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Abstract. We explore the impact of the network structure on lending in
financial networks. Specifically, we ask what price agents should charge
when lending to each other and how much this price should depend on
the network topology. We begin with a simple model that incorporates
debts and external assets. We then extend this model to account for de-
fault costs as well. In the simplest model, all agents have an identical
break-even price and all agents offering this price is a Nash equilibrium.
This price is 1

rb
per unit of money, where rb is the recovery rate of the

borrower. In the extended model, with default costs, agents can have
different break-even prices. Yet surprisingly, we find that a Nash equilib-
rium is for all agents to bid the same price of Lb

rbLb−(1−α)d
, where Lb is

the total debt of the borrower, (1 − α) is the default loss rate, and d is
the amount being borrowed. Our study shows that network location does
not impact debt pricing. However, the overall network topology plays a
crucial role in the stability of the network regarding new debt contracts.
We show that a single debt contract can push almost every agent in a
network into default. Moreover, requiring agents to hold a fixed fraction
of their liabilities in liquid assets does not rule out such scenarios.

Keywords: Financial networks · Lending · Lending Games · Multi-
Agents.

1 Introduction

Lending is a fundamental aspect of banking and is well-studied in the finan-
cial literature. The price of borrowing depends on several factors, most impor-
tantly, the creditworthiness of the borrower. Borrowers are often viewed in iso-
lation; however, financial institutions are invariably linked in complex networks
or graphs, with nodes representing institutions and directed edges representing
liabilities. An unpaid debt in one place can start a chain reaction, ultimately
leading to bankruptcies far away from the root cause [27]. Therefore, one may
wonder whether network effects also influence lending. Does it matter how the
borrower and the lender are related in the network? Surprisingly, this question
has been largely overlooked in prior studies. In this paper, we explore the impact
of network effects on loan pricing. Please, see fig. 1 for a motivating example.

We consider lending in the standard financial network model with and with-
out default costs [8]. Interestingly, we find that without default costs, all agents
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b

u v w

Fig. 1: Agent b wants to borrow some money, and agents u, v, and w are potential
lenders. However, their situations are different. Agent b already owes u money;
v’s value might be dependent on the loan from b to u being paid in full and w
is so far completely independent of b. It seems intuitively reasonable that u, v,
and w can all charge a different price for the same loan to b.

in the network have the same break-even price, regardless of their exposure to
the borrower. In other words, it does not matter who the borrower already owes
money to, all agents will break even (make a non-negative profit from the loan)
at the same price. When lending to a specific agent b, this price is given by 1

rb
per unit lent, where rb is the recovery rate of the borrower. The recovery rate
rb is the proportion of its debts that b can pay off. It can be seen as a measure
of the creditworthiness of b. If agent b with recovery rate rb wants to borrow d,
then the return liability for the borrowed money will be d

rb
. If the lender also

wants to make a profit, then they will have to add this to the price they offer.

Moreover, we show that this break-even price is also an equilibrium price for
all agents, i.e., all agents bidding the break-even price is a Nash equilibrium when
considering lending as a game. In particular, agents u, v, and w in fig. 1 would
all offer b the same price for a loan. The equilibrium price is computed using
a three-way comparison between market clearing before the new debt contract,
market clearing after the agent under consideration wins the debt contract, and
market clearing after someone else wins the contract.

In the extended model with default costs, different agents can have different
break-even prices. In particular, an agent with direct exposure to a bankrupt
agent b will need to charge a higher price for an additional loan to b to break
even. As such, one would expect that an isolated agent, with the lowest break-
even price, would be willing to offer the lowest price for a new loan. Remarkably,
however, we find that there is a universal equilibrium price for lending. When
one takes into account that another agent could win the contract, an exposed
agent is willing to offer below its break-even price even though this results in an
overall loss.

Finally, we look more closely at what happens to the network when a new
debt contract is introduced. Specifically, we analyze the stability of financial
networks to new contracts. We prove that in some networks the addition of
a single loan can bankrupt (send into default) almost every agent. Moreover,
mandating agents to maintain a fixed fraction of their liabilities in liquid assets,
as required by international banking standards, does not rule out such scenarios.
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2 Related Work

Debt Pricing Asset and debt pricing is well-studied in the literature, as is evident
from the books by Bluhm et al. [6], McNeil et al. [21], and Lando [20]. However,
it should be noted that these works disregard the influence of network effects.
Typically, these models are constructed based on the computation of anticipated
discounted future cash flows. They incorporate the concept of the time value of
money, which can vary depending on the lender, along with a risk premium
determined by the borrower. Furthermore, these models take into account other
potential risks associated with the non-materialization of future cash flows.

The seminal work of Merton [22] applies Black-Scholes-type pricing to corpo-
rate debt, taking into account the stochastic changes in the probability of default
of the underlying corporation. This probability of default is modeled as a Brow-
nian motion and does not take the probability of default of other corporations
into account. In contrast, we focus on the impact of the network on pricing.

Financial Networks Financial networks were introduced in the pioneering works
of Allen et al. [1] and Eisenberg and Noe [8]. Eisenberg and Noe’s model assumes
external assets and simple debt contracts between agents. It has since been
extended to include default costs [26], cross-ownership [10, 30], fire sales [7],
credit default swaps [28, 24, 25, 19], and debts due in time intervals [12]. A focal
topic in the field of financial networks is financial contagion [14, 15, 4]. These
works study how an initial shock spreads through the network based on the
topology. In particular, they explore what network structures lead to the greatest
amplification of shocks and what regulations should therefore be put in place to
avoid such scenarios. For a survey, see [16, 18].

Another line of work looks at what central agents can do to prevent or mini-
mize the effects of financial contagion. Freixas et al. [11] and Papachristou et al.
[23] examine how liquidity shocks can be compensated for by a central agent.
Bernard et al. and Hoefer et al. [5, 17] take a game-theoretic perspective to an-
alyze when agents are incentivized to bail each other out rather than relying on
a central agent.

As a consequence of such research, agents and regulatory bodies have ac-
knowledged the importance of taking network effects into account when devel-
oping stress testing models [2, 9, 13, 31]. However, based on an empirical study,
Siebenbrunner et al. [29] find that financial contagion is still not priced into
interbank markets.

Debt Pricing in Financial Networks In contrast to these works, we are interested
in the day-to-day operations of agents and how these are affected by the network
topology. We study how market values change when a new debt contract is made.
Based on this, we calculate the correct price for lending to a specific agent in
the network. Banerjee et al. [3] address the issue of pricing existing debt in
a financial network with interbank liabilities and comonotonic endowments. In
contrast to their work, we focus on pricing new debt contracts in a competitive
game-theoretic setting.
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3 Preliminaries

We consider a network with n agents, N := {u, v, w, . . .}. Each agent may have
liabilities to other agents.We represent the liabilities in the form of a matrix,
L ∈ Rn×n, where the uvth entry luv represents the liability of u to v. We assume
that luv ≥ 0, ∀u, v and luu = 0, ∀u. We denote the total liabilities of u by
Lu =

∑
v∈N luv. Each agent u also has external assets (cash) of value xu ≥ 0.

The network can be viewed as a directed graph, where the nodes represent
agents and the directed edges represent liabilities.

When the total liabilities of an agent exceed its incoming payments and
external assets, we say that it is in default. Otherwise, we say that the agent is
solvent. When an agent defaults, there may be losses associated with the process.
This can include the payment of outstanding salaries, clearing fees, losses from
inefficient asset liquidation, etc. These losses are often modeled using default
cost parameters α, β ∈ [0, 1] [26]. A 1 − α share of the agent’s external assets
and a 1− β share of its incoming payments are lost from the network and only
the remaining α and β shares can be used to make payments.

A tuple (N,L, x, α, β) is called a financial network. Note that α = β = 1
corresponds to a model with no default costs. When an agent defaults, we assume
(1) it pays out all of its external assets and incoming payments to its creditors,
and (2) its payments are proportional to the size of its liabilities. So, the payment
from u to v will be puv(r) = ruluv. Solvent agents pay all their liabilities in full.
Given these payment principles, or clearing rules, the recovery rate vector and
payments will satisfy the following definition.

Definition 1 (Clearing Recovery Rate Vector, CRR).

ru = min

{
āu
Lu

, 1

}
puv = ruluv, au = xu +

∑
v∈N

pvu

āu =

{
au if au ≥ Lu

αxu + β
∑

v∈N pvu if au < Lu

Node u is solvent if and only if ru = 1 ⇔ au ≥ Lu.

Eisenberg and Noe [8] show that there is a unique CRR vector in financial
networks without default costs. Rogers et al. [26] show that with default costs,
the clearing vector may not be unique. They use a recursive algorithm to find
the greatest clearing vector, which is the CRR vector such that no agent has a
higher recovery rate in any other CRR vector1. From now on, we will assume
that we always consider the greatest clearing vector if there is any ambiguity.
This motivates the following definition.
1 Since an increase in the recovery rate of one agent cannot decrease the recovery rates

of others, the greatest clearing vector is well-defined and always exists. We refer to
[26] for more details.
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Definition 2 (Clearing Recovery Rate Vector Update Function). Let
(N,L, x, α, β) be a financial network. Define the update function F : [0, 1]N →
[0, 1]N , rk+1 = F (rk) with

Fu(r) :=

{
1 if au(r) ≥ Lu
āu(r)
Lu

if au(r) < Lu

.

The recovery rate vector r is clearing if and only if it is a fixed point of the
update function, that is, F (r) = r.

For our proofs, we need some basic properties of the update function F : The
greatest clearing vector can be found by starting with r0 = 1N := (1, . . . , 1) and
applying F until convergence; F is bounded above by 1N and below by 0N ; and
F is monotone, i.e., if r̃ ≤ r, then F (r̃) ≤ F (r), where ≤ is to be understood
elementwise. These properties follow directly from the results in [26], and we
omit the proofs here. From this, by induction, we also have Fn(r̃) ≤ Fn(r) in
the limit as n → ∞. In addition, for a financial network without default costs,
we note that the total assets in the network are always preserved, as no money
enters or leaves the network during clearing. We refer to this as the conservation
of total assets.

Intuitively, the CRR vector is defined as the fixed point of the agents itera-
tively transferring the assets they have (and receive) to their creditors until they
have paid their debts in full or have nothing left to give. Clearing allows us to
evaluate the value of agents given the state of the network: It tells us what each
agent would end up with if no changes were made to the network and all existing
liabilities were cleared. Next, we define debt contracts and the lending game.

Definition 3 (Debt Contract). A debt contract between l and b is a tuple
(l, b, d, R), where l, the lendor, gives d > 0 external assets to b, the borrower, in
return for a liability of R ≥ 0. The contract results in:

x′
l = xl − d, x′

b = xb + d, l′bl = lbl +R.

Definition 4 (Net Worth & Market Value). The difference between the
discounted assets and liabilities (āu − Lu) of an agent is its net worth, denoted
NWu. We define the market value of an agent u as

Vu = āu − ruLu = max {au − Lu, 0} = max {NWu, 0} .

Definition 5 (Donation). A donation from l to b is a debt contract with R = 0.
l is weakly (strongly) incentivized to donate to b if this does not decrease (strictly
increases) NWl.

Donations can also be seen as bailouts, sometimes referred to as bail-ins.
Agents could have something to gain from saving other agents or making dona-
tions to other agents in the network, but we will not consider such cases in this
paper.
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Definition 6 (Break-Even Price). We say that RBE
l (b, d) is a break-even

price for a debt contract if NW ′
l −NWl = 0.

Definition 7 (Lending Game). Consider a financial network (N,L, x, α, β)
and an agent b seeking to borrow d external assets. The Lending Game is defined
as follows:

Players:

– Agents in the network N (excluding b).

Actions:

– Each agent u ∈ N \{b} can submit a bid Ru representing the liability it seeks
from b in return for d external assets, or it can decide not to submit a bid.

Objective:

– Each agent aims to maximize its final net worth

Rules:

– b accepts the lowest bid if there is one.
– If multiple agents offer the lowest bid, b arbitrarily chooses the lender.

Assumptions:

1. There is competition. More precisely, there are at least two potential lenders,
that is, |N \{b}| ≥ 2, and at least one potential lender has a break-even price
less than ∞.

2. Donations are allowed, but there are no incentivized donations (remaining)
in the original network.

3. Agents cannot count on receiving (incentivized) donations from others when
calculating their net worth, but they can plan to make donations themselves.

Nash Equilibrium (NE):

– {R∗
u}u∈N\{b} is a Nash Equilibrium (NE) if no agent u ∈ N \ {b}, can

increase its net worth by unilaterally deviating from its current bid R∗
u. We

call R∗
u an equilibrium price for agent u.

Remarks:

– The game models the lending process in the financial network, where agents
compete to offer the lowest price for a debt contract with b.

– Agents must take into account the potential impact of the new debt contract
when deciding on their bid price. Moreover, they have to compare winning
the contract versus someone else winning the contract, rather than just com-
paring with the original network.

– The first assumption ensures that agents will be undercut if they offer more
than another agent’s break-even price.
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– The second assumption ensures that no agent can benefit from giving an
extremely favorable loan. Indeed, if a donation is incentivized, then there is
no reason to wait for an opportunity to make a seemingly generous loan.

Since changing non-minimum bids has no impact on the outcome, there can
be infinitely many NEs. However, we are interested in the minimum price an
agent would be willing to offer. For example, in a network with no liabilities, if
b wants to borrow d and xb = 0, then any price R ≥ d is a break-even price and
all price vectors that are element-wise ≥ d are NEs. We are interested in the NE
where all agents bid d exactly.

Observation 1 (1) An agent can have infinitely many break-even prices for the
same loan, and (2) There can be infinitely many Nash equilibria in a Lending
Game.

4 Results

This section presents results for lending in financial networks with and without
default costs. We first prove two propositions that will be needed when proving
the main results.

Proposition 1. In a Lending Game where b wants to borrow d > 0, rb is non-
increasing in R for a given fixed lender u ∈ N \ {b} (barring donations after the
loan).

Proof. This claim seems intuitive since increasing b’s debts, whilst seemingly
keeping its assets the same, cannot lead to an increase in b’s recovery rate.
However, note that u can gain from a higher R, and given a bankrupt u and a
suitable topology, u’s gain could translate into an overall gain for b.

Now we rule out such a scenario. Note that borrowing at a high price is a
potentially inefficient way for b to transfer assets to u. b gets d more in external
assets and R more in liabilities, a net loss of R− d; and u has d less in external
assets and at most R more in incoming payments. If b is solvent after the loan,
then the same asset transfer could be achieved by donating R− d directly to u.
And if b is bankrupt after the loan, then the transfer is inefficient since u gains
less than b loses due to default costs. It would be better for b to donate R − d
directly. Note that we assume α ≥ β, so there is no advantage to having R as
a liability instead of external assets. Therefore, since no incentivized donations
exist, rb is non-increasing in R. To be more formal, one would argue using the
update function.

Proposition 2. In a Lending Game, for all u ∈ N \{b}, NWu is non-decreasing
in R when u wins the contract.

Proof. We consider two regimes for R: (a) R ≤ ab + d− Lb, that is, b is solvent
after the loan; and (b) R > ab + d− Lb, i.e., b is in default after the loan.
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Regime (a): b is solvent after the loan, so b repays all of its debts. If u makes
the loan, then the incoming payments and therefore the total assets of u are
increasing in R. Since neither the payments of b nor of u are decreasing in R,
the recovery rates of all agents are non-decreasing in R. Therefore, also NWu is
non-decreasing in R.

Regime (b): From proposition 1, we know that rb is non-increasing in R.
However, note that when applying the update function F (definition 2), the
total assets and therefore the total payments of b do not change as R is in-
creased. However, the proportion of the payments going to u increases, while
all the other creditors get proportionally less. The total payment gain for u is
equal to the payment loss of all the other creditors combined; u is essentially
“taking” the payments from the other creditors. Therefore, if u makes a loss
due to some creditor of b not receiving enough payments, u could simply use
(part of) the additional payments it has “taken” and donate them back to the
creditors concerned. Therefore (with the appropriate donations) NWu must be
non-decreasing in R.

We have shown that NWu is non-decreasing in R in the two regimes. To
complete the proof, we have to consider the boundary of the two regimes. At the
crossover point, we rely again on potential donations to show that there cannot
be a drop in NWu due to b going into default. Suppose the bankruptcy would lead
to a drop in NWu, then u could simply donate the difference (R ≤ ab+d−Lb < d)
back to b and ensure that b does not go into default. This would lead to the same
clearing vector as offering the lower price to start with, so there can be no drop
in NWu at the boundary.

We illustrate the two regimes and the different post-loan donation scenarios
with an example in fig. 2. Note that these propositions are similar to the debt-
swapping concept from [25] and Corollary 6 from [17].

4.1 No Default Costs

Theorem 1. In a Lending Game with α = β = 1 (no default costs), a break-
even price for lending d to b always exists and the minimum break-even price is
identical for all agents in the network. The minimum break-even price is:

R∗(d) =
d

rb

where rb is the recovery rate of b. A loan at this price does not affect the net
worth of any agent other than b.

Proof. Let u ∈ N \ b be an agent in the network and let (N,L′, x′, 1, 1) be the
financial network after the debt contract (b, u, d,R = R∗(d)) between b and u
is agreed. We need to show the following: (a) The new loan does not affect the
network (all recovery rates are unchanged); (b) R∗(d) is a break-even price for
u (and thus for all agents in N \ b); and (c) Any debt contract with R < R∗(d)
changes the net worth of u. To show (a), we show r′ = r, which is also used to
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b

w v u

6 6 6+R

2.9

12+2

0 1.5 0

R

δNWu v in defaultv solvent

R∗

7.2

RBE
u

10 12

−1.67

with donations

without donations

Fig. 2: An example illustrating how NWu is increasing in R even when increasing
R causes a detrimental bankruptcy. b borrows 2 from u in return for an additional
liability of R. When R is too high, v defaults, affecting u. The default cost
parameters are α = β = 0.5. The blue line shows the net worth of u without
post-loan donations, whereas the black dashed line takes donations into account
— u bails out v. The y axis shows the change in NWu relative to no loan. R∗

indicates the NE price, RBE
u the break-even price for u, and the dotted line the

threshold above which v defaults.

show (b). From definition 3 we have that most of the network remains unchanged.
To show that r′ = r we argue that F ′(r) = r, where F ′ is the update function for
the new network, which by definition 2 means that r is still a clearing vector of
the new network. Since the clearing vector is unique, we get r′ = r ⇔ F ′(r) = r
[8, Theorem 2].

We evaluate F ′(r) element-wise for the elements rv, v ∈ N\{u, b}, ru, and
rb. The assets and liabilities have not changed for all agents except xu, xb, lbu,
so a′i(r) = ai(r) and L′

i = Li, and with definition 2 saying av = a′v ∧Lv = L′
v ⇒

F ′
v(r) = rv,∀v ∈ N we have rv = r′v. Additionally, L′

u = Lu and we have

a′u(r) = x′
u +

∑
v∈N

rvl
′
vuxu − d+

∑
v∈N\{b}

rvlvu + rb

(
lbu +

d

rb

)
= au(r).

Thus, we have ru = r′u. The previous calculations could also be done for b, but
it is simpler to use these results and consider r′b according to definition 1:

r′b = min

{
x′
b +

∑
v r

′
vl

′
vb∑

v l
′
bv

, 1

}
= min

{
rbLb + d

Lb +
d
rb

, 1

}
= rb.

Therefore, r = r′, showing that the network is not affected by the loan between
u and b. For (b) we use from above that a′u = au and L′

u = Lu, so by definition 4
we get NW ′

u = NWu showing that R∗(d) is a break-even price for u.
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It remains to prove (c). Suppose u offers the loan in exchange for a liability of
R < R∗(d), we show that the new net worth of u is then NW ′′

u < NW ′
u = NWu

(unless u is weakly incentivized to donate to b). Together with proposition 2,
this gives that R∗(d) is the minimum break-even price.

By proposition 2, we have NW ′′
u ≤ NW ′

u = NWu, so assume NW ′′
u =

a′′u − L′′
u = NWu = au − Lu. Since L′′

u = Lu, we must have a′′u = au, which
together implies that r′′u = ru. We also have with proposition 1 that 1 ≥ r′′b ≥ rb,
which when used in the update function F (definition 2) gives that r′′ ≥ r′ = r.
With this assumption and the implications, we need to show that we get a
contradiction or that u is weakly incentivized to donate to b. We now consider
two cases: (1) b was solvent before initiating the loan, and (2) b was in default
before initiating the loan.

Case (1): rb = 1 ⇒ r′′b = 1, so r′′b = rb and thus r′′ = r which leads to a
contradiction as:

NW ′′
u = a′′u − L′′

u = au − d+R− Lu < au − Lu = NWu.

Case (2): The update function F implies that if the recovery rates of b and
u do not change with the addition of the debt contract, then the rest of the
network remains unchanged. If R = R∗(d) − ϵ1 then u could instead donate
ϵ2 = (ab+d)ϵ1

Lb+R = r′′b ϵ1 < ϵ1 and make the loan R∗(d) to b. Here, ϵ2 is chosen s.t.
the recovery rate of b is the same when lending at R and when lending at R∗(d)
with the donation of ϵ2. But this implies that u is weakly incentivized to donate
to b. Since the network is not changed by the loan, but only by the donation,
then the donation was also weakly incentivized without the debt contract. This
completes the proof of (c) and thus the theorem.

Theorem 1 can be extended to the following:

Theorem 2. R∗(d) is the equilibrium price for lending to b.

That is, one can prove that in a financial network with competition, all agents
offering to lend at R∗(d) is an NE. Increasing the price would potentially benefit
a lender, but then they would not win the contract, and decreasing the price
would lower their net worth. We see that the network topology does not affect
debt pricing in the basic model (beyond calculating the recovery rate vector).
In particular, the lender’s location does not matter. In the next section, we will
see that this is also the case when we include default costs.

4.2 Default Costs

Theorem 1 shows that, without default costs, the minimum break-even price is
the same for all agents in a network and that the break-even price is also an
equilibrium price. However, with default costs, the break-even price is no longer
the same for all potential lenders. Moreover, all agents offering their break-even
price is not necessarily a Nash equilibrium.
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b

u v

w

3 6
6

Fig. 3: A financial network where agents have different break-even prices. The
default cost parameters are α = β = 1/2. With d = 2, b would have 4 available
after default costs have been deducted. Therefore, the break-even prices would
be RBE

u (2) = 15 for u and RBE
w (2) = 9 for w. The break-even price for v would

be infinite. Currently, v receives 2 after clearing and would need to receive 4 to
break even, but b only has 4 available to pay out in total, so v would need to
receive all of this.

Observation 2 In a Lending Game with default costs, agents can have different
break-even prices.

This is illustrated in Figure 3. The break-even prices for lending 2 to agent
b are 9, 15, and ∞ for w, u, and v, respectively. The intuition is that if b is in
default, then some loaned value, more precisely (1−α)d, is lost from the system,
so a lender has to “take” the lost value from other creditors of b by increasing R.
If an agent already has exposure to b, then it needs to raise the price further. We
will see in Theorem 3 that, despite this, there is still a universal equilibrium price.
This is because we also have to compare winning the contract with someone else
winning the contract.

Observation 3 In a Lending Game with default costs, agents offering their
break-even price is not necessarily an NE.

Consider the network in fig. 3 without agent w. Although agent v has no
finite break-even price, it prefers to win the contract for R = 9 (NWv = 4/3)
than u winning the contract for R = RBE

u = 15 (NWv = 1). So bidding the
break-even prices cannot be an NE.

As before, we assume that there are no (weakly) incentivized donations in
the original network; however, it should be noted that with default costs, an
agent could become strongly incentivized to donate to b. This is a surprising
result; the network does not change, but just the prospect of a loan changes the
donation incentives in the network.

Lemma 1. There exist financial networks where v is not (weakly) incentivized
to donate to b, but given the prospect of a loan from w to b, v becomes strongly
incentivized to donate.

While lemma 1 describes a valid scenario, we exclude it in the theorem,
having already covered it with the lemma.

Definition 8 (Prospect of a loan). An agent is isolated if they have no
incoming or outgoing liabilities. The prospect of a loan is defined as the scenario
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in which a (new) isolated agent u offers a loan of d to agent b for a liability of
R = RBE

u .

In addition, we have to restrict who can offer a loan and adapt what we mean
by competition. The extreme cases of β = 0, α = 1 and β = 1, α = 0 illuminate
the reasons for these changes. When β = 1, α = 0, a bankrupt agent would
offer the loan at an infinitesimal price since its external assets are otherwise lost
anyway but the additional incoming liability will contribute to its (discounted)
assets and therefore net worth. Therefore, we exclude bankrupt agents from
offering loans. When β = 0, α = 1, no agent in default would offer a loan, as the
agent would gain nothing from the incoming liability, whilst losing d (discounted)
assets. As a result, a single solvent agent would face no competition. Therefore,
we redefine the notion of competition.

Definition 9 (Adapted Assumptions). (A1) An agent can offer a loan if it
remains solvent at the prospect of the loan. (A2) At least two agents can offer a
loan, and at least one has a finite break-even price. (A3) There are no (weakly)
incentivized donations at the prospect of a loan.

Theorem 3. In a Lending Game with the adapted assumptions (definition 9),
there is an equilibrium price for all agents. Moreover, the marginal equilibrium
price is

lim
ϵ→0

{
R∗(ϵ)

ϵ

}
=

1

rb
.

That is, an agent would lend ϵ to b in return for a debt obligation of ϵ
rb

, for ϵ
small enough.

Proof. Let (N,L, x, α, β) be the financial network. If b is solvent, then u would
lend d in return for a liability of d. The clearing vector does not change and u
receives the payment in full in case of clearing. Since u is solvent (A1), NWu

is the same whether u has the d external assets or the d incoming payments.
Therefore d is the equilibrium price. Therefore, we may assume that b is in
default before the loan. To prove the theorem, we need to show: (a) Given some
equilibrium price R∗(d), all eligible agents offer R∗(d). (b) the marginal price is
1
rb

. If two agents u and v offer a loan, then a superscript ϕ denotes the winner.
For example, rϕ=u

b is the recovery rate of b assuming u wins the contract. No
superscript denotes the network before the new debt contract.

We first give an expression for R∗(d). If u and v are offering the loan for R∗(d)
then the liabilities and external assets remain unchanged for all agents except b,
u, and v. Furthermore, the liabilities of u and v are the same in both cases, and
since R∗(d) is assumed to be the equilibrium price, we have rϕ=u

u = rϕ=v
u ,∀u ∈ N

and NWϕ=u
u = NWϕ=v

u ,∀u ∈ N . Bank b also has the same assets and liabilities,
and therefore also the same recovery rate in both cases: rϕ=u

b = rϕ=v
b . Since the

liabilities of u are the same, we only need to consider u’s assets when calculating
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its new net worth. We have:

aϕ=v
u = xu +

∑
w

rϕ=v
w lwu = aϕ=u

u

= xu − d+
∑
w

rϕ=u
u lwu + rϕ=u

b R∗(d) ⇔ R∗(d) =
d

rϕ=u
b

.

Note that rϕ=u
b = rϕ=v

b , so R∗(d) is independent of ϕ. Finally, by (A3), we do
not have to consider donations.

To show (a) we need to show that no eligible agent would deviate from
offering R∗(d). We consider an eligible agent u. If u increases its price, then
its offer will not be accepted so NWu will not increase. On the other hand, let
us consider u decreasing its offer to R̂u < R∗(d). We have shown above that
NWϕ=u

u = NWϕ=v
u , when Ru = Rv = R∗(d). Moreover, by proposition 2, we

have N̂W
ϕ=u

u ≤ NWϕ=u
u . Combining these, we find that even though reducing

the price guarantees that u wins the contract, its net worth cannot be greater:
N̂W

ϕ=u

u ≤ NWϕ=v
u .

It remains to show (b), i.e., the marginal price as d → 0. If rb = 1, then
R∗(d) = d and rϕ=u

b = 1 = rb. Otherwise,

rϕ=u
b =

āϕ=u
b∑
i l

ϕ=u
bi

=
rbLb + αd

Lb +
d

rϕ=u
b

=
rbLb − (1− α)d

Lb
.

Since rb < 1, Lb > 0. Therefore, taking the limit d → 0 gives rϕ=u
b = rb. This

gives the limit equilibrium price as required: limϵ→0
R∗(ϵ)

ϵ = 1
rb

.

Note that R∗(d) = Lbd
rbLb−(1−α)d . So, as d → rbLb

1−α , the equilibrium price goes
to infinity. Thus, no agent would ever lend more than d = rbLb

1−α to b at any price.

Observation 4 R∗(d) is the break-even price for an isolated agent lending d to
agent b.

In other words, this is the price that an agent would charge if there were no
network effects to consider. This follows from the calculations in the proof.

Calculating the impact of a debt contract on the value of an agent can be
complicated, but the proof relies on the fact that comparing the value of an
agent when it wins the contract with the value when somebody else wins the
contract (for the same price) is relatively easy.

Observation 5 We can omit (A1) by restricting to α = β. This eliminates the
extreme cases mentioned earlier.

The proof in part (a) can be adapted as follows. Take an agent u (may be in
default), where there is no path of liabilities from v to u. This case is the same
as in the proof, as losses incurred by v cannot impact u or its debtors. The other
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case is that there is a path from v to u, which is split into the cases: (i) no path
from u to v, (ii) path from u to v. For (i), u can donate its profits to v, but
v cannot expect this according to the definition of a Lending Game. So u can
match v’s offer, but v would undercut u. For (ii), u can donate to v. Assuming
that u does not have to donate everything, then it can undercut the price offered
by v. Otherwise, u does not care if it wins and donates everything or v wins.
From v’s perspective, its net worth will be lower if u wins but does not donate.
So v would rather undercut u and ensure that it wins the contract.

4.3 Stability of the Network

The addition of default costs means that some capital will disappear from the
system, which can have negative effects on an unstable network. Showcased by
the following two theorems with proofs the appendix.

Theorem 4. For any d > 0, p < 1 and α, β < 1 there exist financial networks
of size n with default costs (α, β) where a loan from u to b of amount d will
bankrupt pn of the agents, including u (barring donations).

Observation 6 In the proof of theorem 4, v becomes strongly incentivized to
donate to i1 at the prospect of a loan.

Observation 7 As an extension to theorem 4, when donations up to the net
worth of agents are allowed, the example can be adapted so that no agent is both
incentivized and able to bail out i1.

Observation 8 Lending does not depend on network effects; however, it is
strongly tied to the donation game, which does depend on network effects. As
such, if an agent can only observe the network in a finite radius of itself and b,
then it cannot protect itself from the effect seen in theorem 4.

We now show that even networks with a minimum liquidity requirement can
be unstable. For the next theorem, we need the following definition.

Definition 10 (Minimum liquidity). A network is said to have γ-minimum
liquidity for γ ∈ (0, 1), if xi ≥ γLi,∀i ∈ N .

Theorem 5. For any d > 0, p < 1, 0 < γ < 1, and α, β < 1 there exists a
financial network of size n with default costs (α, β) and minimum liquidity γ,
where a loan from u to b of amount d will bankrupt pn of the agents, incl. u.

This section has shown how the addition of a new loan in a financial net-
work with default costs can cause a net negative for the system. Two examples
were constructed to show that the loan can cause arbitrarily large losses in any
financial system with default costs even when forcing agents to keep a fraction
of their outgoing liabilities in cash.
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5 Conclusion

In this paper, we ask what the right price is for lending in financial networks.
There are various models of financial networks, and we consider lending in the
two most established models from the literature. Given a fixed clearing mech-
anism, we base the price of a debt contract on its effect on the value (upon
clearing) of the lender. Moreover, we consider competing agents, since contracts
between other agents can also impact the net worth.

In the first model, we show that every agent in the network has the same
break-even price and as such the same equilibrium price for lending to a specific
agent. When we add default costs to the network, we find that agents may now
have different break-even prices, but surprisingly, they would all offer the same
price at equilibrium. Moreover, the equilibrium price is the same as the break-
even price of a (hypothetical) isolated agent.

Finally, we show that a financial network with default costs can be very
fragile to lending in the sense that a new loan can cause a cascade of defaults.
Requiring agents to maintain a fixed proportion of their liabilities as external
assets does not fix this problem, calling into question the efficacy of international
banking standards.

There are many potential directions for future research. One could extend this
work to multiple concurrent borrowers. Similarly, one could consider introducing
cross-ownership, stochastic assets, or other financial instruments, which may
have interesting effects on debt pricing.
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6 Appendix

Proof of lemma 1

Proof. Consider the network in Figure 4. Ignoring external assets, NWv = 2
initially. If v donates 9 to b, then NWv drops to 1. Thus, v is not incentivized
to bail out b. However, if w offers a loan of d = 4 for a debt of R = RBE

w = 60,
then NWv drops to 2/3.

Proof of Theorem 4

Proof. To prove this, we construct such a network. Without loss of generality,
the expressions can be simplified by setting α = β = max(α, β). A sketch of the
network can be seen in Figure 5, and before the new debt contract is formed,
only bank b is in default with rb = α

C while the nodes i2, i3, ..., iK merely pass
along their incoming payments while remaining solvent.

After forming the debt contract, the recovery rate for bank b changes to
r̂b =

α(1+d)

C(1+ d
α )

< α
C . Ignoring the network effects for a moment, the change in the

net worth of bank u when providing the loan is

∆Vu = −d+ r̂b
Cd

α
= −d+

α(1 + d)

C(1 + d
α )

Cd

α
= −d+

1 + d

1 + d
α

d < 0.

Therefore, the debt contract presents a loss for bank u when ignoring the effect
of the contract on other banks. Now consider the assets, liabilities, and recovery
rate of bank i1 after the debt contract:

âi1 = C − α+ r̂bC = C − α+
α(1 + d)

C(1 + d
α )

C < C − α+ α = C = Li1 = L̂i1

r̂i1 =
α(C − α+ r̂bC)

C
=

α
(
C − α+ α(1+d)

1+ d
α

)
C

< α.

Due to the layout of the network, if bank ik is in default with recovery rate r̂ik
then bank ik+1 is also in default. This can be quickly seen as r̂ik < 1 means ik+1

b

u v

w

5 10

60

6+4

Fig. 4: An example financial network illustrating lemma 1. The default cost pa-
rameters are α = β = 1/2. The net worth of v is initially 2. If b wants a loan of
4 from w then the break-even price for w would be RBE

w (4) = 60. Adding this
loan would drop the net worth of v from 2 to 2/3, while a donation of 9 from v
to b would result in a net worth of 1 for v. Therefore, v is strongly incentivized
to donate when the potential loan is taken into consideration.
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bw

i1 i2 iK u v

Cd
αC

C C C C

1+d

C
2
−dC − α 0 0

Fig. 5: Network satisfying theorem 4. C > 1 and K ≥
⌈
− log 3
logα

⌉
. The dashed, red

edge marks the newly formed debt contract, which causes the system to collapse.
The dotted lines indicate paths of identical agents, with 0 external assets and
liabilities of C to the next agent along the path. The agent w ensures there is
competition. The contract could also be to w with the same effect.

receives less than C and therefore cannot fulfill its own obligation of C. The
recovery rate for bank ik+1 is then given by

r̂ik+1
=

αCr̂ik
C

= αr̂ik .

Using the above and that i1 is in default, we get

r̂iK = αK−1r̂i1 < αK .

Setting K ≥
⌈
− log 3
logα

⌉
, it follows that r̂iK < αK ≤ 1

3 . This, in turn, implies that
the assets for u fall below C, causing u to also default.

In the network, there are K + 3 banks, 1 was initially in default, and K + 2
are now in default, so K + 1 banks went into default due to the loan. We need
K+1
K+3 ≥ p ⇒ K ≥ 3p−1

1−p .

Proof of Theorem 5

Proof. The network in Figure 5 will show this with some minor modifications.
The liabilities of ik,∀k = 1, ...,K are given by Ck = α 1

(1−γ)k
C0, with C0 being

the liability from b to i1. The liability from u to v is C = d+B+CK

1−γ . In addition,
the assets are ab = γC0, ak = γCk, and ag = γC + d+B,B ≥ 0. After forming
the debt contract i1, i2, ..., iK , u all defaults.


