Next Economic Crisis? It's the Network!

Roger Wattenhofer

Financial Networks

Joint work with Pal Andras Papp and Beni Egressy

economic crisis

=
many companies involved
=
network

Financial Network

Financial Network

Assets, Liabilities, Default, and Recovery Rate

Assets, Liabilities, Default, and Recovery Rate

Assets, Liabilities, Default, and Recovery Rate

Assets, Liabilities, Default, and Recovery Rate

$$
a_{v}<l_{v} \Rightarrow r_{v}=\frac{a_{v}}{l_{v}}=\frac{2}{4}=\frac{1}{2}
$$

Reducing Debt Cycles

Reducing Debt Cycles

(w)

Service companies are doing this.

 Without Privacy!

Too Big to Fail?

Bailouts on a Budget (of 3)

Bailouts are NP hard.

Debt = "Long" Position (Positive)

Conditional Debt = "Short" (Negative)

Short Positions

ABS: Asset-Backed Securities
CDO: Collateralized Dept Obligations
CDS: Credit Default Swaps
CLS: Collateralized Loan Obligations
MBS: Mortgage-Backed Securities

"Financial Weapons of Mass Destruction" (Warren Buffet)

Conditional Debt Contracts

Conditional Debt Contracts

Example

Example

$$
\begin{array}{|c|c|}
\boldsymbol{r}_{\boldsymbol{u}} & \boldsymbol{r}_{\boldsymbol{v}} \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline 2 / 3 & 2 / 3
\end{array}
$$

Timing Matters.

Improve Situation

Can Bank v Improve?

A Loss Can Be a Win.

The Atlantic

BUSINESS

How to Make Money for Nothing Like

 Wall StreetCredit default swaps might not be financial WMDs anymore, but Wall Street can still game them to make guaranteed profits.

MATTHEW O'BRIEN OCTOBER 24, 2013

Prisoner's Dilemma

Optimize What?

All these (and more) are NP hard.

Building Circuits: NOT Gate

$$
\text { (u) } r_{u} \in\{0,1\}
$$

$$
r_{v}=\text { NOT } r_{u}
$$

Building Circuits: OR Gate

Financial Networks are Turing-Complete.

Joint work with Jakub Sliwinsky and Zeta Avarikioti

Banker: "Blockchain: The Biggest Thing."

Roger: "Even Bigger than the Internet?"

Banker: "Much Bigger."

Digital

Transformation

Financial Transaction Confirmation takes about 1 Day

Trust: Which
Computer(s) Store Your Account Balance?

Some Blockchain Dimensions

"The problem of course is the payee can't verify that one of the owners did not double-spend the coin."

"We need a system for participants to agree on a single history of the order in which [transactions] were received."

no double-spending

single order =

consensus

Double-Spending

Blockchains Solve Double-Spending Problem

What About Network Outages?

Unchangeable Market Cap

Anonymous?
Permissionless?
Scalable = Secure?

Asynchrony
Finality
Throughput Energy (PoW)
Smart Contracts
Unchangeable

Many Alternatives

	PBFT[1]	HoneyBadger BFT[10]	Broadcast- based[5]	Bitcoin and Ethereum[14]	Ouroboros[7]	Algorand[2]	ABC
Permisionless				\checkmark	\checkmark	\checkmark	\checkmark
Proof-of-work free	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Finality	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Asynchronous		\checkmark	\checkmark				\checkmark
Deterministic	\checkmark		\checkmark				\checkmark
Parallelizable			\checkmark				\checkmark
General smart contracts	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

Asynchronous*
 Throughput
 Finality
 Energy (PoS)
 Permissionless
 Scalable

Permissioned ABC

Permissioned ABC

Needed: 3 out of 4 signatures

Double-Spending

Double-Spending

Double-Spending

Usual Safety Condition

Less than 1/3 Byzantine

Point to Money Source

Point To All Transactions!

Asynchronous: Without Explicit DAG

Sharded Signing

Sharded Signing

1. Transferrable Signing Keys

2. Key Delegation (Pooling)

It's Not So Easy

Usual Safety Condition

Byzantine \$\$\$ Less Than 1/3 of Stake

Byzantine Not Burying Keys...

Concrete Example

Asynchronous
Throughput
Finality
Energy (PoS)

Smart Contracts?

Permissionless
Scalable

Summary

Robustness
Fault-Tolerance

Local
Fast

Incentives
Game Theory

Asynchrony
Timing

Security
Privacy

Thank You!

Questions \& Comments?

Persistence

Fault-Tolerance

Correct

Byzantine

Latency

1 second

Throughput

Replication

Energy

©

Proof-of-Work
Proof-of-Stake

Permissioned

Simple confirmation

Alice issues tx

No double-spending

No double-spending

Q: But if we have two unconfirmed alternatives, how to progress?

A: Not all transactions need to be confirmed, just carry on.

Q: So there will be forks, even by chance. Where do I attach the next transaction?

A: There's no need for a single history/chain, attach everywhere.

Directed Acyclic Graph

What about time?

(B) Bitcoin

Us: fully asynchronous

Is it a permissioned blockchain?

Keys are transferrable

Key delegation

Proof of Stake

1 token $=10000$

Delegated to verifiers:

~ (B) mining pools

2. $=897634 \mathrm{t}$

Parallel processing

Parallel processing

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Node Gadget

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

$$
a_{v}=\# \text { of nodes in } S
$$

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

$a_{v}=\#$ of nodes in S

\downarrow

but 0 if not independent!

Best solution - maximizing a node's payoff

Reduction to Maximum Independent Set

$a_{v}=\#$ of nodes in S
\downarrow

but 0 if not independent!

Max. independent set \longleftrightarrow Max. payoff

Computing with financial networks

Symbols on tape

Bit gadget

Computing with financial networks

Symbols on tape

Bit gadget
both (1,1) and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both (1,1) and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both $(1,1)$ and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both (1,1) and (0,0) are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both (1,1) and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both $(1,1)$ and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both $(1,1)$ and $(0,0)$ are stable states

Computing with financial networks

Symbols on tape

Bit gadget
both (1,1) and $(0,0)$ are stable states

Computing with financial networks

Finite automaton
Current state

indicator bank

Computing with financial networks

Finite automaton

Current state

indicator bank
$r_{u}=0 \Leftrightarrow \begin{gathered}\text { this is the } \\ \text { current state }\end{gathered}$

Computing with financial networks

Finite automaton
Current state
content of tape

$r_{u}=0 \Leftrightarrow \begin{gathered}\text { this is the } \\ \text { current state }\end{gathered}$

Computing with financial networks

Finite automaton

Current state

indicator bank

Next state

$r_{u}=0 \Leftrightarrow \begin{gathered}\text { this is the } \\ \text { current state }\end{gathered}$

