initial coloring. For a241

detailed discussion of this condition, see Appendix A.242

Condition 2 also holds, since each time when v switches, it creates at most 1−λ
2 · deg(v)243

conflicts on the incident edges. Each time u switches, it can only create one conflict on244

a specific edge, so condition 3 also follows. Hence any majority/minority process indeed245

provides a CPS.246

Finally, we need a technical step to get rid of the extra deg(v) term in condition 1. Note247

that this term becomes asymptotically irrelevant as s(v) grows; hence, our approach is to248

handle fewer-switching nodes separately, and require condition 1 only for nodes with large249

s(v). More formally, we select a constant s0, and we refer to nodes v with s(v) < s0 as base250

nodes. We then consider Relaxed CPSs, where, given this extra parameter s0, condition 1 is251

replaced by:252

1R. for each v ∈ V with s(v) ≥ s0, we have cin(v) ≥ λ · deg(v) · s(v) + cout(v),253

This relaxation comes at the cost of an extra ε additive term in the exponent of our upper254

bound.255

5 Upper bound proof256

We now outline the proof of the upper bound on the number of switches. A more detailed257

discussion of this proof is available in Appendix A.258

5.1 Properties of an optimal construction259

We start by noting that since moving a conflict through a node is wasteful, it is suboptimal260

to have two neighboring nodes that both transfer a conflict to each other, or more generally,261

to move a conflict along any directed cycle. Therefore, in a CPS with maximal stabilization262

time, the conflicts are essentially moved along the edges of a DAG. To formalize this, given a263

CPS, let us say that a directed edge (u, v) ∈ Ê is a real edge if c(u, v) > 0.264

I Lemma 2. There exists a CPS with maximal stabilization time where the real edges form265

a DAG.266
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Proof. Among the CPSs on n nodes with maximal stabilization time, let us take the CPS P267

where the sum
∑
e∈Ê c(e) is minimal. Assume that there is a directed cycle along the real268

edges of this CPS, and let c(e0) denote the minimal value of function c along this cycle.269

Now consider the CPS P ′ where the value of c on each edge of this directed cycle is270

decreased by c(e0). Since in each affected node, the inputs and outputs have been decreased271

by the same value, P ′ still satisfies all three conditions, and thus it is also a valid CPS.272

Moreover, P ′ has the same amount of total switches as P . However, since c(e0) > 0, the sum273

of c(e) values in P ′ is less than in P , which contradicts the minimality of P . J274

Hence for the upper bound proof, we can assume that the real edges of the CPS form a275

DAG. In the rest of the section, we focus on this DAG composed of the real edges of the276

CPS. We first show that for convenience, we can also assume that each base node is a source277

in this DAG.278

I Lemma 3. There exists a CPS with maximal stabilization time where each base node is a279

source node of the DAG.280

Proof. Note that by removing an input edge (u, v) of a base node v (that is, setting c(u, v)281

to 0), the remaining CPS is still valid, since node v does not have to satisfy condition 1R,282

and in node u, only the sum of outputs was decreased. Therefore, we can remove all the283

input edges of each base node, and hence base nodes will all become source nodes of the284

DAG. J285

I Lemma 4. For each directed edge (u, v) in the DAG where u is a source node, c(u, v) = O(1).286

More specifically, c(u, v) ≤ s0.287

Proof. If u is a base node, then s(u) ≤ s0, so c(u, v) ≤ s0 due to condition 3. Otherwise,288

condition 1R must hold, and since u has no input nodes, we get 0 ≥ cout(u) +λ ·deg(u) · s(u),289

hence cout(u) = 0, so c(u, v) = 0 for every v. Thus c(u, v) ≤ s0. J290

5.2 Edge potential291

As a main ingredient of the proof, we define a way to measure how close we are to propagating292

conflicts optimally.293

I Definition 5 (Potential). Given a real edge e ∈ Ê, the potential of e is defined as294

P (e) = c(e)1/f(λ).295

For simplicity of notation, we also use P to denote the function x→ x1/f(λ) on real numbers296

instead of edges.297

Intuitively speaking, the potential function describes the cost of sending a specific number298

of conflicts through a single edge, in terms of the number of initial conflicts used up for this.299

Note that since f(λ) < 1, the function P is always convex. This shows that sending a high300

number of conflicts through a single edge is more costly than sending the same amount of301

conflicts through multiple edges.302

As the following lemma shows, the potential is defined in such a way that the total303

potential can never increase when passing through a node in the DAG; the best that a node304

can do is to preserve the input potential if it relays conflicts optimally.305

I Lemma 6. For any non-source node v of the DAG, with input edges from Nin(v) and306

output edges to Nout(v), we have307 ∑
u∈Nin(v)

P (u, v) ≥
∑

u∈Nout(v)

P (v, u).308

ICALP 2020
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Proof. If v is not a source, then by Lemma 3 it is not a base node, and thus has to satisfy con-309

dition 1R. In our DAG, cin and cout correspond to
∑
u∈Nin(v) c(u, v) and

∑
u∈Nout(v) c(v, u),310

respectively. Assume that we fix the value of cin and cout. Since the potential function P311

is convex, the incoming potential (left side) is minimized if cin is split as equally among312

the input neighbors as possible. On the other hand, the outgoing potential (right side) is313

maximized if cout is split as unequally among outputs as possible, so all output edges present314

in the DAG have the maximal possible number of switches, meaning c(v, u) = s(v) for every315

u ∈ Nout(v).316

Assume that a fraction ϕ of v’s incident edges are outgoing, i.e. |Nout(v)| = ϕ · deg(v)317

and |Nin(v)| = (1− ϕ) · deg(v). By condition 1R, we have cin ≥ λ · deg(v) · s(v) + cout; with318

cout = ϕ · deg(v) · s(v), this gives cin ≥ (λ + ϕ) · deg(v) · s(v). If split evenly among the319

(1− ϕ) · deg(v) inputs, this means320

cin
|Nin(v)| ≥

(λ+ ϕ) · deg(v) · s(v)
(1− ϕ) · deg(v) =

(
λ+ ϕ

1− ϕ

)
· s(v)321

switches for each input node. The inequality on the potential then comes down to322

∑
u∈Nin(v)

P (u, v) ≥ (1− ϕ) · deg(v) ·
(
λ+ ϕ

1− ϕ · s(v)
)1/f(λ)

≥323

≥ ϕ · deg(v) · s(v)1/f(λ) ≥
∑

u∈Nout(v)

P (v, u).324

325

To show that the inequality in the middle holds, we only require326 (
λ+ ϕ

1− ϕ

)1/f(λ)
≥ ϕ

1− ϕ,327

or, put otherwise,328

1
f(λ) log

(
λ+ ϕ

1− ϕ

)
≥ log

(
ϕ

1− ϕ

)
.329

Since ϕ
1−ϕ < 1 (thus its logarithm is negative), we get330

log
(
λ+ϕ
1−ϕ

)
log
(

ϕ
1−ϕ

) =
log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) ≤ f(λ).331

This holds by the definition of f(λ). Note that this also shows that equality can only be332

achieved if the output rate ϕ is indeed chosen as the argmax value ϕ∗(λ). J333

Lemma 6 provides the key insight to the main idea of our proof: if we process the nodes334

of a DAG according to a topological ordering, always maintaining a dicut of outgoing edges335

from the already processed part of the DAG, then this potential cannot ever increase when336

adding a new node.337

I Lemma 7. Given a dicut S of a dipartitioning in the DAG, we have338 ∑
e∈S

P (e) = O(n2).339

Proof (Sketch). Each dipartitioning can be obtained by starting from the trivial diparti-340

tioning where V1 only contains the source nodes of the DAG, and then iteratively adding341
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nodes one by one to this initial V1. The number of outgoing edges from this initial V1 (the342

set of source nodes) is upper bounded by |E| = O(n2). According to Lemma 4, the number343

of switches (and hence the potential) on each edge of the dicut is at most constant, so the344

sum of potential in this initial dicut is also O(n2).345

Now consider the process of iteratively adding nodes to this initial V1 to obtain a specific346

dipartitioning. Whenever we add a new node v to V1, the incoming edges of v are removed347

from the dicut, and the outgoing edges of v are added to the dicut. According to Lemma 6,348

the potential on the outgoing edges of v is at most as much as the potential on the incoming349

edges, so the sum of potential can not increase in any of these steps. Therefore, when arriving350

at the final V1, the sum of potential on the cut edges is still at most O(n2). J351

5.3 Upper bounding switches352

Finally, we present our main lemma that uses the previous upper bound on potential in order353

to upper bound the number of switches in the CPS.354

I Lemma 8. Given a CPS and an integer a ∈ {1, ..., n}, let A = {v ∈ V |a ≤ deg(v) < 2a }.355

For the total number of switches s(A) =
∑
v∈A s(v), we have356

s(A) = O
(
n1+f(λ) · a−f(λ)

)
.357

Proof (Sketch). If the input edges of the nodes in A would form the dicut of a dipartitioning,358

then we could directly use Lemma 7 to upper bound the number of switches in A through359

the potential of the input edges. However, the nodes of A might be scattered arbitrarily in360

the DAG, and if there is a directed path from one node in A to another, then the ‘same’361

potential might be used to switch more than one node in A. Thus we cannot apply Lemma 7362

directly. Instead, our proof consists of two parts.363

1. First, we define so-called responsibilities for the nodes in A. Given a node v0 ∈ A, the364

idea is to devise two different functions: (i) a function ∆c(e), defined on each edge e which is365

contained in any directed path starting from v0, and (ii) a function ∆s(v), which is defined366

on any node v that is reachable from v0 on a directed path. Intuitively, we will consider367

the conflicts ∆c(e) and the switches ∆s(v) to be those that are indirectly ‘the effects of368

the switches of v0’. More specifically, ∆c and ∆s are chosen such that if they are removed369

(subtracted from the CPS), then v0 has no output edges in the DAG anymore, and the370

resulting assignment s′(v) = s(v)−∆s(v) and c′(e) = c(e)−∆c(e) still remains a valid CPS.371

Hence the subtraction results in a CPS where v0 has no directed path to other nodes in A372

anymore. This shows that we can keep on executing this step for each v0 ∈ A until no two373

nodes in A are connected by a directed path, at which point we can apply Lemma 7 to the374

resulting graph.375

Whenever we process such a node v0 ∈ A, we define the responsibility of v0 as R(v0) :=376

s(v0)+
∑

∆s(v), where the sum is understood over all the nodes v ∈ A that are reachable from377

v0. The main idea is that we ‘reassign’ these switches to v0 from other nodes inA. This method378

is essentially a redistribution of switches in the CPS, so we have
∑
v∈A s(v) =

∑
v∈AR(v)379

altogether.380

Furthermore, our definition of ∆s(v) will ensure that R(v0) = O(1) ·s(v0). Intuitively, this381

can be explained as follows. Recall that with Rule II, the ratio of output to input conflicts382

is always upper bounded by a constant factor (below 1) at every node, since switching383

always wastes a specific proportion of conflicts. Hence, over any path starting from v0, the384

number of outputs that can be attributed to v0 forms a geometric series. As the ratio of the385

geometric series is below 1, the total amount of conflicts caused by v0 this way is still within386

ICALP 2020



90:10 A General Stabilization Bound for Influence Propagation in Graphs

the magnitude of the input conflicts of v0. Since each node in A has similar degree (and thus387

requires similar number of input conflicts for one switching), these conflicts can only switch388

nodes in A approximately the same number of times as v0 can be switched by its own inputs.389

A more detailed discussion of this responsibility technique is available in Appendix A.390

2. For the second part of the proof, we show the claim in this modified CPS with no391

directed path between nodes in A. This implies that there exists a dipartitioning where the392

nodes of A are in V2, but all their input nodes are in V1. This means that all the input edges393

of each node in A are included in the dicut S of the partitioning.394

Consider a node v ∈ A. Due to condition 1R, v has at least λ ·deg(v) · s(v) input conflicts.395

Even if these are distributed equally on all incident edges of v (this is the case that amounts396

to the lowest total potential, since P is convex), this requires a total input potential of397

deg(v) · P (λ · s(v)) = deg(v) · s(v)1/f(λ) · λ1/f(λ)
398

at least. Recall that Lemma 7 shows that the total potential on all edges in S is O(n2). Our399

task is hence to find an upper bound on
∑
v∈A s(v), subject to400 ∑

v∈A
deg(v) · s(v)1/f(λ) · λ1/f(λ) = O(n2).401

Since the last factor on the left side is a constant, we can simply remove it and include it402

in the O(n2) term. Furthermore, the degree of each node in A is at least a, so by lower403

bounding each degree by a, we get404 ∑
v∈A

s(v)1/f(λ) = O(n2) · 1
a
.405

Given this upper bound on
∑
v∈A P (s(v)), since the function P is convex, the sum of switches406 ∑

v∈A s(v) is maximal when each node in A switches the same amount of times (i.e. there is407

an s such that s(v) = s for every v ∈ A), giving408

|A| · s1/f(λ) = O(n2) · 1
a
.409

With this upper bound, |A| · s is maximal if |A| is as large as possible and s as small as410

possible (again because P grows faster than linearly). Clearly |A| ≤ n, so assuming |A| = n,411

we get412

s1/f(λ) = O(n) · 1
a
,413

which means that414

s = O(nf(λ)) · a−f(λ),415

and thus for the total number of switches in A, we get416

|A| · s = O(n1+f(λ)) · a−f(λ). J417

It only remains to sum up this bound for the appropriate intervals to obtain our final418

bound. Let us consider the intervals [1, 2), [2, 4), [4, 8), ..., i.e. a = 2k for each factor of 2419

up to n, which is a disjoint partitioning of the possible degrees. Note that for these specific420

values of a, the sum
∑∞
k=0(2k)−f(λ) converges to a constant according to the ratio test.421

In other words, the sum is dominated by the number of switches of the lowest (constant)422

degree nodes, and hence, the total number of switches in the graph can be upper bounded423

by O(1) · n1+f(λ).424

Recall that since we work with Relaxed CPSs, we lose an ε in the exponent of this upper425

bound when we carry the result over to an original CPS.426
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ϕ
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Figure 2 Consecutive levels of the lower bound construction

I Theorem 9. In any CPS with parameter λ, we have
∑
v∈V s(v) = O(n1+f(λ)+ε) for any427

ε > 0.428

Since we have established that every majority/minority process provides a CPS, the upper429

bound on their stabilization time also follows.430

I Corollary 10. Under Rule II with any λ ∈ (0, 1), every majority/minority process stabilizes431

in time O(n1+f(λ)+ε) for any ε > 0.432

6 Lower bound construction433

Having established the most efficient way to relay conflicts, the high-level design of the434

matching lower bound construction is rather straightforward, following the level-based idea435

described in Section 4.436

Given λ, we first determine the optimal output rate ϕ = ϕ∗(λ). We then create a437

construction consisting of distinct levels, where each level has the same size, and each consists438

of a set of nodes that have the same degree. Since the degree should decrease by a factor439

of ϕ
1−ϕ in each new level from top to bottom, we can add L = log 1−ϕ

ϕ
(n) such levels to the440

graph. If each of these level has Θ( n
logn ) nodes, then with the appropriate choice of constants,441

the total number of nodes is below n.442

Each node in the construction is only connected to other nodes on the levels immediately443

above or below its own. All conflicts are propagated down in the graph, from upper to lower444

levels, so the upper neighbors of a node are always used as inputs, while the lower neighbors445

are always used as outputs. For the optimal propagation of conflicts, each node v must have446

the optimal input-output rate, i.e. an up-degree of (1 − ϕ) · deg(v) and a down-degree of447

ϕ · deg(v). Thus each consecutive level pair forms a regular bipartite graph, with ϕ
1−ϕ of the448

degree of the level pair above. The construction is illustrated in Figure 2.449

Our parameters λ and ϕ also determine that the number of switches should increase by a450

factor 1−ϕ
λ+ϕ on each new level. If we can always increase the switches at this rate, then each451

node on the lowermost level will switch452

(
1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) = nf(λ),453

times, where the last equation holds because we are using ϕ = ϕ∗(λ). Since there are454

Θ̃(n) nodes on the lowermost level, the switches in this level already amount to a total of455

Θ̃(n1+f(λ)), matching the upper bound.456
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However, note that when ϕ∗(λ) or 1−ϕ
λ+ϕ is irrational, we can only use close enough rational457

approximations of these values. This comes at the cost of losing a small ε in the exponent.458

I Theorem 11. Under Rule II with a wide range of λ values, there is a graph construction459

and initial coloring where majority/minority processes stabilize in time Ω(n1+f(λ)−ε) for any460

ε > 0.461

This level-based structure describes the general idea behind our lower bound construction.462

However, the main challenge of the construction is in fact designing the connection between463

subsequent levels. In particular, this connection has to make sure that conflicts are indeed464

always relayed optimally, i.e. no potential is wasted between any two levels.465

Recall from the proof of Lemma 6 that this is only possible if between any two consecutive466

switches of a node v, it is exactly a λ+ϕ
1−ϕ fraction of v’s upper neighbors that switch. Moreover,467

these switching λ+ϕ
1−ϕ · deg(v) upper neighbors always have to be of the right color, i.e. they468

need to switch to the opposite of v’s current color in case of majority processes, and to the469

same color in case of minority processes. Since the upper neighbors of v are in the same level,470

we also have to ensure that throughout the entire process, each upper neighbor switches the471

same number of times altogether.472

These conditions impose heavy restrictions on the possible ways to connect two subsequent473

levels. If the conditions hold for a node v (i.e. the sequence of switches of v’s upper neighbors474

can be split into λ+ϕ
1−ϕ · deg(v)-size consecutive appropriate-colored subsets, in an altogether475

balanced way), then we say that v’s upper neighbors follow a valid control sequence.476

On the other hand, in order to argue about levels in general, we want each level to behave477

in a similar way. The easiest way to achieve this is to have a one-to-one correspondence478

between the nodes of different levels, and ensure that each level repeats the same sequence479

of steps periodically, but in a different pace. That is, we want to connect the levels in such a480

way that when a level exhibits a specific pattern of switches, then this allows the nodes of481

the next level to replicate the exact same pattern of switches, but more times.482

Thus the key task in our lower bound constructions is to develop a so-called control483

gadget, which is essentially a bipartite graph that fulfills these two requirements: it admits a484

scheduling of switches such that (i) the upper neighborhood of each lower node follows a485

valid control sequence, and (ii) while the upper level executes a sequence s times, the lower486

level executes the same sequence 1−ϕ
λ+ϕ · s times. Given such a control gadget, we can connect487

the subsequent level pairs of our construction using this gadgets. This allows us to indeed488

increase the number of switches by a 1−ϕ
λ+ϕ factor in each new level, resulting in a total of489

Θ̃(n1+f(λ)) switches as described above.490

However, developing a control gadget is a difficult combinatorial task in general: it491

depends on many factors including divisibility questions, and whether our parameters can be492

expressed as a fraction of small integers. A detailed discussion of control gadget design and493

the λ values covered by Theorem 11 is available in Appendix B. In particular, we present a494

method which allows us to develop a control gadget for every small λ value below a threshold495

of approximately 0.476 (more specifically, as long as λ+ϕ
1−ϕ ≤

3
5 ). The same technique also496

provides a control gadget for some larger λ values above the threshold, but only when the497

corresponding switch increase ratio 1−ϕ
λ+ϕ can be expressed as a fraction of relatively small498

integers. Furthermore, Appendix B also describes a simpler solution technique to the control499

gadget problem; this leaves a slightly larger gap to the upper bound, but it works for any λ500

without much difficulty.501
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Appendices600

A Discussion of upper bound proof601

In this section, we discuss some parts of the upper bound proof in more detail.602

A.1 Majority and minority processes as CPSs603

When introducing the concept of CPS as the common abstraction of majority and minority604

processes, it is rather straightforward that conditions 2 and 3 are fulfilled, since each time605

when a node v switches, it can only create 1 conflict on at most 1−λ
2 · deg(v) incident edges.606

Condition 1, however, requires some more discussion.607

Between each two consecutive switches of v, we know that at least 1+λ
2 · deg(v)− 1−λ

2 ·608

deg(v) = λ·deg(v) new conflicts must be wasted (i.e. removed) to raise the number of conflicts609

on incident edges above the switchability threshold of 1+λ
2 · deg(v) again. Furthermore, if610

between the two switches there are also conflicts that are removed from the incident edges611

by neighboring nodes (i.e., outputs), then each of these conflicts have to be replaced by a612

new one (an extra input) to have the required number of conflicts for switchability again.613

More formally, let ini be the number of conflicts created on, and outi the number of614

conflicts removed from the edges of v between the (i − 1)th and ith switching of v, for615

i ∈ {1, ..., s(v)}. If outi further conflicts are removed from v’s edges before the (i + 1)th616

switching of v, then v needs to obtain outi further conflicts to reach the threshold of617

1+λ
2 · deg(v) and be switchable for the (i+ 1)th time. This implies ini ≥ λ · deg(v) + outi;618

adding this up for all i provides condition 1.619

This explains why the relaxed version of condition 1 holds asymptotically. However, there620

are some edge cases that make the process slightly differ from this asymptotic behavior.621

Besides input conflicts (created by a neighbor of v), there may also be original conflicts on622

the edges incident to v, which were not created by a neighbor but were present from the623

beginning due to the initial coloring of the graph. These conflicts can be used by v just624

like an input conflict when switching, and hence it is in fact the sum of original and input625

conflicts that has to be larger than the required number of conflicts for switching (i.e., the626

sum of outputs plus λ · deg(v) · s(v)). However, the number of original conflicts on incident627

edges is at most deg(v), so adding an extra term of deg(v) on the left side of condition 1628

(i.e., requiring only that cin(v) ≥ λ · deg(v) · s(v) + cout(v)− deg(v)) gives an inequality that629

holds for any node in a majority/minority process, even if a node v uses up to deg(v) original630

conflicts while switching.631

Also, the behavior of the process is slightly different before the first and after the last632

switch. On the one hand, in the first round, v needs to use 1+λ
2 · deg(v) conflicts that are all633

inputs or original conflicts (whereas in later rounds, up to 1−λ
2 · deg(v) of the used conflicts634

might be ones that were created by v in the previous round). Therefore, because of this first635

round, the total number of used conflicts is actually 1+λ
2 · deg(v)− λ · deg(v) = 1−λ

2 · deg(v)636

higher than in the asymptotic case. On the other hand, there is no need to compensate for637

output conflicts that are removed after the very last switching of v, since the number of638

conflicts in the final state of the graph is irrelevant; therefore, there may be up to 1−λ
2 ·deg(v)639

output conflicts that do not have to be compensated. Note, however, that these two edge640

cases do not require us to further modify condition 1, since the two new terms cancel each641

other on the right side.642
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A.2 Relaxing the CPS definition643

While the extra deg(v) term in condition 1 becomes asymptotically irrelevant if a node644

switches many times (i.e. s(v) is large), the precise analysis still requires us to introduce the645

relaxed version of the CPS concept where condition 1 does not contain this extra term.646

Consider a slightly smaller switching rule parameter λ − ε, for any small ε > 0. Note647

that cin(v) ≥ (λ − ε) · deg(v) · s(v) + cout(v) automatically implies cin(v) + deg(v) ≥648

λ · deg(v) · s(v) + cout(v) for s(v) large enough; that is, ε · deg(v) · s(v) ≥ deg(v) holds649

whenever s(v) ≥ 1
ε , so the additive term is not required. However, having λ− ε instead of λ650

in the condition also results in the slightly less tight upper bound of O(n1+f(λ−ε)).651

Therefore, we take the following approach. Assume we have a λ0 for which we want to652

show the upper bound. We select a small ε > 0, and define λ := λ0− ε. We define a constant653

switching threshold s0 := 1
ε ; nodes v with s(v) < s0 will be the base nodes. The base nodes654

in our graph then do not satisfy condition 1; however, since they only switch a few times,655

they have a limited influence on the process. By the choice of s0, the remaining nodes satisfy656

condition 1 with λ, even without the extra term, so the relaxed version of condition 1 indeed657

holds with s0 and λ.658

We then follow the proof outlined before with Relaxed CPSs. This allows us to upper659

bound stabilization time by O(n1+f(λ)) = O(n1+f(λ0−ε)). Since f is continuous and the660

technique works for any ε > 0, this establishes an upper bound of O(n1+f(λ0)+ε) for any ε > 0.661

Thus in terms of the parameter λ0 of Rule II, our upper bound amounts to O(n1+f(λ0)+ε)662

steps.663

A.3 Potential of dicuts664

Recall that Lemma 6 shows that the output potential of any node can be at most as much665

as its input potential. This allows us to upper bound the total potential in any dicut of the666

graph.667

We use trivial dipartitioning to refer to the dipartitioning (V1, V2) where V1 only contains668

the source nodes of the DAG, and V2 contains all other nodes.669

I Lemma 12. Every dipartitioning can be obtained from the trivial partitioning through a670

sequence of steps such that each intermediate step is also a dipartitioning.671

Proof. The statement clearly holds for the trivial dipartitioning. For any other dipartitioning,672

we can prove the statement by induction on the number of nodes in V1. Given any other673

dipartitioning (V1, V2), let us take a topological ordering of the DAG which begins with all674

the source nodes. Let us restrict this ordering to V1, and let v be the last node of the ordering675

which is in V1. Since the ordering is topological, there are no edges from v to V1 \ {v}.676

Therefore, (V1 \ {v}, V2 ∪ {v}) is also a dipartitioning, so there exists a valid sequence to677

obtain it due to the induction hypothesis. Appending the dipartitioning (V1, V2) to the end678

of this sequence provides a sequence for (V1, V2). J679

From this, the proof of Lemma 7 already follows. The dicut of the trivial dipartitioning680

has potential at most O(n2). Due to Lemma 6, the potential of the dicut can only decrease681

throughout the sequence. This shows that the potential of dicut (V1, V2) is still at most as682

much potential of the trivial dipartitioning.683

A.4 Responsibility technique for the upper bound684

We now discuss the proof of Lemma 8 in detail. Note that in the definition of a (relaxed) CPS,685

we defined the functions s and c as integer-valued, since this definition is intuitively closer to686
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our original majority/minority processes. However, one can observe that all our statements687

in Section 5 still hold if s and c are allowed to take any value among the nonnegative real688

numbers. Since allowing non-integer values allows for a simpler proof of Lemma 8, in the689

following, we consider this not-necessarily-integer version of CPSs in order to avoid some690

discretization challenges.691

As an edge case, note that source nodes switch at most O(1) time according to Lemma 4,692

so altogether, they contribute at most O(n) to the total number of switches. Therefore, we693

can ignore them in the analysis, and consider only the remaining nodes of the graph which694

satisfy the relaxed version of condition 1.695

The main structure of the proof has already been outlined in Section 5.3; it only remains696

to describe the responsibility technique devised for the first part of the proof.697

Let us take a topological ordering of the nodes in A, and let us iterate through the nodes698

of A in this order. For each next node v0 in this ordering, we define the responsibility of v0,699

denoted R(v0). As outlined, we introduce a function ∆c(e) on the edges and ∆s(v) on the700

vertices for each such v0, and after having processed v0, we subtract these functions from701

c(e) and s(v), respectively.702

That is, let c′ : Ê → R and s′ : V̂ → R, initially set to c′(e) := c(e) and s′(v) := s(v) for703

every vertex v ∈ V and every directed edge e of the DAG. Every time when we process the704

next node v0, we define a new ∆c(e) and ∆s(v) based on the effects of v0, and reduce c′(e)705

by ∆c(e) on every e ∈ Ê, and reduce s′(v) by ∆s(v) on every v ∈ V . Due to the definition706

of ∆c(e) and ∆s(v), the resulting c′(e) and s′(v) will still be a valid CPS after each step of707

the process. After processing all v0 ∈ A, we obtain a final c′(e) and s′(v) for the second part708

of the proof outlined in Lemma 8.709

A.4.1 Definition of ∆c and ∆s710

Let us now define the functions ∆c and ∆s. Let v0 be the next node of the topological711

ordering. In order to process the switches ‘caused by’ v0, we take a topological ordering712

of the nodes reachable from v0 on the current edges of the DAG (that is, the real edges713

with regard to the current c′(e)). The first node of the ordering is clearly v0 itself; for each714

output edge (v0, u) ∈ Ê of v0, let ∆c(v0, u) = c′(v0, u). That is, after the current ∆c(e) will715

be subtracted from c′(e), all output edges (v0, u) will have c(v0, u) = 0, and thus cease to be716

real edges, turning v0 into a new sink node of the DAG.717

In general, let v be the next node in the topological ordering of the nodes reachable from718

v0 (i.e., the inner loop of the algorithm). Since the ordering is topological, all input edges719

(u, v) of v already have a value ∆c(u, v) assigned to them (if an input node u is not reachable720

from v0, we consider ∆c(u, v) to have the default value of 0). Let ∆in :=
∑

(u,v)∈Ê ∆c(u, v).721

First of all, we generally define722

∆s(v) := ∆in

1+λ
2 · deg(v)

. (4)723

Furthermore, we define ∆c(v, w) on the output edges (v, w) of v as follows. Similarly to the724

definition of ∆in, let ∆out :=
∑

(v,w)∈Ê ∆c(v, w). Our assignment will ensure two things.725

On the one hand, we assign ∆c(v, w) values such that ∆out = ∆s(v) · 1−λ
2 · deg(v); or, put726

otherwise through the definition of ∆s(v), ∆out = 1−λ
1+λ ·∆in. On the other hand, we always727

reduce the value c′(v, w) on the output edge with the largest c′(v, w) value, until a total728

reduction of 1−λ
1+λ ·∆in is obtained.729

Moreover, we have to apply a slightly different method when c′out(v) < 1−λ
1+λ ·∆in, i.e. it730

is not large enough to be decreased by the required amount. In this case, we choose ∆out as731
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large as possible (that is, equal to c′out(v)), and define ∆̃in = ∆in − λ+1
λ−1 · c

′
out(v), i.e. the732

portion of the input which we cannot compensate from the remaining outputs. Since this733

part of the input conflicts is not used to create output conflicts, this can result in a higher734

number of switches at v. Hence, we reduce s′(v) by a larger amount altogether. Specifically,735

we define736

∆s(v) :=

(
∆in − ∆̃in

)
1+λ

2 · deg(v)
+ ∆̃in

λ · deg(v) . (5)737

Intuitively, the idea behind this technique is that even if inputs are used in the most738

optimal format, then 1 unit of input can correspond to at most 1−λ
1+λ units of output at v.739

This is because condition 2 ensures cout(v) ≤ 1−λ
2 · deg(v) · s(v), and in case of the maximum740

possible output, condition 1 gives741

cin(v) ≥ λ · deg(v) · s(v) + 1− λ
2 · deg(v) · s(v) = 1 + λ

2 · deg(v) · s(v),742

providing a natural upper bound of
1+λ

2
1−λ

2
= 1+λ

1−λ on the rate of inputs to outputs. Furthermore,743

in case of this input to output ratio, the total input of (at least) 1+λ
2 ·deg(v) ·s(v) corresponds744

to s(v) switches, and thus each unit of input induces at most 1
1+λ

2 ·deg(v) switches in v. On the745

other hand, when there are no more outputs anymore, the number of inputs cin(v) can be as746

low as λ · deg(v) · s(v), and hence each unit of input induces at most 1
λ·deg(v) switches in v.747

To sum it up formally, when processing the next node v, we do the following. If748

c′out(v) ≥ 1−λ
1+λ ·∆in, then we define ∆s(v) according to Equation 4. We select a threshold749

value cthres, and define ∆c(v, w) on the output edges such that ∆c(v, w) = 0 for output750

edges where c′(v, w) ≤ cthres, and ∆c(v, w) = c′(v, w) − cthres for output edges where751

c′(v, w) > cthres. Since we can decrease cthres continuously, there exists exactly one threshold752

value which ensures that ∆out = 1−λ
1+λ ·∆in. Hence, each output c′(v, w) is truncated to this753

threshold value.754

Otherwise, if c′out(v) < 1−λ
1+λ ·∆in, then we assign ∆c(v, w) := c′(v, w) to each output edge755

(v, w) of v, calculate ∆̃in as discussed above, and define ∆s(v) according to Equation 5.756

A.4.2 CPS conditions after subtracting ∆c and ∆s757

I Lemma 13. The definitions of these modifications ensure that after reducing the number758

of switches and conflicts, the resulting process still remains a CPS in each step.759

Proof. Recall that the conditions of a relaxed CPS require760

1. c′in(v) ≥ λ · deg(v) · s′(v) + c′out(v),761

2. c′out(v) ≤ 1−λ
2 · deg(v) · s′(v), and762

3. c′(v, w) ≤ s′(v) for each output edge (v, w)763

for node v. We show that these conditions still hold for the new functions c′ and s′, obtained764

after subtracting ∆c and ∆s.765

First consider the case when there are still output c′(v, w) values to decrease. In condition766

1, the number of inputs decreases by ∆in on the left side when executing the step. The767

number of outputs decreases by 1−λ
1+λ ·∆in on the right side, and the first term on the right is768

reduced by769

λ · deg(v) ·∆s(v) = λ · deg(v) · ∆in

1+λ
2 · deg(v)

= 2λ
1 + λ

·∆in.770
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This adds up to a decrease of
(

1−λ
1+λ + 2λ

1+λ

)
·∆in = ∆in on the right side, thus condition 1771

remains true in this case.772

In condition 2, the left side is decreased by ∆out = 1−λ
1+λ ·∆in, while the right side is also773

decreased by774

1− λ
2 · deg(v) ·∆s(v) = 1− λ

2 · deg(v) · ∆in

1+λ
2 · deg(v)

= 1− λ
1 + λ

·∆in775

in each step.776

To show that condition 3 remains true, we use the fact that c′(v, w) is always decreased777

on the output edges with the highest c′(v, w) values. Assume that c′(v, w0) > s′(v) on778

some output edge (v, w0), for the new functions c′ and s′ obtained after subtracting ∆c and779

∆s. Recall that with our truncation technique, if we have c′(v, w0) on any edge after the780

reduction, then cthres ≥ c′(v, w0). Together, this implies cthres > s′(v).781

Let s′prev(v) := s′(v) + ∆s(v), the value of s′(v) before the decrease. Recall that by the782

definition of ∆s(v), we have s′prev(v)−s′(v) = ∆out · 2
1−λ ·

1
deg(v) , so for the difference between783

s′prev(v) and cthres, we have s′prev(v)− cthres < ∆out · 2
1−λ ·

1
deg(v) . Note that this difference784

is the maximum value of ∆c(v, w) on any output edge, since before the decrease, all c′(v, w)785

values were at most s′prev(v), and none of them were reduced below cthres. However, since786

we decrease the outputs by ∆out in total, this means that we have to reduce (i.e., have a787

nonzero ∆c(v, w)) on strictly more than788

∆out

∆out · 2
1−λ ·

1
deg(v)

= 1− λ
2 · deg(v)789

distinct output edges. Each of these output edges is reduced to cthres, so the total sum of790

outputs after the decrease is at least791

c′out(v) ≥ 1− λ
2 · deg(v) · cthres >

1− λ
2 · deg(v) · s′(v),792

which contradicts the already established condition 2. Thus condition 3 must also hold.793

Finally, consider the other case, when there are no more output values c′(v, w) to decrease.794

The left side of condition 1 is still reduced by ∆in, and the right side consists of the first795

term only, which is reduced by796

λ · deg(v) ·∆s(v) = λ · deg(v) · ∆in

λ · deg(v) = ∆in,797

so condition 1 remains true. In this case, conditions 2 and 3 hold trivially, since all output798

edges (v, w) already have c′(v, w) = 0. J799

A.4.3 Responsibilities of nodes800

Consider any va ∈ A throughout the process. The value s′(va) is initially equal to s(va),801

and then keeps being reduced until va is the next node in the topological ordering (i.e.,802

when v0 = va). From this point, s′(va) is not changed anymore; on the other hand, when803

analyzing the effects of va, s′(v) values of other nodes are reduced, and we reassign these804

switches to be the responsibility of va. That is, whenever having processed a node v0, we805

define R(v0) = s′(v0) +
∑
v∈A ∆s(v) for the ∆s function obtained in case of this specific v0.806

Clearly, throughout the process, every decrease ∆s happens with regard to a specific v0, so807

this is indeed a redistribution of the original s(v) values, and hence
∑
v∈A s(v) =

∑
v∈AR(v)808

holds.809
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I Lemma 14. For any v0 ∈ A and for the final s′(v0) value, we have R(v0) = O(s′(v0)).810

Proof. Consider the round when v0 is the chosen node in the outer loop. As said above,811

s′(v0) is not modified anymore after this round, so it already has its final value; also the812

value of R(v0) is decided solely in this round.813

Since v0 ∈ A, we have deg(v0) < 2a. Hence, according to condition 2, c′out(v0) =814

∆out(v0) < 1−λ
2 ·2a ·s

′(v0) at the beginning of this round. Note that at each node v reachable815

from v0, we have ∆out(v) ≤ 1−λ
1+λ · ∆in(v), and hence the total of amount of changes ∆c816

decreases by a constant factor at each node v. Hence after processing all nodes up to a817

distance of at most d, the total amount of changes ∆c on the edges is at most818

∆out(v0) ·
(

1 + 1− λ
1 + λ

+
(

1− λ
1 + λ

)2
+ ...+

(
1− λ
1 + λ

)d)
.819

Since this is a geometric series with 1−λ
1+λ < 1, the total amount of changes is at most820

∆out(v0) ·
∞∑
i=0

(
1− λ
1 + λ

)i
≤ ∆out(v0) · 1

1− 1−λ
1+λ

= ∆out(v0) · 1 + λ

2 · λ821

regardless of d, thus even when all the nodes reachable from v0 have been processed. Note822

that at each node v, each unit of decrease in ∆in(v) corresponds to either 2
1+λ ·

1
deg(v) or823

1
λ ·

1
deg(v) decrease in ∆s(v) (depending on whether v still has real output edges to decrease).824

Even if we take the larger decrease rate of 1
λ ·

1
deg(v) , this means that the total amount of825

changes ∆c can only produce a limited amount of total decrease ∆s; more specifically826 ∑
v∈A

∆s(v) ≤ ∆out(v0) · 1 + λ

2 · λ ·
1
λ
· 1
deg(v) ≤ O(1) · ∆out(v0)

a
,827

using the fact that each v ∈ A has degree at least a. Thus using the upper bound ∆out(v0) ≤828

1−λ
2 · 2a · s

′(v0), we get829

R(v0) = s′(v0)+
∑
v∈A

∆s(v) ≤ s′(v0)+
O(1) · 1−λ

2 · 2a · s
′(v0)

a
= s′(v0)·(1 +O(1)) = O(s′(v0)).830

J831

Hence
∑
v∈A s(v) =

∑
v∈AR(v) = O(

∑
v∈A s

′(v)), so it suffices to upper bound the sum832

of the final s′(v) values in order to prove Lemma 8, as done in the second part of the proof833

in Section 5.834

B Discussion of lower bound proof835

We now discuss the main challenges of designing a control gadget, and present some techniques836

that allow a control gadget design for a wide range of λ ∈ (0, 1). Let us introduce the notation837

µ := λ+ϕ
1−ϕ for the input switching rate.838

B.1 Lower bound construction for λ = 1
3839

We first demonstrate the construction showing the tight lower bound for a specific λ value of840

1
3 . This choice of λ has a range of advantages: both f( 1

3 ) = 1
3 and the optimal output ratio841

ϕ∗(λ) = 1
9 are rational, the ratio of inputs to outputs 1−ϕ

ϕ = 8 is an integer, and the number842

of switches also increases by an integer factor 1
µ = 1−ϕ

λ+ϕ = 2. Thanks to these properties,843

λ = 1
3 allows a fairly simple control gadget design.844
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A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

Figure 3 Illustration of the connections within the control gadget of 16+16 nodes for λ = 1
3 ,

with simplified notation for complete bipartite subgraphs on 4+4 nodes.

I Lemma 15. Consider majority/minority processes under Rule II with λ = 1
3 . There exists845

a graph construction and initial coloring that has stabilization time Ω̃(n4/3).846

As outlined in Section 6, our construction consists of L = log8(n) levels, each of which847

contains Θ( n
logn ) nodes. Each consecutive pair of levels forms a regular bipartite graph, with848

1
8 of the degree of the previous consecutive pair. Each node v has updegree 8

9deg(v) and849

downdegree 1
9deg(v).850

E.g. in a majority process, in the initial state, 2
8 of inputs will have the opposite color as851

v, and all other neighbors will have the same color. Whenever µ = 1
2 of the inputs (i.e., 4

9 of852

the degree) switch to the opposite color, then 6
8 of inputs will have the opposite color; as853

this is 6
9 = 1+λ

2 of all neighbors, v can now switch. As a result, the lower neighbors of v will854

have a different color than v (i.e., a conflict is pushed down), and eventually these nodes855

will follow v to the same new color. This results in a state again where 2
8 of inputs have the856

opposite color as v, and the rest have the same.857

Note that between every two switches of v, exactly half of its upper neighbors switch, so858

the number of switches for each node will always increase by a factor of 2 if we move a level859

down. This shows that each node in the bottom level switches 2L = n
1
3 times. Since there860

are Θ̃(n) nodes on the bottom level, the already sum up to Ω̃(n4/3) switches, establishing861

the lower bound.862

Two consecutive levels of the construction are connected through control gadgets. A863

control gadget is a regular, bipartite gadget on k+ k nodes for some constant k, i.e. a way to864

connect two k-tuples of nodes on a consecutive pair of levels. The upper and lower k nodes865

of the gadget are in a 1-to-1 correspondence with each other. The goal of the gadget is to866

ensure that given some sequence of switches in the k-tuple, if we execute the the switches s867

times on the upper level, then this allows us to execute the same sequence of switches on868

lower k-tuple 2s times. This allows for a recursive repetition of the same process, executed869

twice as many times on each next level.870

We present such a control gadget on k = 16 nodes. For this, we take 4 groups A,B,C,D,871

each containing 4 nodes; thus, our nodes will be elements of {A,B,C,D} × {1, 2, 3, 4}. Each872

lower level node labeled by number x will be connected to the group corresponding to the873

xth letter of the alphabet. E.g. nodes A2, B2, C2 and D2 on the lower level form a complete874

bipartite subgraph with nodes B1, B2, B3 and B4 on the upper level; the connections are875

illustrated on Figure 3. Hence, each node has an induced degree 4 within the gadget.876

Given these connections, Figure 4 shows a self-replicating sequence of this control gadget.877

Considering the 4 upper neighbors of any specific node (without the group identifier), we878

can see that they follow the control sequence (12)(23)(34)(41). This ensures that every node879
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A1-2 B1-2

A1-2 B1-2 C1-2 D1-2

C1-2 D1-2 B2-3

B2-3 C2-3 D2-3 A2-3

C2-3

A3-4 B3-4 C3-4 D3-4

D2-3 A2-3

B4-1 C4-1 D4-1 A4-1

A3-4 B3-4

A1-2 B1-2 C1-2 D1-2

C3-4 D3-4 B4-1

B2-3 C2-3 D2-3 A2-3

C4-1

A3-4 B3-4 C3-4 D3-4

D4-1 A4-1

B4-1 C4-1 D4-1 A4-1

Upper
level

Lower
level

Upper
level

Lower
level

Figure 4 Self-replicating sequence of switches on 16 nodes: while the upper level executes the
sequence once, the lower level executes the same sequence twice. Arrows show that the lower nodes

become switchable due to the switching of the specific upper nodes.

occurs the same number of times in the sequence, and that between any two switches of a880

lower node, exactly 2 of its 4 upper neighbors are switched, so no inputs are wasted indeed.881

(Note that the simpler sequence (12)(34) would also satisfy these properties, but it would882

not allow us to assign colors to the nodes in a proper way.)883

Having designed this control gadget of constant size, each level will consist of Θ( n
logn )884

distinct copies of this 16-node group {A,B,C,D} × {1, 2, 3, 4}. We then start with constant-885

degree nodes on the lowermost level, and increase this degree by a factor of 1−ϕ
ϕ = 8 on every886

new level from bottom to top. To achieve this degree, we connect the lower level of a control887

gadget to the upper level of not only one, but multiple control gadgets; e.g. the nodes A2,888

B2, C2 and D2 are connected to the B-labeled nodes of not only one, but multiple 16-node889

groups on the level above. This allows us to indeed increase the degree by a factor of 8 at890

each new level. For example, if the node A2 in a group is connected to the nodes A1, B1,891

C1 and D1 in x distinct 16-node groups on the level below (thus having a downdegree of892

4x), it will be connected to the nodes B1, B2, B3 and B4 in 8x distinct 16-node groups on893

the level above (resulting in an updegree of 32x).894

Since all 16-node groups on the same level can execute the same steps in a parallel895

manner, this allows us to produce the very same behavior as in the control gadget, but for896

high-degree nodes. With this technique, each consecutive pair of levels will form a regular897

(i.e., same-degree) bipartite graph, comprised of numerous copies of the control gadget as a898

subgraph.899

Given the construction for propagating conflicts appropriately, we can easily assign colors900

to the nodes to obtain a majority or minority process. Observe that a constructions for901

majority and minority processes follow straightforwardly from each other: since our graph902

is bipartite, we can simply reverse the color of every node on every second level, directly903

obtaining a minority example from a majority example, or vice versa.904

B.2 Generalization for other λ values905

The main idea for generalizing the construction, as already outlined in Section 6, is the906

following. Given a control gadget of constant size, we can place Θ( n
logn ) such gadgets on each907

level, having L = 1
log( 1−ϕ

ϕ ) log(n) levels altogether. We then begin with a constant degree908

for each node on the lowermost level, and increase the degree by a factor of 1−ϕ
ϕ on each909

new level. In order to do this, we again connect the lower level of control gadgets to the910

upper level of not only one, but multiple distinct control gadgets, as in the case of the λ = 1
3911
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example. Thus consecutive pairs of levels form a regular bipartite graph, with the degree912

rising exponentially as we move upward in the construction.913

The main challenge in the general construction is to design a control gadget of constant914

size, i.e. to devise a way where the next level of nodes follows the exact some switching order,915

but with a schedule where the nodes switch an 1
µ factor more frequently. However, when916

the input switching rate µ is not a rational number, then switching a µ portion of the upper917

neighborhood is of course not possible. Hence in this case, we can only approximate the918

rate by a rational number p
q ≈ µ, with p, q,∈ Z. With the appropriate choice of p and q, we919

can get arbitrarily close to the desired rate µ. We then develop the same construction and920

control gadget for the input switching rate p
q , which will yield almost the same amount of921

total switches: since f(λ) is continuous, a close enough p
q approximation gives a construction922

with Θ(n1+f(λ)−ε) switches for any ε > 0.923

For convenience, we will always assume that p+ q is an even value; in case it is not, we924

can easily achieve this by doubling the value of both p and q, using the approximation 2p
2q ≈ µ925

instead of pq . Note that in the the previous subsection where λ = 1
3 implied µ = 1

2 , we have926

already done this essentially: while we could have switched 1 out of 2 upper neighbors in each927

step, we have in fact switched 2 out of 4 every time. This assumption is required because we928

want nodes to be in conflict with p+q
2 out of their q upper neighbors when switching, since929

this is the amount of upper neighbors that correspond to the switching threshold, namely930

p+q
2
q
·degupper(v) = 1

2 ·
p+ q

q
·(1−ϕ)·deg(v) ≈

(
λ+ ϕ

1− ϕ + 1
)
· 12(1−ϕ)·deg(v) = λ+ 1

2 ·deg(v).931

Hence, p+q
2 has to be an integer.932

In the following, in order to develop the required control gadget, we first generalize933

the notion of control sequence for any (p, q) pair; this is essentially a balanced schedule of934

switching in the upper neighborhood which ensures wasteless conflict propagation, i.e. that935

the lower neighbor always switches when it is exactly on the threshold of switchability. We936

then discuss the main challenge in generalizing the control gadget used for λ = 1
3 to other λ937

values.938

Furthermore, the construction also raises some minor technical questions relating to939

divisibility; we discuss these at the end of the section.940

B.3 Control sequences for general p and q941

Similarly to the µ = 1
2 case, given p and q, we can develop a control sequence of numbers942

(1, ..., q), and switch the upper neighborhood of any node in our construction following this943

sequence. Let b = p−q
2 . The first bracket of the control sequence contains numbers (1, ..., p),944

and for every next bracket, we shift the both the beginning and the end of the interval by945

b; in general, the ith bracket consist of the numbers ((i− 1) · b+ 1), ..., ((i− 1) · b+ p), all946

taken modulo q to fall into the interval [1, ..., q].947

Initially, all nodes labeled 1, ..., p and p + b + 1, ..., q are black, and all nodes labeled948

p+ 1, ..., p+ b are white. Then this sequence of steps ensures that in every odd step, all the949

nodes in the next bracket of the control sequence are currently black, and in every even step,950

all the nodes in the next bracket are currently white. This means that after every odd (or951

even) step, p+b
q of the upper neighborhood is white (or black, respectively). As952

p+ b

q
= µ+ 1− µ

2 = 1 + µ

2 = 1 + λ

2(1− ϕ) ,953
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and all output connections have a non-conflicting color before switching, this means that954

(1− ϕ) · 1+λ
2(1−ϕ) = 1+λ

2 of the entire neighborhood is in conflict with the node, so it is indeed955

precisely on the threshold for switchability.956

For example, the control sequence for (p,q)=(5,9) is957

(12345)(34567)(56789)(78912)(91234)(23456)(45678)(67891)(89123),958

with nodes labeled 1-5 and 8-9 initially black and nodes labeled 6-7 initially white. Then in959

every odd (even) bracket, the nodes that switch are always colored black (white) currently.960

To some extent, the same control sequence idea has already been applied in [28].961

Since b and q are relatively prime (as the greatest common divisor of p and q is either 1 or962

2), the sequence consists of q distinct brackets before periodically repeating itself. Note that963

among the nodes of a specific color, the next bracket always includes those that have occurred964

the least amount of times so far (have the smallest occurrence number). This ensures that965

at any point in the sequence, the difference in the number of occurrences between any two966

nodes is at most 2. Whenever a specific node is absent from the sequence, it is always absent967

for exactly 2 consecutive brackets. Each node 1, ..., q appears the same number of times (p968

times) before the sequence start repeating itself; hence, if the upper neighborhood of a node969

v follows this sequence, then v indeed switches q
p = 1

µ times more than its upper neighbors,970

and does not waste any input conflicts.971

Observe, however, that any node v connected to such an upper neighborhood has to be972

of the same color to be switchable in all steps. I.e. in case of a majority process, v becomes973

white (black) after every odd step (even step, respectively), while in a minority process, v974

becomes black (white) after every odd step (even step, respectively). Since we also need975

nodes of both color on the next level, in practice, we have to take two copies of our control976

gadgets; this produces twice as many nodes on each level, distributed equally among the977

two colors, which all switch at the same time if we proceed through the steps of the two978

control gadgets in a parallel manner. This technique of duplicating the controlling gadget has979

already been used and discussed in [28]. The duplication is a technical step that increases980

the size of each level by a factor of 2 only; hence in the following, we do not consider the981

color of nodes, and instead focus on the main challenge, which is the design of the control982

gadget that is to be duplicated.983

B.4 From control sequence to control gadget984

In our example for (p,q)=(2,4), we created 4 groups (A −D) of 4 nodes each (1 − 4). At985

specific points in time, in every group of the upper level, two nodes become switchable (at986

the same time in each upper group). We then process these upper groups in a permutation987

of our choice: in each step, we select one of these groups (a ‘letter’), and switch 2 nodes in988

this group, according to the next bracket of the control sequence. We will refer to such a989

step as switching the group; note that this does not mean switching all nodes in the group,990

but executing a step of the control sequence, i.e., switching µ portion of the group so that all991

lower neighbors of the group become switchable. Once all four groups have been switched,992

all 16 nodes on the lower level become switchable, so we can start (or continue) executing993

the same process on the level-pair below.994

Note that on the upper level, each next step in a specific group always picks a prede-995

termined pair of nodes in the group (based on the control sequence), so in the upper level,996

it is enough to consider the order in which we select the groups: regardless of the actual997

nodes switched, the step always has the same effect, namely, it makes all nodes connected998

to this group switchable. In contrast to this, on the lower level, all nodes labeled with the999
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same number become switchable at the same time, as they have the same upper neighbors1000

(a specific group); thus when discussing the switchability of lower-level nodes, we can simply1001

handle the nodes labeled with the same number together. Thus we can illustrate the process1002

in a simplified way in the following diagram (note that numbers within the brackets of the1003

control sequence are only reordered for better visibility).1004

A B C D B C A D.

( 1 2 ) ( 3 2 ) ( 4 3 ) ( 1 4 )

Note that when processing the second bracket, we need to switch group B for the second1005

time. Before that, we first execute the first switching of group D, too, and then by reaching1006

up to the level above the upper level, we make all four groups switchable for the second time1007

(denoted by a dot in the figure), and then switch B for the second time. Note that this first1008

switch of group D already makes the nodes labeled 4 switchable when processing the second1009

bracket. This is not a problem; since number 4 is not in the second bracket, we simply wait1010

with the switching of these nodes until we start processing the third bracket.1011

Also note that we always ensure that the nodes of a specific bracket (e.g., nodes labeled 31012

and 4 in the previous example) are all switched at the same time. This is needed to carry our1013

initial the assumption over to the level-pair below, namely that the upper groups all become1014

switchable together at specific points, and we can switch them in any order of our choice.1015

It is a natural idea to generalize this method for any (p,q) pair, by creating q different1016

groups of q nodes each, and cross-connecting these q2 nodes in a similar fashion. However, it1017

is not straightforward to apply the technique for any (p,q). Consider the control sequence for1018

(p,q)=(3,5), and a similar construction of groups:1019

A B C D E B C D A E C D B A E. .

( 1 2 3 ) ( 4 2 3 ) ( 5 4 3 ) ( 1 5 4 ) ( 2 1 5 )

The problem in the above sequence is that by the third bracket, the number 3 has already1020

occurred 3 times, so by the time we process this bracket, group C on the upper level has to1021

switch for the third time. Since each upper-level group becomes switchable at the same time,1022

this means that by this point, all groups A, ..., E now must be switchable for the third time;1023

in particular, group E too. That must mean that group E has already switched at least1024

twice previously; however, the third bracket contains the very first occurrence of number 5,1025

so at least for one of the two switches of group E, the nodes labeled ‘5’ on the lower level1026

have wasted an opportunity to switch, so they could not switch a µ = 5
3 factor more than1027

their upper neighbors.1028

Essentially, the problem with the sequence is that the third bracket contains both the1029

jth occurrence of one number and the (j + 2)th occurrence of another (numbers 5 and 3,1030

respectively). Because of the (j + 2)th occurrence of a number in the bracket, all groups1031

have to become switchable (j + 2) times, and hence already be switched (j + 1) times by the1032

time we reach this point. However, if nodes labeled with another number are only switching1033

at this point for the jth time, then one of the (j + 1) switches of their control group has1034

not been used. Generally, given groups X and Y , if there is a bracket in the sequence that1035

contains the jth occurrence of the number corresponding to X and the (j + 2)th occurrence1036

of the number corresponding to Y , then we say that X and Y are in contradiction with1037

each other (in the given bracket). For (p,q)=(3,5), C and E are in contradiction in the third1038
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bracket as discussed. For (p,q)=(2,4), we can see that there is no contradiction between any1039

two letters.1040

Note that such contradictions are the only possible source of a problem; given a control1041

sequence with no contradiction, there always exists a valid switching sequence of the upper1042

groups. Since the control sequence itself guarantees that the occurrence numbers can1043

never differ by more than 2, the lack of contradictions ensures that the difference between1044

occurrences is at most 1 at any point. Hence whenever we require the (j+ 1)th switching of a1045

specific upper group, we can simply switch all upper groups that have not been switched for1046

the jth time yet; by this point, the lower neighbors of each such group have certainly been1047

switched for the (j − 1)th time already, so we are indeed not wasting any switches. Thus our1048

goal is to somehow avoid contradictions in the control sequence.1049

Generally, devising a control gadget for any p and q is a challenging task. In the following,1050

we present the technique of shifting, which allows us to considerably increase the number of1051

(p,q) pair for which we can devise a control gadget. We first illustrate the technique on the1052

concrete example of (p,q)=(3,5).1053

B.5 Subset shifting1054

In the above example of (p,q)=(3,5), the only problem essentially was that the second instance1055

of E always preceded the third A. However, the sequence (ABCD.ABCDE.ABCDE.E)1056

would, on the other hand, cause no problems at all.1057

Therefore, the key idea is that we can simply skip the very first switching of the group1058

E, and only switch the groups ABCD in this case. Then every further time when the1059

upper groups become switchable, we do switch every group. Finally, when the upper groups1060

become switchable for the fourth time, we start by switching the group E. At this point,1061

the sequence of switched blocks is exactly (ABCD.ABCDE.ABCDE.E), which will then1062

again be followed by ABCD when we also switch the other groups for the fourth time. A1063

concatenation of such sequences yields a sequence where the group E is effectively in a1064

different phase, delayed from the other groups by 1 round.1065

Note that shifting E skips an opportunity to switch group E in the very first switching1066

of the upper groups, and also an opportunity to switch ABCD at the very last switching1067

of the upper groups. Hence, if the number of switches on a given level is s, then with1068

this technique, the number of switches on the next level will not be s · 1−ϕ
λ+ϕ , but only1069

(s− 1) · 1−ϕ
λ+ϕ = 1−ϕ

λ+ϕ · s−
1−ϕ
λ+ϕ . However, one can see that this only adds up to a loss of (an1070

arbitrarily small) ε1 in the exponent of the number of switches: for any ε1 > 0, we can select1071

a constant s0 high enough such that 1−ϕ
λ+ϕ · s0 − 1−ϕ

λ+ϕ > s0 · ( 1−ϕ
λ+ϕ − ε1) (note that this is very1072

similar to the technique we used when relaxing the CPS definition; nodes that switch at1073

most s0 times are essentially considered new base nodes). Then due to this inequality, the1074

number of switches of each group on the lowermost level of our construction is still1075

Ω
((

1− ϕ
λ+ ϕ

− ε1
) 1

log( 1−ϕ
ϕ ) ·n

)
= Ω

n log( 1−ϕ
λ+ϕ−ε1)

log( 1−ϕ
ϕ ) ·n

 = Ω
(
nf(λ)−ε2

)
,1076

for an arbitrarily small ε2, as we are using ϕ = ϕ∗(λ), and f(λ) is continuous. Also, note1077

that since each such loss of ε in the exponent can be arbitrarily small, the different such1078

losses in the exponent can be merged into one common ε in the final running time.1079

Note that both in majority and minority, skipping the very first or very last switch of a1080

node does not create any problems colorwise. Skipping the last switching opportunity only1081

results in ending up with the opposite color in the final state. For each node that is supposed1082
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to skip the first switching opportunity, we have to invert its original color, such that the1083

nodes already start with the color they would acquire if group E was also switched at the1084

first opportunity.1085

B.6 Shifting in general1086

Note, however, that this technique only allows us to shift a specific subset of the upper1087

groups by 1. A crucial property of shifting is that the subsets at the beginning and the1088

end of our modified sequence (ABCD and E, respectively) form a disjoint partitioning of1089

the upper neighbor groups. If we were to use the sequence (ABCD.ABCD.ABCDE.E.E),1090

then with the concatenation of such sequences, instead of skipping one switch altogether,1091

the groups would skip a switch at every third opportunity. This would effectively reduce1092

the number of switches on each next level to s · 1−ϕ
λ+ϕ ·

2
3 , which would have a major effect on1093

stabilization time.1094

This is also the reason why shifting does not provide a general solution for any (p,q) pair.1095

Consider, for example, the control sequence for (p,q)=(7,9), which looks as follows:1096

(1234567)(2345678)(3456789)(4567891)(5678912)(6789123)(7891234)(8912345)(9123456)1097

Here, the 3rd bracket contains the 1st occurrence of 9 and the 3rd occurrence of 3, while1098

the 6th bracket contains the 4th occurrence of 3 and the 6th occurrence of 7. This implies1099

that for a correct solution, the upper neighbors of 9 (i.e., group I) should be shifted at least1100

1 further than the upper neighbors of 3 (group C), and the upper neighbors of 3 (group C)1101

shifted at least one further than the upper neighbors of 7 (group G). However, then group I1102

is shifted at least 2 steps away from group G (i.e., must skip at least 2 initial rounds to be1103

sufficiently later than G), which, as discussed above, is not viable.1104

The main goal of shifting is to separate the groups that are in contradiction with each1105

other in a specific bracket. We say that a subset of letters (i.e., groups) is consistent if1106

there is no two groups of the subset are in contradiction in any bracket. In general, shifting1107

provides a solution for a (p,q) pair if the letters can be partitioned into two consistent subsets.1108

We call these two subsets blocks, and we also refer to the partitioning as consistent if both of1109

its blocks are consistent. For (p, q) = (3, 5), a partitioning is consistent exactly if it places A1110

and E in different blocks.1111

It depends on the concrete value of p and q whether a consistent partitioning (into two1112

groups) exists, i.e., whether the shifting technique provides a valid control gadget. In the1113

following section, we show that such a partitioning always exists if µ ≤ 3
5 , that is, for λ less1114

than approximately 0.476.1115

I Lemma 16. Under Rule II with λ < 0.476, for any ε > 0, there exists a graph construction1116

and initial coloring where majority/minority processes stabilize in time Ω(n1+f(λ)−ε).1117

While these µ ≤ 3
5 values allow a relatively simple proof of consistency, these are not1118

the only µ values for which shifting provides a valid solution. For larger µ, however, the1119

existence of a consistent partitioning depends on multiple factors, including how large the1120

integers p and q are. For example, the case (p, q) = (5, 7) can also be partitioned consistently,1121

and thus the shifting technique provides a valid construction for µ = 5
7 . This corresponds to1122

λ ≈ 0.635, which is a notably larger value than 0.476.1123

I Lemma 17. Under Rule II with λ ≈ 0.635, for any ε > 0, there exists a graph construction1124

and initial coloring where majority/minority processes stabilize in time Ω(n1+f(λ)−ε).1125
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Thus in general, the concept of levels allows us to devise a construction idea to prove the1126

lower bound for any λ value. However, to obtain an actual realization of such a construction1127

for every λ ∈ (0, 1), it remains to solve the combinatorial task of forming a control gadget1128

for the remaining λ values that are not covered by the shifting method.1129

B.7 Consistent partitioning for µ ≤ 3
51130

We now discuss how to partition the upper groups into two consistent groups for any µ ≤ 3
5 .1131

Note that while our method shifts a block of groups on the upper level (e.g. groups A and1132

B), the consistency of this block depends on the groups’ lower neighbors (e.g., where nodes1133

labeled 1 and 2 appear in the control sequence below). Thus, for simplicity, we refer to each1134

group not by its letter, but by the number assigned to its neighbors on the level below, and1135

our goal is to find a consistent partitioning of the numbers (1, ..., q) into 2 blocks.1136

Recall that b = q−p
2 , i.e. the number of different elements in two consecutive brackets of1137

the control sequence. For now, let us first assume that p ≥ 2b.1138

Furthermore, let us use B` to denote a block formed from any ` consecutive numbers1139

in (1, ..., p), i.e. containing (the letters for) the numbers i + 1, i + 2, ..., i + ` for some1140

0 ≤ i ≤ p−`. Also, let B′b and B′′b denote the blocks formed from the numbers (p+1, ..., p+b)1141

and (p+ b+ 1, ..., q), respectively; note that these both consist of b numbers indeed.1142

I Lemma 18. Any block B2b is consistent.1143

Proof. Note that a control sequence is developed as follows: there is a starting point hs and1144

an endpoint he, which are shifted in each step in a modular fashion (i.e., q is followed by 11145

again). Initially, hs and he are at 1 and p+ 1, respectively, so the first bracket of the control1146

sequence contains the numbers [hs, he). In each step, both points are shifted further ahead1147

by b (modulo q). Since he starts at p+ 1, after two steps, he will arrive at 1, and then follow1148

the same pattern from here as hs from the beginning. Hence, the position of he in the jth1149

step is always the same as the position of hs in the (j − 2)th step.1150

The initial bracket of the sequence contains all elements of B2b. After some steps, we1151

have hs > i+ 1 (for the first number i+ 1 in the group); let h1
s denote the value of hs in this1152

step. This shows that in this step, only the numbers (h1
s, ..., i+ 2b) will be present in the1153

next bracket. Then in the following step, hs falls within the range of B2b again, so only the1154

numbers (h1
s + b, ..., i+ 2b) will be contained in the next bracket. The key observation is1155

that in the step after this, he will be equal to h1
s (it always takes the same position as hs did1156

two rounds ago), hence the next bracket will contain the groups (i+ 1, ..., h1
s − 1) of B2b,1157

which is exactly the complement of groups two rounds ago. Similarly, the bracket of the next1158

step contains (i+ 1, ..., h1
s + b− 1), the complement of the bracket from two steps before.1159

After this point, each element of B will have occurred the same number of times again.1160

Therefore, whenever we have brackets that only contain a subset of B2b, they are always1161

organized as follows. Before this point, each group in B2b has the same occurrence number.1162

Then the following two brackets contain some subsets S1 and S2 of B2b, and after this, the1163

next two brackets contain exactly the complements of S1 and S2. This pattern ensures that1164

regardless of the content of S1 and S2, no bracket has a difference of 2 in occurrence numbers,1165

and after the pattern, all groups have the same occurrence numbers again.1166

It is worth pointing out that this heavily relies on the fact that the size of B2b is at1167

most 2b, and hence whenever hs or he falls within the range of B2b, it is guaranteed that it1168

already surpasses the entire range of B2b in the second step after this. For example, in case1169

of (p, q) = (7, 9) shown above, the block (3, 4, 5, 6, 7) does not obey this property, since the1170

starting point falls into it in 4 consecutive rounds, and hence it is not consistent. J1171
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Note that the same proof holds for any continuous block B within (1, ..., p) if it has size1172

at most 2b. Specifically, for the case of p < 2b, putting all of (1, ..., p) together still forms a1173

consistent block.1174

I Lemma 19. Blocks B′b and B′′b are both consistent.1175

Proof. Blocks B′b and B′′b follow the same behavior as any block Bb described in Lemma1176

18, except for not being included in the first 1 and first 2 brackets, respectively. Hence, the1177

same reasoning shows that these blocks are also consistent. J1178

It remains to show that we can merge the blocks B′b and B′′b with the blocks in (1, ..., p) to1179

obtain a consistent partitioning into two blocks for smaller µ values. For this, we introduce1180

some new notation. Let us denote the block corresponding to numbers (1, ..., b) by Bfirst
b ,1181

and the block corresponding to numbers (p− 2b+ 1, ..., p) by Blast
2b .1182

I Lemma 20. The block Blast
2b ∪B′b is consistent.1183

Proof. Our previous lemmas show that both Blast
2b and B′b are consistent separately. Together,1184

they form a block of 3b consecutive numbers. Note that the only reason why the proof of1185

Lemma 18 does not apply to blocks of length 3b is that hs can fall within the range of the1186

block on 3 consecutive occasions, and thus a bracket could simultaneously have the (j + 2)th1187

occurrence of the last few numbers and the jth occurrence of the first few numbers. However,1188

in our case, B′b is not contained in the first bracket (he = p+ 1 initially), so the occurrence1189

number of all nodes in B′b is always smaller by 1 than the same occurrence numbers in the1190

B3b case. Hence even if hs falls into the range of the block 3 consecutive times, the resulting1191

bracket only contains the (j + 1)th occurrence of the last nodes in B′b, and the jth occurrence1192

of the first nodes in Blast
2b . J1193

I Lemma 21. The block Bfirst
b ∪B′′b is consistent.1194

Proof. The first bracket of the control sequence contains all elements of Bfirst
b . The second1195

bracket contains none of the numbers in the merged block, while the third bracket only1196

contains the elements of B′′b . Up to this point, all elements of the merged block appear1197

exactly once. From here, the merged block simply behaves as any block B2b in the proof of1198

Lemma 18: it is a block of 2b consecutive number, such that each have the same occurrence1199

number in the beginning. J1200

Note that this already provides a construction proving Lemma 16. If µ ≤ 3
5 , then p ≤ 3b,1201

so Bfirst
b and Blast

2b together already cover all numbers in (1, ..., p). Thus the merged blocks1202

in Lemmas 20 and 21 cover all upper groups, giving a consistent partitioning. Therefore,1203

the shifting technique provides a valid control gadget if we shift all the upper groups in1204

Bfirst
b ∪B′′b by 1.1205

On the other hand, for general (p, q) pairs with µ > 3
5 , the groups corresponding to1206

(1, ..., p) can not necessarily be partitioned into two consistent blocks, and thus we cannot1207

obtain a valid control gadget with the shifting method, as in the example of (p, q) = (7, 9)1208

before.1209

Note that some of the above statements would have to be slightly reformulated to also1210

hold for very small µ values, when even p < b. However, for such small µ, the control1211

sequence is always guaranteed to be contradiction-free, so the shifting technique is not even1212

required to form a control gadget.1213
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Figure 5 Plot of f̂(λ) and ϕ̂∗(λ), besides f(λ) and ϕ∗(λ)

B.8 An easier lower bound1214

We also briefly note that a simple technique allows us to show a slightly weaker lower bound1215

in case of any λ, even without the shifting technique. Recall that the idea of upper groups1216

(i.e., assigning a letter and a number to a node) allowed us to handle any case where the1217

occurrence numbers in any bracket of a control sequence differ by at most 1. Note that in a1218

control sequence, the occurrence numbers in any bracket can differ by at most 2 in any case,1219

so increasing this limit by 1 more would already provide a control gadget for any λ.1220

Consider the idea of placing a level of relay nodes between any two consecutive levels1221

of our construction, taking a mediator role between the two levels. While previously, the1222

nodes labeled A in the upper level were connected to the nodes labeled 1 in the lower level,1223

we now remove these edges, an instead connect all these nodes to a set of relay nodes RA/11224

inbetween. This extra level then allows us to temporarily store conflicts, and relay them to1225

the lower level in a timing of our choice, which is already enough to implement the control1226

sequence for any λ.1227

The drawback of the technique, however, is that the relay nodes now also waste conflicts.1228

While previously both the downdegree of the upper level and the updegree of the lower level1229

was d, now in order to allow the relay nodes to be dominated by their upper neighbors, we1230

now must select the downdegree of the upper level and the updegree of RA/1 to be d, and1231

then the downdegree of RA/1 and the updegree of the lower level to be 1−λ
1+λ · d. In practice,1232

this means that every new level of the construction will imply an extra degree decrease factor1233

of 1−λ
1+λ .1234

For every new level, the number of edges now decreases by ϕ
1−ϕ ·

1−λ
1+λ , so the optimal1235

choice of ϕ also changes. Hence this construction requires a new choice ϕ̂∗ of output rate,1236

which will then, analogously to the original case, result in a stabilization time defined by the1237

function1238

f̂(λ) := max
ϕ∈(0, 1−λ

2 ]

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ ·

1+λ
1−λ

) .1239
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This alternative lower bound function is shown in Figure 5. While this lower bound does1240

leave some gap to the upper bound of O(n1+f(λ)+ε), it has the advantage of being easy to1241

show for any λ, without having to devise complicated control gadgets.1242

I Theorem 22. Under Rule II with any λ ∈ (0, 1), for any ε > 0, there exists a graph construc-1243

tion and initial coloring where majority/minority processes stabilize in time Ω(n1+f̂(λ)−ε).1244

B.9 Above the uppermost level1245

Furthermore, the uppermost level of the construction needs to be discussed separately, since1246

in order to make the construction behave as we described, we also have to ensure that the1247

nodes of the uppermost level already execute the control sequence a constant s0 number of1248

times.1249

The reason why this is necessary is that on each level of the construction, we lose a1250

constant number of switches due to two different factors. On the one hand, recall that if we1251

apply the subset shifting method, then this leaves exactly 1 switch of each node on each level1252

unused. On the other hand, if each node in the given level switches s times, the next level1253

cannot always switch s · 1−ϕ
λ+ϕ times if this expression is not an integer. In fact, if each node1254

switches t times in the control sequence of our control gadget (with t = O(1)), this allows for1255

only
⌊
s
t

⌋
complete executions of the control sequence on the upper level, and hence only1256 ⌊⌊

s
t

⌋
· 1−ϕ
λ+ϕ

t

⌋
1257

complete executions of the control sequence on the lower level. Thus due to these two factors,1258

the number of switches does not increase from s to s · 1−ϕ
λ+ϕ for each new level, but only to1259

s · 1−ϕ
λ+ϕ −O(1) for some constant.1260

As discussed already in Section B.5, we can overcome this by ensuring that the nodes of1261

each level switch at least s0 times for a specific constant s0, at the cost of losing a factor1262

ε from the exponent of our lower bound. The smaller the ε loss we tolerate, the larger the1263

minimal switches s0 we have to ensure for each (i.e., even the uppermost) level.1264

There is a simple method to ensure that each node in the uppermost level of the1265

construction switches s0 times, for any constant s0. A similar technique was already used in1266

the weighted constructions of [28]. Since our control gadgets have constant size, there are at1267

most constantly many different ‘type of’ nodes on the uppermost level. For all these sets1268

V0 of uppermost level nodes (that have the same role in different control gadgets), we can1269

connect V0 to a group V ′0 on an even higher pseudo-level, such that each edge between V01270

and V ′0 has a conflict initially. If nodes in V0 have a downdegree of d, then we connect each1271

node in V0 to λ+1
λ−1 · d nodes in V ′0 . This ensures that each node in V0 is switchable initially,1272

while the extra nodes in V ′0 and extra edges to V ′0 still remain in the magnitude of |V0| and1273

|V0| · d, respectively.1274

We can then continue this in a similar fashion, and add another group V ′′0 above V ′0 ,1275

connected with even more edges, in order to make V ′0 initially switchable. After adding s01276

such pseudo-levels above, and then unfolding them from bottom to top (i.e., first switching1277

V0, then V ′0 and then V0, then V ′′0 and V ′0 and then V0, and so on), we obtain a way to1278

switch the nodes of V0 altogether s0 times, at a timing of our choice. Since s0 is a constant,1279

executing this process for a specific V0 does not change the magnitude of nodes or edges in1280

the graph. As our control gadgets consist of constantly many nodes, adding distinct such1281

pseudo-levels for all the constantly many V0 sets still does not affect the magnitude of the1282

nodes and edges.1283
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B.10 Divisibility challenges1284

Besides the difficulty of devising a control gadget for every λ, there is another problem to1285

address in the construction.1286

Assume that the input-output rate 1−ϕ
ϕ can be expressed as (or, in the irrational case,1287

approximated by) a rational number p′

q′ with p′, q′ ∈ Z (note that this p′ and q′ has no1288

relation to our choice of p and q, which are used to approximate µ).1289

This means that if a node in a specific level has downdegree d, then it has to have1290

updegree p′

q′ · d for the optimal rate ϕ∗(λ). However, in our construction, that would imply1291

that the level above has updegree
(
p′

q′

)2
· d, the following level

(
p′

q′

)3
· d, and so on. In1292

order for all of these numbers to be integers, d would have to be divisible by q′ many times1293

(Θ(logn) times). This is clearly not possible, especially for the lowermost levels, where d is a1294

constant.1295

We can overcome this problem by slightly modifying the number of nodes (i.e., the number1296

of control gadgets) on each level. Let us select k ∈ Z such that p′

q′ ∈ [k, k + 1) holds (note1297

that ϕ∗(λ) < 0.22 for any λ, and thus 1−ϕ
ϕ > 3 in any case). Assume we have a specific level1298

where each node has an updegree of d. If the level above had the same number of nodes, than1299

that would imply a downdegree of d for each node above, and consequently, an updegree1300

of p′

q′ · d. However, instead, we can increase the size of the level above by a factor of p′

k·q′ ,1301

resulting in a downdegree of only k·q′
p′ · d, and thus an updegree of k·q

′

p′ ·
p′

q′ · d = k · d on the1302

level above. Similarly, if we decrease the size of the next level by a factor of p′

(k+1)·q′ , then1303

the next updegree (k + 1) · d will similarly be an integer.1304

The general idea is to follow this technique to ensure that the degree remains an integer1305

after each such level. Note, however, that in order not to change the construction significantly,1306

we need to select a combination of k-s and (k + 1)-s such that their product over all L1307

levels is relatively close to
(
p′

q′

)L
. In case of too many k-s, the uppermost level would be1308

significantly larger than the lowermost one, not giving us enough frequently-switching nodes1309

on lower levels. In case of too many (k + 1)-s, the degree of nodes would grow significantly1310

faster than p′

q′ on a level, resulting in less than L levels altogether (since the degree on the1311

uppermost level would have to be larger than Θ(n)). A possible solution is to select the1312

largest combination of k-s and (k + 1) that is still below
(
p′

q′

)L
, which is therefore at least1313

k
k+1 ·

(
p′

q′

)L
. This ensures that there is only at most a constant variance in level sizes, and1314

that the uppermost level has degree which is only a constant factor lower than it would be1315

with
(
p′

q′

)L
.1316

Note that our divisibility solution itself raises another minor divisibility problem: changing1317

the size of specific levels by a factor of p′

k·q′ or
p′

(k+1)·q′ might also mean that the following level1318

should have a non-integer number of control gadgets. However, we can easily overcome this.1319

For simplicity, let us analyze the process in the other direction, from uppermost to lowermost1320

level. Whenever the level size change by the given factor would result in a non-integer number1321

of control gadgets, we can simply round this number down, and connect the few extra edges1322

to a dummy gadget on the level below that we do not use. With possibly one less actual1323

control gadget, the number of nodes can only decrease by a constant on each new level, hence1324

we only lose O(log(n)) nodes by the lowermost level. Since each level consists of Θ̃(n) nodes,1325

this does not affect the magnitude of nodes on any level.1326
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C Discussion of f(λ)1327

We now discuss the functions f(λ) and ϕ∗(λ) in more detail. The diagram of both functions1328

have already been presented in the main part of the paper. This shows that both functions1329

are continuous and monotonously decreasing. The function f(λ) takes values in [0, 1], while1330

ϕ∗(λ) takes values between 0 and approximately 0.2178.1331

Let us introduce the notation1332

g(λ, ϕ) =
log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) .1333

In order to find the optimal ϕ, one would have to differentiate g(λ, ϕ):1334

g′ϕ(λ, ϕ) =
(λ+ 1) · ϕ · log( 1−ϕ

ϕ )− (λ+ ϕ) · log( 1−ϕ
λ+ϕ )

(ϕ− 1) · ϕ · (λ+ ϕ) · log2( 1−ϕ
ϕ )

.1335

Thus at a local minimum, we have1336

(λ+ 1) · ϕ · log
(

1− ϕ
ϕ

)
= (λ+ ϕ) · log

(
1− ϕ
λ+ ϕ

)
.1337

In order to obtain ϕ∗(λ), we would have to solve this for ϕ, with λ as a parameter. To our1338

knowledge, there is no closed-form solution to this problem.1339

Note that if we split the logarithms into subtractions, we also obtain an alternative1340

formulation of this equation.1341

(λ+ ϕ) · log(λ+ ϕ) = (λ+ 1) · ϕ · log(ϕ) + λ · (1− ϕ) · log(1− ϕ).1342

C.1 Lookup table of function values1343

Finally, we show the approximate values of f(λ) and ϕ∗(λ) for a wide range of λ values1344

between 0 and 1. Besides, we also show the input switching rate µ = λ+ϕ∗(λ)
1−ϕ∗(λ) for these λ1345

values. The values are illustrated in Table 1.1346
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λ f(λ) ϕ∗(λ) µ(λ)

0.05 0.839 0.199 0.311
0.10 0.709 0.181 0.343
0.15 0.601 0.164 0.376
0.20 0.512 0.149 0.410
0.25 0.436 0.134 0.443
0.30 0.371 0.120 0.477
0.35 0.316 0.107 0.512
0.40 0.268 0.095 0.546
0.45 0.226 0.083 0.581
0.50 0.189 0.072 0.617
0.55 0.157 0.062 0.653
0.60 0.129 0.053 0.689
0.65 0.104 0.044 0.726
0.70 0.082 0.036 0.763
0.75 0.063 0.028 0.800
0.80 0.046 0.021 0.838
0.85 0.031 0.015 0.877
0.90 0.018 0.009 0.917
0.95 0.008 0.004 0.958

Table 1 Values of our functions for some specific λ parameters.
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