
DISS. ETH NO. 22941

Anonymous Distributed Computing:
Computability, Randomization, and Checkability

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

JOCHEN SEIDEL

Dipl.-Inform., Karlsruhe Institute of Technology, Germany

born on 18.5.1984

citizen of
Germany

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Yuval Emek, co-examiner

Prof. Dr. Jukka Suomela, co-examiner

2015

Abstract

This dissertation studies various aspects of computing in anonymous net-
works, where nodes are not equipped with unique identifiers. Nodes in the
network exchange messages and each node computes some local output;
the global output of the network is the combination of all local outputs.
We focus mainly on randomized algorithms, beginning with the question
“What can be computed in an anonymous network?”.

Two classes of problems solvable in anonymous networks are defined,
depending on whether nodes are allowed to revoke their outputs or not.
We introduce and study the concept of a distributed oracle, which in yields
a hierarchy of hard and complete problems for the classes. Several classic
and/or characteristic problems in distributed computing are classified in
terms of computability and hardness.

Access to random bits arguably has a huge impact on the computabil-
ity in anonymous networks. In an effort to exactly characterize this im-
pact, we prove that every problem that can be solved (and verified) by
a randomized anonymous algorithm can also be solved by a deterministic
anonymous algorithm provided that the latter is equipped with a 2-hop
coloring of the input graph.

It is natural to ask how many random bits are required to solve any
such problem. We find that the answer depends on the desired runtime
of the algorithm. More precisely, we devise a randomized 2-hop coloring
scheme that allows to trade an increase in runtime for a decrease in the
random bit complexity. A lower bound we show yields that the trade-
off achieved by our scheme is asymptotically optimal for any reasonable
runtime, i.e., reducing the runtime must lead to an increase in the random
bit complexity.

Lastly, we study local checkability of network properties like s-t reach-
ability, or whether the network is acyclic or contains a cycle. A prover
assigns a label to each node so that a verifier can check in constant time
whether the property holds or not. We obtain asymptotically tight bounds
for the label size of the latter two problems. For s-t reachability, we obtain
a new asymptotically tight label size lower bound in one of our models,

and devise an emulation technique that allows us to transfer a previously
known upper bound without asymptotic loss in the bit complexity in an-
other model.

Zusammenfassung

Diese Dissertation betrachtet verschiedene Aspekte des Rechnens in anony-
men Netzwerken, in denen die (Rechen-)Knoten nicht mit einem ein-
deutigen Namen ausgestattet sind. Die Knoten im Netzwerk tauschen
Nachrichten untereinander aus und berechnen jeder eine lokale Ausgabe;
die globale Ausgabe ergibt sich aus der Gesamtheit der lokalen Ausgaben.
Wir betrachten hauptsächlich randomisierte Algorithmen, und stellen zu-
erst die Frage ”Was kann in einem anonymen Netzwerk berechnet werden?“

Zwei Klassen von Problemen, die in anonymen Netzwerken lösbar sind,
werden in Abhängigkeit davon, ob die Knoten ihre Ausgabe zurücknehmen
können oder nicht, definiert. Das Konzept eines verteilten Orakels wird
eingeführt und untersucht, und es ergibt sich eine Hierarchie mit schwieri-
gen und vollständigen Problemen für die Klassen. Eingie klassische und/
oder charakteristische Probleme aus dem Umfeld des verteilten Rechnens
werden in Bezug auf Berechenbarkeit und Schwierigkeit klassifiziert.

Der Zugriff auf Zufallsbits hat bekanntermassen einen grossen Einfluss
auf die Berechenbarkeit in anonymen Netzwerken. In dem Bemühen, diesen
Einfluss genau zu charakterisieren, zeigen wir, dass jedes Problem, welches
von einem randomisierten anonymen Algorithmus gelöst (und verifiziert)
werden kann, auch von einem deterministischen anonymen Algorithmus
gelöst werden kann, falls dieser eine Abstand-2-Färbung des Eingabe-
graphen zur Verfügung hat.

Es drängt sich die Frage auf, wie viele Zufallsbits zum Lösen solcher
Probleme benötigt werden. Wir finden heraus, dass die Antwort darauf
von der gewünschten Laufzeit des Algorithmus abhängt. Genauer gesagt
entwickeln wir ein randomisiertes Schema für Abstand-2-Färbungen, wel-
ches erlaubt, eine höhere Laufzeit gegen eine geringere Anzahl benö-
tigter Zufallsbits einzutauschen. Wir zeigen eine untere Schranke, die
belegt, dass der Trade-off unseres Schemas asymptotisch optimal ist, d.h.
eine Reduktion der Laufzeit führt zwangsweise zu einer höheren Anzahl
benötigter Zufallsbits.

Schliesslich untersuchen wir die lokale Überprüfbarkeit von Netzwerk-
eigenschaften wie s-t-Erreichbarkeit, Kreisfreiheit, oder ob das Netzwerk

einen Kreis enthält. Dabei weist ein Prover (Beweiser) den Knoten Label
zu, sodass ein Verifier (Prüfer) in konstanter Zeit prüfen kann, ob die
Eigenschaft erfüllt ist, oder nicht. Wir erhalten hierbei asymptotisch schar-
fe Schranken für die Grösse der Labels für die letzten beiden Problem-
stellungen. Für s-t-Erreichbarkeit erhalten wir eine neue, asymptotisch
scharfe untere Schranke in einem der betrachteten Modelle, und für ein
anderes Modell entwickeln wir eine Emulationstechnik, die es uns erlaubt,
eine zuvor bekannte obere Schranke ohne Einbussen in der asymptotischen
Labelgrösse in unser Modell zu übertragen.

Acknowledgements

I would like to thank Prof. Roger Wattenhofer for the opportunity to
write my thesis in his group. In particular I enjoyed that I had the liberty
to explore different topics alongside my anonymous computing endeavors.
The positive effect Roger had on my presentation skills deserves a special
mention.

Also, I want to thank my two co-referees Prof. Jukka Suomela and
Prof. Yuval Emek for the effort they put into reviewing my thesis. Special
thanks go to Yuval for babysitting me during Roger’s academic leave, and
for the many fruitful discussions we had. Without him, this thesis would
be even less understandable.

During my time at DISCO I have met many wonderful people, to
whom I want to express my gratitude in no particular order. I thank
Philipp Sommer for the warm welcome to Zurich, Johannes Schneider for
taking me to places in Austria, Raphael Eidenbenz for rolling with me,
Jasmin Smula for collecting clues, making deserts, and sharing laughs, Sil-
vio Frischknecht for announcing his leave, Stephan Holzer for advocating
healthy diets, Samuel Welten for talking Swiss-German to me and taking
me stargazing in Gstaad, Tobias Langner for his fine wine taste, and for
teaching me how to do a left turn, Jara Uitto for keeping me company
in unexpected places, and for Finnish memories, David Stolz for explain-
ing the basically two options, Laura Peer for promoting anarchy, Michael
König for playing—with words, and random, Barbara Keller for making
me a sandwich, and for being patient in Loèche-les-Bains, Klaus-Tycho
Förster for explaining the world to me, and for his bread roll deliver-
ies, Christian Decker for sharing his tomato-tuna sauce recipe in times of
need, Sebastian Brandt for keeping his rusk box filled, Philipp Brandes
for having nuts, Pascal Bissig for his baby stories, Yuezhou Lv for never
being afraid to ask, Georg Bachmeier for his compatible sense of humor,
Harald and Doris Schiöberg for awesome barbecues, Benny Gächter for
fulfilling my hardware needs, Tanja Lantz for making my move to Switzer-
land a breeze, Friederike Bruetsch for teaching me how to print, and Beat
Futterknecht for solving all problems at a moment’s notice.

I would like to thank my friends Daniel, David, Hannes, Henning,
Lucas, Manuel, and Marvin for making me feel at home whenever and

wherever we meet. From Karlsruhe, Erhard, Holger, Paul, Thomas, and
Ulrich have a special place in my heart. I thank Hans-Jürgen for long and
thoughtful discussions, and Christa for having a sane sleeping schedule,
especially in Italy. I am indebted to Mariana for enduring me, also in
stressful times. My parents Ute and Ralf have always supported me in
my endeavors, and I am grateful for that.

Contents

1 Introduction 1
1.1 Overview . 2
1.2 Preliminaries . 4

2 The Impact of Output Revocability on Computability 7
2.1 Output Revocability . 8
2.2 Related Work . 10
2.3 Notions of Correctness . 14
2.4 Distributed Oracles . 17
2.5 Problem Zoo . 25
2.6 Proof of Theorem 2.3 . 53

3 The Role of Randomness 55
3.1 Preliminaries and Genuine Solvability 56
3.2 Related Work . 58
3.3 The Case for Infinity . 60
3.4 Dealing with (In)finity . 67
3.5 Fibrations and 2-Hop Colorings 75

4 The Cost of Randomness 77
4.1 Broadcast Model and Target Functions 79
4.2 Related Work . 80
4.3 Tailor-Made 2-Hop Coloring 82
4.4 Trade-off Lower Bound . 88

5 Local Checking 95
5.1 Local Checkability in (Un)directed Graphs 98
5.2 Related Work . 100
5.3 Checking Network Properties 102
5.4 Port Numbers vs. s-t Reachability 113

1
Introduction

The umbrella term distributed computing encompasses the study of com-
puting in networks. In this setting, the computation is performed by a
network of processors, as opposed to a centralized Turing Machine. One
way to study these kinds of computations is by modeling them in the
form of message passing algorithms, where the processors are represented
as nodes in a graph and the task is to produce an output at every node.
Notions studied extensively for the centralized setting, e.g., computabil-
ity or the effect of randomization, need to be re-evaluated in this model.
Moreover, the decentralized setting raises new questions. For instance,
the necessity to communicate motivates the question how many and how
large messages need to be exchanged, or how many random bits nodes
need to generate when executing a randomized algorithm.

Computability in networks (a.k.a. distributed computability) is Turing
machine-equivalent if the nodes are equipped with unique IDs. This fact

1

2 CHAPTER 1. INTRODUCTION

remains intact even when the attention is restricted to deterministic dis-
tributed algorithms. However, as Angluin noticed in her seminal work [7],
distributed computability becomes fascinating in anonymous networks,
where nodes do not have unique IDs. On the one hand, the distributed
problems that can be solved deterministically in anonymous networks are
of a rather limited nature [84]. On the other hand, the question of dis-
tributed computability is more intricate when the nodes in an anonymous
network gain access to random bits. For example, the extensively studied
maximal independent set (MIS) problem [5, 78] is solvable in an anony-
mous network only if random bits are available. One contribution of this
thesis is to study the role and cost randomization has for anonymous
distributed computing.

Apart from its theoretical interest, the study of anonymous networks
is motivated by various real-world scenarios. For example, the nodes may
be indistinguishable due to their fabrication in a large-scale industrial
process [9], in which equipping every node with a unique identifier (serial
number) is not economically feasible. In other cases nodes may not wish
to reveal their unique identity out of privacy and security concerns [62].

1.1 Overview

In Chapter 2 we study the distributed computability of anonymous mes-
sage passing algorithms (referred to hereafter as anonymous algorithms).
More precisely, we compare computability of algorithms that may change
their output possibly multiple times during execution (rewrite algorithms)
to conventional algorithms in which nodes decide on their output once
and for all (write-once algorithms). As it turns out the effect output re-
vocability has on the distributed computability of anonymous networks
is remarkable: The two respective classes of solvable problems induced
by rewrite and write-once algorithms, correspondingly, and the class of
centrally solvable network problems form a strict linear hierarchy. For
21 classic and/or characteristic problems in distributed computing, we
determine the exact class to which they belong.

Moreover, the hierarchy we find exhibits hard and complete problems.
We introduce the concept of hardness through the notion of accessing an
oracle in a distributed setting. Each of our 21 problems is then classi-

1.1. OVERVIEW 3

fied according to its hardness or completeness for the three classes (Sec-
tion 2.5.2), thus obtaining a deeper understanding of the intrinsic prop-
erties of these problems. Notably, the three classes turn out to capture
exactly the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election, respectively.

In Chapter 3 we investigate more closely the role that (Las-Vegas type)
randomness plays in the computational power of anonymous algorithms,
regardless of round and message complexity considerations. Based on the
observations in Chapter 2, we take care to rule out distributed problems
in which unique IDs are (perhaps implicitly) encoded in the input, as
those mock cases obviously do not faithfully represent the properties of
distributed computability in anonymous networks. To that end, we re-
strict our focus to the class GRAN (standing for Genuinely solvable by
Randomized algorithms in Anonymous Networks, see Chapter 3). What
exactly characterizes the computational power of a randomized anony-
mous algorithm as opposed to a deterministic one? Surprisingly, random-
ization is only required to establish a 2-hop coloring of the network: Once
a 2-hop coloring is known, every problem in GRAN can be solved by a
deterministic anonymous algorithm.

But what is the amount of random bits, i.e., the random bit complex-
ity, required to solve any such task? We strive to answer this question in
Chapter 4, where alongside the random bit complexity, as a second effi-
ciency measure, we consider the runtime required to solve such tasks. As
it turns out, there is an efficiency trade-off between the runtime and the
random bit complexity required to solve any task. We establish asymp-
totically tight lower and upper bounds on the achievable trade-off.

Lastly, in Chapter 5 we investigate the complexity of nondeterministic
distributed algorithms. Nondeterministic distributed algorithms can be
expressed as a deterministic algorithm with access to a proof labeling [60],
where the proof labeling corresponds to an oracle in the sequential setting.
The complexity of such nondeterministic algorithms is measured in terms
of the maximum proof label size used by the deterministic representation.

In particular, we consider the proof label size in directed networks
(whereas the network is thought to be undirected in the previous chap-
ters). There are two ways to view communication in directed graphs:
Nodes can communicate only in the direction of the edge (directed one-

4 CHAPTER 1. INTRODUCTION

way communication), or the edge direction imposes no restrictions for
communication but only for the network property itself (directed two-way
communication). We investigate both cases, as well as the undirected
case, where nodes communicate with all their neighbors.

1.2 Preliminaries

Labeled Graphs. We denote the node- and edge-set of a graph G by
V and E, respectively. For a node v ∈ V , we denote the set containing all
neighbors of v by Γ(v). We only consider finite connected simple1 graphs
G, with the exception of Chapter 5 where directed edges are allowed. A
labeling function for V is a function ` : V → L that assigns a label to
every node in V . For the sake of simplicity, unless stated otherwise, we
assume hereafter that all labels are finite bitstrings. Tuples G = (V,E, `),
where (V,E) is a graph and ` is a labeling function for V , are called
labeled graphs. We often label vertices by more than one labeling function
`1, . . . , `k; in that case, we treat G = (V,E, `1, . . . , `k) as being labeled by
a single labeling function ` that assigns `(v) = 〈`1(v), . . . , `k(v)〉 to each
node v ∈ V . When G = (V,E) is an unlabeled graph and ` is a labeling
function for V , we also write (G, `) as a short-hand for the labeled graph
(V,E, `).

Distributed Problems. A distributed problem Π is specified by a set
of input instances and for every input instance I of Π, a set Π(I) of valid
outputs for I. The input instances of Π are labeled graphs I = (V,E, i)
and the labeling function i, called the input labeling of I, assigns an input
label to every node in V . For the input instance I = (V,E, i), the set of
valid outputs Π(I) for I consists of labeling functions o for V called valid
output labelings for I. At the risk of abusing the notation, we use Π to
denote the set of input instances as well as the problem itself. For the
sake of simplicity we assume that in every input instance I = (V,E, i), the
input label i(v) of every node v includes v’s degree. A typical example for
a distributed problem is graph coloring, where the input is an arbitrary

1A graph is simple if it is undirected and does not contain any loops or parallel
edges.

1.2. PRELIMINARIES 5

graph and the output must obey the rule o(u) 6= o(v) if (u, v) is an edge
in the input instance.

2-Hop Colorings. For a graph G = (V,E), the labeling ` is said to be a
k-hop coloring if `(u) 6= `(v) for every u, v ∈ V , u 6= v, that are at most k
hops away, i.e., G admits a path between u and v that consists of at most
k edges. A labeling function that plays a central role in this thesis is the
2-hop coloring, i.e., a coloring that assigns a different label to each node
in {u} ∪ Γ(u) for every u ∈ V . We say that a labeled graph G = (V,E, `)
is 2-hop colored if ` is a 2-hop coloring. Note that in the context of this
thesis, we do not pay attention to the number of distinct colors used by
the nodes under `.

Randomized Anonymous Algorithms. Our definition of how dis-
tributed algorithms work follows the convention of [79] for synchronized
network systems (message passing) with simultaneous starting times. In a
labeled graph I = (V,E, i), all nodes v execute the same message passing
algorithm A with input i(v). The input to a node v is fully specified by
i(v) — in particular, nodes are not equipped with a (unique) identifier
nor do they possess an apriori knowledge of any global network parameter
(unless specified as part of i(·)). The execution of A on I is performed in
synchronous rounds. In every round, each node v sends/receives messages
of unbounded, yet finite, size to and from each individual neighbor, where
v distinguishes between the ports corresponding to its incident edges. We
consider randomized algorithms, where in every round, node v has access
to one random bit. (Note that this is equivalent to accessing finitely many
random bits per round as multiple rounds can be grouped together.)

Algorithm A is said to solve the distributed problem Π if the following
two requirements hold for every I ∈ Π: (1) if A is executed on I, then
A produces an irrevocable local output A(v) for every node v within
finite time with probability 1; and (2) each output labeling o obtained
with positive probability by setting o(v) = A(v) for every v ∈ V satisfies
o ∈ Π(I) (i.e., we only consider Las-Vegas algorithms). This notion of
solving (with irrevocable local outputs) is commonly used in the literature,
and we will use it throughout this thesis. In Chapter 2 we will also study
the notion of solving problems with revocable outputs.

6 CHAPTER 1. INTRODUCTION

In essence, an algorithm is a computable function2 taking as input
at node v the node’s current state (initially v’s input i(v)), the messages
received by v (if any), and a bit chosen uniformly at random (independent
of other nodes’ random bits); the function returns a new state for v, the
messages v sends in the next round, and possibly an output value for v.
Algorithm A is called deterministic if it does not access any random bits.
Note that in Chapters 2 and 3 the round and message complexities of A
are not taken into consideration (as long as they are finite).

2With the exception of Section 3.3, where we consider a different kind of “algo-
rithm”.

2
The Impact of Output Revocability
on Computability

What can be computed in an anonymous network, where nodes are not
equipped with unique identifiers? The computability of deterministic al-
gorithms merely depends on the topology of the network, and it is well
known that problems like maximal independent set can be solved in an
anonymous network only if the nodes are allowed to toss coins. In this
chapter we therefore study the distributed computability of randomized
algorithms running in anonymous networks. Notice that in this com-
putability context, we do not impose any limitations on the complexity
resources (time, message/memory size, . . .), however, like in classic se-
quential computability theory, we do require a correct result after a finite
amount of time.

It turns out that the answer to the computability question depends

7

8 CHAPTER 2. OUTPUT REVOCABILITY

on the commitment of the nodes to their first computed output value.
In the following, we define two classes of problems solvable in anonymous
networks, where in the first class nodes are allowed to revoke their outputs
and in the second class they are not. These two classes are then related
to the class of all centrally solvable network problems, observing that the
three classes form a strict linear hierarchy, and for several classic and/or
characteristic problems in distributed computing, we determine the exact
class to which they belong.

Does this hierarchy exhibit complete problems? We answer this ques-
tion in the affirmative by introducing the concept of a distributed oracle,
thus establishing a more fine grained classification for distributed com-
putability which we apply to the classic/characteristic problems. Among
our findings is the observation that the three classes are characterized
by the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election.

2.1 Output Revocability

For this chapter, we consider every node v as being equipped with one in-
put register holding some problem-dependent input value and one output
register. The output register initially contains a special symbol ε indicat-
ing v is not ready to return an output. Any value x 6= ε contained in v’s
output register is interpreted as v being ready to return its output and
we say that v has output x. A global configuration in which all nodes
are ready is called a ready configuration. When algorithm A is in a ready
configuration, we define A’s output oA : V (G)→ O by setting oA(v) to be
the content of node v’s output register. We consider two different notions
of output revocability.

Definition (Output Revocability). An algorithm is referred to as a write-
once algorithm if every node is restricted to write to its output register at
most once. If this restriction is lifted, then we call it a rewrite algorithm.

In other words, in a rewrite algorithm a node may revoke its out-
put, e.g., by writing ε to its output register. While every execution of
a write-once algorithm reaches at most one ready configuration, during
the execution of a rewrite algorithm many ready configurations can occur.

2.1. OUTPUT REVOCABILITY 9

Note that the converse does not hold: an algorithm that is guaranteed to
reach at most one ready configuration is not necessarily a write-once algo-
rithm. In the existing literature, and outside of this chapter, algorithms
are typically considered to be write-once algorithms. In light of the out-
put revocability notion, for this chapter, we need to revisit the definition
of correctness of an algorithm.
Definition (Correctness). Fix some problem Π and an algorithm A. A
ready configuration of A when invoked on an input instance (G, i) ∈ Π
is said to be valid if the output oA of A in this configuration is a valid
output for (G, i). Algorithm A is said to solve Π if it satisfies the following
two conditions for every input instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. Every ready configuration that can occur with a positive probability

is valid.
The aforementioned definition of correctness requires that all occurring

ready configurations will be correct (i.e., correspond to a valid output).
In Section 2.3 we show that our definition of correctness is robust to
certain changes. Notice that in the scope of this chapter, we do not
require that an algorithm terminates in order to be correct. However,
the algorithms designed throughout the chapter do terminate, and the
general transformation techniques we present (i.e., compilers/simulations)
can be designed to ensure termination if the algorithms to which the
transformation is applied terminate.

The choice of output revocability has a significant impact on the
problems that an algorithm can solve. In the following the terms WO-
algorithms and RW-algorithms will thus be used to denominate write-once
and rewrite algorithms running in an anonymous network, respectively;
RW and WO refer to the classes of distributed problems solvable by these
two types of algorithms. Lastly, we denote by CF the class of distributed
problems that are solvable in a centralized setting (by a Turing machine),
bearing in mind that this class essentially includes every computable func-
tion on graphs. The distinction of these classes is justified by the following
observation.
Observation 2.1. The classes of distributed problems satisfy WO ⊂
RW ⊂ CF (in the strict sense).

10 CHAPTER 2. OUTPUT REVOCABILITY

Proof. RW ⊂ CF: A Turing machine can simulate an algorithm running
in an anonymous network. On the other hand, the techniques from
[7] can be used to show that leader election is not in RW, but it is
clearly possible in the centralized setting.

WO ⊂ RW: It is clear from the definition that every WO-algorithm is
also a RW-algorithm. In Section 2.5.1, we will show that for example
Consensus is in RW, but not in WO.

What can be computed in anonymous networks? As it turns out the
effect output revocability has on the distributed computability of anony-
mous networks is remarkable. A total of 21 problems, including some of
the most fundamental problems in distributed computing, are classified
according to the exact class to which they belong (Section 2.5).

Does the hierarchy we present exhibit complete problems? To answer
this question we introduce the notion of accessing an oracle in a dis-
tributed setting and show that this notion is sound (Section 2.4). As the
first stepping stone in this effort we show that the classes WO and RW
are robust against two modifications to the aforementioned correctness
condition (Section 2.3). Each of our 21 problems is then classified accord-
ing to its hardness or completeness for the three classes (Section 2.5.2),
thus obtaining a deeper understanding of the intrinsic properties of these
problems. Surprisingly, the WO, RW, and CF classes turn out to capture
exactly the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election, respectively.

2.2 Related Work

The history of distributed computability starts with the work of An-
gluin [7] proving that randomization does not help to elect a leader in
anonymous networks. Later, it was shown that electing a leader in an
anonymous ring network is possible if the size n of the ring is known [66],
in fact, a (2− ε)-approximation of n is enough [1], not only in the special
case of a ring but in general networks [88]. It turns out that all these

2.2. RELATED WORK 11

results (and many similar ones) come almost for free once our graph-
theoretic characterization for the class RW is established. The connec-
tion between computation in anonymous networks and products of graphs
(graph coverings) which was first observed in Angluin’s seminal work plays
an important role in this characterization.

There is a line of work that concentrates on deterministic distributed
algorithms for problems in CF, in particular if some parameters of the
topology of the graph (for instance, its size) are known, e.g. [33, 95]. De-
terministic algorithms are interesting to investigate even if the graph is
restricted to a ring [37,48], and also assignments of not necessarily unique
identifiers were studied in this context [80].

Another line of research studies computability in anonymous (directed)
networks in connection with termination. Not unlike us it is argued that
termination in distributed systems is an issue that is not directly evident,
since one may be interested in systems where nodes terminate indepen-
dently of others. Different forms of termination and prior knowledge are
studied in this line of work, where the strongest anonymous model consid-
ered is equivalent to deterministic write-once algorithms with knowledge
of an upper bound to the network size [34]. When no prior knowledge is
assumed the class of solvable problems can be fully characterized using
local views1 (quasi-coverings) and recursive functions [38]. Extending
their approach, in the context of the current chapter an individual node
executing a RW-algorithm can never be entirely sure about termination.
We show that the class RW lies between the two classes WO (local termi-
nation) and CF (global termination).

Output revocability should not be confused with the concept of even-
tual correctness, where the network eventually converges to a correct out-
put. For example, self-stabilizing algorithms [41] allow the system to re-
turn an incorrect output for a finite amount of time, thus allowing a
fault-tolerant algorithm to recover from errors. With randomization, self-
stabilizing leader election is possible on general graphs [42], hence with
randomization every CF-problem is eventually solvable in an anonymous
network. In our terminology eventual correctness could be viewed as re-
quiring that some ready configuration, not necessarily the first one, is

1See Section 2.5.1 for a definition.

12 CHAPTER 2. OUTPUT REVOCABILITY

stable2 and valid. We require though that an output is returned after
finite time and that every output returned by the network is correct, but
we do allow the network to revoke partial outputs. The problems solvable
by self-stabilizing algorithms in directed graphs can be characterized by
fibrations [36], the directed analog to factors1 of graphs.

The self-stabilization concept is also used in the scope of population
protocols, introduced by Angluin et al. [9]. Population protocols are an
example for asynchronous distributed automata with restricted compu-
tational power. In this model, nodes cannot do arbitrary computations,
as they are modeled by finite state machines, see [16] for an overview.
Regarding computability in a clique network, [9–11] conclude the pred-
icates solvable to be exactly those expressible in first-order Presburger
arithmetic. On graphs with bounded degree a Turing machine with lin-
early bounded space can be simulated [8]. It was also studied how the
correctness condition for population protocols affects solvability of the
Consensus problem [12].

Apart from these results, not much is known about distributed com-
putability, as a large fraction of research deals with complexity rather
than computability. However, there are surprising connections between
complexity and computability, which go beyond us borrowing the terms
hardness and completeness. Regarding network algorithms, in the last
thirty years, a lot of research went into the question how fast a particu-
lar problem can be computed by the network. Literally hundreds of new
upper and lower bounds have been found. The fastest algorithms deliver
a result within constant time, independent of the size of the network,
see [94] for a recent survey. It is intriguing that our research which is
about computability has most connections to this “fastest” class of dis-
tributed algorithms.

Naor and Stockmeyer [84] introduced the notion of locally checkable
labelings (essentially an apply-once oracle, i.e., an oracle that can be in-
voked only once at the beginning of an algorithm; see Section 2.4) in
identified networks and ask the question how a constant-time determinis-
tic algorithm can decide whether the labeling represents a correct solution
to a given problem. Follow-up work looked at the bit complexity required

2A configuration is said to be stable if the nodes no longer revoke their outputs,
see Section 2.3.

2.2. RELATED WORK 13

to solve decision problems [68] and a problem hierarchy depending on the
size of checkable labelings was suggested [60], also for anonymous net-
works. Our work also yields a characterization of decision problems in
RW. How apply-once oracles can be used to make broadcast and wake-up
schemes more efficient was studied in [52]. However, we do not restrict the
run-time to be constant and allow randomization for symmetry breaking.
Pruning algorithms [70] that build a solution gradually in a write-once
fashion were inspired by the same line of research, in an effort to remove
the necessity of global knowledge about the graph. While our algorithms
are required to give a correct output in every execution, [53,54] study the
notion of (p, q)-decidable decision problems (an anonymous randomized
algorithm is allowed to return a wrong output with constant probability)
and find a strict hierarchy among the classes of solvable problems depend-
ing on the success probabilities. If a randomized algorithm is allowed to
fail (Monte-Carlo algorithm), then a leader can be elected [82] with high
probability (w.h.p, i.e., with probability 1−n−c for any c). Hence any CF-
problem can be solved in an anonymous network with high probability,
whereas we require a correct output with probability 1.

Non-deterministic algorithms running in an anonymous setting can
fully determine the structure of the radius t-ball around itself in [51], and
thus solve exactly the decision problems that are closed under so-called
t-homomorphisms, that is, homomorphisms that preserve the structure
t hops around every node, regardless of access to unique identifiers. In
our model only the local view can be retrieved. It may thus be surpris-
ing that RW-algorithms can solve exactly the problems that such non-
deterministic constant-time algorithms can solve in a single round.

Lastly, it is worth mentioning that in the context of shared memory
systems a notion of distributed oracles in an asynchronous environment
is studied. Usually such an oracle is applied once to implement a proto-
col (algorithm), and the tasks (e.g., consensus) also form hierarchies by
their ability to implement each other [55, 63, 77]. Unlike in our model,
computability in shared memory systems is hindered by asynchronous ex-
ecution rather than the network structure and has surprising connections
to topology [64]. Nonetheless variants of the consensus tasks turn out to
be complete for the class RW.

14 CHAPTER 2. OUTPUT REVOCABILITY

2.3 Notions of Correctness

Our definition of a correct algorithm requires every ready configuration
that occurs throughout an execution to be valid. For WO-algorithms this
requirement is superfluous since its execution will reach at most one ready
configuration. However, RW-algorithms may invalidate or change a ready
configuration after it occurred. One may therefore wonder if strengthening
the definition by allowing only one durable ready configuration makes the
class of solvable problems strictly smaller. On the other hand one may
be tempted to weaken this definition, in hope to capture a larger class
of problems by requiring only the first occurring ready configuration to
be correct. Perhaps surprisingly we show that these two variants have
no effect and are equivalent to the current definition of correctness. This
equivalence will play a key role when we reason about RW-algorithms in
the next section which covers distributed oracles.

Definition (Sustainable Correctness). A ready configuration is said to
be stable, if the nodes no longer revoke their outputs. Algorithm A is said
to sustainably solve a problem Π if it satisfies the following two conditions
for every input instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid and stable.

Definition (Loose Correctness). Algorithm A is said to loosely solve
a problem Π if it satisfies the following two conditions for every input
instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid.

The class Sustainable-RW (respectively, Loose-RW) consists of ev-
ery distributed problem that can be sustainably solved (resp., loosely
solved) by a RW-algorithm. Since sustainable correctness (resp., loose
correctness) is a restriction (resp., a relaxation) of correctness as defined
in Section 2.1, we conclude that Sustainable-RW ⊆ RW ⊆ Loose-RW.
Note that the corresponding classes Sustainable-WO and Loose-WO for
WO-algorithms are equal to the class WO due to the write-once restric-
tion of these algorithms. The following theorem states that also for RW-
algorithms the three classes are, in fact, equal.

2.3. NOTIONS OF CORRECTNESS 15

Theorem 2.1. The classes of problems solvable by RW-algorithms under
the three different correctness notions satisfy Sustainable-RW = RW =
Loose-RW.

The proof of Theorem 2.1 is based on a simple concept referred to as
safe broadcast in which information is broadcast throughout the whole net-
work and no ready configuration is reached before all nodes have received
the information. When a node v receives a previously unseen message M
that should be safely broadcast, it writes ε to its output register for at
least one round and forwards M to all its neighbors. This ensures that M
propagates through the network together with a front of non-ready nodes,
so that no ready configuration can be reached during the dissemination
of M .

Based on the safe broadcast concept, we develop a generic technique
called inhibiting messages which will also be useful when designing al-
gorithms in Section 2.5. For every node v, this programming technique
employs a register ρ, usually chosen to be v’s output register, and a list
L containing pairs (i, x) where i is an integer, typically a round or phase
number, and x is an arbitrary value. Two methods are provided for ev-
ery node v, where the invocation of these methods is determined by user
defined conditions: A node v can (1) append a new pair (i, x) to L; and
(2) broadcast an inhibiting message Mi for i. The operation is as follows.
If v sends or receives an inhibiting message Mi, then for all x the pairs
(i, x) are removed from L. Whenever L is empty, node v sets ρ ← ε.
Assuming that L is non-empty, denote by (imin, xmin) a pair in Q that
satisfies imin ≤ i for all pairs (i, x) in Q. In that case, the default value
stored in ρ is the value xmin. The one exception to this rule occurs when
v receives an inhibiting message Mimin , in which case v sets ρ ← ε in
the current round, which means that ε is written to ρ between any two
consecutive non-ε values. Notice that the front of non-ready nodes prop-
agates through the network with the inhibiting message Mi only as long
as Mi invalidates the output currently contained in the output registers.

We employ inhibiting messages to show that the class RW is robust
against the stated modifications to the definition of a correct algorithm.
The proof of Theorem 2.1 relies on a sustainability compiler that takes a
RW-algorithm A that loosely solves problem Π and transforms it into a

16 CHAPTER 2. OUTPUT REVOCABILITY

RW-algorithm Â that sustainably solves this problem. Specifically, under
algorithm Â, every node v simulates A; to avoid confusion, let ρ̂ be v’s
output register under Â and let ρ be v’s register simulating the output
register of A. The compiler is based on sending inhibiting messages, where
the register upon which the inhibiting message technique operates is ρ̂ and
the integers i of the technique are identified with the round numbers. In
every round r, if v is not ready in round r under A, then node v broadcasts
an inhibiting message Mr, that is, v broadcasts an inhibiting message for
r if ρ = ε. If on the other hand v’s register ρ contains the value x 6= ε
in round r, then v appends the pair (r, x). Theorem 2.1 is established by
proving the following lemma.

Lemma 2.2. Let A be a RW-algorithm loosely solving a problem Π and
let Â be the RW-algorithm obtained by applying the sustainability compiler
to A. Then Â sustainably solves Π.

Proof. Consider some input instance (G, i) ∈ Π and denote by η the
execution ofA on (G, i) that Â simulates. Algorithm Â employs inhibiting
messages. For the sake of the analysis let iv(r) denote the value imin
of node v in round r, or NIL if v’s queue is empty. In particular, if
iv(r) 6= NIL, then the value stored in v’s output register ρ̂ is the output
of v in round r of η. By definition, η must reach a ready configuration
and the first ready configuration reached by η is valid; let r0 denote the
round in which this valid ready configuration is reached and let o0 be the
valid output returned by η in that round. Notice that under algorithm Â,
no node broadcasts an inhibiting message for round r0, whereas at least
one node broadcasts an inhibiting message Mr for every round r < r0.
This implies that under Â, eventually iv(r) = r0 for every node v; let
r1 ≥ r0 be the first round in which this happens. Starting from round r1,
algorithm Â outputs o0 and the design of the inhibiting message technique
guarantees that Â will not revoke this output. Therefore, we only have to
ensure that under Â, in all rounds r < r1 at least one node is not ready.

To that end, assume for the sake of contradiction that there exists
a round r < r1 in which all nodes are ready under Â. In that case
iv(r) 6= NIL for every node v. If iv(r) = iu(r) for all u, v ∈ V (G) then A
was in a ready configuration in round r and thus r = r0 = r1. Therefore in
round r under Â, there must be nodes having outputs from two different

2.4. DISTRIBUTED ORACLES 17

rounds of η. Moreover, since G is connected there must exist two such
nodes u and v, {u, v} ∈ E(G). Since the sustainability compiler employs
the inhibiting message technique, we conclude that iu(r) 6= iv(r) and
without loss of generality assume that iu(r) < iv(r). But this means,
that in some round r′ < r node v sent an inhibiting message for round
iu(r) and this message reaches u in round r′ + 1 ≤ r, in contradiction
to the assumption that round iu(r) is non-inhibited for u in round r. It
follows that Â does not reach a ready configuration prior to round r1
which completes the proof.

2.4 Distributed Oracles

In this section, we introduce the concepts of hardness and completeness,
which are central to this work and allow us to gain a deeper understand-
ing how the computability classes relate to each other. To that end, we
introduce the notion of an oracle working in a distributed setting.

Definition (Algorithm with access to a Π-oracle). Consider some prob-
lem Π. A C-algorithm, C ∈ {WO,RW}, with access to a Π-oracle is a
distributed C-algorithm in which every node v is equipped with a desig-
nated oracle input register and a designated oracle output register. Given
some r ≥ 1, let ĩ(v) be the content of v’s oracle input register in round r
and let õ(v) be the content of v’s oracle output register in round r+ 1. If
(G, ĩ) is an input instance of Π, then it is guaranteed that õ is a valid out-
put for (G, ĩ). No assumptions are made on the operation of the algorithm
if (G, ĩ) /∈ Π.

While applying the oracle in every round of the algorithm may seem
powerful, allowing the distributed algorithm to arbitrarily choose the
rounds in which the oracle is applied may require some sort of global
coordination, which is not necessarily possible. In comparison, a weaker
definition of “accessing an oracle” would be to allow application of the
oracle only once in round 1. This distinction does not make a difference
for problems Π without inputs (|I(Π)| = 1), e.g., for graph theoretic prob-
lems like coloring, maximal independent set, or determining the diameter,
because the oracle is always applied on the same input instance. It does

18 CHAPTER 2. OUTPUT REVOCABILITY

however affect problems that do receive inputs (|I(Π)| ≥ 2), e.g., Consen-
sus or logical And and Or. It will be convenient to refer to this weaker
manner of accessing an oracle as accessing an apply-once oracle.

As stated above, based on the oracle concept, we will soon introduce
the notion of hard and complete problems for the hierarchy of problem
classes. This notion would be ill-defined if accessing an oracle to a problem
ΠC ∈ C could enhance the computational power of a C-algorithm. We
ensure that the notion of an algorithm with access to an oracle is sound in
the following theorem. Note that the statement of the theorem does not
mention the case C = CF, since the soundness of oracles for centralized
models is well understood and in any case, beyond the scope of this thesis.

Theorem 2.2 (Soundness). If a problem Π is solvable by a C-algorithm,
C ∈ {RW,WO}, accessing an oracle to a problem ΠC ∈ C, then Π can
also be solved by a C-algorithm that does not access any oracle.

The key to proving this theorem is to show that in a C-algorithm Aa

that solves a problem Π with access to a ΠC-oracle, ΠC ∈ C, one can
replace the oracle access by simulating a C-algorithm Ar that solves ΠC
without any oracle access. We will first prove that accessing apply-
once oracles does not enhance the computational power of RW- and WO-
algorithms, since the two algorithms Aa and Ar can be executed consecu-
tively one after the other, or in other words, that algorithm Aa accessing
an apply-once oracle can be simulated without accessing an oracle by ex-
ecuting Ar first. This turns out to be a non-trivial task especially for
RW-algorithms since a node v simulating Ar cannot know for sure that
the output returned by Ar will not be revoked later on, i.e., whether it
can be safely used for the execution of Aa. It therefore does not know
when such a result is valid so that a simulation of Aa can be invoked based
on this result. The technique we present to resolve this issue for RW-
algorithms is based on Theorem 2.1. Actually, we will need an extension
of Lemma 2.2 (the key to the proof of Theorem 2.1) to RW-algorithms
accessing a Π′-oracle for some problem Π′. To that end, we observe that
the construction of the sustainability compiler and the arguments used
in the proof of Lemma 2.2 can be repeated with no changes to yield the
following.

2.4. DISTRIBUTED ORACLES 19

Lemma 2.3. Fix some problem Π′. Let A be a RW-algorithm with access
to a Π′-oracle loosely solving a problem Π and let Â be the RW-algorithm
with access to a Π′-oracle obtained by applying the sustainability compiler
to A. Then Â sustainably solves Π with an access to a Π′-oracle.

In other words, Lemma 2.3 states that the three notions of correctness
for RW-algorithms are equivalent even when the algorithm has an access
to a Π′-oracle for some (arbitrary) problem Π′. This enables us to estab-
lish the following lemma that states the soundness of apply-once oracles
for RW-algorithms.

Lemma 2.4 (Consecutive RW Execution). Let ΠC be a problem in RW
and let Aa be a RW-algorithm solving an arbitrary problem Π with ac-
cess to an apply-once ΠC-oracle. Then Π is solvable by a RW-algorithm
without access to any oracle.

Proof. Let Ar be a RW-algorithm solving ΠC. Employing Lemmas 2.2
and 2.3, we assume that Ar and Aa sustainably solve ΠC and Π, respec-
tively. We would like to show that Π ∈ RW by designing a RW-algorithm
A that solves Π without access to any oracle. This will be accomplished
by letting A simulate the execution of Aa, using Ar to replace Aa’s access
to the apply-once ΠC-oracle. Algorithm A faces the issue that an output
returned to a node v by Ar may not be part of a ready configuration and
thus it is not clear whether v should use this value as an output of the
ΠC-oracle that Aa invoked. To cope with that, algorithm A performs a
systematic search for some round in which Ar reaches a ready configura-
tion.

Algorithm A simulates algorithms Ar and Aa; to avoid confusion,
let ρ, ρr, and ρa denote the output registers of v under A,Ar, and Aa,
respectively. Algorithm A works in phases, where phase p consists of 2p
rounds as follows. In each phase p, every node v first simulates p rounds of
Ar; the role of this simulation is to replace the access to the (apply-once)
ΠC-oracle. While this simulation takes place, node v sets ρ← ε ensuring
that a ready configuration can only be reached in the second half of phase
p. Node v is referred to as sad if ρr = ε at the end of round p of phase
p; otherwise, node v is referred to as happy. If node v is sad, then it does
not participate in the next p rounds of phase p and sets its output register

20 CHAPTER 2. OUTPUT REVOCABILITY

ρ ← ε in round p + 1. If node v is happy, then in the next p rounds of
phase p, it simulates p rounds of Aa using the value stored in ρr as the
output of the ΠC-oracle (accessed by Aa) and sets ρ = ρa in every round
of the simulation. For convenience, let σa

p denote the sequence of rounds
(of A’s execution) that are dedicated to simulating algorithm Aa in phase
p, i.e., σa

1 = [2], σa
2 = [5, 6] and so on. It will be important for the analysis

that when simulating algorithms Ar and Aa in phase p+ 1, node v reuses
the same random bits that were used in phase p to which v only adds the
random bits required for the simulation of round p+1 in both algorithms.

For the sake of the analysis, let ηr be the execution of algorithm Ar

that corresponds to the simulation performed by algorithm A. Notice
that ηr is well-defined since under A, the simulation of Ar reuses the
same random bits in every phase, so that in all phases p, the first p
rounds of Ar correspond to the first p rounds of ηr. Denote by or the
output obtained from the stable ready configuration reached by ηr. Based
on that, let ηa be the execution of algorithm Aa that corresponds to
the simulation performed by algorithm A in which the oracle access is
replaced by or, and let oa denote the output obtained from the stable
ready configuration reached by ηa. The execution ηa and its output oa

are well defined since Aa sustainably solves Π and A reuses random bits
to simulate Aa as well. Denote by tr and ta the rounds in which the
stable ready configurations of ηr and ηa are reached for the first time,
respectively, and let t = max{tr, ta}. We argue that algorithm A reaches
the first ready configuration in phase t, namely in round σa

t (tr) of A’s
execution, and that the output of this ready configuration is oa, which
together with Theorem 2.1 establishes the assertion since A (at least)
loosely solves Π.

To see that this is indeed true recall that under algorithm A, a node
v may only set ρ to a non-ε value in the second half of a phase that is
dedicated to simulating Aa. In phases p < tr at least one node is sad, i.e.,
not ready in round p of ηr, and therefore not ready during the second half
of phase p. On the other hand, in phases p ≥ tr all nodes are happy and
the simulation of Aa performed by A corresponds to the first p rounds of
ηa. The correctness of A now follows from the sustainable correctness of
Aa.

2.4. DISTRIBUTED ORACLES 21

The crux in the proof of Lemma 2.4 was to show how two RW-
algorithms can be executed consecutively in a correct manner. At first,
it seems that the same technique is inapplicable to a WO-algorithm (ac-
cessing an apply-once oracle), since under algorithm A described in the
proof of Lemma 2.4, a node will revoke any output it returned in the last
round of a phase, i.e., algorithm A is not a WO-algorithm due to our
construction. However the technique can be slightly modified so that it is
applicable to WO-algorithms as well.

To address the aforementioned issue, we make three adjustments to
the construction of algorithm A when it is applied to a WO-algorithm Aa

with access to a ΠC-oracle, ΠC ∈ WO. To describe the adjustments we
use the same terminology as in the proof of Lemma 2.4: (1) Node v is not
allowed to change the value stored in its output register ρ after the first
value x 6= ε was written to it. (2) If v is sad at the end of round p of phase
p, then v broadcasts a sadness message for phase p. (3) If a happy node v
in phase p receives a sadness message for that phase (in one of the rounds
σa
p(1), . . . , σa

p(p)), then v stops to participate in the simulation of Aa, and
in particular does not write to its output register ρ in the remainder of
phase p.

The first adjustment immediately ensures that the resulting algorithm
A is indeed a WO-algorithm. We argue that A reaches a ready configu-
ration in phase t, and that the output of A is oa (and therefore correct).
In phases p < t there is at least one node v that is sad or did not produce
an output under algorithm Aa, and therefore v does not become ready in
the second half of phase p. In phases p ≥ t on the other hand, all nodes
are happy and the simulation of Aa corresponds to ηa.

Since A is a WO-algorithm we need to ensure that the output oA of A
satisfies oA(v) = oa(v) for all nodes v since a node that wrote to its output
register in some phase p < t cannot revoke its output in later phases.
Consider some node v and denote by p the phase in which v writes to its
output register. This occurs in round s = σa

p(sa) dedicated to simulating
round sa of Aa. All nodes u in the inclusive sa-hop neighborhood Γ+

ra (v)
must be happy in phase p (otherwise v would have received a sadness
message). Moreover, the simulation that a node u at distance d < sa from
v performs of Aa agrees with ηa for the first sa − d rounds. Therefore for
node v, the first sa rounds of A’s simulation of Aa correspond to the first

22 CHAPTER 2. OUTPUT REVOCABILITY

sa rounds of ηa. Since Aa and Ar are both correct WO-algorithms, this
implies that oA(v) = oa(v), which concludes our argument. Lemma 2.5
follows.

Lemma 2.5 (Consecutive WO Execution). Let ΠC be a problem in WO
and let Aa be a WO-algorithm solving an arbitrary problem Π with ac-
cess to an apply-once ΠC-oracle. Then Π is solvable by a WO-algorithm
without access to any oracle.

When trying to extend the proof of Lemma 2.4 in attempt to es-
tablish the RW case of Theorem 2.2, the issue we needed to solve for
RW-algorithms with an access to an apply-once oracle multiplies: Be-
tween every two simulated rounds of Aa, one invocation of Ar is required
to replace the oracle access, and a simulating node cannot know for sure
that an output obtained from Ar is part of a ready configuration for any
such simulation of Ar. However, the ideas used to prove Lemma 2.4 can
be extended to cope with this difficulty. We will show how to interleave
single rounds in the simulation of an algorithm Aa accessing an oracle
with executions of an algorithm Ar that replaces the oracle.

Proof of Theorem 2.2. Let C be either WO or RW, let ΠC be a problem
in the class C, and let Ar be a C-algorithm solving ΠC. Let Aa be a
C-algorithm solving an arbitrary problem Π with access to a ΠC-oracle
(applied in every round of Aa). If C = RW, then by Theorem 2.1 and
Lemma 2.3, we assume that Ar and Aa sustainably solve ΠC and Π,
respectively. We wish to simulate Aa and multiple invocations of Ar using
a C-algorithm A without access to any oracle. Denote by ρ the output
register of node v. The construction of algorithm A is similar to the
construction we used in the proofs of Lemmas 2.4 and 2.5; the difference
is that in phase p, algorithm A should now simulate p invocations of
algorithm Ar, one before each round of the simulated execution of Aa,
instead of just a single invocation. That is, we precede each round 1 ≤ i ≤
p of Aa’s simulated execution under A with a simulation of an invocation
of Ar that runs for p rounds and replaces Aa’s access to the ΠC-oracle
between rounds i − 1 and i. Specifically, phase p now consists of p2 + p
rounds, where each round r ≡ 0 (mod p + 1) of phase p is dedicated to
simulating round r/(p+1) of Aa, whereas each round r 6≡ 0 (mod p+1) is

2.4. DISTRIBUTED ORACLES 23

dedicated to simulating round r (mod p+1) in invocation i = dr/(p+1)e
of Ar, occurring between rounds i − 1 and i of Aa. For convenience, let
σa
p denote the sequence of rounds (of A’s execution) that are dedicated to

simulating algorithm Aa in phase p, i.e., σa
1 = 〈2〉, σa

2 = 〈5, 8〉 and so on.
During phase p, it may happen that the simulation of invocation 1 ≤

i ≤ p of Ar in node v outputs ε, which means that v cannot simulate
round i of Aa; when this happens, node v becomes sad for the current
phase p. Recall that this means that v stops participating in the remainder
of phase p and sets ρ ← ε. Moreover, if C = WO, then in addition to
that, v broadcasts a sadness message. As before, node v sets ρ← ε during
simulations of Ar, and when v is happy ρ is used to simulate the output
register of Aa.

For the sake of the analysis we inductively define executions ηr
i of

algorithmAr and an execution ηa of algorithmAa. Let ηr
1 be the execution

of algorithm Ar that corresponds to the simulation that A performs to
replace Aa’s first oracle access, and denote by or

1 the output obtained
from the stable ready configuration of ηr

1. Both ηr
1 and or

1 are well-defined
since under A, the simulation of Ar reuses the same random bits in every
phase and due to the sustainable correctness of Ar. Let ηa

(1) be the first
round of Aa’s execution ηa that algorithm A simulates in which the first
oracle access of Aa is replaced with or

1. Based on ηr
1, the first round

ηa
(1) in ηa is well-defined. We define the executions ηr

i and the remaining
rounds of ηa inductively: (1) Let ηr

i be the execution of algorithm Ar

that corresponds to the simulation that A performs to replace Aa’s oracle
access after round i − 1 of ηa, and denote by or

i the output obtained
from the stable ready configuration of ηr

i . (2) Let ηa
(i) be the ith round

in the execution of Aa that corresponds to the simulation performed by
algorithm A in which Aa’s oracle access is replaced by or

i. Note that (1)
and (2) together are well-defined, since the induction is based on ηa

(1) and
ηr

(1), and the simulations of Ar and Aa reuse the same random bits in
every phase. Thanks to the sustainable correctness of Aa we denote by
oa the output obtained from the stable ready configuration ηa reaches.

With these definitions in mind, denote by ta the first round in which
ηa is in a ready configuration. Denote by tri the first round in which ηr

i is
in a ready configuration and let tr = maxi<ta{tri}. Lastly, denote by oa

the output obtained from the stable ready configuration reached by ηa in

24 CHAPTER 2. OUTPUT REVOCABILITY

round ta. We argue that algorithm A reaches the first ready configuration
in phase t = max{ta, tr}, specifically in round σa

t (ta), and that the output
of A in that phase is oa.

ηa

ηr1 ηr2 ηrta−1

ηa(1) ηa(2) ηa(ta) · · ·

trtr1
tr2

trta−1

trta

· · ·

ηrta · · ·

· · ·

· · ·

Figure 2.1: Executions ηa and ηr
i of Aa and Ar, respectively.

Assume for the sake of contradiction that in some phase p < t algo-
rithm A reaches a ready configuration. Due to our construction this can
only occur in a round s = σa

p(sa) dedicated to simulating some round sa

of algorithm Aa. In that case all nodes are happy in round s, which can
only occur if tri ≤ p for all i < sa. This implies that the first sa rounds
that A simulated of algorithm Aa correspond to the first sa rounds of ηa,
i.e., ηa reaches a ready configuration in round sa = ta in contradiction
with the choice of t. In phase p = t on the other hand, for all i ≤ ta

execution ηr
i reaches a ready configuration within p rounds. Therefore the

first ta rounds that A simulates of Aa correspond to the first ta rounds of
ηa and A reaches a ready configuration in round ta. In the case C = RW,
the (at least loose) correctness of A now follows from the correctness of
Aa and the proof is concluded by applying Theorem 2.1.

For the case C = WO however, we need to ensure that the output oA
of algorithm A satisfies oA(v) = oa(v) for all nodes v, since in algorithm
A a node v may write to its output register ρ prior to phase t. Let v be a
node that irrevocably sets ρ ← oA(v) in phase p. This can only occur in
round s = σa

p(sa) for some sa. Since v did not receive a sadness message
for phase p all nodes u in the inclusive sa-hop neighborhood Γ+

sa (v) of v
are happy in round s. In other words, all nodes u are ready in the first
sa simulations of Ar performed by A in phase p. It follows that for node
v the first sa rounds of the sa simulations of Aa correspond to the first

2.5. PROBLEM ZOO 25

sa rounds of ηa. Since Ar and Aa are both WO-algorithms we conclude
that indeed oA(v) = oa(v).

Now that Theorem 2.2 is established we introduce the concept of hard
problems by borrowing the terminology from sequential complexity the-
ory.
Definition (Hardness). For two classes B ⊇ C, a problem Π is said to be
B-hard with respect to C, denoted by Π ∈ B-hard C, if for every problem
ΠB ∈ B, there exists a C-algorithm that solves ΠB with access to a Π-
oracle. We say that Π is complete in B with respect to C, denoted by
Π ∈ B-complete C, if additionally Π itself is contained in B.

Following our notational convention, we would refer to an NP-hard
problem as being NP-hardP . For example, the problem of electing a
leader is well known to be CF-hard WO since once a leader is available, this
leader can assign unique identifiers to all other nodes and solve the prob-
lem centrally. Our definition yields the three hardness classes CF-hard RW,
CF-hard WO and RW-hard WO, allowing us to study how algorithms run-
ning in anonymous networks relate to centralized algorithms as well as
how the two output revocability notions relate among each other. By def-
inition, every CF-hard WO problem is both CF-hard RW and RW-hard WO;
it turns out that the converse direction is also true. In Section 2.6 we will
have the necessary tools to prove this statement, as cast in the following
theorem.
Theorem 2.3. The hardness classes satisfy

CF-hard WO = CF-hard RW ∩RW-hard WO.

2.5 Problem Zoo

In this section, we study the computability and hardness of various prob-
lems in our setting. A total of 21 problems are investigated as depicted
in Figure 2.2, including variations of approximation guarantees or output
specification. First, we will focus on the computability of each problem,
i.e., whether it is in WO, in RW \WO, or in CF \RW. Later in Section
2.5.2, we will investigate the hardness of each of the problems. Based on
that, we establish Theorem 2.3 in Section 2.6.

26 CHAPTER 2. OUTPUT REVOCABILITY

CF

CF-hardRW

CF-hardWO
RW-hardWO

Min-Coloring
Min-Cut-Value

Factor-Multiplicity

Diameter
Min-Cut-Partition

Leader-Election
Min-Cut

Factor-Graph(≥ 2)-Size-Apx
(< 2)-Size-Apx

(≥ 3)-Hop-MIS
(≥ 3)-Hop-Coloring

Coordination

RW

Factor-Diameter
Consensus

WO

Coloring

2-Hop-MIS
2-Hop-Coloring

MIS

And
Uniqueness Or

IDs α-Diameter-Apx

Figure 2.2: Classes CF, RW and WO, and the respective hardness classes.

2.5.1 Computability
Almost all results regarding (non-)computability of problems derived in
this section are obtained using one of two general proof frameworks. To
characterize problems that can be solved by RW-algorithms, we find a
necessary and sufficient condition. For the class WO, we use a necessary
condition that allows us to rule out the inclusion of problems in this class.
All but one result on non-computability can then be derived using the
two characterizations. For computability of problems in RW, the same
characterization can be used, while for problems in WO we refer to known
algorithms.

Graph Factors, Products and Local Views

The key to our characterization of problems in RW is the notion of graph
factors.3

Definition (Graph Factors). Let G and H be two simple undirected
graphs and `G and `H two labelings of G and H, respectively, such that
`G and `H share the same co-domain. A surjective function f : V (G) →
V (H) is called a factorizing map of G inducing H if it has the following
properties:

3In the distributed computing literature, the concept of graph factors was also
referred to as covering graphs and graph lifts.

2.5. PROBLEM ZOO 27

(i) if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H) for every u, v ∈ V (G),
that is, f is a graph homomorphism;

(ii) for every node v ∈ V (G), the restriction f |Γ(v) of f to v’s neigh-
borhood is a bijection onto the neighborhood Γ(f(v)) of v’s image
f(v), that is, f is locally one-to-one and onto; and

(iii) the labeling functions satisfy `G(v) = `H(f(v)) for every node v ∈
V (G), that is, f preserves the labels.

If there exists such a factorizing map f , then we say that (G, `G) is a
product of (H, `H) or equivalently, that (H, `H) is a factor of (G, `G). A
labeled graph (G, `G) is prime if all factors of (G, `G) are isomorphic, i.e.,
if the only factor of (G, `G) is the graph itself.

The above definition essentially corresponds to the definition given
in [58] for covering graphs extended to respect node labels. It is a known
fact that |V (G)| must be an integer multiple m of |V (H)| (see, e.g., [58]).
We say that (G, `G) is anm-product of (H, `H) or equivalently that (H, `H)
is an m-factor of (G, `G), denoted (G, `G) ∼= m · (H, `H) and m · (H, `H) ∼=
(G, `G), respectively, when we want to emphasize the specific value of m.
It will be convenient to use the notation (G, `G) ∼= m · (H, `H) without
explicitly specifying m as well, in which case the exact value of m is
typically not important. Note however that an m-product of a graph is
not necessarily unique (not even for m = 1). For two unlabeled graphs
G and H, we assume that `G and `H both assign the same label to all
nodes, and we omit the labeling functions in our notation.

We will use factors of graphs to derive a characterization for problems
with input and output labelings i and o of a graph G, respectively. Note
that the combined labeling (i, o) is also a labeling of G in which every
node v is labeled by the pair (i(v), o(v)). If (G, i) is an m-product of
(G, i′) by a factorizing map f and o is a valid output labeling of (G, i),
then we denote the labeling o′(·) = o(f(·)) as the natural extension of o
to (G′, i′). Observe, that in this case (G′, i′, o′) ∼= m · (G, i, o).

Product graphs are used in the existing literature to derive negative re-
sults for computability of problems by anonymous distributed algorithms,
dating back to the seminal work of Angluin [7]. Those proofs are based
on lifting a computation that occurs in a graph (G, i) to some product
(G′, i′) ∼= m·(G, i) and forcing node v′ ∈ V (G′) to copy the execution of its

28 CHAPTER 2. OUTPUT REVOCABILITY

1

2 3 4 5 6

7

89101112

4

6

2

1

5
1

1

4
3

2 2 3
3

Figure 2.3: The cycles C3, C4 and C6 on 3, 4 and 6 nodes are factors of the
12-cycle C12 by mapping node i in C12 to the node i (mod 3, 4 or 6) in the
respective cycle. The prime factors of C12 are C3 and C4.

image under the factorizing map f . This technique was used, for example,
to prove the impossibility of electing a leader in anonymous networks [7],
and the same technique can be used to show that Leader-Election is
not in RW. As it turns out, graph products actually lead to a complete
characterization of problems in RW.

Theorem 2.4 (Characterization of RW). Problem Π is in RW if and
only if

∀(G, i) ∈ Π, ∃o : (G, i, o) ∈ Π s.t.
∀(G′, i′) ∈ Π, ∃o′ : (G′, i′, o′) ∈ Π s.t.
(G′, i′) ∼= m · (G, i) =⇒ (G′, i′, o′) ∼= m · (G, i, o) . (2.1)

Consider a problem Π whose input instances are arbitrary labeled
graphs with O(Π) = {YES,NO}, and fix some subset Y of the input
instances. The problem Π is is called a (distributed) decision problem (cf.
[60,68]), if for every (G, i) ∈ Y , all nodes must output YES and for every

2.5. PROBLEM ZOO 29

input instance (G, i) 6∈ Y , at least one node outputs NO. The instances
in the set Y are referred to as the YES-instances of Π. Theorem 2.4
implies that the class of decision problems in RW is exactly the class
of decision problems that are closed under taking products of the solved
problem instances, namely if (G, i, o) ∈ Π and (G′, i′, o′) ∼= m · (G, i, o),
then (G′, i′, o′) ∈ Π.

The proof of Theorem 2.4 relies in part on the aforementioned lifting
technique [7]. More specifically, fix some instance (G, i) and let (G′, i′)
be a product of that instance by the factorizing map f . For every node
v ∈ V (G), let η(v) denote the execution of an algorithm A that is invoked
on (G, i) from the perspective of v. Note that η is fully determined by the
random bits used by each node in the course of A’s execution. Denote
by η′(·) := η(f(·)) the natural extension of η to (G′, i′). In η′ every node
v will perform exactly the same execution as its image f(v), and if an
output o is reached in execution η of A, then the output o′(·) = o(f(·)),
i.e., the natural extension of o to (G′, i′), is reached in execution η. We
shall refer to execution η′ as lifting η from (G, i) to (G′, i′) and conclude
with the following lemma.
Lemma 2.6 (Lifting an Execution [7]). Consider some RW-algorithm A
and let (G, i) and (G′, i′) be two labeled graphs satisfying (G′, i′) ∼= m·(G, i)
with factorizing map f : V (G′) → V (G). For every finite execution η of
A on (G, i) ending in a ready configuration with output o, there exists a
finite execution η′ of A on (G′, i′) ending in a ready configuration with
output o′ such that o′(v) = o(f(v)) for every v ∈ V (G′).

In particular, if no valid output labeling for (G, i) can be naturally
extended to a valid output labeling for (G′, i′), then it is also not possi-
ble for an algorithm to (always) return a correct output in both graphs.
Theorem 2.4 is also closely related to the Factor-Graph problem intro-
duced later in the result statements, and therefore deferred until then. A
necessary condition for problems in WO can be defined using local views.
Definition (Local View). Consider some randomized algorithm A. Let
(G, `) be a labeled graph and let v be a node in V (G). Fix some assignment
β of random bits to the nodes and denote by βt(v) the (finitely many)
random bits used by v in all rounds r ≤ t. The depth-t local view of v
under β is the rooted tree Lβt (v) of depth t with a labeling `t defined as

30 CHAPTER 2. OUTPUT REVOCABILITY

follows. For every node v, the local view Lβ0 (v) contains only a single
vertex4 r and the labeling `0(r) is (`(v), deg(v), β0(v)). From the labeled
forest Ft(v) := {Lβt (u) | u ∈ Γ(v)}, the depth-(t + 1) local view Lβt+1(v)
is constructed in two steps: (1) Prune the sub-tree corresponding to node
v from the root vertex ru of every Lβt (u), u ∈ Γ(v), to obtain the pruned
local view L′βt (u); let F ′t (v) = {L′βt (u) | u ∈ Γ(v)} be the forest containing
the pruned local views of v’s neighbors. (2) Construct Lβt+1(v) from the
pruned local views in F ′t (v) by introducing a new root r as the parent of ru
for all u ∈ Γ(v). The labeling `t+1(r) := (`(v),deg(v), βt+1(v)), whereas
for all nodes in the pruned sub-trees L′βt (u) of r, the labeling remains
unchanged. In cases where no assignment of random bits is assumed the
(deterministic) depth-t local view Lt(v) is obtained in the same way by
excluding βt(v) in the vertex labels.

Informally, the depth-t local view of node v captures the network from
v’s point of view in round t. Local views without random bits were used
before, e.g., to discuss solvability of leader election in the context of deter-
ministic anonymous algorithms [95]. Theorem 2.5 relies on the possibility
that nodes whose executions are indistinguishable from v’s perspective
under deterministic algorithms may remain indistinguishable from v’s per-
spective for a finite amount of time also under randomized algorithms.

Theorem 2.5. Problem Π is not in WO if

∃(G, i) ∈ Π s.t. ∀o : (G, i, o) ∈ Π, ∀t ∈ N, ∃(G′, i′) ∈ Π s.t.
∀o′ : (G′, i′, o′) ∈ Π, ∃v ∈ G, ∃v′ ∈ G′ s.t.
Lt(v) = Lt(v′), and (2.2)
o(v) 6= o′(v′) . (2.3)

Proof. Let W (Π) denote the characterization for a problem Π stated in
the theorem. Assume for the sake of contradiction that there exists a
problem Π ∈ WO for which W (Π) holds and let A be a WO-algorithm
solving Π. Invoke A on the input instance (G, i) promised by W (Π) to
obtain A’s output o after t steps and denote the random bits used by node
v up to round t in this execution of A by βt(v). Let (G′, i′) ∈ Π be the

4 To avoid the confusion between the basic elements in the graph G and those in
the rooted tree Lβt (v), we refer to the former as nodes and to the latter as vertices.

2.5. PROBLEM ZOO 31

1

2

3

1

2 3

1 3 1 2

2 3 1 2 23 1 3

Figure 2.4: Cycle on 3 nodes and the corresponding local view of depth 4 as
seen by node 1.

labeled graph promised by W (Π) for (G, i, o) and t. For every valid output
o′ to (G′, i′), the property W (Π) guarantees the existence of two nodes
v ∈ V (G) and v′ ∈ V (G′) satisfying both (2.2) and (2.3). Constraint
(2.2) implies that with positive probability nodes v and v′ observe the
same execution up to (and including) round t, namely if Lβt (v) = Lγt (v′)
for some assignment of random bits γ to nodes in G′. Therefore, with
positive probability, v′ will return an output o′(v′) = o(v). But (2.3)
implies that o′ cannot be a valid output for (G′, i′), in contradiction to
the assumption that algorithm A solves Π.

Results

We start by briefly stating the proof techniques derived from Theorems
2.4 and 2.5 that we use to establish computability results.

Π 6∈WO: The inclusion of Π in WO will be disproved by finding an
input instance (G, i) ∈ Π and for all valid outputs to (G, i) and arbitrary
t, a construction of an input instance (G′, i′) ∈ Π in which the depth-t
local view of some node v′ ∈ V (G′) is the same as that of some node
v ∈ V (G), but the output of v′ must differ from that of v.

Π 6∈ RW: The inclusion of Π in RW will be disproved by finding an
input instance (G, i) ∈ Π and for all valid outputs o to (G, i), an input
instance (G′, i′) ∈ Π satisfying (G′, i′) ∼= m · (G, i) such that no natural

32 CHAPTER 2. OUTPUT REVOCABILITY

extension of o to (G′, i′) is a valid output for that instance.
Π ∈ RW: The inclusion of Π in RW will be established by showing

that for every input instance (G, i) ∈ Π, there is a valid output o such
that for every input instance (G′, i′) ∈ Π satisfying (G′, i′) ∼= m · (G, i),
the natural extension of o to (G′, i′) is a valid output for that instance.

The two techniques for RW rely on Theorem 2.4, which we did not
prove yet. Therefore, after giving a brief overview of problems known to
be in WO, we will focus on proving the theorem first.

MIS and other Local Symmetry Breaking. The well studied sym-
metry breaking tasks Maximal-Independent-Set (MIS), (∆ + 1)-Co-
lo-ring and Maximal-Matching are indeed in WO: The famous Luby-
algorithm [5,78] satisfies the WO condition already. Similarly, there are al-
gorithms to solve (∆+1)-Co-lo-ring [76]5 and Maximal-Matching [65]
that are WO-algorithms. Two other problems studied before are 2-Hop-
MIS and 2-Hop-Coloring in which two nodes in the independent set or
two nodes having the same color, respectively, must not have a common
neighbor. In [47] both problems were found solvable by WO-algorithms
using an even weaker computational model. The algorithm from [47] that
solves 2-Hop-Coloring uses up to ∆2 −∆ + 1 colors, which is a simple
upper bound on the number of required colors.

Factor-Graph. In the Factor-Graph problem, nodes in the network
(G, i) are required to agree on a factor (H, j) of (G, i). That is, every
node v ∈ G should output the same factor (H, j) of (G, i) (with inputs
and uniquely named nodes), and its own name f(v) in H, where f is
the factorizing map inducing H. Had we proven Theorem 2.4 already, it
would follow from the definition that Factor-Graph it is in RW. Instead
we use this problem to establish the theorem, starting with the following
observation which is essential for the first half of the proof.

Lemma 2.7. There is a RW-algorithm solving Factor-Graph.
5The algorithm for (∆ + 1)-Co-lo-ring described in the cited work also works if

no upper bound on ∆ is known by replacing a node of degree d in the overlay graph
with a complete graph on d + 1 nodes.

2.5. PROBLEM ZOO 33

Proof. We present a RW-algorithm A that solves Factor-Graph on ar-
bitrary input instances (G, i). Algorithm A progresses in phases where
during each phase p, every node v constructs a candidate factor (Gp, ip).
Nodes in V (Gp) are identified by a randomly chosen (candidate) identifier
βp(v), and an edge {βp(u), βp(v)} is added to E(Gp) if the edge {u, v} is
present in E(G). All nodes v ∈ V (G) start in phase 1, and advance from
phase p to p+ 1 if v sends or receives an inhibiting message for phase p.

In the beginning of a phase p, all nodes v first choose a random bit
string βp(v) containing p random bits. Node v then exchanges βp(v), its
input i(v), and its degree deg(v) with every neighbor. After v received a
message containing the corresponding values of every neighbor, it broad-
casts a my-neighborhood message Mp(v) containing (βp(v), deg(v), i(v)),
and the corresponding values of all its neighbors. While v receives my-
neighborhood messages Mp(u) from other nodes u, node v gradually con-
structs its candidate factor (Gp, ip) by inserting the node βp(u) with the
label i(u) contained in Mp(u), and edges to all of u’s neighbors. Note
that some edges may point to nodes that were not yet inserted into the
graph. We say that v detects an inconsistency, if either two messages
Mp(u) 6= Mp(u′) are received for which βp(u) = βp(u′), or if a mes-
sage from a node u with degree deg(u) was received that did not contain
deg(u) + 1 different identifiers for u and its neighbors. When v detects
an inconsistency it broadcasts an inhibiting message for phase p. A node
v sending an inhibiting message for the current phase p sets its output
register to ε and starts phase p + 1. If v did not receive an inhibiting
message for a phase p and all endpoints of edges in (Gp, ip) were inserted,
then v returns the output ((Gp, ip), βp(v)).

We start the analysis of algorithm A by showing that A’s output is
correct if a ready configuration is reached. For this, observe that if two
neighboring nodes u and v are in different phases pu and pv respectively,
then u or v is currently broadcasting an inhibiting message and is therefore
not ready. When on the other hand all nodes are in the same phase p and
all nodes are ready, then no node detected an inconsistency in (Gp, ip).
Therefore the returned graph (Gp, ip) is the same graph for every node,
and we have to show that βp is a factorizing map inducing (Gp, ip). The
function βp is surjective, because every node in V (Gp) has a preimage in
G. Further βp is a graph homomorphism since for every edge {u, v} in G

34 CHAPTER 2. OUTPUT REVOCABILITY

the edge {βp(u), βp(v)} is inserted into Gp. The inconsistency detection
ensures that the restriction βp|Γ(v) is an injection on Γ(βp(v)) for every
node v. Because the input labeling ip(βp(v)) is defined by the input value
assigned to v, the function βp respects the graph labeling, and we conclude
that m · (Gp, ip) ∼= (G, i) for some m. It is left to show that A reaches a
ready configuration with probability 1. But this will happen at latest in a
phase p0 in which every node chooses a unique random identifier, because
this ensures that every my-neighborhood message is unique. In this case
the algorithm will return a graph Gp0 that is isomorphic to G.

Having established that Factor-Graph is a problem in RW, we now
present the proof of Theorem 2.4.

Proof of Theorem 2.4. For the proof, let R(Π) denote the graph theoretic
characterization (2.1) stated in the theorem, that is

R(Π) = ∀(G, i) ∈ Π, ∃o : (G, i, o) ∈ Π s.t.
∀(G′, i′) ∈ Π, ∃o′ : (G′, i′, o′) ∈ Π s.t.
(G′, i′) ∼= m · (G, i) =⇒ (G′, i′, o′) ∼= m · (G, i, o).

We wish to prove that Π ∈ RW⇔ R(Π), and we prove both directions
of the if and only if separately.

if: Let Π be a distributed problem that satisfies R(Π); we prove
that then Π must be in RW. To accomplish that, we describe a RW-
algorithm A solving Π with access to a Factor-Graph-oracle. Since
Factor-Graph is solvable by a RW-algorithm without access to any or-
acle (Lemma 2.7) and oracles are sound (Theorem 2.2), this is sufficient to
conclude that Π ∈ RW. The key to algorithm A is to invoke the Factor-
Graph-oracle until it returns a valid input instance (G, i) of Π. For every
such instance, the characterization R(Π) promises the existence of a valid
output o to (G, i) satisfying that for every product (G′, i′) ∼= m · (G, i),
with (G′, i′) ∈ Π, the natural extension o′ of o to (G′, i′) is a valid output
for (G′, i′). Algorithm A exploits that as follows.

Fix some instance (G, i) ∈ Π. At the beginning of round r, node v
appends a random bit to the (initially empty) string βr−1(v) to obtain
βr(v). Then, node v invokes the oracle with input (i(v), βr(v)). In all
rounds r > 1 the oracle output register of every node v contains a labeled

2.5. PROBLEM ZOO 35

graph (Hr, (jr, γr)) satisfying (Hr, (jr, γr)) ∼= m · (G, (i, βr−1)), and every
node receives a name fr(v) ∈ V (Hr) assigned to v by the factorizing map
inducing Hr. Node v now checks whether (Hr, jr) is an input instance of
Π. If it is, then v chooses the lexicographically smallest or that satisfies
R(Π) for (Hr, jr) and writes or(fr(v)) to its output register.

When in round r every node v returns some output or(v), the output
of algorithm A is valid for the instance (G, i) on which the algorithm is
executed, because (G, i) ∼= m · (Hr, jr). Algorithm A will reach a stable
ready configuration with probability 1 within finite time, since the output
from the oracle will satisfy (Hr, jr) ∼= 1 · (G, i) in round r if every node
tossed a unique random string βr−1(v) in round r−1. Notice that A does
not need to change its output register once it wrote to it, which allows us
to conclude that in fact Factor-Graph is in fact RW-complete WO.

only if: For the sake of contradiction, assume that ¬R(Π) holds for
some problem Π ∈ RW, that is

¬R(Π) = ∃(G, i) ∈ Π s.t. ∀o : (G, i, o) ∈ Π,
∃(G′, i′) ∈ Π s.t. ∀o′ : (G′, i′, o′) ∈ Π :
(G′, i′) ∼= m · (G, i) ∧ ¬

(
(G′, i′, o′) ∼= m · (G, i, o)

)
.

Let A be a RW-algorithm solving Π, let η be an execution of A on the
instance (G, i) promised by ¬R(Π), and let o be the output of A obtained
in η. Note that o satisfies (G, i, o) ∈ Π, and therefore the property ¬R(Π)
guarantees the existence of some (G′, i′) ∈ Π with (G′, i′) ∼= m ·(G, i) such
that (G′, i′, o′) ∼= m · (G, i, o) does not hold for any o′, i.e., the natural
extension of o to (G′, i′) is not a valid output to (G′, i′). Lift the execution
η of A on (G, i) to obtain the execution η′ of A on (G′, i′). By Lemma 2.6
we see that A’s output o′ in execution η′ is the natural extension of o to
(G′, i′), contradicting the assumption that A solves Π.

As stated in the if -part of the proof, Factor-Graph is RW-complete WO,
and as such cannot be solved by a WO-algorithm.

Corollary 2.8. Finding a factor of the input graph is RW-complete WO.

Coordination. In coordination problems nodes in the network keep
track of some shared state and wish to determine whether their shared

36 CHAPTER 2. OUTPUT REVOCABILITY

state is in unison. This kind problem arises for example in atomic com-
mit protocols and in the two generals problem, where all participants in
the network need to agree on the same value before they can proceed.
More formally, we consider the problem Coordination where the input
instances are all labeled graphs, and the solved instances satisfy the fol-
lowing. If all nodes are labeled with the same input label, then all nodes
output “UNISON”, otherwise there is at least one pair of nodes with dif-
ferent labels and all nodes output “DISCORD”.

Coordination is not contained in WO. Let (G, i) be the 3-cycle with
input 0, so the output to this instance is “UNISON” for all nodes in G,
and let v be any node in V (G). For arbitrary t, let further (H, j) be the
cycle on 2t + 1 nodes, in which exactly one node w gets input 1, and let
v′ be the node in V (H) furthest away from w. The depth-t local views of
v and v′ are equal, but while node v ∈ V (G) must return “UNISON” the
only correct output of v′ ∈ V (G′) is “DISCORD”.

We stated that the class RW is essentially the class of coordination
problems, and indeed we use the characterization of Theorem 2.4 to show
that Coordination is in RW. For this, let (G, i) be a labeled graph in
which all nodes get the same input x. In all products of (G, i) every
node has input x, so returning “UNISON” leads to a correct output in all
products of (G, i). On the other hand, if (G, i) contains two nodes u 6= v
with different inputs x 6= y respectively, then all its products also contain
nodes with different inputs x and y, and therefore the output “DISCORD”
for all nodes can be extended to all products of (G, i). In Section 2.5.2 we
show that Coordination is complete in RW.

Logical And & Or. The definition for the problems And and Or are
straigt-forward: All nodes are provided with a binary input value and have
to compute the logical conjunction resp. disjunction of all those inputs.

The problem And (Or) is not contained in WO for essentially the
same reason as Coordination: Let (G, i) be the 3-cycle with input 1 (0),
so the only admissible output to this instance is 1 (0), and let v be any
node in V (G). For arbitrary t, let further (H, j) be the cycle on 2t + 1
nodes, in which exactly one node w gets input 0 (1), and let v′ be the
node in V (H) furthest away from w. The depth-t local views of v and
v′ are equal, but v and v′ are not allowed to return the same output.

2.5. PROBLEM ZOO 37

The two problems are, however, both in RW (again for similar reasons
as Coordination is). If an input instance (G, i) contains a node with
input 0 (1 for Or), then all products of (G, i) also contain a node with
that input, and the only correct output for every node is 0 (1) in these
instances. If on the other hand no node in (G, i) has input 0 (1), then the
only correct output in (G, i) is 1 (0) for every node, which is also true for
all products of such an input instance.

Consensus. In the well-known binary Consensus problem nodes can
have either 0 or 1 as possible input. All nodes are required to agree on
the same output, which must also appear as input to at least one node.

Like the Coordination problem Consensus is also not solvable by a
WO-algorithm, but Theorem 2.5 cannot be used to disprove that. Instead,
assume for the sake of contradiction that there is a WO-algorithm A
solving Consensus. Let (G0, i0) and (G1, i1) be 3-cycles, where in G0
every node gets input 0 and in G1 every node gets input 1. Execute A on
both instances to obtain correct output labelings o0 and o1 after t0 and
t1 rounds, respectively, and denote the random bits used in the execution
of A up to round t on each respective instance by βt and γt. Let u0 and
u1 denote two arbitrary nodes in G0 and G1. Let further G′ be the cycle
consisting of 2 · (t0 + t1 + 1) nodes, and denote by u′0 and u′1 two nodes in
G′ with maximal distance. It is possible to assign inputs and random bits
δt to all nodes so that Lβt0 (u0) = Lδt0 (u′0) and Lβt1 (u1) = Lδt1 (u′1), i.e., the
two nodes u′0 and u′1 in G′ observe the same depth-t0 and depth-t1 local
view under δt as the corresponding nodes u0 and u1 did in G0 and G1,
respectively. Thus, there is an execution of A (by choosing the random
bits as determined by δt) which leads to a configuration where the output
returned by u′0 will be 0, while that of u′1 will be 1, contradicting our
assumption.

However, we can show that Consensus is in RW by applying The-
orem 2.4. For this, let (G, i) be a labeled graph in which all nodes get
input 0. In all products of (G, i) every node has input 0, so agreeing to
output 0 is valid in all products of (G, i). On the other hand, if (G, i)
contains a node with input 1, then all its products also contain a node
with input 1, and therefore the output in which all nodes agree on 1 can
be extended to all products of (G, i).

38 CHAPTER 2. OUTPUT REVOCABILITY

Factor-Multiplicity. Another problem related to graph factors is Fac-
tor-Multiplicity: In an unlabeled network G, every node should output
the multiplicity m of a graph H such that m ·H ∼= G, and the number of
nodes in H is minimal among all possible factors of G. The last constraint
prohibits the nodes from answering 1 in every graph (each graph is of
course a factor of itself).

The problem is not solvable for RW-algorithms: Let G be any prime
graph, for example a 3-cycle, such that the smallest factor of G has mul-
tiplicity 1. In any non-trivial product of G, this answer is however not
correct. Using this problem we will establish in Section 2.5.2 that the two
hardness classes CF-hard RW and CF-hard WO are distinct.

Factor-Diameter. Agreeing on the diameter of some factor of an input
instance is certainly possible in the RW model, as nodes able to agree on
a factor, and may just output its diameter. To see that the problem is
not solvable by a WO-algorithm let G be the 3-cycle, so that the only
admissible outputs for G will be those in which the agreed upon factor
H is a 3-cycle and all three nodes choose a different name. For every
t, construct the cycle G′ on p nodes where p > t is prime so that in
particular, G′ is prime. Any arbitrarily chosen v ∈ V (G) and v′ ∈ V (G′)
satisfy Lt(v) = Lt(v′), but the only admissible output o′(v′) is bp/2c for
every v′ ∈ V (G′). However, the two problems differ in their hardness, as
we will see in Section 2.5.2.

k-Hop-MIS, k-Hop-Coloring and Min-Coloring. In the k-Hop-
MIS problem, nodes shall output a maximal set in which any two nodes
in the set have at least distance k (measured in hops), i.e., a shortest path
between them uses k + 1 edges. Similarly, in a solution to the k-Hop-
Coloring problem, nodes having the same color must be at least k hops
apart. As we saw earlier, both problems are in WO for k ≤ 2.

For k > 2 they are not in RW, and neither is coloring with the min-
imum amount of colors. To see this for k-Hop-Coloring let G be the
triangle so that every solution to G will use exactly three different colors.
Now, let G′ ∼= 2 · G be the 6-cycle. Any valid k-Hop-Coloring of G′
with k > 2 needs to use six colors, thus the natural extension of a valid
output o to G cannot be a valid output for G′. On the other hand, a

2.5. PROBLEM ZOO 39

Min-Coloring of the 6-cycle only needs two colors, therefore a natural
extension of o to G′ will not be a minimum coloring on the 6-cycle. Simi-
larly, for k-Hop-MIS, a 2-product of a valid output on the 3-cycle violates
the distance requirement on the 6-cycle.

Diameter and approximating it. We consider the problem of find-
ing the Diameter of the network as well as the approximation problem
Diameter-Apx. The problem is not in RW, which can be seen by—
again—taking G to be the triangle (with diameter one), and G′ to be
the cycle on six nodes with diameter three. The only valid output la-
beling for G cannot be extended to a valid output labeling on G′. As
for the approximation problem with approximation ratio α, let G′ be the
3bα + 1c-cycle. We will however see in Section 2.5.2 that both problems
are prime examples for the class of problems that are RW-hard WO.

Min-Cut. A surprisingly interesting problem to study is the Min-Cut
problem. A cut of a graph G = (V,E) is a subset C ⊆ E so that the
graph becomes disconnected when the edges from C are removed from G.
A cut C is called minimum cut if C has the smallest possible cardinality,
and we refer to this cardinality as the value of the minimum cut. Any
cut can also be described by a partition of the nodes into two subsets,
and in that case C is the set of edges with one endpoint in each of the
two partitions. There are basically three ways to define the Min-Cut
problem in our setting: We can require nodes to output the value of the
minimum cut, a partition of the nodes (say, into black and white nodes)
inducing the minimum cut, or thirdly, we can ask for the combination of
both. We denote those output specification variants by Min-Cut-Value,
Min-Cut-Partition and Min-Cut, respectively. This does not change
their computability (no variant can be solved in an anonymous network),
but we will in Section 2.5.2 find that the exact specification does make a
difference for the hardness of each single variant.

To prove that none of the problem variants is in RW, first observe
that the graph G in Figure 2.5 has a unique minimum cut. Therefore,
every valid output to the min-cut problem in G must output the cut-
value and/or partition indicated in the figure. Because the graph G′ in

40 CHAPTER 2. OUTPUT REVOCABILITY

2b 2w

4b 1b 1w 4w

3b 3w

Figure 2.5: Graph G, with unique minimum cut 1. Black and white nodes
indicate the two partitions in the output of the minimum cut.

2b 2w

4b 1b 1w 4w

3b 3w

2b’ 2w’

4b’ 1b’ 1w’ 4w’

3b’ 3w’

Figure 2.6: Graph G′, which is a 2-product of G from Figure 2.5, with increased
cut value and double the number of nodes. The dashed edges are replaced by
the corresponding thick edges without violating the graph factor property.

Figure 2.6 is a product of G, but has a different cut value, Min-Cut-
Value is not solvable in RW. From this we can immediately follow that
Min-Cut can also not be solved. To see that Min-Cut-Partition is also
not solvable, we alter G′ slightly to obtain G′′ (depicted in Figure 2.7) in

2.5. PROBLEM ZOO 41

2b 2w

4b 1b 1w 4w

3b 3w

2b’ 2w’

4b’ 1b’ 1w’ 4w’

3b’ 3w’

Figure 2.7: Graph G′′, which is a 2-product of G from Figure 2.5, with the
same cut value and double the number of nodes. The dashed edges are replaced
by the corresponding thick edges without violating the graph factor property.

which only the edges {2b, 3b} and {2b’, 3b’} are replaced to connect {2b,
3b’} and {2b’, 3b} (as indicated in the figure), while the edges connecting
{2w, 3w} and {2w′, 3w′} are left unchanged. Graph G′′ has a cut of size
1 and is also a product of G. Thus the only valid output o to G cannot
be naturally extended to obtain a valid output in every product of G.

Computing with unique identifiers: Leader-Election et cetera.
In the Leader-Election problem, we demand of a valid solution that
there is exactly one node with output “leader”, and all other nodes return
“not leader”. As mentioned above, [7] showed that Leader-Election is
not even solvable in the RW model. It is well understood (see, e.g., [88])
that accessing a Spanning-Tree-oracle, or an oracle that equips every
node with a unique identifier (the IDs problem) is equivalent to having
a single leader already for WO-algorithms. The Uniqueness problem, in
which nodes have to test whether every node is supplied with a unique
input and output “ALL UNIQUE” or “NOT ALL UNIQUE” depending
on the outcome of this test, is CF-complete WO as well. (Nodes can find
unique identifiers by invoking the Uniqueness-oracle with random strings
of increasing length until it replies with “ALL UNIQUE”, but it is not in
RW because no solution for the 3-cycle can be extended to a solution on

42 CHAPTER 2. OUTPUT REVOCABILITY

the 6-cycle). Similarly, knowing the network Size n can be considered
equivalent in our model, because nodes can broadcast random identifiers
of increasing length until they observe exactly n different identifiers. On
the other hand, an approximation Size-Apx of the network size with
approximation guarantee α for the triangle G is not a valid approximation
on a ring of size 3bα+ 1c, convincing us that not even on cycles one can
find a α-Size-Apx with a RW-algorithm. In [88] the authors present a
Monte Carlo algorithm to construct a spanning tree that can be turned
into a Las Vegas algorithm if a (2 − ε)-Size-Apx is known. Using our
terminology, the same can be seen by giving a RW-algorithm access to
an apply-once oracle to α-Size-Apx and computing a Factor-Graph.
Denote the true network size by n, the approximation provided by the
oracle by n̄ and the number of nodes in a computed factor by nf. If it is
guaranteed that n̄ < 2 ·n, then a found factor H of G is indeed G itself if
and only if nf ≤ 2 · n̄, since |V (G)| must be an integer multiple of |V (H)|.
On the other hand, when the approximation factor α ≥ 2, the answer 6
can be supplied from the oracle in both the triangle graph as well as in
the ring of six nodes, and a RW-algorithm with access to such an oracle
has no means of distinguishing the two.

2.5.2 Hardness of Problems

The last discussion already gave us an understanding of problems that
are known to be CF-hard WO, and while investigating Factor-Graph we
already found the problem to be RW-complete WO. In determining the
exact containment of each problem introduced in the last section, we find
all three hardness classes CF-hard WO, CF-hard RW and RW-hard WO and
also the three corresponding classes of complete problems to be non-empty
and distinct.

Results

To show a problem Π ∈ B is B-hard C it will be sufficient to describe a
C-algorithm that solves a complete problem for C with access to a Π-
oracle. In order to fully classify each problem we are also interested in
negative results regarding completeness to completely characterize each

2.5. PROBLEM ZOO 43

of the studied problems. The following techniques derived from Theorems
2.4 and 2.5 will be used to show that a problem to not be in one of the
hardness classes.

Π 6∈ CF-hard RW: To prove that a problem Π does not empower RW-
algorithm to solve problems in CF we start with a graph (G, i). From this,
we construct an m-product (G′, i′) ∼= m · (G, i) with m > 1. We will have
to ensure that there is a sequence of oracle answers to Π supplied to nodes
in (G, i) that is also a valid sequence of oracle answers to the corresponding
nodes in (G′, i′). This is less of a problem, if Π does not take any input
(other than the topology of the graph itself), because the same oracle
can be used in every round. Treating the answers supplied by the oracle
as additional input labels to each node, this disproves the existence of a
RW-algorithm accessing an oracle as an implication of Theorem 2.4.

Π 6∈ RW-hard WO: One needs to show that there is a problem Π′ in
RW that cannot be solved in the WO model, even if an oracle supplies
each node with a solution to Π. We find an input instance (G, i) ∈ Π, and
for all valid outputs (G, i, o) ∈ Pi and finite t, we describe the construction
of a graph (G′, i′). In the construction we will specify two nodes v′ ∈
V (G′) and v ∈ V (G), and a sequence of t oracles for each graph, such that
depth-t local view of v (including the answers supplied by the oracles) is
the same as that of v′, but the output of v′ must differ from that of v.
Treating the answers supplied by the oracle as additional input labels to
each node, Theorem 2.5 then implies that Π cannot be in WO.

We omit the previously discussed results on problems that are CF-
hard WO and the completeness of Factor-Graph, and start by presenting
another problem that is complete in RW with respect to WO.

Coordination. Indeed, Coordination is RW-complete WO. We show
how to turn a RW-algorithm ARW solving Π without access to an oracle
into a WO-algorithmAWO that solves Π with access to an Coordination-
oracle. In algorithm AWO every node v will simulate one round of ARW
in every round; we denote v’s simulated output register of ARW by ρRW,
and the actual output register of AWO by ρWO. If in round r the register
ρRW = ε, then v writes “NOT READY” to the input register of the oracle,
otherwise it invokes the oracle with input “READY”. When the oracle
answers “UNISON” in round r + 1 and node v was ready in round r, the

44 CHAPTER 2. OUTPUT REVOCABILITY

network was in a ready configuration in round r, and v sets ρWO to the
value contained in ρRW in round r.

Logical And & Or. The problem And as well as Or can be used in a
similar way to determine whether the network is in a ready configuration
at the end of every simulated round. In the previous construction we
used to show hardness of Coordination, one only needs to replace the
value “NOT READY” with 0 if the simulating algorithm is accessing a
And-oracle (with 1 for an Or-oracle), and the value “READY” with 1 (0)
respectively.

Consensus. Consensus is not RW-hard WO. We prove this by showing
that an oracle to Consensus cannot be used to solve Or with a WO-
algorithm. Once more, let (G, i) be the 3-cycle with input 0 so the only
admissible output to Or for this instance is 0. For any t, let (H, j) be the
cycle on 2t+ 1 nodes, in which exactly one node w gets input 1 while all
other nodes get input 0. Let v be any node in V (G) and denote by νr(v)
the content stored in v’s oracle input register in round r − 1 so that the
value νr(v) is a valid answer from the Consensus-oracle in round r for all
nodes in G. Let further v′ be the node in V (H) with maximum distance
to w. Since Lt(v) = Lt(v′) the value νr(v) is the same as νr(v′), the
value that v′ provides to the oracle in round r, for all r ≤ t. Regardless
of the input of w to the oracle, the answers νr(v) = νr(v′) are also valid
in (H, j) for r ≤ t. Thus we have Lt(v) = Lt(v′), but o(v) = 0, while in
a valid output labeling o′, node v′ must output 1. Note that the same
reasoning can also be used to disprove hardness of other problems such
as k-Set-Agreement.

Factor-Multiplicity. We show that the problem of finding the multi-
plicity of a smallest (by number of nodes) factor of an unlabeled graph is
CF-hard RW. To establish that, we define the helper problem ΠM . The in-
put instances (G, i) ∈ ΠM are all graphs G in which the label assigned to
every node by i is the multiplicitym of the smallest factorH s.t.G ∼= m·H.
An output labeling o is valid, if in o, exactly one node is labeled “leader”
while all others are labeled “not leader”. Observe that ΠM ∈ RW if and

2.5. PROBLEM ZOO 45

only if there exists a RW-algorithm A that solves Leader-Election with
an access to an (apply-once) Factor-Multiplicity-oracle.

We argue that ΠM is indeed in RW. To that end, we prove that ΠM

fulfills the characterization of Theorem 2.4. Let G be some graph and let
H be its smallest (prime) factor, where G ∼= m · H. By definition, the
input labeling i satisfies i(v) = m for every node v ∈ V (G). Consider
some graph (G′, i′) ∼= c · (G, i). If c > 1, then (G′, i′) ∼= (c ·m) · H and
therefore, (G′, i′) is not an input instance of ΠM for the input labeling i′
that assigns m to all nodes. Otherwise, if c = 1, then the factorizing map
f : V (G)→ V (H) is in fact an isomorphism and for every valid output o
to (G, i), the natural extension o(f(·)) is a valid output to (G′, i′). The
argument follows since every graph is either prime or a product of another
prime graph.

Next, we show that Factor-Multiplicity is not RW-hard WO. To
see this, we argue that a WO-algorithm with access to a Factor-Multi-
plicity-oracle cannot solve Or. Again, let (G, i) be the triangle in which
all nodes get input 0, so in a correct output to this instance all nodes will
agree on 0; the only valid answer from the oracle is multiplicity 1 since
the triangle is a prime graph. Now, for arbitrary t let (G′, i′) be the cycle
on p > 2t nodes where p is prime in which all but one node have input 0,
and exactly one node w′ gets input 1. Let v be any node in (G, i) and let
v′ be a node in (G′, i′) furthest away from w′; in particular, the distance
between v′ and w′ is least t. Then both v and v′ observe the same depth-t
local view, but in a valid output to (G′, i′) all nodes must agree to return
1.

Factor-Diameter. As we have established the Factor-Graph prob-
lem as being RW-hard WO, one might think that a WO-algorithm with
access to a Factor-Diam-oracle is able to solve problems in RW. This
is not the case, and thus Factor-Diam is another example of a problem
in RW that is not RW-hard WO. The sufficient condition stated in Theo-
rem 2.5 is not strong enough to disprove this problems hardness. We will
however use a very similar technique that relies on multiple nodes in G to
“reappear” in G′.

As usual, let G be the triangle, so the only valid answer from the oracle
is 1, and denote by v1, v2 and v3 the three nodes in G. For any t, let G′ be

46 CHAPTER 2. OUTPUT REVOCABILITY

2t+ 2 2t+ 3

2t+ 4

v′1 v′2 v′3

Figure 2.8: Counterexample showing that Factor-Diam is not RW-hard WO.
Dashed edges indicate a path of the denoted length, node labels indicate the
mapping of nodes to the 3-cycle factor.

the ring of size 3(2t+4) as depicted in Figure 2.8. Then G is a factor of G′,
and therefore 1 is a valid answer of the Factor-Diam-oracle to any node
in G′. The paths between the three nodes depicted in Figure 2.8 contain
at least 2t + 2 nodes. For every finite t, fix an assignment βt of random
bits to nodes. Because the t-hop neighborhoods of the three nodes in G′

do not overlap, it is possible to find γt that satisfies Lβt (vk) = Lγt (v′k) for
k ∈ {1, 2, 3}. This assignment of random bits γ will occur in G′ with
positive probability. Because the local views of v1, v2 and v3 in G′ will
then be the same as that in G, they will also return the same output.
In particular, all will agree on the triangle as the factor, and each one
will map itself do a different node in the triangle. But this means each
path between v′1, v

′
2 and v′3 must be of length 1 (mod 3). This cannot be

the case, because the three paths have different lengths even modulo 3,
contradicting our assumption.

k-Hop-MIS, k-Hop-Coloring and Min-Coloring. None of these
problems is CF-hard RW nor RW-hard WO for any constant k. Let G be the
(2k+ 1)-cycle, and fix a solution (G, s) to k-Hop-MIS, k-Hop-Coloring
or Min-Coloring to be the oracle supplied to nodes in G. To see that
none of the problems is CF-hard RW, let G′ ∼= 2 · G be the 4k + 2-cycle
and s′ a natural extension of s to G′, so s′ is also a valid oracle to the
chosen problem. But since G′ is a 2-product of G a RW-algorithm cannot
elect a leader in both G and G′, not even with access to an oracle to one
of the problems k-Hop-MIS, k-Hop-Coloring or Min-Coloring. We
use the same graph G to show that they are not RW-hard WO by arguing
why Or cannot be solved using a WO-algorithm with access to an oracle
to any of the three problems. Let (G, i) be an input instance to Or on

2.5. PROBLEM ZOO 47

1

2 3

4 5

6

Figure 2.9: Graph G with diame-
ter 3.

1 1′

2 3 3′ 2′

4 5 5′ 4′

6 6′

Figure 2.10: Graph G′, which is
a 2-product of G from Figure 2.9,
with diameter 3. The six dotted
edges were changed as indicated by
the thick edges.

the (2k + 1)-cycle in which every node v in G receives input i(v) = 0 so
that for all nodes the only valid output is o(v) = 0. For arbitrary t, let
(Ht, jt) ∼= t · (G, i) be the cycle on t · (2k + 1) nodes in which exactly one
node w receives input 1, while all other nodes v′ get input 0. Because the
problems do not depend on any input, we may safely assume an oracle to
one of the problems supplies the same answer in every round. Denote by
st the natural extension of s from (G, i) to (Ht, jt) such that st is a valid
oracle in (Ht, jt). The node v′ in (Ht, jt) which is furthest away from
w and its corresponding node v in G satisfy Lt(v) = Lt(v′), even when
taking st into account, and while the only valid output of v is 0, node v′
must output 1.

Diameter and approximating it. Approximating the diameter to an
arbitrary factor of α (including 1) is not CF-hard RW. To see this, observe
that the graph G in Figure 2.9 is a factor of G′ in Figure 2.10. Since
both have diameter 3, the answers supplied by an oracle in G are also
valid for corresponding nodes in G′. However, a valid output for Leader-
Election in G cannot be naturally extended to obtain a valid output in
G′. In contrast to that, the approximation problem α-Diameter-Apx is
RW-hard WO for arbitrary approximation guarantees α. This is the case
because a WO-algorithm can solve Or by broadcasting all input values

48 CHAPTER 2. OUTPUT REVOCABILITY

for D rounds if the answer supplied by the oracle to α-Diameter-Apx is
D. If after D rounds of broadcasting node v received a message containing
input 1, then v returns 1, otherwise v returns 0. It follows that any upper
bound on the network diameter (or its size) is RW-hard WO. This is true
even if not all nodes are equipped with the same upper bound, which
simplifies the proof regarding the hardness result of Min-Cut-Partition
for RW with respect to WO in the following section.

Min-Cut. Neither Min-Cut-Value nor Min-Cut-Partition are in
the class CF-hard RW, because the two graphs G and G′ from Figures 2.5
and 2.6 have the same minimum cut value (share the “same” partition
inducing the minimum cut). Thus the same answer supplied by the ora-
cle to G is also valid in G′ for Min-Cut-Value or Min-Cut-Partition,
respectively, but G′ has twice the number of nodes than G. Min-Cut-
Value is also not RW-hard WO. To see that, observe that all cycles share a
minimum cut size of 2. With the same argument as for the Factor-Mul-
tiplicity problem, a WO algorithm cannot use this information to solve
the Or problem. On the other hand, we find that Min-Cut-Partition
is RW-hard WO.
Claim 2.9. Min-Cut-Partition is RW-hard WO.

Proof. We show that using a WO-algorithm A with access to an (apply-
once) oracle for the Min-Cut-Partition problem, every node v can de-
termine an upper bound on the diameter. Since α-Diameter-Apx is
RW-hard WO for any α, this is sufficient to prove our claim. Given a par-
tition of the network into black and white nodes, we refer to a node which
has a neighbor in the opposite partition as a border node. By the term
depth of a node v we denote the minimum distance of v to a border node
within the same partition, i.e, border nodes have depth zero. Observ-
ing that the degree of each node is an upper bound on the cut size, the
main idea is now to bound the diameter of the network in terms of the
maximum depth of a node in each partition.

To accomplish that, algorithm A proceeds in three stages: The only
purpose of the first stage is to locally gather necessary information from
the oracle prior to the second stage. The main stage of A is the second
one, in which nodes compute an upper bound on the diameter of each

2.5. PROBLEM ZOO 49

partition individually. Lastly, the third stage’s role is to combine the two
individual upper bounds to compute an upper bound on the diameter of
the whole network, and disseminate the bound throughout the network.

In the beginning of the first stage of algorithm A each node v invokes
the Min-Cut-Partition-oracle to determine whether it is in the black
or in the white partition. Thereafter, node v sends a message containing
the name of its partition to all of its neighbors, so that every node can
determine whether it is a border node. Every non-border node v initializes
its depth value d(v)←∞, while border nodes b set d(b)← 0. Additionally,
border nodes b initialize a value D(b) = 0 to keep track of the maximum
observed depth inside b’s partition. Following that, all nodes enter the
second stage of A.

The first round of the second stage starts with all border nodes b send-
ing the message (D ≥ 0) to all neighbors within the same partition. This
initiates parallel breadth-first searches inside each partition to determine
the depth of every node, and to report back the maximum depth of a node
inside each partition. More specifically, when a node v with d(v) < ∞
receives a message (D ≥ i) for some i, then v forwards this message to
all members within the same partition. If on the other hand a node v
with d(v) = ∞ receives a message (D ≥ i), then v does not forward this
message, but instead it sets d(v) ← i + 1 and broadcasts the message
(D ≥ i + 1) among all members of the same partition. A border node b
that receives a message (D ≥ i) additionally updates D(b) ← i accord-
ingly, thus keeping track of the maximum observed depth of a node inside
its partition. The crucial point is that a border node b enters stage three,
if it does not receive an update to D(b) in round 2D(b) · (deg(b) + 1) + 2
of stage two. In other words, a border node b adjusts the time at which
it will enter stage three of algorithm A with each update to D(b).

When both nodes b and w of a cut edge {b, w} have entered stage three
of algorithm A, both b and w exchange their corresponding values D(w)
and D(b). If a border node b has exchanged D(b) with its neighbor w,
broadcasts the message (diam ≤ (2 · deg(b) + 1) · (D(b) +D(w))). Nodes
v receiving a message (diam ≤ i) for the first time enter stage three and
set their output register to i after forwarding the message to all their
neighbors.

We have to prove two things, namely that the upper bound broadcast

50 CHAPTER 2. OUTPUT REVOCABILITY

D + 3 D + 2

D + 2 D + 1

D

b

Figure 2.11: Illustration of the proof that Min-Cut-Partition is RW-hard WO.
A border node b that has observed a node at depth D,D+ 1 or D+ 2 will wait
long enough to receive a message from the closest node next in depth.

by a border node is indeed an upper bound for the diameter, and that no
border node broadcasts an incorrect value prematurely. To see the latter,
it suffices to show that any border node b as illustrated in Figure 2.11 will
wait long enough before starting with the third stage of the algorithm.
Our proof will be by induction on the maximum depth d(v) of a node v,
where we show that if b has received a message (D ≥ D(b)), then it will
also receive a message indicating a maximum depth of D(b) + 1 from a
node of that depth that is closest to b, if there is one. The initial step is
for d(v) = 0, i.e., the partition of b contains only border nodes, in which
case there is nothing to show. For the induction step, let v be a node
with depth d(v), and assume the border node b has learned the maximum
depth of a node within the partition is at least D(b) = d(v) − 1 by the
induction hypothesis. Let b′ denote a border node closest to b having a
node v′ at distance d(v) with d(v′) = depth(v). The distance from b to
b′ is bounded by 2 · deg(b) ·D(b), since the shortest path between b and
b′ that remains inside the same partition contains at most deg(b) border
nodes, and the distance between any two border nodes on that path is at
most 2·D(b). Any node u with depth i will broadcast its distance in round
i of stage two, and this message will arrive at the closest border nodes
(in distance i) after 2i rounds. Thus, node b′ will start forwarding the
message (D ≥ d(v′)) received from v′ in round tv′,b′ = 2d(v′) of stage two,

2.5. PROBLEM ZOO 51

and this message has to travel at most additional tb′,b = 2 · deg(b) ·D(b)
steps to reach b. But tv,b′ + tb′,b = 2 · (D(b) + 1) + 2 · deg(b) · D(b) is
exactly the round until which b waits for a message indicating a possibly
larger depth. Thus, no border node prematurely transmits an incorrect
partition depth to its neighboring nodes in the opposite partition.

Lastly, the found value is indeed an upper bound on the diameter by
a similar argument. The degree deg(b) of b in is an upper bound for the
size of the cut, and therefore a shortest path between any two nodes u
and v can cross the cut at most deg(b) times and contains at most deg(b)
border nodes.

It follows that Min-Cut is also RW-hard WO, since the output includes
the value of a minimum cut and, in particular, a valid output to Min-
Cut-Partition. In fact, Min-Cut is CF-hard RW as is established in the
following proof.

Claim 2.10. Min-Cut is CF-hard RW.

Proof. We describe an algorithm A that elects a leader among all border
nodes of the white partition. This will be accomplished by choosing a new
random identifier for every white border node in each round. The main
insight is that it can be checked whether every node tossed a unique iden-
tifier by counting the number of cut edges incident to different identifiers,
and comparing this number to the size of the cut provided by an oracle.
To that end, in a preliminary step of A every node v once invokes the or-
acle to Min-Cut so that v is supplied with the value of the minimum cut
k and its partition denoted by black or white. After obtaining an answer
from the oracle every node sends a message indicating the partition it is
in to all neighbors, enabling every node v to determine the number c(v)
of cut edges incident to v.

For the remainder of algorithm A all white border nodes w, i.e., nodes
inside the white partition with c(w) > 0, are referred to as candidate lead-
ers. Nodes inside the black partition and white nodes with c(v) = 0
set their output register ρ ← “not leader”. In every round r, every
candidate leader w chooses an identifier βr(w) by appending one ran-
dom bit to the previous identifier βr−1(w), and broadcasts the message
M = (r, βr(w), c(w)) among all white nodes. If some node v receives two

52 CHAPTER 2. OUTPUT REVOCABILITY

messages M , M ′ containing the same round numbers r and identifiers
βr(w), but a different number of cut edges c(w), then v broadcasts an
inhibiting message for round r. For all candidate leaders w denote by
Mw(s) the set of different messages M that were sent in round s and re-
ceived by w so far. Denote further by cw(s) :=

∑
(s,β,c)∈Mw(s) c the total

number of cut edges from different nodes received by w for round s, and
by sw the smallest non-inhibited round s for w that satisfies cw(s) = k,
i.e., the first non-inhibited round in which every candidate leader tossed
a different identifier. Whenever sw is not defined in round r, node w
sets its output register ρ ← ε. When on the other hand sw is defined in
round r, node w checks whether the identifier it chose in round sw was
the smallest among those appearing in Mw(sw). If this is the case, node
w sets ρ← “leader”, otherwise it sets ρ← “not leader”.

To see that the algorithm is correct, assume for the sake of contra-
diction that in round r all nodes are ready and two different candidate
leaders u,w output “leader”. Since all nodes are ready no node is cur-
rently sending an inhibiting message, and because both u and w output
“leader” the round numbers su and sw are both defined and not inhibited
for any node; assume w.l.o.g. that su ≤ sw. On the other hand, the value
cu(su) must be the same as cw(sw), namely they must both be k. This
can only be the case if both u and w have received a message from all
candidate leaders for round su and sw respectively . In round r node w
received all messages sent by other candidate leaders in round sw, and
therefore w must also have received all the messages sent by candidate
leaders in round su. Because round su is not inhibited for any node we
conclude that su = sw and since no inhibiting message is being sent in
round r also Mu(su) = Mw(sw) must hold, contradicting that both u and
w output “leader”. Lastly, algorithm A will reach a ready configuration
after every candidate leader tossed a unique identifier.

One can also give a WO-algorithm solving Leader-Election with
access to a Min-Cut oracle by using a more careful construction and
analysis. It is however easier to see that Min-Cut is CF-hard WO by ap-
plying Theorem 2.3, i.e., because Min-Cut is both CF-hard RW and RW-
hard WO it must also be CF-hard WO. This completes our effort to identify
in which classes each of the presented problems lie, and we turn ourselves

2.6. PROOF OF THEOREM 2.3 53

to proving the missing link in the last argument, namely Theorem 2.3.

2.6 Proof of Theorem 2.3

The techniques introduced in Section 2.3 together with the completeness
result for Or found in Section 2.5.2 allow us to present a proof for Theo-
rem 2.3. A key ingredient in the proof is the notion of a fork, which is a
sub-process of the execution dedicated to simulating some algorithm A.
The fork’s name [r] will indicate the round number in which the simu-
lation was started. A fork [r] dedicated to A encapsulates the complete
state required to simulate A, and messages sent and received by [r] are
identified by the fork’s name.

The theorem states that if a problem Π is both CF-hard RW and RW-
hard WO, then it is also CF-hard WO. Let Π ∈ CF-hard RW ∩ RW-hard WO
be a problem satisfying the premise. Denote by ALE a RW-algorithm
solving Leader-Election with an access to a Π-oracle, and by AOR
a WO-algorithm solving Or with an access to a Π-oracle respectively.
Employing Lemma 2.3, we assume that ALE in fact sustainably solves
Leader-Election. We wish to establish the assertion by presenting a
WO-algorithm A solving Leader-Election with access to a Π-oracle.

Of course, algorithm A cannot directly simulate ALE because it is a
RW-algorithm. We would therefore like to perform multiple simulations
of AOR in order to detect a ready configuration of ALE. Unfortunately,
these multiple simulations cannot be carried out concurrently since each
one of them requires its own independent access to the Π-oracle, whereas
A accesses the Π-oracle only once per round. Instead, we will use a careful
forking mechanism to schedule disjoint accesses to this scarce resource.

Algorithm A simulates ALE in phases, starting from phase 1, where
each phase p is responsible for executing round p of the simulation of
ALE. Indeed, in round 1 of phase p, node v executes round p of this
simulation accessing the Π-oracle. Following that, node v initiates a fork
called [p] dedicated to the simulation of AOR. The input to fork [p] is 0
if v was ready in round p under ALE (v observes that from the outcome
of round 1 of phase p); the input is 1 otherwise. In the next p rounds of
the phase, forks [1], [2], . . . , [p] (all dedicated to AOR) are executed, one
fork per round (say, in lexicographic order), so in total phase p consists

54 CHAPTER 2. OUTPUT REVOCABILITY

of p+ 1 rounds. The output of A is determined as follows: if fork [r] for
some r ≤ p has output 0 during phase p, then v writes the output value of
ALE’s round r (which was obtained during phase r) to A’s output register.

The fixed execution order of the forks simulating AOR guarantees that
every fork [p] is executed in a synchronized manner, that is, all nodes
execute round r of this fork in the same round under A. The logic of
Or guarantees that fork [r] of AOR has output 0 if and only if round r
under ALE’s simulation is in a ready configuration. Since AOR is a WO-
algorithm, node v can immediately rely on a returned 0 value to conclude
that this indeed happened. Moreover, as ALE is sustainably solving the
leader election problem, the output returned by v under A must lead to
a correct output for Leader-Election, thus establishing Theorem 2.3.

3
The Role of Randomness

Our goal in this chapter is to investigate the role that (Las-Vegas type)
randomness plays in the computational power of anonymous message pass-
ing algorithms (referred to hereafter as anonymous algorithms), regardless
of round and message complexity considerations. However, before we can
do so, care must be taken to rule out distributed problems in which unique
IDs are (perhaps implicitly) encoded in the input instances as those mock
cases obviously do not faithfully represent the properties of distributed
computability in anonymous networks. To that end, we restrict our focus
to the class GRAN (standing for Genuinely solvable by Randomized al-
gorithms in Anonymous Networks) of distributed problems Π that satisfy
(1) there exists a randomized anonymous algorithm that solves Π; and
(2) there exists a randomized anonymous algorithm that decides whether
a given graph is a legal input instance of Π; we refer to Section 3.1 for a
formal definition. Notice that with the exception of some artificial cases

55

56 CHAPTER 3. THE ROLE OF RANDOMNESS

generated for the purpose of investigating the leader election problem,
essentially all interesting distributed problems studied in the existing lit-
erature in the context of anonymous networks belong, in fact, to GRAN.

What exactly characterizes the computational power of a randomized
anonymous algorithm as opposed to a deterministic one? Surprisingly,
randomization is only required to establish a 2-hop coloring of the net-
work: Once a 2-hop coloring is known, every problem in GRAN can be
solved by a deterministic anonymous algorithm. More precisely, we prove
that every problem that can be solved (and verified) by a randomized
anonymous algorithm can also be solved by a deterministic anonymous
algorithm provided that the latter is equipped with a 2-hop coloring of
the input graph. Since the problem of 2-hop coloring a given graph (i.e.,
ensuring that two nodes with distance at most 2 have different colors) can
by itself be solved by a randomized anonymous algorithm, it follows that
with the exception of a few mock cases (those not in GRAN), the execu-
tion of every randomized anonymous algorithm can be decoupled into a
generic preprocessing randomized stage that computes a 2-hop coloring,
followed by a problem-specific deterministic stage. The main ingredient
of our proof is a novel simulation method that relies on some surprising
connections between 2-hop colorings and an extensively used graph lifting
technique.

3.1 Preliminaries and Genuine Solvability

2-Hop Colored Problems. Consider some distributed problem Π. The
2-hop colored variant Πc of Π is the problem defined as follows: the input
instance set Πc is

Πc = {(V,E, i, c) : (V,E, i) ∈ Π and c is a 2-hop coloring of (V,E)}

and given an input instance I = (V,E, i) ∈ Π, the valid output labeling set
for every corresponding input instance Ic = (V,E, i, c) ∈ Πc is Πc(Ic) =
Π(I).

Local Views. Given a node v in the labeled graph G = (V,E, `), we
denote by Ld(v,G) a rooted tree called the depth-d local view of v in

3.1. PRELIMINARIES AND GENUINE SOLVABILITY 57

G. (When G is clear from the context we may write Ld(v) instead.) To
avoid confusion, we distinguish between nodes and labels in G and vertices
and marks in Ld(v). The local view of node v is defined inductively as
follows: L1(v) consists of a single vertex x marked with `(v); Ld+1(v) is
the tree obtained by connecting the root of Ld(u) as a child of L1(v)’s root
for every u ∈ Γ(v). Refer to Figure 3.1 for an illustration. Notice that
the the local view Ld(v) in G essentially captures all information that a
deterministic algorithm A executed by node v in G could possibly gather
in d rounds of execution. The depth-infinity local view of a node v is the
infinite tree L∞(v) obtained from the inductive construction of Ld(v) by
taking d to infinity.

321 1 2 3

C6 = (V,E, `)

u0 u1 u2 u3 u4 u5

1

2 3

1 3 2

L3(u0)

`(ui) = (i mod 3) + 1 1

Figure 3.1: Depth-3 local view of node u0 in the labeled graph C6.

Genuine Solvability. Let Y be a set of labeled graphs called yes-
instances. The distributed decision problem ∆Y obtained from Y (see,
e.g., [54]) is the problem whose input instances I are all labeled graphs,
and whose valid output labelings o ∈ ∆Y (I) are such that all nodes output
“YES” if I ∈ Y and at least one node outputs “NO” if I 6∈ Y . We say that
problem Π is genuinely solvable by randomized algorithms in anonymous
networks if (1) there exists a randomized anonymous algorithm that solves
Π; and (2) there exists a randomized anonymous algorithm that solves the
distributed decision problem ∆Π, namely, the problem of deciding whether
a given labeled graph is an input instance of Π. Denote the class of such
problems Π by GRAN (standing for Genuinely solvable by Randomized
algorithms in Anonymous Networks).

58 CHAPTER 3. THE ROLE OF RANDOMNESS

Classic distributed symmetry breaking problems such as maximal in-
dependent set and graph (1-hop) coloring are known to be in GRAN. Com-
mon to these two problems is the local nature of their symmetry breaking
challenges.1 While the 2-hop variant of graph coloring is still solvable
by randomized anonymous algorithms and thus, belongs to GRAN, it is
not difficult to show that this no longer holds for its k-hop variant for any
k > 2. (In fact, the same can be said for maximal independent set under a
natural extension to k-hop variants that are not discussed in this chapter,
cf. [83].) Is this a coincidence? Does GRAN contain problems that require
(systematic) symmetry breaking between nodes which are more than two
hops apart? This chapter’s main result provides a negative answer to
these questions.

Theorem 3.1. If Π ∈ GRAN, then Πc is solvable by a deterministic
anonymous algorithm.

3.2 Related Work

The seminal work by Angluin [7] established the connection between com-
putation in networks and factors/products of graphs (see Section 3.3 for a
definition) and marks the beginning of history for distributed computabil-
ity theory. Her work employs a lifting technique from a graph to its prod-
ucts to establish impossibility of leader election (and equivalent problems,
e.g., assigning IDs), even under the assumption of Las-Vegas algorithms.
As stated in [57] graph products also characterize recognizable cases for
graph rewriting systems, a localized model for distributed computation.
Fibrations, i.e, a related generalization for directed graphs (see [35] for
an extensive overview), were found to characterize problems solvable by
self stabilization (a possibly incorrect output stabilizes to a correct one)
in [36]. The lifting technique also plays a key role in our proof of Theo-
rem 3.1.

Product graphs are also studied in their own right (see, e.g., [13,74]),
also products obtained from a random process [6]. For a graph G the

1 Despite the inherent locality of the notions of maximal independent set and
coloring, the results of [73,76] show that the corresponding distributed computational
tasks cannot be solved in constant time.

3.2. RELATED WORK 59

universal cover U(G) (cf. [7]) is a (possibly infinite) product of G closely
related to the depth-infinity local view. (The un-rooted tree U(G) can
be obtained from L∞(v) of any node v in G by (1) for every vertex x
in L∞(v) pruning x’s child corresponding to x’s parent; and (2) making
every edge in the resulting tree undirected.) In Section 3.4 we apply the
result of Norris [86] that isomorphism in U(G) up to depth |V |−1 implies
isomorphism to all depths to obtain a finite representation of a specific
factor of G.

There is a line of research investigating (mock-anonymous) problems
where the input instances permit leader election. For example, electing a
leader in a ring network is possible if the size n of the ring is known [66,67].
Later it was found that a (2−ε)-approximation of n is enough [1], even in
general networks [88]. The impact of prior knowledge (e.g., the network
size) on the solvability of various problems was studied in [33, 95]. We
restrict ourselves to problems in GRAN, which rules out cases that permit
leader election.

Electing a leader with a Monte-Carlo algorithm (a randomized algo-
rithm that is allowed to fail) was studied in rings [66, 67] and in general
graphs [3, 87]. Recently, the problem was found to be solvable with high
probability (i.e., with probability 1− n−c for any c ≥ 1, w.h.p. for short)
in [82]. Since electing a leader and assigning IDs are equivalent, any dis-
tributed problem solvable with IDs is w.h.p. solvable in an anonymous
network. On the other hand it is known that some symmetry-breaking
problems, e.g., MIS [5,78] or coloring [76], are in GRAN. It is thus a natu-
ral question to ask what exactly distinguishes Las-Vegas algorithms from
deterministic ones. We find that a 2-hop coloring suffices to completely
characterize the capabilities of a Las-Vegas algorithm solving a GRAN
problem.

Anonymous networks and electing a leader therein also plays a major
role in self-stabilization research, e.g. [43]. Self-stabilizing leader elec-
tion is possible with population protocols (nodes are controlled by asyn-
chronous finite state machines, cf. [9]) if the network is a ring [29]. In
the presence of an oracle the problem becomes solvable also in general
networks, however, the required oracle is impossible to implement as a
population protocol [28]. We hope that our contribution may also play a
role towards a better understanding of randomization in self-stabilization

60 CHAPTER 3. THE ROLE OF RANDOMNESS

(cf. [44,75]).
Naor and Stockmeyer [84] introduced the notion of locally checkable la-

belings (LCL), a labeling that can be checked by a deterministic constant-
time algorithm in a network with IDs. With IDs a randomized constant-
time algorithm cannot solve more LCLs than a deterministic one. This is
in contrast to the anonymous model, where the run-time is unbounded but
finite and a deterministic algorithm requires a 2-hop coloring to replace
randomization. The impact of having/not having identifiers on verifying
a proof (solution) to a decision problem was studied in [68], and the au-
thors observe that the existence of a uniquely determined leader cannot
be verified without identifiers. A hierarchy of decision problems in terms
of bit complexity required for a proof is established in [60]. In [53, 54]
Monte-Carlo algorithms for decision problems are studied in networks
with unidentified but distinguishable nodes and a strict hierarchy depend-
ing on the success probability is found. We utilize the notion of decision
problems to characterize the problem class GRAN.

The notion of a 2-hop coloring (also referred to as distance-2 color-
ing) has been used to assign frequencies in radio networks [71], to solve
optimization problems in parallel on shared memory computers [56], and
to emulate Turing machines in population protocols [8]. The related k-
local election problem, where a local leader needs to be unique only up
to distance k, was studied in an asynchronous model in [83]. A solution
to the 2-hop coloring problem can already be found in the weak model
of [47], where nodes are controlled by finite state machines. Minimizing
the number of colors in a k-hop coloring is, however, NP-complete for any
k ≥ 1 due to a result in [81]. We would like to note that port numbers
are not necessary under the assumption of randomized algorithms. Since
each node v knows its degree a 2-hop coloring can be found even without
port numbers and by including the sender’s color in every message missing
port numbers can be emulated. We show that a 2-hop coloring uniquely
determines a graph’s prime factor.

3.3 The Case for Infinity

Before presenting the proof of Theorem 3.1, we state and prove a slightly
easier variant of it that captures some of its main ideas. To that end,

3.3. THE CASE FOR INFINITY 61

for the moment, assume the following rather strong infinity model for
anonymous computation. Fix some problem Π, let Πc be its 2-hop col-
ored variant, and let Ic = (V,E, i, c) ∈ Πc be some input instance. An
algorithm under the infinity model is fully specified by a function A∞
from the set of depth-infinity local views to the possible output labels.
The algorithm sets the output of node v ∈ V to be o(v) = A∞(L∞(v)),
namely, it applies the function A∞ to L∞(v) and uses the returned image
as the output of v. We shall use A∞ to denote the algorithm under the
infinity model as well as the function that lies at its heart. Disregarding
computability issues of A∞ for the moment, we say that A∞ solves Πc

if the labeling o satisfies o ∈ Πc(Ic). Note that the infinity model in-
volves neither communication nor randomization. In other words, node
v’s output is completely determined by L∞(v) in which the vertices are
only marked with input labels and a 2-hop coloring. The remainder of
this section is devoted to proving the following theorem.

Theorem 3.2. If Π ∈ GRAN, then Πc is solvable in the infinity model.

A key ingredient of our proof for Theorem 3.2 is the notion of an
infinite view graph G∞ of a 2-hop colored graph G.

Definition 3.1. Let G = (V,E, `) be a 2-hop colored graph. We define
the infinite view graph G∞ = (V∞, E∞, `∞) of G by identifying L∞(v)
with ∞v and setting

V∞ := {∞v : v ∈ V } (the different depth-infinity local views in G),
E∞ := {(∞u,∞v) : (u, v) ∈ E},

`∞(∞v) := `(v)

Note that |V∞| ≤ |V |, where the inequality is strict when different
nodes in G have the same depth-infinity local view For example in the
graph C6 from Figure 3.1 the local views of nodes with the same color are
equal.

For the remainder of this section, fix some problem Π ∈ GRAN, let AR
be a randomized anonymous algorithm solving Π, and let Ic = (V,E, i, c)
be some input instance of Πc. We would like to construct an algorithm
A∞ that solves Πc under the infinity model. The idea behind A∞ is to
perform the following three steps for each node v ∈ V :

62 CHAPTER 3. THE ROLE OF RANDOMNESS

(i) construct the infinite view graph Ic∞ = (V∞, E∞, i∞, c∞) from L∞(v);
(ii) simulate a specific terminating execution of AR on J = (V∞, E∞, i∞);

and
(iii) use the output of node ∞v in that simulation as output for node v.
We now turn to explaining these three steps in detail.

3.3.1 Constructing Ic
∞

Consider L∞(v, Ic) for some node v ∈ V . For every node u ∈ V , the local
view L∞(u) appears as a sub-tree in L∞(v). Conversely, every depth-
infinity sub-tree of L∞(v) is the depth-infinity local view of some node
(or nodes) in V . Therefore, the set of all depth-infinity sub-trees of L∞(v)
is exactly the node set of Ic’s infinite view graph Ic∞. Moreover, (u, u′)
is an edge in Ic if and only if L∞(u′) appears as a sub-tree of L∞(u)
rooted at a child of L∞(u)’s root. In other words, Ic∞ can be uniquely
constructed from L∞(v).

Algorithm A∞ and its analysis relies on a canonical representation of
the depth-infinity trees L∞(u), namely, fixing the order of the vertices in
each depth-level. For that purpose, it suffices to fix a total order among
the children of each vertex. Such a total order follows immediately by
noticing that since Ic is 2-hop colored, every two siblings must have dis-
tinct marks. Using these canonical representations, two depth-infinity
local views can now be compared level by level, thus implying a total
order on V∞; let ∞u1, . . . ,

∞
uk be the nodes in V∞ indexed according to this

total order.

3.3.2 Simulating AR

The second step in A∞ is to simulate an execution of algorithm AR, the
randomized anonymous algorithm solving Π. More precisely, multiple
executions of AR will be simulated on the input J = (V∞, E∞, i∞). A
t-round simulation σ of AR on J (corresponding to executing AR on J
for t rounds) is fully determined by an assignment b : V∞ → {0, 1}t of t
random bits to every node in V∞. We refer to this simulation σ as the
simulation induced by b. The simulation σ is said to be successful if every
node ∞v ∈ V∞ produces an output under σ.

3.3. THE CASE FOR INFINITY 63

It will be essential for A∞’s correctness that all nodes in Ic choose the
same simulation of AR on J — i.e., the same assignment b — to determine
their output. This will be accomplished by using the total order on V∞ to
fix a total order among the possible assignments b : V∞ → {0, 1}t. To that
end, given two assignments b1, b2 : V∞ → {0, 1}t, b1 6= b2, the relation
b1 < b2 holds if and only if (b1(∞u1), . . . , b1(∞uk)) < (b2(∞u1), . . . , b2(∞uk)),
where the latter comparison is done lexicographically. For convenience,
we extend the total order on the assignments b so that it also covers
assignments b1 : V∞ → {0, 1}t1 and b2 : V∞ → {0, 1}t2 , t1 6= t2, by
defining that b1 < b2 holds if and only if t1 < t2.

Assuming that there exists a successful simulation of AR on J , algo-
rithm A∞ selects the successful simulation induced by the smallest assign-
ment b : V∞ → {0, 1}t. We denote this simulation by σ∞ and summarize
in the following lemma.

Lemma 3.2. If algorithm AR returns an output when executed on J , then
in A∞, all nodes select the same successful simulation σ∞.

3.3.3 The Output of A∞
The output value o(v) = A∞(L∞(v)) of node v ∈ V is set to the output
produced by node ∞v in simulation σ∞ of AR on J . For that to be well de-
fined, there must exist an execution of AR on J in which every node∞v pro-
duces an output (leading to a successful simulation). We establish the ex-
istence of such an execution by using the well-known lifting lemma [7,34] to
assert that J ∈ Π and thus, guarantee that a terminating execution of AR
on J exists. This requires developing a better understanding of the infinite
view graph’s fundamental properties based on the notion of factor graphs.

Factor Graphs and 2-Hop Colorings

The central concept of our analysis is that of factor/product graphs.2 For
two labeled graphs G = (V,E, `) and G′ = (V ′, E′, `′), we say that G′

2 Our notion of product graphs should not be confused with binary operations on
two graphs referred to as graph products. The unlabeled counterpart of the concept of
product graphs is often called graph lifts, or covering graphs in the existing literature.
We extend the definition presented in [58] to incorporate node labels. Note that
changes are required when considering non-simple or undirected graphs.

64 CHAPTER 3. THE ROLE OF RANDOMNESS

is a factor of G and that G is a product of G′ if there exists a function
f : V → V ′, referred to as a factorizing map, that satisfies:

(i) the mapping f is surjective (onto);
(ii) f respects the labeling functions, that is, `(v) = `′(f(v)) for every

node v ∈ V ; and
(iii) f is a local isomorphism, that is, for every node v ∈ V , the restriction

f |Γ(v) is a bijection onto Γ(f(v)).
We shall use the notations G′ �f G (and G �f G′) to denote that G′ is
a factor of G (and G is a product of G′). The role of the factorizing map
f is sometimes emphasized by saying that the factor/product is induced
by f . Refer to Figure 3.2 for an illustration.

f

32 11 32 1 2 13 2 3

1 2 3 1

C12

C62 3

g

321 1 2 3

1 2 3

C6

C3

Figure 3.2: The labeled graph C6 is a factor of C12 induced by the factorizing
map f (and C12 is a product of C6). Similarly, the labeled graph C3 is a factor
of C6 induced by the factorizing map g.

It is known that |V | = m · |V ′| for some positive integer m (see,
e.g., [58]). If m = 1, then the factorizing map is bijective and both
G′ �f G and G �f−1 G′ hold. In that case, we refer to the two labeled

3.3. THE CASE FOR INFINITY 65

graphs G and G′ as being isomorphic (since f is a graph isomorphism
that respects the node labels) and write G ∼=f G

′ or G ∼= G′ if the specific
bijection is not relevant. Moreover, it is well-established that if G �f G′,
then the graphs G and G′ are indistinguishable from the perspective of a
node v in G or G′ (see, e.g., [86]) as cast in the following fact.

Fact 1. Let G,G′ be two labeled graphs. If G �f G′, then L∞(v) =
L∞(f(v)) for every node v in G.

It follows from Fact 1 that the factor of a 2-hop colored graph is also
2-hop colored. Let G = (V,E, `) be a 2-hop colored graph and let G∞ =
(V∞, E∞, `∞) be its infinite view graph. Lemmas 3.3 to 3.5 establish
some important properties of G and G∞. These three lemmas can be
derived from the results on graph fibrations presented in [35] using an
intricate construction. (we briefly sketch this connection in Section 3.5);
for completeness, we also present stand-alone proofs. Our first Lemma 3.3
establishes that G∞ is a factor of G induced by the factorizing map f∞ :
V → V∞ that maps v to ∞v; we subsequently refer to f∞ as the infinite
view (factorizing) map of G.

Lemma 3.3. Let G = (V,E, `) be a 2-hop colored graph, and denote by
G∞ = (V∞, E∞, `∞) its infinite view graph, and f∞ : V → V∞ the infinite
view map. Then, G∞ is a factor of G induced by f∞, i.e., G∞ �f∞ G.

Proof. We show that f∞ is a factorizing map inducing the factor G∞
by verifying the properties required in the definition of factor graphs.
(1) The function f∞ : V → V∞ is surjective by the definition of V∞.
(2) For every v ∈ V , the labeling functions satisfy `(v) = `∞(f∞(v))
by the definition of `∞. (3) Bijectivity of f∞|Γ(v) for every v ∈ V is
established by showing that f∞|Γ(v) is injective and surjective separately.

To see that f∞|Γ(v) is injective, observe that two nodes u1, u2 ∈ Γ(v),
u1 6= u2, have different labels `(u1) 6= `(u2) since ` is a 2-hop coloring.
Property (2) thus ensures that f∞(u1) 6= f∞(u2), i.e., f∞|Γ(v) is injective.
Denote by ∞v the node f∞(v) and let ∞u be some neighbor of ∞v in G∞. It
follows from the definitions of E∞ and local views that the tree ∞u is a
sub-tree rooted at a child of ∞v’s root vertex. Thus, G admits some node
u ∈ Γ(v) with L∞(u) = ∞

u and the function f∞ satisfies f∞|Γ(v)(u) = ∞
u.

Hence, f∞|Γ(v) is also surjective.

66 CHAPTER 3. THE ROLE OF RANDOMNESS

A labeled graph G is called prime (cf. [35]) if all factors of G are
isomorphic to it. For example, the labeled 3-cycle C3 in Figure 3.2 is
prime, whereas C12 and C6 are not. Both C12 and C6 have C3 as a prime
factor. Lemma 3.4 states that the only prime factor of a 2-hop colored
graph G is its infinite view graph (indeed, C3 is isomorphic to the infinite
view graph of C12 and C6).

Lemma 3.4. If G is a 2-hop colored graph, then the infinite view graph
G∞ is the unique prime factor of G (up to isomorphism).

Proof. Let G and G′ be 2-hop colored graphs with G′ �f G. To establish
the statement we show that G′ is either isomorphic to G∞ or not prime.
The key to our proof is to show that G and G′ have the same infinite view
graph; this establishes the assertion due to Lemma 3.3.

To that end, let G∞ = (V∞, E∞, `∞) and G′∞ = (V ′∞, E′∞, `′∞) be
the infinite view graphs of G and G′, respectively, i.e., G∞ �f∞ G and
G′∞ �f ′∞ G′. Fact 1 implies that V ′∞ = V∞. The construction of E∞
guarantees that an edge (∞u,∞v) is in E∞ if and only if ∞v is a sub-tree
rooted at one of the children of ∞u’s root. Since V ′∞ = V∞, the same edge
is also in E′∞, and vice versa, every edge in E′∞ is also in E∞. Therefore,
it also holds that E′∞ = E∞. Finally, observe that `∞(∞w) and `′∞(∞w′) for
any nodes ∞w ∈ V∞ and ∞w′ ∈ V ′∞, respectively, are completely determined
by the marks attributed to the corresponding root vertices of ∞w and ∞

w′.
We conclude that (V∞, E∞, `∞) = (V ′∞, E′∞, `′∞), i.e., G∞ = G′∞.

Note that the previous Lemma 3.4 does not hold for arbitrary graphs
G, since, e.g., the uncolored 12-cycle has two distinct prime factors,
namely, the 3-cycle and the 4-cycle. In prime 2-hop colored graphs how-
ever, based on the following key lemma, we can use L∞(v) of node v in a
prime 2-hop colored graph G as the alias of v in G.

Lemma 3.5. Let G = (V,E, `) be a prime 2-hop colored graph and con-
sider some u, v ∈ V . Then, u = v if and only if L∞(u) = L∞(v).

Proof. Let G = (V,E, `) be a prime 2-hop colored graph and let u, v ∈ V
be two nodes in G. Since the “only-if” direction is true by the assumption
u = v, we only need to show that L∞(u) = L∞(v) implies u = v. To that
end, consider the infinite view graphG∞ = (V∞, E∞, `∞) ofG and assume

3.4. DEALING WITH (IN)FINITY 67

for the sake of contradiction that L∞(u) = L∞(v) in G but u 6= v. By
the definition of G∞, this implies that |V∞| < |V | and thus, Lemma 3.3
guarantees that G admits a non-trivial factor, in contradiction to the
assumption that G is prime.

Establishing the Output’s Validity

Getting back toA∞, we have shown that the graph Ic∞ constructed byA∞
(independently, at every node v) satisfies Ic∞ �f∞ Ic. (Recall that Ic =
(V,E, i, c) is an input instance of Π’s 2-hop colored variant Πc and that
I = (V,E, i) is the corresponding input instance of Π.) Algorithm A∞
simulates algorithm AR on the input J = (V∞, E∞, i∞). Since Ic∞ �f∞
Ic, the input instance I satisfies J �f∞ I with the same factorizing map
f∞.

We argue that J is an input instance of Π. Indeed, as Π is genuinely
solvable, there exists a randomized anonymous algorithm B that decides
whether a given labeled graph is an input instance of Π. By the lifting
lemma, B cannot distinguish J from I (cf. [7, 34]), hence the fact that
I ∈ Π implies that J ∈ Π, as required.

It follows that AR returns a correct output when executed on J , thus
Lemma 3.2 ensures that the same successful simulation σ∞ is selected
by every node. Employing the lifting lemma once more, we conclude
that the simulation obtained by lifting σ∞ from nodes in V∞ to nodes
in V corresponds to a possible execution η of AR on I (cf. [7, 34]). The
output labeling that A∞ produces for the input instance Ic is exactly
the output labeling produced by η in I and since the latter is valid, the
former must also be valid by the definition of problem Πc, thus establishing
Theorem 3.2.

Since the description of A∞ involves trees of infinite depth, one may
wonder whether it can be replaced by a “real” algorithm. This issue is
addressed in the next section, where we also establish Theorem 3.1.

3.4 Dealing with (In)finity

Recall that under the infinity model introduced in Section 3.3, each node
v in the graph essentially receives L∞(v). This luxury, of course, cannot

68 CHAPTER 3. THE ROLE OF RANDOMNESS

be realized in a standard anonymous algorithm, where node v can only
obtain Ld(v) for finite values of d. Nevertheless, in this section we show
how the algorithm presented in Section 3.3 can be adapted to finite depth
local views. A key ingredient in this adaptation is the following theorem
established by Norris [86].3

Theorem 3.3 (Norris [86]). Let G be a labeled graph with n nodes. The
local view Ln(v) fully determines L∞(v) for every node v ∈ V .

Employing Lemma 3.5, we obtain the following corollary that facili-
tates the usage of depth n local views as aliases for the nodes in an n-node
prime 2-hop colored graph (instead of the depth-infinity local views that
were used in Section 3.3).

Corollary 3.6. Let G = (V,E, `) be an n-node prime 2-hop colored graph
and consider some u, v ∈ V . Then, u = v if and only if Ln(u) = Ln(v).

Consider a 2-hop colored graph G = (V,E, `) and denote by n = |V∞|
the number of different depth-infinity local views in G. For a node v ∈ V ,
denote by ∗

v = Ln(v) the depth-n local view in G. The graph G∗ =
(V∗, E∗, `∗), where V∗ = {∗v : v ∈ V }, E∗ = {(∗u, ∗v) : (u, v) ∈ E}, and
`∗(∗v) = `(v) is called the finite view graph of G. The following corollary
is established due to Theorem 3.3, where fn is the depth-n truncating
function that truncates every depth-k local view, k ≥ n, to depth n, i.e.,
fn(∞u) = ∗

v.

Corollary 3.7. For a 2-hop colored graph G, it holds that G∗ ∼=fn G∞.

The graph G∗ can thus serve as a canonical representative for its equiv-
alence class under the equivalence relation ∼=. This is crucial because in
contrast to G∞, the graph G∗ has a finite bitstring representation. Fur-
thermore, each node v in a 2-hop colored graph G can identify its corre-
sponding node in G∗, within n = |V∗| rounds of the execution.

3 The result in [86] is described in terms of the depth n− 1 sub-trees of a graph’s
universal cover. To prove the corresponding statement for depth-n local views the
same refinement argument can be made.

3.4. DEALING WITH (IN)FINITY 69

3.4.1 Algorithm A∗
Fix some problem Π ∈ GRAN and randomized anonymous algorithm
AR that solves Π. Let Πc be the 2-hop colored variant of Π and let
Ic = (V,E, i, c) ∈ Πc be an arbitrary input instance of Πc. To establish
Theorem 3.1, we present a deterministic algorithm A∗ that solves Πc. Al-
gorithm A∗ resembles algorithm A∞ presented in Section 3.3, however,
the graph Ic∞ is replaced by its finite representation Ic∗ utilizing Corol-
lary 3.7.

Algorithm A∗, described from the perspective of an arbitrary node
v ∈ V , proceeds in phases indexed by the positive integers. Throughout
the execution of A∗, node v keeps track of an initially empty bitstring b(v),
where the value of b(v) for phase p+1 is determined during phase p. It will
be convenient to denote by bp the labeling function derived from the values
b(v) in phase p by setting bp(v) = b(v) for phase p. Correspondingly,
we denote by Ip = (V,E, i, c, bp) the graph obtained by augmenting Ic

with the labeling bp. In each phase p, every node v invokes the three
sub-procedures Update-Graph, Update-Output, and Update-Bits in this
order. We now describe each sub-procedure individually. For convenience,
we also include a pseudo-code style description of A∗ in Figure 3.3.

Update-Graph. We say that a labeled graph Ĝ = (V̂, Ê, î, ĉ, b̂) is a can-
didate for phase p if it satisfies the following three conditions:
C1. |V̂ | ≤ p;
C2. there exists a node v̂ ∈ V̂ such that Lp(v̂, Ĝ) = Lp(v, Ip); and
C3. (V̂, Ê, î, ĉ) is an input instance of Πc.

Denote by F the set containing the finite view graphs of all candidates
for phase p. In phase p, node v computes Lp(v, Ip) (requires p rounds)
and based on that, constructs the set F .

Note that the set F can be totally ordered in a predetermined way. To
see this, observe that for any finite view graph G∗ = (V∗, E∗, `∗), the set V∗
can be totally ordered in a predetermined way similarly to the order used
in Section 3.3.1. This total order on V∗ fully determines a representation
of G∗ as a finite bitstring s = s(G∗) (encoding the ordinal number and
label of every node as well as every edge in G∗). Given two finite view
graphs G∗ = (V∗, E∗, `∗) and G′∗ = (V ′∗ , E′∗, `′∗), we write G∗ < G′∗ if

70 CHAPTER 3. THE ROLE OF RANDOMNESS

either |V∗| < |V ′∗ | or |V∗| = |V ′∗ | and s(G∗) < s(G′∗) lexicographically.
If the set F is empty in phase p, then node v skips the remainder of

this phase. Otherwise, Update-Graph selects the smallest finite view graph
Ĝ∗ = (V̂∗, Ê∗, î∗, ĉ∗, b̂∗) ∈ F . Let Ĝ be a candidate that corresponds to
Ĝ∗ and recall that condition C2. guarantees the existence of a node v̂ ∈ V̂
such that Lp(v̂, Ĝ) = Lp(v, Ip). Let ∗v = Lq(v̂, Ĝ), where q = |V̂∗|, be the
node in V̂∗ that corresponds to v.

Update-Output. Node v simulates AR on the instance J = (V̂∗, Ê∗, î∗)
using the bitstrings provided by b̂∗ as a replacement for AR’s random
bits. Recall that b̂∗ corresponds to the bitstring assignment b̂ in some
candidate Ĝ and as such, reflects the bitstring assignment bp of Ip. Since
bp may assign bitstrings of varying lengths to the nodes in V , b̂∗ may
also assign bitstrings of varying lengths to the nodes in V̂∗. Therefore,
the simulation of AR on J , denoted by σ, lasts for l rounds, where l =
min{length(b̂∗(∗u)) : ∗u ∈ V̂∗} is the length of the shortest bitstring assigned
under b̂∗ to the nodes in V̂∗. If the simulation σ is successful (recall the
definition of a successful simulation in Section 3.3.2), then Update-Output
sets v’s output to the value returned by node ∗v in σ.

Update-Bits. The task of Update-Bits is to update the value of b(v),
extending it to a bitstring of length p. An assignment b̂′∗ : V̂∗ → {0, 1}p
is said to be a p-extension of b̂∗ if the bitstring b̂∗(∗u) is a prefix of b̂′∗(

∗
u)

for every node ∗u ∈ V̂∗. Let B be the set of p-extensions of b̂∗ that induce
successful simulations of AR on J = (V̂∗, Ê∗, î∗).

If B is empty, then b(v) remains unchanged. Otherwise, the prede-
termined total order on V̂∗ implies a predetermined total order on B —
let bmin be the smallest bitstring assignment in B according to this total
order and update the bitsring b(v) so that b(v)← bmin(∗v).

3.4.2 Analysis
In our effort to prove Theorem 3.1, we need to show two things: (1) algo-
rithm A∗ terminates; and (2) the output produced by A∗ is valid. We use
the same notation as in Section 3.4.1 to denote the various graphs involved
with A∗. Recall that the description of A∗ in Section 3.4.1 is provided

3.4. DEALING WITH (IN)FINITY 71

from the perspective of node v in phase p and when necessary, we explic-
itly mention p and/or v by adding them as a superscript. Specifically,
let
• Ip∗ = (V p∗ , Ep∗ , ip∗, cp∗, bp∗) be the finite view graph of Ip;
• Fp,v be the set of finite view graphs from Update-Graph;
• Ĝp,v∗ = (V̂ p,v∗ , Êp,v∗ , îp,v∗ , ĉp,v∗ , b̂p,v∗) ∈ Fp,v be the finite view graph se-

lected by Update-Graph;
• ∗
vp be the node in V̂ p,v∗ corresponding to v;

• Jp,v = (V̂ p,v∗ , Êp,v∗ , îp,v∗) be the graph used to simulate AR in Update-
Output; and

• σp,v be the corresponding simulation of AR on Jp,v induced by b̂p,v∗ .
We further denote by Ic∗ = (V∗, E∗, i∗, c∗) the finite view graph of Ic and
set n = |V∗|.

Termination. Recall the node v̂ in a candidate Ĝ promised by condition
C2.; we henceforth also refer to the node ∗v in the finite view graph of Ĝ
that corresponds to v̂ as being promised by condition C2.. Our analysis of
A∗ begins with the following insight regarding the graphs in Fp,v, which
follows from Corollary 3.6 as |V̂ p,v∗ | ≤ p.

Corollary 3.8. Consider some Ĝ′∗ = (V̂ ′∗ , Ê′∗, î′∗, ĉ′∗, b̂′∗) ∈ Fp,v and let
∗
v ∈ V̂ ′∗ be the node promised by condition C2.. Then, Lp(∗v, Ĝ∗) =
Lp(v, Ip).

Denote by Ĥp,v
∗ = (V̂ p,v∗ , Êp,v∗ , îp,v∗ , ĉp,v∗) the graph obtained from Ĝp,v∗

by ignoring the labeling b̂p,v∗ . To establish that A∗ terminates, we show
that the graph Ĥp,v

∗ “converges” towards Ic∗ as cast in the following lemma.

Lemma 3.9. There exists some q such that for every phase p ≥ q, the
graph Ĥp,v

∗ satisfies Ĥp,v
∗ ∼= Ic∗ for all nodes v ∈ V .

The difficulty in proving Lemma 3.9 is that the finite view graphs
Ĝp,v∗ are constructed based on the local views in (V,E, i, c, bp) rather
than (V,E, i, c) — in particular, the labels bp(v) are constantly chang-
ing. Observe however that in A∗, the value bp+1(v) depends solely on
Lp(v, Ip). This means that for every two nodes u, v ∈ V and phase p, if
Lp(u, Ip) = Lp(v, Ip), then bp+1(u) = bp+1(v). By induction on p, we con-
clude that L∞(u, Ip) = L∞(v, Ip) if and only if L∞(u, Ic) = L∞(v, Ic).

72 CHAPTER 3. THE ROLE OF RANDOMNESS

In other words, nodes indistinguishable without the labeling bp are also
indistinguishable when the labeling bp is included. This immediately im-
plies that in every phase p, the graph obtained from Ip∞ by ignoring the
labeling bp is isomorphic to Ic∞, which derives the following observation
due to Corollary 3.7.

Observation 3.10. For every phase p under algorithm A∗, it holds that

(V p∗ , Ep∗ , ip∗, cp∗) ∼= Ic∗ .

Utilizing Observation 3.10, Lemma 3.9 can be established by showing
that Ĝp,v∗ = Ip∗ . The following Lemma 3.11 assures that Ip∗ is among the
candidates in all phases p ≥ n.

Lemma 3.11. If p ≥ n, then the set Fp,v contains Ip∗ for every node
v ∈ V .

Proof. We establish the assertion by showing that Ip∗ (or a graph iso-
morphic to it) is a candidate for phase p, noticing that (Ip∗)∗ = Ip∗ . By
Observation 3.10, we conclude that |V p∗ | = |V c∗ | = n ≤ p, thus condi-
tion C1. holds. Since Ip∗ is a factor of Ip, Fact 1 guarantees that node
∗
v = Ln(v, Ip) ∈ V p∗ satisfies Lp(∗v, Ip∗) = Lp(v, Ip), thus condition C2.
holds as well. As already argued in Section 3.3.3, the lifting lemma guar-
antees that Ic∞ is an instance of Πc, therefore by Corollary 3.7, so is Ip∗ ,
implying that condition C3. holds which completes the proof.

Lemma 3.11 confirms that Ip∗ may be selected by Update-Graph if
p ≥ n. It remains to show that there is a phase p in which Ip∗ will be
selected by Update-Graph. The following Lemma 3.12 confirms that the
latter occurs if p ≥ 2n, thus establishing Lemma 3.9.

Lemma 3.12. If p ≥ 2n, then Ĝp,v∗ = Ip∗ for all nodes v ∈ V .

Proof. Lemma 3.11 guarantees that Ip∗ ∈ Fp,v for every node v ∈ V . The
assertion is established by showing that Ip∗ is the smallest graph in Fp,v
according to the total order used in Update-Graph.

Let Ĝ′∗ = (V̂ ′∗ , Ê′∗, î′∗, ĉ′∗, b̂′∗) ∈ Fp,v be the finite view graph of some
candidate Ĝ′ and set n′ = |V̂∗|. Assume for the sake of contradiction
that Ĝ∗ < Ip∗ . This implies that either (1) n′ < n; or (2) n′ = n and

3.4. DEALING WITH (IN)FINITY 73

s(Ĝ′∗) < s(Ip∗). We will show that neither (1) nor (2) hold and thus,
contradict Ĝ′∗ < Ip∗ .

To that end, let ∗
v′ ∈ V̂ ′∗ and ∗

v ∈ V p∗ be the nodes in Ĝ′∗ and Ip∗ ,
respectively, promised by property C2.. Since |V p∗ | = n and |V ′∗ | = n′ ≤ n,
it follows that the diameter of both Ip∗ and Ĝ′∗ is at most n − 1. Since
p ≥ 2n, the local view Lp(∗v′, Ĝ′∗) contains the sub-tree ∗u′ for every u′ ∈ V̂ ′∗
and each distinct depth-n′ sub-tree of Lp(∗v′, Ĝ′∗) corresponds to a different
node ∗u′ ∈ V̂ ′∗ . Similarly, the local view Lp(∗v, Ip∗) contains the sub-tree ∗u for
every u ∈ V p∗ and each distinct depth-n sub-tree of Lp(∗v, Ip∗) corresponds
to a node ∗u ∈ V p∗ .

Corollary 3.8 guarantees that Lp(∗v′, Ĝ′∗) = Lp(v, Ip) = Lp(∗v, Ip∗).
Therefore, the depth-n′ truncating function fn′ maps every node ∗u ∈ V p∗
to a node in V̂ ′∗ . It follows by the definition of local view that Ĝ′∗ �fn′ I

p
∗ .

If n′ = n, then fn′ is the identity function, hence Ĝ′∗ = Ip∗ , in con-
tradiction to the assumption that Ĝ′∗ < Ip∗ . If on the other hand n′ < n,
then Ĝ′∗ is a non-trivial factor of Ip∗ , contradicting the fact that the finite
view graph Ip∗ is prime. The assertion follows.

Consider some node v ∈ V and phase p ≥ 2n. Lemma 3.12 guarantees
that the graph Jp,v on top of which the simulation σp,v is carried out is in
fact (V∗, E∗, i∗) — denote this graph by J̃ . The design of Update-Graph
ensures that J̃ ∈ I and the reasoning from Section 3.3.2 can be applied
to show that all nodes u ∈ V perform the same simulation σp,u on J̃ —
denote this simulation by σp and let bp : V∗ → {0, 1}∗ be the bitstring
assignment that induces σp.

Let z be the smallest integer z ≥ 2n so that there exists a z-extension
of b2n that induces a successful simulation on J̃ and let b′ be the small-
est such z-extension according to the predetermined total order on the
bitstring assignments. Notice that the integer z is well defined since AR
is guaranteed to produce a correct output with probability 1. The de-
sign of Update-Bits ensures that in phase z, every node u ∈ V updates
b(u)← b′(∗u), where ∗u is the node in V∗ that corresponds to u. The design
of Update-Output then ensures that in phase z + 1, all nodes set their
outputs according to the successful simulation σz+1, thus establishing the
termination of A∗ as cast in the following lemma.
Lemma 3.13. In phase z + 1, all nodes v ∈ V set their outputs A∗(v).

74 CHAPTER 3. THE ROLE OF RANDOMNESS

Correctness. It remains to show that the output produced by A∗ is
correct. Denote by op(v) the output of node v ∈ V in phase p of A∗,
where we use the designated symbol ε to indicate that v does not return
any output in phase p, writing op(v) = ε. Intuitively, we establish the
correctness of A∗ by arguing that there exists an execution η of AR on
I = (V,E, i) such that for every node v ∈ V and integer 1 ≤ p ≤ z + 1, if
op(v) 6= ε, then the output of node v in round p under η, denoted by opη(v),
is opη(v) = op(v). (In fact, the execution η is obtained by lifting σz+1 from
V∗ to V .) The correctness of A∗ then follows from the correctness of AR.

Lemma 3.14. For any phase p, if node v returns an output op(v) 6= ε in
phase p, then op(v) = opη(v).

Proof. Let p be a phase, and suppose that node v ∈ V sets its output
in phase p to op(v) 6= ε. Since v sets op(v) in phase p, the graph Ĝp,v∗
is defined and the simulation σp,v of the randomized algorithm AR is
successful. With that in mind, let t be the length of σp,v, and let η be the
execution of AR on I = (V,E, i) obtained by lifting σz+1 from V∗ to V .
The goal now is to show that op(v) = opη(v).

Note that for any k > 0, the first k rounds in η are fully determined
by the first k random bits of each node u ∈ V and their respective input
values. More specifically, the first k rounds in η for a single node v are fully
determined by Lk(v, I) and the first k−i bits replacing the random bits of
each node u ∈ Hi(v), 0 ≤ i ≤ k, where Hi(v) the set of all nodes at most
i hops away from v, i.e, H0(v) = {v} and Hi+1(v) = Hi(v)∪Γ(Hi(v)) for
every i ≥ 0.

The construction of Jp,v ensures that Lp(∗vp, Jp,v) = Lp(v, I). More-
over, for every u ∈ Hp(v), there exists a node ∗

u ∈ V̂ p,v∗ such that the
bitstring assigned to ∗

u satisfies b̂p,v∗ (∗u) = bp(u). Since v sets op(v) in
Update-Output, the simulation σp,v is successful and thus, the length of
b̂p,v∗ (∗u) is at least t. The design of Update-Bits ensures that bp(u) is a
prefix of bp+1(u) for every phase p and node u ∈ V . Therefore, the first
t− i bits assigned to node u ∈ Hi(v), 0 ≤ i ≤ t are the same t− i bits that
are used in the first t rounds of η. We conclude that in η node v returns
the output otη(v) = op(v) at node v in round p.

Lemma 3.14 is sufficient to establish the correctness of A∗ as well: Us-

3.5. FIBRATIONS AND 2-HOP COLORINGS 75

ing the same line of arguments as in Section 3.3.3, once more invoking the
lifting lemma, one can show that the output obtained by lifting the output
of simulation σz+1 is valid for I (and Ic). By combining Lemmas 3.13
and 3.14, Theorem 3.1 now follows.

3.5 Fibrations and 2-Hop Colorings

Boldi and Vigna [35] extensively study the notion of fibrations, roughly
speaking a generalization of factorizing maps to edge-colored directed
graphs (refer to [35] for an exact definition). A special case the two
authors study are deterministic (edge) colorings which require that for
every node, all out-edges must be colored differently. In this section we
wish to highlight a connection between our observations regarding 2-hop
colored graphs in Section 3.3 and deterministically edge colored directed
graphs. In the following, we write undirected as well as directed edges as
tuples (u, v). It will be clear from the context whether we are referring to
a directed or an undirected edge.

Let G = (V,E, c) be a 2-hop colored undirected graph, and consider
the edge colored directed graph H = (V ′, E′, c′) obtained by (1) choosing
V ′ = V ; (2) adding two directed edges (u, v) and (v, u) to E′ for every
undirected edge (u, v) ∈ E; and (3) setting c′(e) = 〈c(u), c(v)〉 for every
directed edge e = (u, v) ∈ E′. In the terminology of [35], the graph H is
symmetric, since for every edge (u, v) a symmetric edge (v, u) is present.
Moreover the edge coloring c′ is deterministic, and c′ respects the edge
symmetries since for every edge e = (u, v), colored 〈c1, c2〉, the symmetric
edge ē = (v, u) is colored 〈c2, c1〉. We call the graph H obtained from G
in this manner as being G’s directed (edge colored) representation. Note
that reversing the construction, in hope to obtain a 2-hop colored graph, is
not possible for general deterministically edge-colored symmetric directed
graphs.

Observe that a fibration ϕ : H → H ′, where H and H ′ are directed
representations of two graphs G and G′, translates to a factorizing map
f : G → G′ as defined in Section 3.3, and vice versa. One can use this
connection to derive the statements from Section 3.3 from the results
presented in [35].

76 CHAPTER 3. THE ROLE OF RANDOMNESS

Algorithm: A∗, a deterministic algorithm solving Πc at node v
. Initialization of variables for node v:
(V̂∗, Ê∗, î∗, ĉ∗, b̂∗)← the empty labeled graph.
∗
v ← NULL
b(v)← the empty bitstring
for phase p← 1, . . . do

Update-Graph(p)
Update-Output(p)
Update-Bits(p)

end
end
Procedure Update-Graph(p):

L← Lp(v, Ip) . b(v) is treated as a labeling function
construct the set F of candidates for phase p
if F = ∅ then

skip phase p
end
else

Ĝ∗ = (V̂∗, Ê∗, î∗, ĉ∗, b̂∗)← the smallest graph in F
Ĝ = (V̂, Ê, î, ĉ, b̂)← a candidate that corresponds to Ĝ∗
v̂ ← the node v̂ ∈ V̂ such that Lp(v̂, Ĝ) = Lp(v, Ip) as

assured by C2.
q ← |V̂∗|
∗
v ← the node ∗v = Lq(v̂, Ĝ) ∈ V̂∗ with Lp(v̂, Ĝ) = L

end
end
Procedure Update-Output (p):

σ ← the simulation of AR on (V̂∗, Ê∗, î∗) induced by b̂∗
if σ is successful then set o(v) to be the output of ∗v in σ

end
Procedure Update-Bits (p):
B ← {b : b is a p-extension of b̂∗, and the simulation of AR on

(V̂∗, Ê∗, î∗) induced by b is successful}
if B 6= ∅ then

bmin ← the smallest b ∈ B
b(v)← bmin(∗v)

end
end

Figure 3.3: The deterministic algorithm A∗ that solves Πc.

4
The Cost of Randomness

We have seen that in an anonymous network, symmetry breaking tasks
can only be solved if randomization is available. But how many random
bits are required to solve any such task? As it turns out, the answer to
this question depends on the desired runtime of the algorithm.

Consider, for example, the fundamental symmetry breaking problem
of graph coloring, where the goal is to assign colors to nodes so that
every two neighbors get a different color. In a complete network, i.e.,
when every node is connected to all other nodes, a unique color must be
used for every node. Therefore, for complete networks the answer is at
least logn random bits. One result of our work is that in expectation
Ω(logn) random bits are required even if every node in the network has
at most 3 neighbors. Moreover, we establish that O(logn) random bits in
expectation are also sufficient to solve all tasks in any network.

Alongside this random bit complexity, we consider the runtime required

77

78 CHAPTER 4. THE COST OF RANDOMNESS

to solve such tasks. Increasing the runtime allows one to draw the ran-
dom bits more carefully, thus reducing the number of unnecessarily drawn
random bits. Conversely, drawing random bits more generously enables
faster runtime. We study how exactly the random bit complexity relates
to the runtime.

More precisely, we show that there is an efficiency trade-off between
the runtime and the random bit complexity required to solve any task.
Our contribution is to establish asymptotically tight lower and upper
bounds on the achievable trade-off. Those bounds imply that using more
than O(log logn) rounds to solve a task does not result in a better ran-
dom bit complexity. Since Linial showed that local symmetry breaking
requires roughly log∗ n rounds [76], we obtain that the interesting cases
occur when the asymptotic runtime is between log∗ n and log logn. In the
respective extreme cases, i.e., when the runtime is log∗ n or log logn, our
lower bound states that the random bit complexity is Ω(d

√
n) and Ω(logn),

correspondingly, where d is a constant that depends on the runtime.
For the upper bound we devise a randomized scheme that produces

sufficiently many random bits for any anonymous network algorithm. To
this end we introduce the notion of a target function f which specifies
the desired runtime of our scheme, and consider the cases where f(n) is
asymptotically between log∗ n and log logn. The trade-off achieved by
our scheme asymptotically matches the lower bound with high probabil-
ity1 and in expectation, also for all runtimes f that lie between the two
extremes.

Our scheme is uniform: The algorithm does not require any knowledge
about the network topology, such as its size or diameter. As such, it can
be used to devise new uniform algorithms for classic symmetry breaking
problems by utilizing existing deterministic algorithms. This is due to
the fact that those algorithms often assume IDs, but function correctly
even if those IDs are only locally unique. As one example, consider the
deterministic coloring algorithm from [91] which runs in O(log∗ n) time on
graphs with bounded growth. By applying our scheme, we obtain a uni-
form coloring algorithm for anonymous networks with the same runtime.
In light of Linial’s lower bound [76] the O(log∗ n) runtime is asymptoti-

1We say an event occurs with high probability (w.h.p.) if it occurs with probability
1− n−c for any constant c.

4.1. BROADCAST MODEL AND TARGET FUNCTIONS 79

cally optimal. This speed comes at the cost of a relatively high random bit
complexity, which is Θ(d

√
n). Note, however, that d is a freely selectable

parameter of our scheme that turns into a constant factor of the runtime
hidden in the big-O notation. If one is willing to sacrifice the asymptotic
runtime, on the other end of the spectrum, our approach allows to solve
the same task in O(log logn) time using as little as O(logn) random bits.
By tuning the f parameter, any trade-off between the two extremes can
be achieved.

So how can we possibly bound the random bit complexity for any
computable task? The answer to this complexity question can be based
on the computability result presented in Chapter 3, where we saw that a
2-hop coloringis necessary and sufficient to replace access to random bits
in any anonymous network algorithm. We therefore establish our upper
bound by devising a 2-hop coloring algorithm whose runtime and random
bit complexity are tuneable by a target function f and a number d.

4.1 Broadcast Model and Target Functions

Broadcast Algorithms. We consider randomized algorithms that al-
ways return a correct output and have finite expected runtime (Las Vegas
algorithms). In contrast to before, our algorithms run under the syn-
chronous broadcast model, i.e., in every round, each node u sends the
same finite length (broadcast) message to all nodes in Γ(u). Moreover,
we assume that the source of random bits for node u is independent from
the source of random bits for any other node v ∈ V . Recall that A is
called deterministic if A does not draw any random bits. Like before, we
restrict ourselves to uniform algorithms, i.e., the nodes are unaware of
any network parameter, e.g., the network size n, nor do they have unique
identifiers (the network is anonymous).

We consider two complexity measures of an algorithm A. (1) The
runtime of A in some graph G is the number of rounds that are executed
until all nodes terminate, and (2) the random bit complexity of A is the
maximum number of random bits drawn by any node during the execution
of A.

80 CHAPTER 4. THE COST OF RANDOMNESS

The Target Function f(n). A function f is called a target function if
f is positive, strictly increasing, and continuous. Note that the properties
of a target function f ensure that the inverse target function f−1(n) of
f(n) is well-defined. For easier readability, we denote the inverse function
by gf (n) = f−1(n), or g(n) if f is clear from the context.

The purpose of a target function is to capture the runtime of some de-
terministic algorithmA. The runtime f∗(n) ofA is positive, but not neces-
sarily strictly increasing in the input size n, nor continuous. However, for
any ε > 0, there is a target function f such that f∗(n) ≤ f(n) ≤ f∗(n)+ε,
i.e., f “captures” f∗ at all integer values n ≥ 1.

4.2 Related Work

The theory of distributed computability began with Angluin’s insight that
leader election is impossible in anonymous rings [7]. A similar impossi-
bility argument can be made for deterministic algorithms that solve local
symmetry breaking tasks, e.g., coloring or MIS, and literally hundreds of
more impossibilities are known [19]. In short, the computational power of
deterministic anonymous network algorithms is limited [84].

Under the assumption of uniform algorithms, the leader election im-
possibility result from [7] extends to the case where randomization is avail-
able. In contrast to that, when randomization is available, there are well
known algorithms that solve the local symmetry breaking problems col-
oring [76] and MIS [5, 78] also in anonymous networks. It is interesting
to note that both randomized MIS algorithms are used to construct com-
pletely derandomized (deterministic) variants under the assumption that
unique identifiers are available. How much randomization an anonymous
network will ever need from a computability perspective can be character-
ized in terms of a 2-hop coloring [46] (presented in Chapter 3). In this
chapter, based on that observation, we tackle the complexity question,
i.e., the random bits and runtime necessary to obtain a 2-hop coloring.
Also outside of anonymous algorithms, randomization has many applica-
tions in distributed computing (cf. [20]), e.g., in agreement [17, 18], self
stabilization [45], and non-uniform leader election [5].

Still, one of the most basic tasks to solve in a distributed setting re-
mains coloring, and often coloring and MIS algorithms go hand in hand.

4.2. RELATED WORK 81

As such, they were studied thoroughly (please refer to [26] for an exten-
sive overview), usually aiming to use at most ∆ + 1 (or at least some
small function of ∆) many colors. Perhaps surprisingly, when identifiers
are available, deterministic coloring algorithms are among the fastest. A
recent series of results by Barenboim, Elkin, and Kuhn [24,27,72] yields a
∆+1 coloring in O(∆+log∗ n) runtime by utilizing a new defective color-
ing technique. The picture is completed by the observation that colors can
be traded for runtime [25], i.e., one can get O(∆ε+log∗ n) for O(∆) colors
or O(log ∆ · log∗ n) for O(∆1+ε) colors. These deterministic coloring algo-
rithms have in common that they need to assume IDs. Also randomized
algorithms (e.g. [90,91]) often assume IDs and are not uniform, i.e., they
assume knowledge about n or some other global network parameter. Re-
lieving the algorithm from that knowledge, we focus on achieving a good
random bit complexity instead of low number of used colors, and refer to
standard methods (e.g., [59]) to reduce this number. On the other hand,
the O(logn) algorithms for MIS [5,78] and coloring [76] are uniform, and
can be formulated even in very restricted models [92]. We improve on the
runtime at the lowest possible price one needs to pay for that in terms of
random bit complexity.

It is worth mentioning that in the context of self-stabilization [41],
uniform MIS and (2-hop) coloring protocols were studied also for anony-
mous networks. For instance, [93] considers deterministic and randomized
protocols that color paths and rings, and later [61] obtain randomized pro-
tocols for MIS and coloring in arbitrary networks. The recent work [31]
presents a 2-hop coloring protocol for graphs of bounded degree. In the
self-stabilization context, the difficulty lies in dealing with faults. The
random bit complexity is of no concern in the protocols mentioned above,
and the runtime of [31] is necessarily much higher than in our non-faulty
environment.

A concept related to that of randomization is non-determinism. The
distributed notion of this concept, where often IDs are assumed, was ini-
tiated by Naor and Stockmeyer [84], who studied what could be checked by
deterministic constant-time algorithms if some labeling (non-determinism)
is known in advance. Subsequently, the number of non-deterministic
choices required to solve decision problems in this distributed manner
was investigated [68]. A hierarchy of decidable problems depending on

82 CHAPTER 4. THE COST OF RANDOMNESS

the necessary amount of non-determinism arises [60], also when the net-
work is anonymous. Recently, it was found that in fact the combination
of non-determinism with randomization allows distributed algorithms to
decide any language in constant time [50].

4.3 Tailor-Made 2-Hop Coloring

Our technical contribution starts by presenting a 2-hop coloring algorithm,
called Tailor-2-Hop-Coloring, with customizable runtime. Specifi-
cally, our algorithm is parametrized by a target function f and two inte-
gers a > 2, d ≥ 2. As discussed before, we assume that f(n) is between
log∗ n [76] and log logn (see Section 4.4). Then, the algorithm finds a
2-hop coloring in 3d · f(n) rounds in expectation and with probability
1− na−2.

The main difficulty is to choose how quickly random bits should be
drawn, without knowledge of n. From the discussion above we know that
in some round 3d · f(n), we should have drawn at least Ω(logn) bits. If
we draw the bits too quickly, however, we might draw too many bits in
the last round before the algorithm finishes. To deal with that, we design
our bit drawing function b(i) for the target function f and the integer
parameters a and d as follows. Let i be some positive integer, and write
i = dp+ s with 0 ≤ s ≤ d− 1, i.e., p = bi/dc and s = i (mod d). The bit
drawing function for i is defined as

b(i) = b(dp+ s) = a · dlog g(p)e(d−s)/d · dlog g(p+ 1)es/d .

We describe Tailor-2-Hop-Coloring from the perspective of node
u ∈ V (please refer to Algorithm 1 for a pseudo-code description). The
algorithm progresses in phases p, starting from phase 1, and every phase
consists of d sub-phases, which in turn consist of 3 rounds each.

Node u maintains a variable x storing all random bits drawn in the
course of the execution. In the first sub-phase of each phase, u appends
bits to x until the length of x is b(dp). In the remaining d− 1 sub-phases
s = 1, . . . , d − 1 of phase p, by appending bits to x, the number of used
random bits is increased to b(dp+ s). This process takes place in the first
round of each sub-phase. After drawing bits in round 1 of sub-phase i, u
sends its (preliminary) color x to all nodes v ∈ Γ(u).

4.3. TAILOR-MADE 2-HOP COLORING 83

In the beginning of the second round of sub-phase i, node u receives
the colors chosen by all nodes in Γ(u). The list consisting of u’s own color
x and all the received colors is then sent to all neighbors of u. In the
beginning of the third round of sub-phase i node u receives such a list
from each neighbor. If x occurs only once in each list, then u selects color
x and terminates. Otherwise, if x was used by multiple nodes, the process
continues.

The idea behind Tailor-2-Hop-Coloring is as follows. In the first
sub-phase of each phase, every node u draws a random color x from the
set of colors {1, . . . , g(p)a}. Our choice of b ensures that the remaining

Algorithm 1: Tailor-2-Hop-Coloring(f, a, d) as executed by
node u.

Initialization:
g(n)← f−1(n)
x← ε . the empty bit string

Phase p = 1, 2, . . . :
For sub-phase s = 0, 1, 2, . . . , d− 1:

. Round 1 of sub-phase s:
Append random bits to x until |x| = b(pd+ s)
Send x to all neighbors
. Round 2 of sub-phase s:
Receive x1, . . . , xδ from each non-terminated neighbor
v1, . . . , vδ ∈ Γ(u)
Send list 〈x, x1, . . . , xδ〉 to all neighbors
. Round 3 of sub-phase s:
Receive lists L1, . . . , Lδ from each neighbor
if x appears exactly once in every list then

Choose color x and terminate
end

end
end

84 CHAPTER 4. THE COST OF RANDOMNESS

sub-phases of phase p are used to interpolate between g(p)a and g(p+ 1)a
if the chosen colors are not a valid 2-hop coloring. The interpolation is
performed so that within each phase p, the multiplicative increase in the
number of random bits used in each sub-phase is fixed. If, for instance,
Tailor-2-Hop-Coloring is in the first sub-phase of some phase p =
df(n)e, then the number of bits used by u is at least a logn.

Please note that in round 3 of each sub-phase, a node chooses a color
only if it does not violate the 2-hop coloring constraint. Thus, the output
of Tailor-2-Hop-Coloring is always a valid 2-hop coloring. The re-
mainder of this section is dedicated to establishing the following theorem.

Theorem 4.1. The runtime of Tailor-2-Hop-Coloring with high prob-
ability and in expectation is O(f(n)) rounds. The random bit complexity
of Tailor-2-Hop-Coloring with high probability and in expectation is
O(h(f(n)) · logn) bits, where

h(i) = d

√
dlog g(i+ 1)e
dlog g(i)e .

It will sometimes be convenient to express the bit drawing function in
terms of h:

b(pd+ s) = b(dp) · h(p)s , for 0 ≤ s ≤ d, and (4.1)
b(pd+ s+ 1) = b(dp+ s) · h(p) , for 0 ≤ s ≤ d . (4.2)

Consider the last phase p and sub-phase s for which b(pd + s) < a logn.
In that case, b(pd + s + 1) ≥ a logn bits are drawn in the next step.
Thus, due to the second expression, the essence of Theorem 4.1 is that
Tailor-2-Hop-Coloring “overshoots” the necessary a logn bits by at
most a factor of h(p).

Recall that the target function f can be thought of as the runtime func-
tion of any deterministic algorithm that relies on a 2-hop coloring. Before
getting into the details of the analysis, let us briefly put Theorem 4.1
into perspective by considering the corner cases where f ∈ Θ(log logn)
or f ∈ Θ(log∗ n). In the former case h(f(n)) is in O(1), whereas in the
latter case h(f(n)) is in O(d

√
n). Thus, we obtain the following corollary

from Theorem 4.1.

4.3. TAILOR-MADE 2-HOP COLORING 85

Corollary 4.1. Consider a target function f , and let R denote the ran-
dom bit complexity of Tailor-2-Hop-Coloring.

(i) If f(n) ∈ Θ(log∗ n), then R is O(d
√
n · logn) ⊆ O(d−1√n) w.h.p. and

in expectation.
(ii) If f(n) ∈ Θ(log logn), then R is O(logn) w.h.p. and in expectation.

The analysis of Tailor-2-Hop-Coloring’s runtime and random bit
complexity are done separately. We first establish the high-probability
results, beginning with the runtime.

Lemma 4.2. Algorithm Tailor-2-Hop-Coloring terminates after at
most O(f(n)) rounds w.h.p.

Proof. To establish Lemma 4.2 we will show that all nodes terminate in
phase p = df(n)e with high probability. This is sufficient to establish the
claim, since every phase consists of 3d rounds. In our proof, for any node
z, we denote by xz the random bit string stored in z’s variable x after the
first sub-phase of phase p.

First, consider some node u ∈ V that did not terminate before phase
p. By the definition of the bit drawing function b, it holds that |xu| ≥
a log g(p) ≥ a logn. Node u terminates in round 3 of sub-phase 1 only
if xu 6= xv for all v ∈ Γ2(u). If v terminated in some phase r < p,
then |xv| < |xu| since v stopped drawing random bits in phase r, and
in particular the probability that xu = xv is 0. If on the other hand v
still participates in phase p, then the probability that xu = xv is at most
1/2a logn = 1/na, since |xu| = |xv| ≥ a logn in phase p.

Now consider the event T that all nodes terminate in phase p. The
opposite event ¬T , i.e., the event that at least one node does not terminate
in phase p, occurs if there are nodes u, v ∈ V such that xu = xv and
u ∈ Γ2(v). By applying the union bound, we get

Pr[¬T] ≤
∑
u,v∈V

Pr[xu = xv] ≤ 1
na−2 ,

so that T occurs with probability at least (1− 1/na−2). For any constant
c, we obtain that T occurs with probability 1− n−c by setting a = c+ 2
in Tailor-2-Hop-Coloring. Recalling that each phase consists of 3d
rounds, the claim follows.

86 CHAPTER 4. THE COST OF RANDOMNESS

Lemma 4.3. The random bit complexity of Tailor-2-Hop-Coloring is
at most h(f(n)) · a logn with high probability.

Proof. We prove the statement by taking the exact sub-phase in which
Tailor-2-Hop-Coloring terminates (w.h.p.) into account for our analy-
sis. To that end, let p and s be a phase and a sub-phase, correspondingly,
such that

(h(p))s · log g(p) ≤ logn ≤ (h(p))s+1 · log g(p) . (4.3)

In sub-phase s+ 1, each non-terminated node draws at least a(h(p))s+1 ·
log g(p) ≥ a logn bits and therefore, the probability that any two nodes
draw the same bit string is bounded from above by 1/2a logn = 1/na.
Let ¬T denote the event that at least one node u does not terminate in
sub-phase s+ 1 of phase p. Event ¬T occurs if there is at least one node
in v ∈ Γ2(u) that has drawn the same bit sequence as u, and applying the
union bound yields that

Pr[¬T] ≤
∑
u,v∈V

1
na
≤ 1
na−2 .

As the last step of the proof, we bound the number of bits a · g(p) ·
(h(p))s+1 used in sub-phase s+1 of phase p. Since Equation (4.3) implies
that p ≤ f(n), we obtain that with high probability the bit complexity is

a(h(p))s+1 · log g(p) ≤ ah(p) · logn ≤ ah(f(n)) · logn ,

as desired.

Next, we establish the results for the expected values.
Lemma 4.4. The expected runtime of Tailor-2-Hop-Coloring is at
most O(f(n)).

Proof. Let P be the random variable denoting the phase in which Tailor-
2-Hop-Coloring terminates. From the definition of the expected value,
for the expected runtime E[P] we obtain

E[P] =
∞∑
i=1

i · Pr[P = i] =
∞∑
i=1

Pr[P ≥ i] ,

4.3. TAILOR-MADE 2-HOP COLORING 87

where Pr[P ≥ i] corresponds to the probability of proceeding to phase i.
Furthermore, the algorithm only proceeds to phase i+ 1 in the case that
there is a pair of nodes u and v within 2-hops distance that get assigned
the same color in phase i. The number of bits used in sub-phase 0 of any
phase p is adlog g(p)e. Therefore, we can apply the union bound and get
that

Pr[P ≥ i+ 1] ≤
∑
u,v∈V

1
2adlog g(i)e ≤

∑
u,v∈V

1
2a log g(i) ≤

n2

(g(i))a .

Recalling that g(f(n)) = n we get that

Pr[P ≥ f(n) + i] ≤ n2

(g(f(n) + i))c ≤
n2

na · 2i ≤
1
2i ,

given that a > 2. We set ϕ = f(n) and divide the summation of the
expected runtime into the part before and after ϕ. It follows that

E[P] =
∞∑
i=1

Pr[P ≥ i] =
ϕ∑
i=1

Pr[P ≥ i] +
∞∑
i=1

Pr[P ≥ ϕ+ i]

≤
ϕ∑
i=1

1 +
∞∑
i=1

1
2i ≤ ϕ+ 1

The claim follows since each phase consists of 3d rounds.

Lemma 4.5. If f(n) is at least log∗ n, then the random bit complexity of
Tailor-2-Hop-Coloring is O(h(f(n)) · logn) in expectation.

The proof of Lemma 4.5, similar to that of Lemma 4.4, relies on care-
fully inspecting the round in which Tailor-2-Hop-Coloring terminates.
However, due to the possibly large growth of g (which directly affects the
growth of the bit drawing function), the analysis requires more attention.
Instead of considering only the phase in which Tailor-2-Hop-Coloring
terminates, we take the exact step in that phase into account. This yields
a division of the expected value into 5 (instead of the previous 2) terms.
Bounding each term individually leads to a rather lengthy proof, which
is therefore deferred to the appendix. Theorem 4.1 is now established by
combining Lemmas 4.2 to 4.5.

88 CHAPTER 4. THE COST OF RANDOMNESS

u

v

x1 x2

p1 p2

Figure 4.1: A (u, v)-gadget of length i = 4, consisting of 2i nodes: The two
special nodes u and v, and the two paths p1 and p2 of length i−1 with endpoints
x1 and x2, respectively. Since the gadget is symmetric, symmetry between u
and v can only be broken by their individual random coin tosses.

4.4 Trade-off Lower Bound

Our goal in this section is to show that the trade-off achieved by Tailor-
2-Hop-Coloring’s bit drawing function is asymptotically optimal. For
this effort, it is sufficient to study lower bounds for the 1-hop variant of
the coloring problem, since every 2-hop coloring is also a 1-hop coloring.
More precisely, we are going to establish the following:

Theorem 4.2. Let A be any randomized uniform anonymous coloring
algorithm. If the expected runtime of A is asymptotically smaller than that
of Tailor-2-Hop-Coloring, then A’s expected random bit complexity is
asymptotically larger than that of Tailor-2-Hop-Coloring.

The rough idea is that in order to break symmetry, the nodes have to
draw random bits according to some (possibly randomized) scheme. We
distinguish two cases: In the first case, A may try to break symmetry
quickly by using many random bits. We show that then, the expected
random bit complexity of A needs to be large. For the second case, where
A prevents this behavior, we show that the expected runtime of A is
asymptotically as large as that of Tailor-2-Hop-Coloring.

Our proof relies on a graph construction consisting of several so-called
(u, v)-gadgets. A (u, v)-gadget of length i (depicted in Figure 4.1) consists
of 2i nodes, namely two two paths p1, p2 of length i − 1 and two special
nodes u and v, connected by an edge. Furthermore, nodes u and v are
connected to one endpoint of both p1 and p2. The other endpoints of p1
and p2 are referred to as x1 and x2, respectively. We obtain the graph

4.4. TRADE-OFF LOWER BOUND 89

H1 H2

H3H4

Figure 4.2: The graph G(4, 3), consisting of 4 (u, v)-gadgets H1, H2, H3, and
H4, each of length 3.

G(m, i) utilized in our lower bound proofs by connecting m (u, v)-gadgets
of length i in a ring-like topology. This is done by simply chaining the
m gadgets together by their endpoint nodes x1 and x2—please refer to
Figure 4.2 for an illustration. We note that G(m, i) consists of 2im nodes.

Consider, for example, the graph G = G(2k, 3) for some arbitrarily
large k. Since the graph G is symmetric from the perspective of each
(u, v)-pair in any of the gadgets, every such pair can break symmetry
only by their individual random coin tosses. Assume now for the sake of
contradiction, that there is a coloring algorithm A with an expected bit
complexity β ∈ ω(logn). In that case, with arbitrarily large probability,
at least one of the (u, v)-pairs tosses exactly the same sequence of random
bits. This contradicts the claim that β ∈ ω(logn), and thus we obtain the
following result from our graph construction.

Corollary 4.6. Any coloring algorithm must have an expected random
bit complexity in Ω(logn).

In our effort to prove the trade-off lower bound we would like to have a
better grip than that on the random coin tosses made by the nodes. Specif-
ically, for any algorithmA and (u, v)-gadget H, we denote by BA(i,H) the
random variable taking on the maximum number of random bits drawn
by nodes u and v in H until and including round i. Whenever A is clear

90 CHAPTER 4. THE COST OF RANDOMNESS

from the context, we omit it in the notation and write B(i,H) instead.
The following insight about those random variables in the graph G(m, i)
will be helpful in our proof of Theorem 4.2.

Lemma 4.7. Consider any algorithm A, and let H be a single (u, v)-
gadget of length i. Let m ≥ 2 be an integer, and denote by H1, . . . , Hm

the m (u, v)-gadgets in the graph G(m, i). For any j ≤ i, all the ran-
dom variables B(j,Hk), obtained from an execution of A in G(m, i), are
independent and distributed like B(j,H).

Proof. Observe that in every Hk, the nodes u and v are i hops away from
each endpoint, and that j ≤ i. Consider any (u, v)-gadget Hk in G(m, i).
Since j ≤ i, the execution of A until round j for nodes u and v cannot
depend on any node w from a different gadget Hl 6= Hk. It thus holds
that all B(j,Hk) are independent and distributed like B(j,H).

As noted before, the proof for Theorem 4.2 is divided into two parts,
depending on how A chooses to draw random bits (in expectation). For
that, based on the bit drawing function b used by Tailor-2-Hop-Col-
oring (for fixed parameters f, a, and d), we introduce a threshold for the
number of random bits drawn by some algorithm. Specifically, we say
that algorithm A draws a lot of random bits if

∃i0∀i ≥ i0 E[B(i,H)] ≥ b(3i)/4 .

Note that here H is a (u, v)-gadget of length i. If A does not draw a
lot of random bits, then we say that A draws few random bits. Due to
Lemma 4.7, properties of single (u, v)-gadgets can be lifted to instances
of G(m, i). One such property we will use is encapsulated in the following
technical lemma:

Lemma 4.8. Let A be any coloring algorithm. If A draws a lot of random
bits, then

∀i ≥ i0∃j ≤ i E[B(j,H)] ≤ b(i)/4, and E[B(j + 1, H)] ≥ b(i+ 2)/4 ,

where H is a (u, v)-gadget of length i.

4.4. TRADE-OFF LOWER BOUND 91

Proof. Assume the statement is false. By induction,

E[B(0, H)] = 0 = b(0) < b(i)/4
E[B(1, H)] < b(i+ 2)/4
E[B(2, H)] < b(i+ 4)/4

...
E[B(i,H)] < b(i+ 2i)/4

This contradicts the premise that A draws a lot of random bits, i.e., that
E[B(i,H)] ≥ b(3i)/4 for the (u, v)-gadget H of length i.

We now have the essential tools to prove Theorem 4.2, and first con-
sider the case where A draws a lot of random bits. In that case, for sure,
the runtime of A can be better than that of Tailor-2-Hop-Coloring.
Imagine for example a process that draws infinitely many random bits in
the first round—one would immediately obtain a 2-hop coloring within
a single round with probability 1. The essential insight of the following
Lemma 4.9 is that no matter how “smartly” one tries to draw a lot of
random bits in hopes to get a better runtime, the expected bit complexity
will be asymptotically worse than that of Tailor-2-Hop-Coloring.

Lemma 4.9. Let A be any coloring algorithm. If A draws a lot of random
bits, then A’s expected random bit complexity is Ω(h(f(n))2 · logn).

Proof. Consider the i0 promised by the fact that A draws a lot of ran-
dom bits. Let k be such that i = dk > i0, and let j be the integer
obtained from Lemma 4.8 for this i. By Markov’s inequality it holds that
Pr [B(j,H) ≤ b(i)/8] ≤ 1/2, where H denotes the (u, v)-gadget of length
i. Now consider the graph G = G(m, i), where m = 2b(i)/(2i), and denote
by H1, . . . , Hm the m copies of H in G. Then, G consists of n = 2b(i)
many nodes, i.e., logn = b(i).

Let N denote the random variable taking on the number of gadgets
Hk for which B(j,Hk) ≤ log(n)/8. Due to Lemma 4.7, we obtain that
all B(j,Hk) are independent and distributed like B(j,H). Therefore,
E[N] is at least m/2, and once again applying Markov’s inequality, we

92 CHAPTER 4. THE COST OF RANDOMNESS

get Pr [N ≥ m/4] ≤ 1/2. The probability p to terminate in round j can
now be bounded as

p ≤ 1
2 + 1

2

(
1− 1

2log(n)/8

)m/4
≤ 1

2 + 1
2

(
1− 1

8√n

)n/(8i)
.

Note that since b(di) = log g(i) and b(d(i+ 1)) = log g(i+ 1), and g(n) ≥
2n, it must hold that b(d(i+ 1)) ≥ b(di) + 1. Therefore,

b(i) ≥
bi/dc∑
α=1

b(αd)− b((α− 1)d)︸ ︷︷ ︸
≥1

≥
⌊
i

d

⌋
≥ i

2d .

We obtain that i ≤ 2db(i) ≤ 2d logn. This means for p that

p ≤ 1
2 + 1

2

(
1− 1

8√n

)n/(16d logn)

≤ 2/3 ,

for large i. The probability of entering round j + 1 is thus at least 1/3.
Recalling from Lemma 4.8 that E[B(j + 1, H)] ≥ b(i + 2)/4, we obtain
that the expected bit complexity is at least 1

3 ·
1
4 b(i + 2). Now, since

f(n) = f(2b(i)) = f(2b(dk)) = f(2a log g(k)) ≥ k, we obtain that df(n) ≥ i.
We can therefore bound the expected bit complexity from below by

1
12 b(i+2) ≥ 1

12 b(df(n)+2) = 1
12h(f(n))2·log g(f(n)) ∈ Ω(h(f(n))2·logn) ,

as desired.

Next, we consider the opposite case where A draws only few random
bits.

Lemma 4.10. Let A be any coloring algorithm. If A draws few random
bits, then the expected runtime of A is Ω(df(n)).

Proof. Fix some i0, and let i ≥ i0 be the constant guaranteed by the
fact that A draws few random bits, i.e., E[B(i,H)] < b(3i)/4. Therefore,
due to the Markov inequality, we get that Pr[B(i,H) < b(3i)/2] > 1/2.
Now consider the graph G consisting of m = 2b(3i)/(2i) many copies

4.4. TRADE-OFF LOWER BOUND 93

H1, . . . , Hm of H, connected in a ring topology by their endpoints. Then,
G consists of n = 2b(3i) many nodes, i.e., logn = b(3i).

Again, due to Lemma 4.7, all B(j,Hk) are independent and distributed
like B(j,H). Let N denote the random variable taking on the number
of gadgets Hk in G for which B(j,Hk) < log(n)/2. Then it holds that
E[N] > m/2, and with Markov’s inequality we get that Pr[N > m/4] >
1/2. Let p be the probability that some gadget Hk does not terminate in
round i. We get that

p ≥ 1
2

(
1−

(
1/
√
n
)m/4) ≥ 1

3 ,

for sufficiently large i0. Observe that f(n) = f(2b(3i)) ≤ f(2log g(d3i/de)) =
f(g(d3i/de)) ≤ 3i/d + 1. We can thus bound the expected runtime of
A from below by (i + 1)/3 ≥ (d − 1)f(n)/9, which is in Ω(df(n)) as
desired.

We obtain the desired optimality of the Tailor-2-Hop-Coloring Al-
gorithm from Lemma 4.9 only if h(f(n))2 ∈ ω(h(f(n))). In the case where
f ∈ O(log logn), however, h(f(n)) is bounded from above by a constant.
It may thus appear that such an f is not covered by our lemmas.

To see that this is not an issue, observe that the constant 3 in the
definition of drawing a lot of random bits was chosen arbitrarily. In other
words, when h(f(n)) is bounded by some constant ρ, one may replace 3
in the above definition with ρ+ 3. This way, we obtain that the coloring
algorithm A draws “ρ-few” random bits. We can now apply the same
reasoning as in the proof of Lemma 4.10 to obtain that the runtime of A
is in the same order as that of Tailor-2-Hop-Coloring. This concludes
our effort to establish Theorem 4.2.

5
Local Checking

Network administrators must know whether the network is correct, e.g.
whether destination t is reachable from source s, or whether the forward-
ing rules present in the network imply that packets may potentially be
sent in a cycle. Often such network properties are checked by constantly
sending probe packets into the network, or, alternatively, by sending the
state of all nodes in the network to a central location where all the data
is then verified. Both methods take time, often too much time. It would
be advantageous to perform these costly global operations only if needed
– and otherwise rely on inexpensive local verification [89]. The chapter
at hand studies local checkability of fundamental structural properties for
directed as well as undirected networks: Nodes of a network can check
whether a given global structural property of a network is guaranteed,
just by locally comparing their state with the state of their neighbors.

The concept of local checkability was popularized already in the 1990s

95

96 CHAPTER 5. LOCAL CHECKING

by Naor and Stockmeyer [85]. In our context, this concept refers to the
nodes’ ability to decide (verify) whether the network has the desired prop-
erty by exchanging labels with their neighbors. The notion of a decision
in this distributed setting is inspired by the class co-NP from sequential
complexity theory: The nodes decide Yes if all nodes agree, and No if at
least one node disagrees. In practice the disagreement could subsequently
be reported. With deterministic algorithms only few properties can be
checked locally. If however nodes are allowed to use (a bounded amount
of) nondeterminism, a rich complexity hierarchy arises [60]. We focus on
the fastest possible case where nodes are only allowed to communicate a
single round, cf. [69]. Furthermore, our model has no strings attached,
i.e., we do not assume any identifiers or port numbers: All we allow is a
single exchange of labels between neighbors.

To obtain a better understanding of nondeterminism in the context of
distributed computing, let us quickly explain a toy example. Consider the
set Bipartite containing all bipartite graphs. In the sequential setting,
Bipartite would be called a language, and the Yes-instances (words) in
Bipartite are exactly the graphs that allow a bipartition of the nodes. As
in the sequential setting, one may now ask: Is there a (nondeterministic)
distributed algorithm deciding whether a given graph G is in Bipartite,
using only a single communication round? Indeed, such an algorithm
exists [60]. First each node v nondeterministically chooses either the value
0 or 1 and sends it to all neighbors. Next, v checks if all its neighbors
sent the value not chosen by v.

The proposed nondeterministic algorithm indeed decides Bipartite.
A bipartition of the graph corresponds to a nondeterministic choice of
0 and 1 for every node v so that all neighbors of v choose the opposite
value. Thus, when the graph G is bipartite, the nodes nondeterministi-
cally decide Yes. On the other hand, if G is not bipartite, then in all
possible nondeterministic choices of the nodes, at least two nodes will
have a neighbor that chose the same value. In that case, the nodes decide
No.

Every nondeterministic distributed algorithm can be expressed as a
deterministic algorithm with access to a proof labeling [60], where the
proof labeling corresponds to an oracle in the sequential setting. More
precisely, a nondeterministic algorithm is a pair (P,V), referred to as

97

prover-verifier pair (PVP). The task of the prover P is to assign labels to
nodes (the proof) in a Yes-instance. The verifier V gets as input at node
v only the labels of v and its neighbors. Now V has to decide Yes (at all
nodes) in Yes-instances labeled by P; In No-instances V has to decide
No (for at least one node) regardless of the node labels.

The complexity of such nondeterministic algorithms is measured in
terms of the maximum proof label size used by P. This corresponds to
the number of nondeterministic choices made throughout the execution,
and bears similarity with the notion of oracle size in sequential complexity
theory. In our Bipartite example each node only needs a single bit1 as
its label.

There are two ways to view communication in directed graphs: Nodes
can communicate only in the direction of the edge (directed one-way com-
munication), or the edge direction imposes no restrictions for communica-
tion but only for the network property itself (directed two-way communi-
cation). We investigate both cases, as well as the undirected case, where
nodes communicate with all their neighbors. One of our findings is that
all three models are fundamentally different, not only in terms of proof
label size, but also in terms of decidability. The results for each of our
three network structure detection problems are summarized in Table 5.1.

Another result of our work is the first non-trivial asymptotically tight
lower bound for the directed s-t reachability [4] problem that does not
rely on descriptive complexity methods. In that problem, two nodes s
and t are guaranteed by the problem setting, and the question is whether
there is a directed path from s to t. Note that both the directed and the
undirected variant are well understood in terms of descriptive complexity,
and the directed variant is known to be more difficult [4, 30]. While the
observations from [30] lead to a proof label size of 1-bit for the undirected
variant, showing a non-trivial lower bound for the directed case remained
an open question.

In light of our tight Θ(logn) bound for the s-t reachability prob-
lem with directed one-way communication we revisit the O(log ∆) bound
from [60]. In particular, their upper bound relies on the fact that the un-
derlying communication mechanism discloses port numbers to the verifier.

1Note that a standard covering argument (the 6-cycle is bipartite, while the 3-cycle
is not) can be used to show that one nondeterministic choice is also necessary.

98 CHAPTER 5. LOCAL CHECKING

Decision Problem Directed Directed Undirected Sectionone-way two-way
s-t reachability2 Θ(logn) O(log ∆) 1 [60] 5.4
Contains a Cycle not possible Θ(logn) 2 5.3.1

Acyclic Θ(logn) Θ(logn) same as Tree 5.3.2
Tree3 Θ(logn) [69] Θ(logn) Θ(logn) [69] 5.3.3

Table 5.1: The proof label size (in bits) necessary and sufficient for a PVP with
respect to different graph decision problems and communication primitives. Here
n denotes the number of nodes in the network G, and ∆ is the maximum degree
of any node in G.

As we will detail in Section 5.4, this is unlikely to be necessary: When
directed two-way communication is available, the label can be extended
to include checkable port numbers using only O(log ∆) additional bits.
Since referring to a single port number requires log ∆ bits anyway, this
does not change the asymptotic label size.

5.1 Local Checkability in (Un)directed Graphs

Directed and Undirected Graphs. In this chapter, a graph G =
(V,E) may be either directed or undirected, but we always assume G
to be (weakly4) connected. For a node v ∈ V , we denote by degin(v)
and degout(v) the number of incoming and outgoing edges of v in G,
respectively. We set deg(v) = degin(v) = degout(v) if G is undirected, and
deg(v) = degin(v)+degout(v) if G is directed. By ∆(G) = maxu∈V deg(u)
(or simply ∆) we denote the maximum degree in G.

For two nodes u, v ∈ V , let dist(u, v) denote the distance between both
nodes in G (regarding the distance function in the underlying undirected
graph in the directed case).

2The O(log ∆) one-way upper bound with port numbers [60] translates to our
two-way model, see Section 5.4.

3The O(log n) upper bound for directed one-way communication from [69] also
applies in the two-way model.

4A directed graph is called weakly connected if the underlying undirected graph
is connected.

5.1. LOCAL CHECKABILITY IN (UN)DIRECTED GRAPHS 99

Communication Means. Let G be a graph, let ` be a node labeling
for G, and let v be a node in G. We now consider three means of com-
munication in G, namely U , D1, and D2, corresponding to undirected,
one-way, and two-way communication, respectively. If G is undirected,
then U(v) is the multiset [`(u1), . . . , `(uk)] containing deg(v) labels, where
u1, . . . , uk are the neighbors of v. If G is directed, then we distinguish
two cases. For directed one-way communication, D1(v) is the multiset
[`(u1), . . . , `(uk)] containing degin(v) labels, where u1, . . . , uk are the in-
neighbors of v. For directed two-way communication, D2(v) is a pair
(I,O), where I is D1(v) and O is the multiset containing degout(v) many
labels of v’s out-neighbors. We denote the empty multiset by [].

Observe that all multisets above are unordered, i.e., there are no
unique identifiers and there is no notion of port labels on the edges. If
such an order is necessary (for some verifier), then the means to order
the multiset need to be included in the proof labels, since the communi-
cation mechanism itself does not attach any strings to the messages. In
the directed two-way case, however, there is a clear distinction between
messages transferred along the edge direction or opposite to it. Note that
this distinction is necessary: If it was not made, the directed two-way
mode would essentially be equivalent to the undirected case, since the
edge direction becomes indistinguishable.

Local Checkability. An (un)directed network property is specified by
a set Y of (un)directed graphs containing the Yes-instances, and any
(un)directed graph G 6∈ Y is referred to as a No-instance. A prover-
verifier pair (P,V) for Y (PVP for short) works as follows.

The prover P gets as an input a graph G ∈ Y and computes a (finite)
node label `(v) for every v ∈ V . This labeling ` obtained from P is
referred to as proof. Let G be any graph, and let ` be any node labeling
for G. The verifier V is a distributed algorithm that gets as an input at
node v the label `(v); and in addition either U(v) if Y is an undirected
property, or D1(v) respectively D2(v) depending on the communication
means if Y is a directed property.

A PVP (P,V) is correct for Y if it satisfies
(1) if G ∈ Y and ` was obtained from P, then V returns Yes at all

nodes; and

100 CHAPTER 5. LOCAL CHECKING

(2) if G 6∈ Y , then V returns No for at least one node, regardless of the
node labels.

Whenever necessary, we specify the PVP by the communication means
used for the verifier, and write U-PVP, D1-PVP, and D2-PVP corre-
spondingly. When X ∈ {U,D1, D2} is some means of communication,
then a network property Y is X-locally checkable if there is a correct
X-PVP for Y .

The quality of a PVP is measured in terms of the maximum label size
in bits assigned by the prover. For a PVP (P,V), the proof size of (P,V) is
f(n) if the labels assigned by P use at most f(n) bits in any Yes-instance
containing at most n nodes. For a network property Y , the X-proof size
for Y is the smallest proof size for which there exists a correct X-PVP for
Y . Since the communication means are clear for undirected properties,
we omit them in that case. Throughout this chapter, all logarithms use
base 2 and are rounded up to be of integer value.

5.2 Related Work

More than 20 years ago, Naor and Stockmeyer [85] raised the question
of “What can be computed locally?” In their work, the notion of Locally
Checkable Labelings (LCL) is investigated, where labels are checked in a
local fashion, i.e., in a constant number of communication rounds.

This line of research is being followed in many directions, with the
concepts of Proof Labeling Schemes (PLS), Nondeterministic Local Deci-
sions (NLD), and Locally Checkable Proofs (LCP) being most related to
our work. We note that all three approaches are strictly stronger than the
model discussed here (by adding either identities, port numbers, or more
potent communication models).

The term Locally Checkable Proofs was coined by Suomela and Göös
in [60] as an extension to Locally Checkable Labelings, where LCP(f) al-
lows for f(n) bits of additional information per node. They study decision
problems from the viewpoint of nondeterministic distributed local algo-
rithms: Is there a proof of size f(n) such that all nodes will output Yes for
Yes-instances, with any (invalid) proof for a No-instance being rejected
by at least one node? The authors introduce a complexity hierarchy for
various problems, with LCP(0) being equivalent to LCL. For most of the

5.2. RELATED WORK 101

results in [60], unique identifiers are assumed for each node, or at least
port numbers – which can be used for verification purposes. Thus, their
algorithms may use additional strings of information free of cost, which
might not be relevant asymptotically for large proof sizes, but come into
play for small labels: E.g., in the case of directed s-t reachability, they
show that O(log ∆) bits suffice by “pointing” at the successor node in the
s-t path, a technique relying on port numbers.

The Proof Labeling Schemes of Korman et al. [69] differ from LCPs in
the sense that they only use one round of communication to transfer the
labels. Thus, upper bounds from PLS apply to LCP and lower bounds
from LCP apply to PLS, as the LCP model is strictly more powerful
than the PLS model. In [69], the authors also investigate the role of
unique identities in PLS and show that there are cases where (given)
unique identities are necessary, but also examples where the transition to
identities is possible. Nonetheless, they assume the nodes to be aware of
the port numbers of their edges.

Closely related to our work, they study (among other problems) the
question of whether a connected subgraph is a tree and give asymptotically
matching upper and lower bounds of Θ(logn) bits for directed one-way
communication and the undirected case. Their proofs and techniques for
trees carry over to the model considered in this chapter and are thus
referenced in Table 5.1. For spanning tree verification, the construction
in [69] is also used in the context of Software Defined Networks [89]:
Inconsistencies of a spanning tree for routing can be detected locally,
triggering a (costly) global recomputation only if needed.

Nondeterministic Local Decisions [54] considers distributed nondeter-
minism for decision problems. Like LCP and unlike PLS, they allow more
than one communication round. However, the proofs are not allowed to
depend on the identifier of a node (see [50,53] for the impact of (missing)
identifiers on local decisions). In some sense, as described by [60], the class
NLD for connected graphs can be understood as LCL (NLD (LCP(∞).
Unlike LCP and PLS above, Fraigniaud et al. [54] also study the impact
of randomization. Among many other results, they reveal surprising con-
nections between randomization and oracles related to nondeterministic
computing: As it turns out, an oracle providing the nodes with the size
of the graph gives “roughly [. . .] the same power to nondeterministic dis-

102 CHAPTER 5. LOCAL CHECKING

tributed computing as randomization does” [54]. Additional recent results
concerning the power of randomization for local distributed computing
can be found in [49].

Furthermore, there exists a strong connection between proof labeling
schemes and self-stabilization (we refer to [41] for an overview of the
topic): As characterized by Blin et al. [32], “any mechanism insuring
silent self-stabilization is essentially equivalent to a proof-labeling scheme”.
Even more so, the proof size nearly corresponds to the number of registers
for self-stabilization [32]. As such, there has been a long line of research
connecting local checking with self-stabilization [2, 21–23].

We ask the question of how a global prover can convince a distributed
verifier that it fulfills a certain property. One may also ask the converse
question, i.e., how a distributed prover could convince a centralized verifier
that knows only node labels, but not the graph structure. This inverted
setting is studied in the works of Arfaoui et al. for trees [15] and cycle-
freeness [14].

5.3 Checking Network Properties

5.3.1 Cycles
Let U-Cycle denote the set of all undirected connected graphs contain-
ing at least one cycle. Let correspondingly D-Cycle denote the set of
all weakly connected directed graphs containing at least one directed cy-
cle. Note that an undirected graph is in U-Cycle exactly if it is not an
undirected tree, while a directed graph G is in D-Cycle exactly if G is
not a directed acyclic graph (DAG). In the remainder of this section we
establish the following:

Theorem 5.1. For the cycle detection problem, it holds that
(i) There is no D1-PVP for D-Cycle.

(ii) The D2-proof size for D-Cycle is Θ(logn) bits.
(iii) The U-proof size for U-Cycle is 2 bits.

We prove each claim listed in Theorem 5.1 separately, starting with the
directed cases. As the first step we show that there cannot be a D1-PVP
for D-Cycle.

5.3. CHECKING NETWORK PROPERTIES 103

Lemma 5.1. There is no D1-PVP for D-Cycle.

Proof. Assume, for the sake of contradiction, that there exists a correct
D1-PVP (P,V) for D-Cycle. Our goal is to construct a No-instance
H and node labels `′ for the nodes in H so that V returns Yes at all
nodes. To that end, consider the Yes-instance G (depicted in Figure 5.1)
consisting of a cycle with two nodes c1, c2, and two additional nodes a, b,
where a has the two outgoing edges (a, c1) and (a, b). Let ` denote the
node labeling assigned to G by P, and denote by A and B the values `(a)
and `(b), respectively.

Our No-instance H, as shown in Figure 5.1, consists of the three nodes
a, b, and b′, and the two edges (a, b) and (a, b′). Note that indeed, H does
not contain a cycle. By assigning the labels `′(a) = A and `′(b) = `′(b′) =
B, we obtain that for all nodes u in H there is a corresponding node v in
G for which (`′(u), D1(u)) = (`(v), D1(v)). The verifier V can therefore
not differentiate between u and v and thus returns Yes for all nodes in H.
This contradicts the assumption that (P,V) is correct for D-Cycle.

Lemma 5.2. There is a D2-PVP for D-Cycle with a proof size of logn
bits.

Proof. We describe a D2-prover-verifier pair (P,V) for D-Cycle as re-
quired. Let G = (V,E) ∈ D-Cycle and let C ⊆ V be the set of all
nodes that are in a directed cycle. The prover P labels all nodes v ∈ V
as follows. First, all nodes vc ∈ C are labeled with `(vc) = 0. All other
nodes v ∈ V are labeled regarding their distance to the closest cycle: The
prover P sets `(v) = distC(v), where distC(v) = minvc∈C dist(vc, v). We

G:

c2 c1

A
a

B
b

H: B
b′

A
a

B
b

Figure 5.1: Yes-instance G and No-instance H of D-Cycle. A and B are the
labels assigned to the nodes a and b in G by the prover P, the node labels in the
cycle are not shown. The construction of H yields that for each u in H there is
a v in G with (`′(u), D1(u)) = (`(v), D1(v)).

104 CHAPTER 5. LOCAL CHECKING

1 0 0

00

00

0 12

34 23

1 21

Figure 5.2: A Yes-instance of D-Cycle labeled for two-way communication.
All nodes on cycles have the label 0, and all other nodes are labeled with the min-
imum distance to the nearest cycle using the distance function in the underlying
undirected graph.

refer to Figure 5.2 for an example. As the distance is bounded from above
by n, the maximum label size is logn bits.

The verifier V returns Yes for nodes vc with `(vc) = 0 if for the
received pair (I,O) of labels holds: There is a label of 0 in I and a label
of 0 in O. For the other nodes v ∈ V , Yes is returned by V if a) there is
an edge (u, v) or (v, u) such that `(v) = `(u) + 1 and b) no edge (u′, v) or
(v, u′) such that `(v) > `(u′) + 1. In all other cases, V returns No.

We now show that V returns Yes for all nodes v in Yes-instances that
were labeled by the prover P: The prover P labeled only (and all the)
nodes on a directed cycle with a 0, i.e., if `(v) = 0, then V returns Yes
for v. The remaining case is `(v) = j > 0. If `(v) = j, then distC(v) = j,
i.e., there exists a node u ∈ V such that distC(v) = distC(u) + 1 and no
node u′ ∈ V such that distC(v) > distC(u′) + 1, as by the definition of P.
Thus, V returns Yes as well.

For the D2-PVP (P,V) to be correct, it is left to show that V returns
No for at least one node if the considered graph is not in D-Cycle. Anal-
ogously to the undirected case, let Gno be a weakly connected directed
graph containing no directed cycle.

For contradiction, assume there would be a node v ∈ V (Gno) with
`(v) = 0. Then there has to be a node v1 with `(v)1 = 0 such that there
exists an edge (v, v1), else V would return No. This concept of “following
the zero” can be iterated, but as the graph is finite (and does not contain
a directed cycle), there will be a node vj for which no node vj+1 with
`(vj+1) = 0 exists such that there is an edge (vj , vj+1). Hence, V would

5.3. CHECKING NETWORK PROPERTIES 105

return No and therefore no node can be labeled with 0 in Gno.
An idea similar to following the zero can now be applied again: W.l.o.g.,

let v be a node with the label k. There has to be an edge (v, v1) with
`(v1) = k − 1, else V would return No for v. Again, as the graph is
finite and contains no cycle, following the outgoing edge to a decreasing
label is no longer possible at some point. Thus V will return No for any
weakly connected directed graph not containing a cycle, meaning that the
D2-PVP (P,V) is correct.

Lemma 5.3. The D2-PVP proof size for D-Cycle is at least log
(
n−5

2

)
/2

bits.

We establish Lemma 5.3 by showing that any D2-PVP (P,V) with
a smaller proof size can be fooled. To that end, we apply P to a Yes-
instance G. We then use the labels applied by P to construct a No-
instance H for which V must return Yes.

Our construction relies on a graph G, obtained from an undirected
path by alternating the edge directions, and creating a cycle with the
last two nodes (see Figure 5.3 for an illustration). If the proof size is at
most log

(
n−5

2

)
/2 − 1 bits, then less than

√
n− 5/2

√
2 different labels

are available. Thus, in G a pair of adjacent labels A, B on the path
will appear twice. Moreover, the nodes labeled A have only outgoing
edges, and conversely, the nodes labeled B have only incoming edges. We
obtain the acyclic No-instance H by copying the to pairs of nodes, and
connecting them as depicted in Figure 5.3. This construction ensures
that for all nodes u in H, there is a corresponding node v in G with
(`(u), D2(u)) = (`(v), D2(v)). Therefore, the verifier V returns Yes for all
nodes in H.

Proof. Assume, for the sake of contradiction, there exists a D2-PVP
(P,V) for D-Cycle using log

(
n−5

2

)
/2 − 1 bits. Let G be the path

v1, ..., vn−2 with n−2 nodes and alternating edge directions, connected at
vn−2 to the cycle vn, vn−1 (which consists of just two nodes). The graph
G is a Yes-instance of the problem, and thus the verifier V has to return
Yes for every node if the graph G was labeled by the prover P.

106 CHAPTER 5. LOCAL CHECKING

G: ..

A B .. A B ..

v1 vi−1

vi vi+1 vi+2 vj−1 vj vj+1 vj+2 vn−2 vn−1 vn

H: A B .. A B ..

ui ui+1 ui+2 uj−1 uj uj+1 u′i+2 u′j−1

Figure 5.3: Yes-instance G (with odd n) and No-instance H of D-Cycle. G
consists of the n nodes v1, . . . , vn. For even k, node vk has two incoming edges
from vk−1 and vk+1, whereas all vk with odd k have two outgoing edges to vk−1
and vk+1, i.e., the edge directions alternate. The prover P assigned the labels
`(vi) = `(vj+1) = A and `(vi+1) = `(vj+1) = B to the corresponding nodes in
G. In H, the nodes ui, . . . , uj+2 are copies of vi, . . . , vj+2 from G, and the nodes
u′i+1, . . . , u

′
j−1 are obtained by copying (again) the nodes vi+1, . . . , vj+2. Note

that H does not contain a cycle, but due to our construction each u ∈ V (H) has
a corresponding node v ∈ V (G) with (`(u), D2(u)) = (`(v), D2(v)).

We will now construct a No-instance H (based on G and P) such
that for each vH ∈ V (H) there is a vG ∈ V (G) with (`(vH), D2(vH)) =
(`(vG), D2(vG)), i.e., the verifier will output Yes for every node in H.

First, we will prove that (due to the construction of G) there are i 6= j,
with 2 ≤ i, j ≤ n − 3, such that a) `(vi) = `(vj), b) `(vi+1) = `(vj+1),
and c) dist(vi, vj) = 2k, k ∈ N: There are at least bn−5

2 c pairs (i, i + 1)
with 2 ≤ i ≤ n − 3 for each direction of the edge vi, vi+1. Labeling each
pair differently requires at least

√
(n− 5)/2 different labels, i.e., at least

1
2 log(n−5

2) bits. Hence (using the pigeonhole principle), the claim holds.
The No-instance H can now be constructed as follows: Let P be the

(possibly empty) sub-path vi+2, ..., vj−1 in G. We construct the cycle like
structure H using two copies of P to connect copies of the pairs vi, vi+1
and vj , vj+1, see Figure 5.3. We obtain the graph H with the nodes
ui, ..., uj+1, u

′
i+2, ..., u

′
j−1, where the underlying undirected graph forms a

5.3. CHECKING NETWORK PROPERTIES 107

ring.
It is left to show that we can assign labels to nodes in H such that V

returns Yes for all nodes in H. We assign the labels to the nodes in H by
setting `(ux) = `(vx) for all x and `(u′x) = `(vx) for all x. It holds for each
node vH ∈ H that there is a node vG in G such that D2(vH) = D2(vG)
and `(vh) = `(vG). Thus, as V returns Yes for all nodes in G, V must
return Yes for all nodes in H, which contradicts that (P,V) is correct.

The claims (i) and (ii) of Theorem 5.1 for directed graphs are now
established by Lemmas 5.1 to 5.3. The next two lemmas cover the undi-
rected case (iii).

Lemma 5.4. There is a U-PVP for U-Cycle with a proof size of 2 bits.

The upper bound for the optimal proof size is established by providing
a U -PVP (P,V) with the desired proof label size. The idea is similar to the
directed case, but this time the prover P labels all cycles with a 3 instead
of a 0. Since removing all cycles from G leaves a forest of undirected trees
(instead of the collection of DAGs in the directed case), one can save quite
a few bits in the labels for the remaining nodes. For each tree, P picks a
root node r that was originally adjacent to a cycle. In each tree, all nodes
are labeled with their distance to r modulo 3. An example of a graph G
labeled by P is depicted in Figure 5.4.

The correctness of the PVP is established in a similar manner as in
the directed case: The verifier V can then check if each node supposedly
on a cycle (label 3) has at least two neighbors in a cycle, and if every
other node (label 6= 3) has exactly one node “closer” to the root node of
its tree. If G is acyclic, then there can be no node with label 3, as all
nodes with a label of 3 would form a forest with at least one leaf. Assume
for the sake of contradiction that the verifier returns Yes for all nodes,
and consider any node in some acyclic graph G. The path obtained by
following the labels in descending order (modulo 3), i.e., going towards
the root, must have infinite length, since there is no node adjacent to a
cycle to break the succession.

Proof. We describe a U -prover-verifier pair (P,V) as required. Let G =
(V,E) ∈ U-Cycle. The prover P labels all nodes v ∈ V as follows: If v is

108 CHAPTER 5. LOCAL CHECKING

0 1 3 3

33

33

3

33

3 1

201

2

0

0 10

22 2

Figure 5.4: A labeled Yes-instance of U-Cycle. Nodes in cycles are labeled
3. The remaining nodes form a forest. After picking a root node adjacent to a
cycle for each tree in the forest, all nodes in a tree are labeled with their distance
(modulo 3) to the corresponding root.

part of a cycle, then `(v) = 3. By removing all nodes (and incident edges)
that belong to a cycle, the graph decomposes into a set of Trees T . Each
tree T ∈ T is labeled by first picking a node r ∈ T that was originally
adjacent to a cycle and setting `(r) = 0. Then, for each other node t ∈ T
let distT (r, t) be the distance from r to t in T and set `(t) = distT (r, t)
mod 3. An example for the labeling can be found in Figure 5.4. As only
the labels {0, 1, 2, 3} are used, 2 bits suffice.

The verifier V returns Yes for nodes v with a) at least two neighbors
have a label of 3 if `(v) = 3 or b) if `(v) = j, j ∈ {0, 1, 2}, then the
following three conditions must be fulfilled: i) There is no neighbor with
a label of j, ii) There is exactly one neighbor with a label of j − 1 if
j ∈ {1, 2} or at most one neighbor with a label of 2 if j = 0 , and iii)
all other neighbors must have a label of exactly j + 1 mod 3 or 3. In
all other cases, V returns No. If a node v is part of an undirected cycle
(hence, `(v) = 3), then it has at least two neighbors in the cycle with the
label 3, meaning that V returns Yes for v. Else, consider the tree T ∈ T
from above with v ∈ T with the corresponding “root” node r picked by
the prover. If v = r, then all neighbors in T have the label 1 and all other
neighbors (of whom at least one exists) are on cycles with a label of 3.
Thus, V outputs Yes for v = r. If v ∈ T and v 6= r, then all neighbors v′
of v in T are labeled according to `(v′) = distT (r, v′) mod 3. All other
neighbors (if any exist) of v in G must be on cycles with a label of 3.
Hence, V returns also Yes in this case.

For the U -prover-verifier pair (P,V) to be correct, it is left to show

5.3. CHECKING NETWORK PROPERTIES 109

that V returns No for at least one node if the considered graph is not in
U-Cycle. Let Gno be a connected undirected graph containing no cycle.

Assume there would be a node v ∈ V (Gno) with `(v) = 3. Consider all
nodes with a label of 3 in V (Gno): As there is no cycle, the subgraph(s)
induced by these nodes form a forest F . Let T ∈ F be the tree with
v ∈ T . Pick a leaf of T : It has at most one neighbor with a label of 3,
meaning that V will return No for at least one node.

Thus, no node v with `(v) = 3 can exist. Now, pick any node v ∈
V (Gno with `v ∈ {0, 1, 2}. v (and also any other node in V (Gno) must
have exactly one neighbor v1 with a label of `(v1) = `(v) − 1 mod 3, as
else V would return No for v. Consider the path starting from v that
picks as its next node the unique neighbor with a label smaller by one
modulo 3, i.e., v, v1, . . . - until no such node exists any more. Since Gno
is cycle-free, the path must be finite and end at some node vj . As vj has
no neighbor with a label of 3 or a label of `(vj) − 1 mod 3, the verifier
V returns No for vj . Thus V will return No for any connected graph not
containing a cycle, meaning that the U -PVP (P,V) is correct.

Lemma 5.5. The U-PVP proof size for U-Cycle is at least 2 bits.

The proof is by case distinction, cf. Figure 5.5. We construct a graph
G consisting of a path P of three nodes attached to a cycle. If the proof
size is restricted to just one bit, then there are only 23 = 8 possible
combinations to label the three nodes in P . For each of the eight cases,
we can construct a No-instance H such that for each vH ∈ V (H) there
is a vG ∈ V (G) with (`(vH), U(vH)) = (`(vG), U(vG)), meaning that the
verifier will output Yes for each node in H.

Proof. Assume there exists a U -PVP (P,V) for U-Cycle using 1 bit.
We use a Yes-instance G = (V (G), E(G)) of U-Cycle consisting of a
cycle with three nodes with a path P of three nodes attached to it. We
will show that for any labeling ` assigned to the nodes on the path P ,
for which V returns Yes for all nodes in G, there exists a No-instance
H = (V (H), E(H)) of U-Cycle for which V must also return Yes for all
nodes in H. W.l.o.g. consider the four cases in Figure 5.5.

These four cases combined with their analogous inversions, where all
labels are switched on the path P , present all combinations of how labels

110 CHAPTER 5. LOCAL CHECKING

G1: 0 0 0 H1: 0 0

G2: 0 1 0 H2: 0 1 0

G3: 1 1 0 H3: 0 1 1 0

G4: 1 0 0 H4: 0 0

Figure 5.5: Yes-instances G1, G2, G3, G4 and No-instances H1, H2, H3, H4
of U-Cycle. For any labeling assigned to the Yes-instances, there exists a
No-instance for which V must return Yes for all nodes. In these graphs, the
labels for the nodes in the cycle can be chosen arbitrarily. The numbers in the
remaining nodes are their labels. All labels in this figure can be inverted to get
the remaining 4 possible combinations for a labeling.

can be assigned to the nodes on the path P . For every Yes-instance
G there exists a No-instance H such that for each vH ∈ V (H) there is
a vG ∈ V (G) with (`(vH), U(vH)) = (`(vG), U(vG)). Since V can not
differentiate between vH and VG, it must also return Yes for all nodes in
the corresponding No-instance, which contradicts that (P,V) is correct.
It follows that there is no correct proof labeling scheme (P,V) using only
1 bit.

5.3.2 Acyclicity
In the undirected case, an acyclic graph is nothing but an undirected
tree. The question of detecting undirected trees was already answered
in [69] (see Section 5.3.3). In the directed case, however, not every acyclic
graph is necessarily a tree. Let D-Acyclic denote the set of all weakly
connected directed acyclic graphs. In the remainder of this section we
establish the following:

5.3. CHECKING NETWORK PROPERTIES 111

0 2 3

0 51

12

2345

4 06

Figure 5.6: A labeled Yes-instance of D-Acyclic. Nodes without incoming
edges are labeled 0, all other nodes have a label that is equal to the highest
incoming label plus 1.

Theorem 5.2. For the acyclicity detection problem, it holds that
(i) The D1-proof size for D-Acyclic is Θ(logn) bits.

(ii) The D2-proof size for D-Acyclic is Θ(logn) bits.

While not every directed acyclic graph is a directed tree, the converse
holds, i.e., every directed tree is a directed acyclic graph. Techniques
similar to those used by Korman et al. [69] can be used to obtain the
claimed lower bound for tree detection in our model. Hence, we only need
to establish the upper bounds in Theorem 5.2. Note that any D1-PVP
immediately yields a D2-PVP with the same proof size by simply ignoring
the information obtained via outgoing edges. It is therefore sufficient to
find a D1-PVP with the desired proof size.

Lemma 5.6. There is a D1-PVP for D-Acyclic with a proof size of
logn bits.

In the proof, the prover assigns each node with no incoming labels the
label 0, and each other node the highest incoming label plus one. We
refer to Figure 5.6 for illustration. Thus, each node with label j > 0 can
check if there is an incoming label j − 1, or when j = 0, if the multiset of
incoming labels is the empty set. As each No-instance contains a cycle,
a node with the highest label in the cycle would send its label to another
node, causing this node to output No.

Proof. We describe a D1-prover-verifier pair (P,V) as required. Let G =
(V,E) ∈ D-Acyclic and let V0 ⊆ V be the set of all nodes v0 ∈ V with
D1(v) = [∅], i.e., v0 has zero incoming edges. The prover P labels all
nodes v ∈ V as follows. a) All nodes v0 ∈ V0 have the label `(v0) = 0, and
b) for all other nodes v+ ∈ V holds: `(v+) = 1 + max(u,v+)∈E `(u). We

112 CHAPTER 5. LOCAL CHECKING

refer to Figure 5.6 for an example. As a label i requires a label i − 1 to
exist, the highest label is bounded from above by n, inducing a maximum
label size of logn bits.

The verifier V returns Yes for nodes v with a) D1(v) = [] if `(v) = 0
or b) `(v) = 1+max(u,v)∈E `(u) if D1(v) 6= []. In all other cases, V returns
No. Thus, the verifier returns Yes for all nodes in V if G was labeled by
P, as all incoming labels are available to the verifier.

For the D1-prover-verifier pair (P,V) to be correct, it is left to show
that V returns No for at least one node if the considered graph is not
in D-Acyclic. Let Gc be a weakly connected directed graph containing
a directed cycle C = v1, v2, . . . , v|C|, v1. W.l.o.g., let vi ∈ C be a node
with the highest labeling in C. Consider the outgoing edge from vi in C:
The corresponding neighbor of vi in C cannot have a higher label than vi.
Thus V will return No, meaning that the D1-PVP (P,V) is correct.

5.3.3 Trees

Let U-Tree denote the set of all undirected trees. Let correspondingly
D-Tree denote the set of all weakly connected directed trees in which all
edges are directed away from some unique root node.

Theorem 5.3 ([69]). For the tree detection problem, it holds that
(i) The proof size for U-Tree is Θ(logn) bits.

(ii) The D1-proof size for D-Tree is Θ(logn) bits.
(iii) The D2-proof size for D-Tree is Θ(logn) bits.

While the authors of [69] assumed port numbers to be available, the
PLS used in the upper bound construction do not make use of them.
Therefore, the upper bound claims (i) and (ii) carry over to our model.
Since their port numbering model is strictly stronger than ours, the same
is true for the lower bounds. Naturally, upper bounds for D1-proof sizes
carry over to the D2-case, so the only thing that is left is to show that
there exists no D2-PVP with a proof size of o(logn) bits. Since the counter
example construction to establish this claim are very similar to the con-
struction used in [69], we omit the details here.

5.4. PORT NUMBERS VS. S-T REACHABILITY 113

5.4 Port Numbers vs. s-t Reachability

As pointed out by Göös and Suomela in [60], “To ask meaningful questions
about connectivity [...] we have the promise that there is exactly one node
with label s and exactly one node with label t.” In this section, we thus
assume that all graphs have at least two nodes, of which one node has the
unique label s and another node has the unique label t. It is known that
in the undirected case, the U -proof size for s-t reachability is 1 bit, as
argued in the introduction to this chapter. In the directed case, on which
we focus, a non-trivial lower bound remained an open question [60]. For
that, let s-t reachability denote the set of all directed graphs containing
a directed path from s to t.

We show a lower bound for s-t reachability with one-way commu-
nication by combining our previously used techniques. The upper bound
for the two-way case requires a new insight: As it turns out, port num-
bers can be emulated in our model by implementing a 2-hop coloring with
only O(log ∆) bits. Then, whenever a port number is required for some
proof, we only need to pay at most O(log ∆) bits. While this seems like
a high price to pay, we note that referring to a specific port number re-
quires O(log ∆) bits even if the port numbering itself is provided for free.
We will later see how this applies in the case of two-way s-t reachabil-
ity (cf. [60]). In the remainder of this section we establish the following
theorem:

Theorem 5.4. For the s-t reachability problem, it holds that
(i) The D1-proof size for s-t reachability is Θ(logn) bits.

(ii) The D2-proof size for s-t reachability is at most O(log ∆) bits.

To see that s-t reachability permits a D1-PVP with a proof size
of O(logn) bits, observe that the nodes on the path can simply be enu-
merated, cf. Figure 5.7. Each node on the path can now check whether
it has a predecessor on the path, i.e., every Yes-instance is verified cor-
rectly. To see that No-instances will be rejected, one can follow a similar
line of arguments as in Lemma 5.6: Every path obtained by following
descending incoming labels, starting from t, must end in a node without
a predecessor, since the graph is finite and s and t are not connected.

114 CHAPTER 5. LOCAL CHECKING

Lemma 5.7. There is D1-PVP for s-t reachability with a proof size
of O(logn) bits.

Proof. We describe a D1-prover-verifier pair (P,V) as required. Let the
directed graph G = (V,E) ∈ s-t reachability and let P = s, v1, . . . , vj , t
be a shortest directed path from s to t. The prover P labels all nodes
v /∈ P with `(v) = 0 and each node vi ∈ P = s, v1, . . . , vj , t with `(vi) = i,
i.e., `(vi) = dist(s, vi) by definition of P . We refer to Figure 5.7 for
illustration. As dist(s, t) ≤ n, `(s) = s, and `(t) = t, the proof size is in
O(logn) bits.

The verifier V returns Yes for all nodes v with a label of 0 and for
the node s with unique label `(s) = s. For the node t with the unique
label `(t) = t, Yes is returned if a) the label s is received, or b) if a label
greater than zero is received. V returns Yes for all other nodes v with
label `(v) = i > 1, if one of the received labels is i − 1. For the special
case of `(v) = 1, one of the received labels has to be s.

Thus, the verifier will return Yes at all nodes for Yes-instances labeled
by P: The nodes v with `(v) = 0 and s return Yes. Furthermore, as each
other node is on the path P = s, v1, . . . , vj , t with `(vi) = i, they have a
predecessor on the path with the desired label, and hence return Yes as
well.

It is left to show that V returns No for at least one node if the graph G
is not in s-t reachability. Let H be a No-instance of s-t reachability,
i.e., there is no directed path from s to t. Consider the set Z of nodes
that can be reached from t by traversing directed edges in the reverse
direction to a node with a label lower by exactly one, or in the case of t,
with any label greater than zero. Note that by definition of H, there is no
node v′ ∈ Z such that there is an edge (s, v′) ∈ H(E). Let v∗ be a node
with the lowest label `(v∗) = x in Z: As v∗ cannot receive a label x − 1
or the label s, v∗ will return No. Hence, the desribed D1-PVP (P,V) is
correct.

Lemma 5.8. The D1-PVP proof size for s-t reachability is at least
log
(
n
4

)
− 2 bits.

Proof. Assume, for the sake of contradiction, that there is a D1-PVP
(P,V) for s-t reachability with a proof size of log(n/4)− 3 bits. Let n

5.4. PORT NUMBERS VS. S-T REACHABILITY 115

200

1s

4

3

t

0 00

0

Figure 5.7: A labeled Yes-instance of s-t reachability. All nodes v in G on
the shortest s-t path P of length 5 are labeled `(v) = dist(s, v). All other nodes
are labeled 0.

...
v4v3v2

s

v1 vdn/2e−3 vdn/2e−2 vdn/2e−1

vdn/2e

vdn/2e+1vdn/2e+2vdn/2e+3

...
vn−3vn−2vn−1

t

vn

Figure 5.8: The Yes-instance G of s-t reachability used in our proof of
Lemma 5.8. Nodes vj with j > dn/2e have an outgoing edge to vj−dn/2e+1. Note
that G contains only one simple s-t path.

be odd and let G be the directed path P = v1, . . . , vn where v1 = s, and
vn = t. We add toG directed edges so that all nodes vk with n > k > dn/2e
have an outgoing edge to vk−dn/2e+1, as depicted in Figure 5.8. We note
that G is a Yes-instance for s-t reachability, and that there is only
one simple path from s to t in G. Like above, we now apply P to G and
use the obtained labels ` to construct a No-instance H with a labeling `′.
The construction ensures that for every node u in H, there is a node v in
G with (`′(u), D1(u)) = (`(v), D1(v)).

With an argument analogous to that in the proof of Lemma 5.3, we
will first show that there are i 6= j, with dn/2e + 2 ≤ i ≤ n − 4 and
i+ 2 ≤ j ≤ n− 2, such that `(vi) = `(vj). In other words, we are looking
for two non-adjacent nodes vi and vj that are within the second half of

116 CHAPTER 5. LOCAL CHECKING

B
x

...s ... A

vi

C
vi+1

...A
vj

...t

B...s ... A

C...A...t

G: H:

Figure 5.9: Yes-instance G of s-t reachability labeled by P, and the corre-
sponding No-instance H for s-t reachability. Some label A appears twice on
the s-t path, namely at the nodes vi and vj . Since vj is at least two steps after
vi and has an outgoing edge to a node x before vi, the No-instance H for which
V fails can be constructed. For the sake of simplicity not all edges are shown.

the path P , and vi comes before vj on P . Suppose that there are no
such vi, vj . Consequently, `(vdn/2e+2) must be different from the label of
each node in {vdn/2e+4, ..., vn−2}. By induction, if vi, vj with the desired
properties do not exist, then there need to be at least bn4 c − 2 different
labels on the sub-path vdn/2e+2, ..., vn−2. This is a contradiction to the
assumption that the proof size is limited to bn4 c− 3 bits, and we conclude
that such nodes vi, vj must be present.

To complete our proof of Lemma 5.8, we now construct the No-
instance H and the labeling `′. For that, let vi and vj be the two nodes
in G with `(vi) = `(vj) as above. We denote by x the node vj−dn/2e+1
in the first half of P with an incoming edge from vj . To construct H
and `′, we first copy the graph G including the labels assigned by `. We
then replace the edges (vi, vi+1) and (vj , x) by (vi, x) and (vj , vi+1) (see
Figure 5.9). Note that in H, the two distinguished nodes s and t are no
longer connected by a directed path.

It is left to show that V will return Yes for all nodes in H when labeled
with `′. Note that in H, the only nodes that were changed in some way
in comparison to G were vi, vi+1, vj and x. However, all four nodes still
have the same labels, and the incoming edges were changed only for x
and vi+1. As it holds that `′(vi) = `′(vj), it follows that D1(vi+1) is the
same in G and in H, equivalently for D1(x). Thus, since the verifier V
returned Yes for all nodes in G, V must also return Yes for all nodes in
H, contradicting that (P,V) is correct.

5.4. PORT NUMBERS VS. S-T REACHABILITY 117

We note that the construction in the proof of Lemma 5.8 has constant
degree in every node. Therefore, there cannot be a D1-PVP for which the
proof size depends only on ∆. The missing part to establish Theorem 5.4
is a D2-PVP for s-t reachability.

The PVP for this problem as proposed by [60] relies on the nodes’
ability to “point to an edge” by using its port number. The authors
suggest to mark an s-t path P by simply pointing to the edges used by
P . We argue that one can point to an edge in our models U and D2, even
though port numbers are not available. To that end, we enrich the labels
to include a 2-hop coloring of the graph G, i.e., a coloring (node labeling)
such that the label of each node v is unique among all nodes with distance
at most 2. We denote this coloring by c(v).

Since a 2-hop coloring requires at most ∆2 +1 colors, each color can be
encoded using O(log ∆) bits. Moreover, the 2-hop coloring can be checked
locally, since each node v only needs to verify if v and all its neighbors
have different colors. A PVP can now rely on the fact that v’s color is
unique among u’s neighbors.

To obtain a D2-PVP for for s-t reachability, a node u ∈ V can now
point to an edge (u, v) ∈ E by referencing c(v) in its label. In this way,
the pointed-to edge is uniquely specified for both u and v. Applying the
same reasoning as in [60], we obtain the following lemma, which together
with Lemmas 5.7 and 5.8 concludes our effort to establish Theorem 5.4.

Lemma 5.9. There is a D2-PVP for s-t reachability with a proof size
of O(log ∆) bits.

Bibliography

[1] Abrahamson, K.R., Adler, A., Higham, L., Kirkpatrick, D.G.: Prob-
abilistic solitude verification on a ring. In Halpern, J.Y., ed.: PODC,
ACM (1986) 161–173

[2] Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and
its application to self-stabilization. Theor. Comput. Sci. 186(1-2)
(1997) 199–229

[3] Afek, Y., Matias, Y.: Elections in anonymous networks. Inf. Comput.
113(2) (1994) 312–330

[4] Ajtai, M., Fagin, R.: Reachability is harder for directed than for
undirected finite graphs. J. Symb. Log. 55(1) (1990) 113–150

[5] Alon, N., Babai, L., Itai, A.: A fast and simple randomized paral-
lel algorithm for the maximal independent set problem. Journal of
Algorithms 7(4) (1986) 567 – 583

[6] Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of
graphs. In Kosaraju, S.R., ed.: SODA, ACM/SIAM (2001) 883–894

[7] Angluin, D.: Local and global properties in networks of processors
(extended abstract). In Miller, R.E., Ginsburg, S., Burkhard, W.A.,
Lipton, R.J., eds.: STOC, ACM (1980) 82–93

119

120 BIBLIOGRAPHY

[8] Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta,
R.: Stably computable properties of network graphs. In Prasanna,
V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M., eds.: DCOSS. Volume
3560 of Lecture Notes in Computer Science., Springer (2005) 63–74

[9] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors. [39]
290–299

[10] Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates
are semilinear. In: Proceedings of the twenty-fifth annual ACM sym-
posium on Principles of distributed computing. PODC ’06, New York,
NY, USA, ACM (2006) 292–299

[11] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The compu-
tational power of population protocols. Distributed Computing 20
(2007) 279–304

[12] Angluin, D., Fischer, M., Jiang, H.: Stabilizing consensus in mobile
networks. In Gibbons, P., Abdelzaher, T., Aspnes, J., Rao, R., eds.:
Distributed Computing in Sensor Systems. Volume 4026 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (2006) 37–
50

[13] Angluin, D., Gardiner, A.: Finite common coverings of pairs of
regular graphs. J. Comb. Theory, Ser. B 30(2) (1981) 184–187

[14] Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly
testing cycle-freeness. In: WG. (2014) 15–28

[15] Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification
with bounded-size outputs. In: SSS. (2013) 133–147

[16] Aspnes, J., Ruppert, E.: An introduction to population protocols.
In Garbinato, B., Miranda, H., Rodrigues, L., eds.: Middleware for
Network Eccentric and Mobile Applications. Springer-Verlag (2009)
97–120

BIBLIOGRAPHY 121

[17] Aspnes, J., Waarts, O.: Randomized consensus in expected
o(n log2 n) operations per processor. SIAM J. Comput. 25 (1996)
1024–1044

[18] Attiya, H., Censor, K.: Tight bounds for asynchronous randomized
consensus. J. ACM 55 (2008)

[19] Attiya, H., Ellen, F.: Impossibility Results for Distributed Comput-
ing. Morgan & Claypool Publishers (2014)

[20] Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics. John Wiley & Sons (2004)

[21] Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by
local checking and correction (extended abstract). In: FOCS. (1991)
268–277

[22] Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-
stabilization by local checking and global reset (extended abstract).
In: WDAG. (1994) 326–339

[23] Awerbuch, B., Varghese, G.: Distributed program checking: a
paradigm for building self-stabilizing distributed protocols (extended
abstract). In: FOCS. (1991) 258–267

[24] Barenboim, L., Elkin, M.: Distributed (∆ + 1)-coloring in linear (in
∆) time. In: STOC. (2009)

[25] Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring
in polylogarithmic time. J. ACM 58 (2011) 23

[26] Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamen-
tals and Recent Developments. Morgan & Claypool Publishers (2013)

[27] Barenboim, L., Elkin, M., Kuhn, F.: Distributed (∆ + 1)-coloring in
linear (in ∆) time. SIAM J. Comput. 43 (2014) 72–95

[28] Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader elec-
tion in population protocols over arbitrary communication graphs. In

122 BIBLIOGRAPHY

Baldoni, R., Nisse, N., van Steen, M., eds.: OPODIS. Volume 8304
of Lecture Notes in Computer Science., Springer (2013) 38–52

[29] Beauquier, J., Gradinariu, M., Johnen, C.: Memory space require-
ments for self-stabilizing leader election protocols. [40] 199–207

[30] Beeri, C., Kanellakis, P.C., Bancilhon, F., Ramakrishnan, R.:
Bounds on the propagation of selection into logic programs. J. Com-
put. Syst. Sci. 41(2) (1990) 157–180

[31] Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 col-
oring algorithm. Theor. Comput. Sci. 444 (2012) 28–39

[32] Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes
versus silent self-stabilizing algorithms. In: SSS. (2014) 18–32

[33] Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowl-
edge. [40] 181–188

[34] Boldi, P., Vigna, S.: An effective characterization of computability
in anonymous networks. In Welch, J.L., ed.: DISC. Volume 2180 of
Lecture Notes in Computer Science., Springer (2001) 33–47

[35] Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Mathematics
243(1–3) (2002) 21 – 66

[36] Boldi, P., Vigna, S.: Universal dynamic synchronous
self–stabilization. Distributed Computing 15(3) (2002) 137–153

[37] Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anony-
mous networks. In: Proceedings of the 20th international conference
on Distributed Computing. DISC’06, Berlin, Heidelberg, Springer-
Verlag (2006) 105–119

[38] Chalopin, J., Godard, E., Métivier, Y.: Local terminations and dis-
tributed computability in anonymous networks. In Taubenfeld, G.,
ed.: Distributed Computing. Volume 5218 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg (2008) 47–62

BIBLIOGRAPHY 123

[39] Chaudhuri, S., Kutten, S., eds.: Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing,
PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004.
In Chaudhuri, S., Kutten, S., eds.: PODC, ACM (2004)

[40] Coan, B.A., Welch, J.L., eds.: Proceedings of the Eighteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC,
’99Atlanta, Georgia, USA, May 3-6, 1999. In Coan, B.A., Welch,
J.L., eds.: PODC, ACM (1999)

[41] Dolev, S.: Self-Stabilization. Mit Press (2000)

[42] Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing
leader election. In Toueg, S., Spirakis, P., Kirousis, L., eds.: Dis-
tributed Algorithms. Volume 579 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg (1992) 167–180

[43] Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing
leader election. IEEE Trans. Parallel Distrib. Syst. 8(4) (1997) 424–
440

[44] Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing
group communication in ad-hoc networks. In: SRDS, IEEE Com-
puter Society (2002) 70–79

[45] Dolev, S., Tzachar, N.: Randomization adaptive self-stabilization.
Acta Inf. 47 (2010) 313–323

[46] Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous net-
works: randomization = 2-hop coloring. In: PODC. (2014)

[47] Emek, Y., Wattenhofer, R.: Stone age distributed computing. In
Fatourou, P., Taubenfeld, G., eds.: PODC, ACM (2013) 137–146

[48] Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.:
Sorting and election in anonymous asynchronous rings. J. Parallel
Distrib. Comput. 64(2) (February 2004) 254–265

124 BIBLIOGRAPHY

[49] Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Ran-
domized distributed decision. Distributed Computing 27(6) (2014)
419–434

[50] Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be
decided locally without identifiers? In: PODC. (2013) 157–165

[51] Fraigniaud, P., Halldórsson, M., Korman, A.: On the impact of
identifiers on local decision. In Baldoni, R., Flocchini, P., Binoy,
R., eds.: Principles of Distributed Systems. Volume 7702 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2012) 224–
238

[52] Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new mea-
sure of difficulty for communication tasks. In: Proceedings of the
Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing. PODC ’06, New York, NY, USA, ACM (2006) 179–187

[53] Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized
distributed decision. In Aguilera, M.K., ed.: DISC. Volume 7611 of
Lecture Notes in Computer Science., Springer (2012) 371–385

[54] Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In
Ostrovsky, R., ed.: FOCS, IEEE Computer Society (2011) 708–717

[55] Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability
in wait-free computing. In Peleg, D., ed.: DISC. Volume 6950 of
Lecture Notes in Computer Science., Springer (2011) 333–347

[56] Gebremedhin, A.H., Manne, F., Pothen, A.: Parallel distance-k col-
oring algorithms for numerical optimization. In Monien, B., Feld-
mann, R., eds.: Euro-Par. Volume 2400 of Lecture Notes in Com-
puter Science., Springer (2002) 912–921

[57] Godard, E., Métivier, Y., Muscholl, A.: Characterizations of classes
of graphs recognizable by local computations. Theory Comput. Syst.
37(2) (2004) 249–293

BIBLIOGRAPHY 125

[58] Godsil, C.D., Royle, G.: Algebraic Graph Theory. Graduate Texts
in Mathematics. Springer (2001)

[59] Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-
breaking in sparse graphs. SIAM J. Discrete Math. 1 (1988) 434–446

[60] Göös, M., Suomela, J.: Locally checkable proofs. In Gavoille, C.,
Fraigniaud, P., eds.: PODC, ACM (2011) 159–168

[61] Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and
arbitrary graphs. In: OPODIS. (2000)

[62] Guerraoui, R., Ruppert, E.: What can be implemented anony-
mously? In: Proceedings of the 19th international conference on Dis-
tributed Computing. DISC’05, Berlin, Heidelberg, Springer-Verlag
(2005) 244–259

[63] Herlihy, M., Rajsbaum, S.: A classification of wait-free loop agree-
ment tasks. Theoretical Computer Science 291(1) (2003) 55 – 77
¡ce:title¿Distributed Computing¡/ce:title¿.

[64] Herlihy, M., Shavit, N.: The topological structure of asynchronous
computability. J. ACM 46(6) (November 1999) 858–923

[65] Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm
for maximal matching. Information Processing Letters 22(2) (1986)
77 – 80

[66] Itai, A., Rodeh, M.: Symmetry breaking in distributive networks.
In: FOCS, IEEE Computer Society (1981) 150–158

[67] Itai, A., Rodeh, M.: Symmetry breaking in distributed networks.
Inf. Comput. 88(1) (1990) 60–87

[68] Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In
Aguilera, M.K., Aspnes, J., eds.: PODC, ACM (2005) 9–18

[69] Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Dis-
tributed Computing 22(4) (2010) 215–233

126 BIBLIOGRAPHY

[70] Korman, A., Sereni, J.S., Viennot, L.: Toward more localized local
algorithms: removing assumptions concerning global knowledge. In:
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium
on Principles of distributed computing. PODC ’11, New York, NY,
USA, ACM (2011) 49–58

[71] Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approxima-
tion algorithms for channel assignment in radio networks. Wireless
Networks 7(6) (2001) 575–584

[72] Kuhn, F.: Weak graph colorings: distributed algorithms and appli-
cations. In: SPAA. (2009)

[73] Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! [39] 300–309

[74] Leighton, F.T.: Finite common coverings of graphs. J. Comb. Theory,
Ser. B 33(3) (1982) 231–238

[75] Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-
stabilization on speed. In Guerraoui, R., Petit, F., eds.: SSS. Volume
5873 of Lecture Notes in Computer Science., Springer (2009) 17–34

[76] Linial, N.: Locality in distributed graph algorithms. SIAM Journal
on Computing 21(1) (1992) 193–201

[77] Liu, X., Xu, Z., Pan, J.: Classifying rendezvous tasks of arbitrary
dimension. Theoretical Computer Science 410(21–23) (2009) 2162 –
2173

[78] Luby, M.: A simple parallel algorithm for the maximal independent
set problem. In Sedgewick, R., ed.: STOC, ACM (1985) 1–10

[79] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

[80] Mavronicolas, M., Michael, L., Spirakis, P.: Computing on a par-
tially eponymous ring. In: Proceedings of the 10th international
conference on Principles of Distributed Systems. OPODIS’06, Berlin,
Heidelberg, Springer-Verlag (2006) 380–394

BIBLIOGRAPHY 127

[81] McCormick, S.T.: Optimal approximation of sparse hessians and its
equivalence to a graph coloring problem. Mathematical Programming
26(2) (1983) 153–171

[82] Métivier, Y., Robson, J.M., Zemmari, A.: Analysis of fully dis-
tributed splitting and naming probabilistic procedures and appli-
cations - (extended abstract). In Moscibroda, T., Rescigno, A.A.,
eds.: SIROCCO. Volume 8179 of Lecture Notes in Computer Sci-
ence., Springer (2013) 153–164

[83] Métivier, Y., Saheb, N., Zemmari, A.: Randomized local elections.
Inf. Process. Lett. 82(6) (2002) 313–320

[84] Naor, M., Stockmeyer, L.: What can be computed locally? SIAM
Journal on Computing 24(6) (1995) 1259–1277

[85] Naor, M., Stockmeyer, L.J.: What can be computed locally? In:
STOC. (1993) 184–193

[86] Norris, N.: Universal covers of graphs: Isomorphism to depth n− 1
implies isomorphism to all depths. Discrete Applied Mathematics
56(1) (1995) 61–74

[87] Ramanathan, M.K., Ferreira, R.A., Jagannathan, S., Grama, A., Sz-
pankowski, W.: Randomized leader election. Distributed Computing
19(5-6) (2007) 403–418

[88] Schieber, B.: Calling names in nameless networks. In Rudnicki, P.,
ed.: PODC, ACM (1989) 319–328

[89] Schmid, S., Suomela, J.: Exploiting locality in distributed SDN
control. In: HotSDN. (2013) 121–126

[90] Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking
depending on the chromatic number or the neighborhood growth.
Theor. Comput. Sci. 509 (2013) 40–50

[91] Schneider, J., Wattenhofer, R.: A log-star distributed maximal in-
dependent set algorithm for growth-bounded graphs. In: PODC.
(2008)

128 BIBLIOGRAPHY

[92] Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal dis-
tributed algorithm for maximal independent set selection. In: PODC.
(2013)

[93] Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S.: Developing self-
stabilizing coloring algorithms via systematic randomization. In:
Proceedings of the International Workshop on Parallel Processing.
(1994)

[94] Suomela, J.: Survey of local algorithms. ACM Comput. Surv. (to
appear) Preliminary version.

[95] Yamashita, M., Kameda, T.: Computing on anonymous networks:
Part i-characterizing the solvable cases. IEEE Trans. Parallel Distrib.
Syst. 7(1) (January 1996) 69–89

Curriculum Vitae

May 18th, 1984 Born in Recklinghausen, Germany

1994–2003 High school “Gymnasium Petrinum”
Recklinghausen, Germany

2003–2004 Civil service

2004–2011 Studies in computer science
Karlsruhe Institute of Technology, Germany

2005–2008 Student assistant
Karlsruhe Institute of Technology, Germany

May 2011 Dipl.-Inform. (roughly comparable to M.Sc.)
Supervisor: Prof. Peter Sanders

2011–2015 Ph.D. student, research and teaching assistant
Distributed Computing Group
Prof. Roger Wattenhofer, ETH Zürich, Switzerland

August 2015 Ph.D. degree
Supervisor: Prof. Roger Wattenhofer
Co-Examiner: Prof. Yuval Emek,

Technion, Israel
Co-Examiner: Prof. Jukka Suomela,

Aalto University, Finland

131

Publications

During my time at ETH, I co-authored the following publications. Note
that the authors are ordered alphabetically. The order does not reflect
the amount of contribution.

• Brandt, S., Seidel, J., Wattenhofer, R.: Toehold DNA Languages are
Regular. In: ISAAC. (2015)

• Decker, C., Guthrie, J., Seidel, J., Wattenhofer, R.: Making Bitcoin
Exchanges Transparent. In: ESORICS. (2015)

• Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin Meets Strong Consis-
tency. In: ICDCN. (2016)

• Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous Net-
works: Randomization = 2-Hop Coloring. In: PODC. (2014)

• Emek, Y., Seidel, J., Wattenhofer, R.: Computability in Anonymous
Networks: Revocable vs. Irrevocable Outputs. In: ICALP. (2014)

• Förster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local Checkabil-
ity, No Strings Attached. In: ICDCN. (2016)

• Förster, K.T., Seidel, J., Wattenhofer, R.: Deterministic Leader Elec-
tion in Multi-Hop Beeping Networks. In: DISC. (2014)

• Seidel, J., Uitto, J., Wattenhofer, R.: Randomness vs. Time in Anony-
mous Networks. In: DISC. (2015)

133

	Introduction
	Overview
	Preliminaries

	The Impact of Output Revocability on Computability
	Output Revocability
	Related Work
	Notions of Correctness
	Distributed Oracles
	Problem Zoo
	Proof of Theorem 2.3

	The Role of Randomness
	Preliminaries and Genuine Solvability
	Related Work
	The Case for Infinity
	Dealing with (In)finity
	Fibrations and 2-Hop Colorings

	The Cost of Randomness
	Broadcast Model and Target Functions
	Related Work
	Tailor-Made 2-Hop Coloring
	Trade-off Lower Bound

	Local Checking
	Local Checkability in (Un)directed Graphs
	Related Work
	Checking Network Properties
	Port Numbers vs. s-t Reachability

