
Visually and Acoustically Exploring the High-Dimensional Space of Music

Lukas Bossard

Computer Engineering
and Networks Laboratory
ETH Zurich, Switzerland

lbossard@ee.ethz.ch

Michael Kuhn

Computer Engineering
and Networks Laboratory
ETH Zurich, Switzerland

kuhnmi@tik.ee.ethz.ch

Roger Wattenhofer

Computer Engineering
and Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract—The permanent growth of personal music collec-
tions caused by the ongoing digital revolution asks for novel
ways of organization. Traditional list based approaches are—
particularly for use in mobile devices—no longer appropriate.
In this paper we discuss two alternative exploration schemes,
both taking advantage of a recently proposed high-dimensional
music similarity space. First, we present an interface that
facilitates visual navigation through a collection. Then, we
propose the use of an acoustic approach, which adapts to the
user’s taste. The proposed solutions have been integrated into
an Android based prototype application. The conducted user
experiments indicate that both methods outperform alternative
approaches that head into similar directions.

Keywords-User Interfaces; Mobile Applications; Music; In-
teractive data exploration and discovery; Information Visual-
ization

I. INTRODUCTION

Over the past years we have observed a tremendous

change in the way people interact with media.

Nowadays it is simple and cheap to acquire music. Thus,

the collections of many music lovers have reached sized that

make it hard to keep an overview by traditional organiza-

tion techniques, such as browsing hierarchies of folders or

searching for songs by means of manually assigned labels.

This is particularly true for mobile devices, that feature

limited input and output capabilities.

We are convinced that the concept of music similarity will

play a crucial role in future organization strategies. Recently,

Goussevskaia et al. [2] have derived a measure of music

similarity by investigating the listening behavior of users of

a social music platform, and have shown that this similarity

measure is intrinsically high-dimensional.1 In form of a web-

service they provide the coordinates of more than 400K

songs, which have been mapped into a 10-dimensional

Euclidean space that well reflects the underlying similarities.

In this paper we investigate how this high-dimensional space

of music can be explored by a user on a mobile device. We

address the problem from two sides, by means of a visual

as well as an acoustic interface. These interfaces have been

1Under high-dimensional we understand everything that exceeds the
intuitively visualizable number of 2 or 3 dimensions.

integrated into a proof-of-concept mobile application which

is based on the Android2 mobile platform.

Our interfaces are designed such that users can quickly

find music that matches their taste, even within collections

they are partly or entirely unfamiliar with. Moreover, the

methods attempt to give an overview of the entire collection,

such that tracks from different music areas can be discov-

ered. For visual exploration we introduce a lens metaphor

that allows to focus on one part of the collection but at the

same time retains a global overview. The acoustic scheme,

on the other hand, tries to stay as broad as possible to

make sure no areas that match the user’s taste are missed.

It senses the user’s behavior and is thus able to adapt its

output accordingly.

The usability of our methods has been evaluated in an

experiment comprising 9 participants. In this experiment

our visual interface outperforms the recently introduced

SensMeTMfeature of Sony Ericsson, which, to the best of

our knowledge, is the only currently available commercial

system that heads into a similar direction. Due to the lack

of commercial mobile solutions in the area, we compare our

acoustic approach to the widely used concept of random

shuffling as well as to an algorithm proposed by Pampalk et

al. [14] that aims at playlist generation based on an audio-

feature space. In the conducted experiments, our algorithm

scores better than the two alternative approaches.

II. RELATED WORK

The exploration of music collections by means of sophis-

ticated interfaces is an active area of research. The proposed

approaches can be classified along different criteria.

The biggest class of solutions tries to visualize collections

based on previously extracted audio features. A popular

approach is the use of self-organizing maps (SOMs) to

create pleasant drawings of the underlying space. Mörchen

et al.[11] proposed to apply emergent SOMs (ESOMs) to

a complex audio-feature space to retain as much infor-

mation as possible in the 2-dimensional output space. A

3-dimensional visualization of relatively small collections

(50 songs), also by means of SOMs, is described in [7].

2http://code.google.com/android/



A spherical SOM has been used by Leitich and Topf [8]

to create the globe of music. The PocketSOMPlayer [12]

applies SOMs for visualizations on small devices. All these

approaches map the audio space into some low (2 or 3)

dimensional representation, which can then be explored by

traditional navigation schemes.

Goussevskaia et al. [2] have investigated the loss in

accuracy of mapping a user behavior based music similarity

measure into lower dimensions, and found that 8 or 10 rather

than 2 or 3 dimensions are required to adequately reflect the

similarity values. The use of the space in [3] demonstrates

that mobile devices are able to cope even with it. However,

the application only offers textual interfaces as opposed to

the more user friendly interfaces proposed in this paper.

Several approaches try to present the complex structures

behind music similarity on a 2-dimensional display. Don-

aldson and Knopke, for example, apply a special node re-

pulsion technique to overcome occlusion effects. Moreover,

several more abstract visual interfaces have been proposed

to overcome the inherent problems of the low dimensional

output space. The artist map proposed by van Gulik et al.

[20] uses a spring embedder to visualize a collection along

a user definable set of properties, which are partly extracted

from the audio content and partly consist of meta-data. The

approach is directed at small devices and restricted to artist

similarity. A circular layout has been chosen by MusicRain-

bow [13] as well as AudioRadar [5], which both operate on

an audio-feature space, in case of MusicRainbow augmented

by keywords retrieved from the web. The interface proposed

by Torrens et al. [18], finally, does not rely on any music

similarity measure. Rather, it directly visualizes meta-data,

such as genre or year of release, in a circular, a rectangular,

and a tree-based fashion.

The visualization of high-dimensional structures has also

been studied outside of the context of music. A compre-

hensive overview is given by [17]. Not all the described

techniques can be applied to our setting, though, such as

the rank-by-feature [16] approach, which depends on known

meanings of the axes. Two major ingredients, often seen in

high-dimensional data visualization are hierarchical decom-

positions (e.g. used in [21]) as well as icon based techniques

(e.g. applied in [6]). The visual interface we propose in this

paper combines these two techniques with a generalization

of the fish-eye [15] view for higher dimensions.

Besides visual, also acoustic interfaces have been de-

scribed in literature. Moreover, techniques that combine

the two approaches have been proposed, such as [10] and

[19]. Both of these interfaces try to take advantage of the

cocktail party effect. That is, they play different pieces of

music simultaneously. At the same time, they guide the

user through the music space by means of visual aids.

A purely acoustic exploration method has been proposed

by Pampalk et al. [14]. Even though their algorithm has

been described for audio-feature spaces, it can also be used

in our environment, and thus serves as a benchmark for

our experiments. Other approaches that go into a similar

direction, but are geared at the large listening community of

a web radio, are presented in [4] and [1].

III. OVERVIEW

Our work is based on a 10-dimensional Euclidean space of

music, which was developed by Goussevskaia et al. [2] and

is available through a web-service at www.musicexplorer.org.

After first startup, our Android based application retrieves

the coordinates of all the songs in the user’s music collec-

tion.3 After this step, the application has (offline) access to

the high-dimensional representation of the entire collection.

The visual as well as the acoustic interface proposed by

this paper are designed to present this high-dimensional

information in a user understandable manner.

Before introducing our interfaces, we highlight some

aspects of the underlying space of music that are important

for this work. For more detailed information, the reader is

referred to [2].

• Similarity measure: The underlying similarity measure

is based on an analysis of last.fm4 usage data. The ac-

tual similarity calculation closely resembles Amazon’s

item-to-item collaborative filtering idea [9].

• Dimensionality: Goussevskaia et al. have shown that an

intuitively navigable 2 or 3-dimensional space is not

able to adequately reflect music similarity. Thus, they

propose a 10-dimensional space.

• Orientation: The space merely represents relative sim-

ilarity of songs. Axes in this space are not assigned a

special meaning, which makes it hard to guide the user

through the space.

• Coverage: The space comprises approximately 430K

tracks, which covers about 50%-60% of a typical

music collection—enough to conduct meaningful ex-

periments.

IV. VISUAL BROWSING

The taste of a single user is typically restricted to few

styles of music. Thus, a smart visual interface should group

similar tracks and provide a facility to quickly guide the

users to their favorite regions within the underlying space.

More generally, we have identified the following require-

ments for a visual music exploration scheme:

• Locality: When browsing in a specific region of music,

the local proximity is interesting and should thus be in

the user’s focus.

• Globality: Simultaneously to the local information,

more distant tracks should be visualized, making it

simple to cross over different regions in the collection.

3This process has to be repeated whenever the collection changes.
4www.last.fm



(a) Lens metaphor (b) Recursive partitioning of a 2D space

Figure 1. Lens view

• Orientation: Moving from one region to another should

be transparent and predictable to the user.

For typical 2-dimensional settings there exist several well

known concepts to satisfy these criteria, such as fish-eye

views, or a combination of zooming with satellite views.

As indicated earlier, however, the space of music cannot

directly be mapped into a low-dimensional representation.

Thus, the mapping into the display space has to be dependent

on the current area of focus. We will next introduce the

lens metaphor that fulfills the outlined requirements and is

applicable to the small screen of mobile devices.

A. The Lens View

The lens metaphor is directly derived from the (2-

dimensional) fish-eye concept. The idea is to show the most

detailed view in the center of the screen and to blur out

more and more details with increasing distance from the

area of focus. The distance from the center is schematically

illustrated by means of rings, which indicate the lens (see

Figure 1(a)). A user can define the area of focus by selecting

a center song. In the innermost circle, few, highly related

songs are then displayed. The outer circles contain clusters

of songs, rather than single songs. With increasing distance

from the center these clusters grow bigger and represent

more distant regions of the space. This idea is illustrated in

Figure 3(a). The uniformly colored points in the innermost

circle denote songs similar to the center song (star), whereas

the colorful symbols in the outer circles represent clusters

of songs.

To realize this lens view, i.e. increasing cluster sizes with

increasing distance from the center, we apply a technique

which we refer to as recursive k-means. The algorithm,

as the name indicates, clusters the space in a recursive

manner, as schematically depicted in Figure 1(b) for a two

dimensional space.

First the entire (10-dimensional) space is clustered into a

fixed number (k, 5 in our case) of clusters. For clustering,

a modified version of the k-means algorithm is used, which

fixes the centroid of one cluster to the center song. This

results in k − 1 outer and one center cluster. In the con-

secutive steps, the same procedure is applied to the songs

residing in the center cluster. This process is repeated until

either the center cluster contains less than q points, or until

a maximum number of recursion levels is reached. The last

condition prevents the generation of too many levels, which

could not be visualized on small screens.

The initial cluster centroids are chosen at random. Hence,

the space partition is not deterministic, and the result pre-

sented to the user varies each time the algorithm is run. This

is not a flaw, but rather a desired behavior, as it allows to

view the same area of focus in slightly different variations.5

Recursive k-means defines the content of the clusters to

be used in the lens view. For visualization, the obtained po-

sitions (i.e. cluster centroids) in the high dimensional space

have to be embedded into the 2-dimensional visualization

plane. This mapping is done by a special spring embedder

tailored to the needs of the lens view.

Similar to the hierarchical clustering, the visualization is

also done in multiple steps. First, the songs belonging to

the center cluster are embedded. Thereby the algorithm is

restricted to only choose positions within the innermost cir-

cle. The remaining clusters are then successively embedded

within the outer rings. Thereby each ring corresponds to one

recursion level. That is, the position of clusters stemming

from a given recursion level are restricted to lie within one

particular ring. The embedding process is directed from the

center towards the border. Already embedded points of the

inner rings are kept fixed but contribute to the force that acts

on the points that are being embedded.

To guarantee a consistent view, the initial positions of the

points are set corresponding to the first two dimensions of

the high-dimensional space. Thus the outermost clusters are

always placed at similar positions (e.g. the area containing

mostly Electronica is always placed in, say, the upper right

corner). Observe that this strategy also reduces the number

of iterations (as compared to random positions), as the initial

positions are likely to be close to the final positions.

B. The Cake Metaphor

In [2] it was shown that the space exhibits a fairly good

clustering in terms of genres. We have thus augmented the

obtained cluster centroids with genre information, to make

browsing more intuitive. The center of mass of positions

of songs with known genre information (acquired from

www.allmusic.com) defines a centroid for each genre. Mea-

suring the distances to these genre centroids allows to define

a genre relationship to each point in the 10-dimensional

space.

This information is visualized using the cake metaphor,

which consists of an inner circle and an outer ring. The

outer ring is subdivided into segments—or cake slices—that

represent the inverse squared distances from the different

5Observe that a deterministic behavior could easily be achieved by the
use of random seeds.



segment
width corresponds
to the distance

saturation is inversely
proportional to the
ambiguity of the
genre decision

hue (color) of the
segment corresponds
to the genre

Figure 2. Cake metaphor

genre centroids. The inner circle represents the nearest

cluster. The hue (i.e. color) of the inner circle corresponds

to the hue of the nearest cluster, whereas its saturation

indicates, how clear the given position could be assigned

to the corresponding genre. A cluster centroid which has

almost the same distance to all genre centroids, for example,

is represented by a very pale color. An example of a cake

diagram is depicted in Figure 2.

Observe that both, the lens as well as the cake metaphor

are not restricted for use in music collections in conjunction

with genres. Rather the lens metaphor can be used in

conjunction with any high-dimensional space and, similarly,

the cake metaphor applies to any meaningful anchor points,

be it for music collections (where, e.g., moods could be

used), or any other high-dimensional data spaces.

C. The Final Interface

The final interface combines the cake with the lens

metaphor. The cake metaphor is used visualize the clusters in

the outer rings. Each songs in the center area is represented

by a simple circle, colored analogously to the inner circle

of a cake diagram. The resulting interface is illustrated in

Figure 3.

The different elements (songs and clusters) in this in-

terface react to touch events. Selecting a single song in

the inner circle allows to either play it, or to make it the

new center song. Selecting a cluster opens a dialog (see

Figure 3(b)) that presents the cluster’s detailed content.

Moreover, the dialog contains a button to play the contained

songs, as well as a button that allows to move to the cluster’s

centroid (meaning the song closest to the cluster’s centroid

becomes the new center song).

The primary goal of exploring a music collection is to

later listen to it. We have thus incorporated a playlist creation

mechanism. To create a playlist a user can add each center

song to a set of seed songs. Once enough seed songs are

selected, a playlist consisting of the chosen seed songs as

well as of songs randomly sampled from each seed song’s

neighborhood can be generated. A user settable parameter

allows to control the size of these neighborhoods and thus

the diversity of the resulting playlist.

(a) The lens metaphor with visual-
ized clusters

(b) Detail information for a selected
cluster

Figure 3. Our graphical user interface for visual browsing.

(a) Browsing (b) Adding areas to a playlist

Figure 4. SensMeTM: A commercial visual browsing interface shipped
with Sony Ericsson devices.

D. Evaluation

For evaluation we have conducted a preliminary user

study with 9 participants. The study mainly compares our

interface with SensMeTM. SensMeTMwas developed by Sony

Ericsson and is shipped with their latest phone models. To

the best of our knowledge it is currently the only commercial

visual interface for music exploration on mobile devices.

SensMeTMis based on audio-analysis which classifies the

songs according to the two properties tempo (slow vs. fast)

and mood (sad vs. happy). The songs are arranged on the

screen along these two coordinate-axes, as illustrated in

Figure 4. To create playlists, circular areas of adjustable size

can be selected. The final playlist then contains the union

of all the songs within the selected areas.

The main part of the user experiment consisted in the

creation of a playlist (20 songs) with both interfaces. In

addition, the participants had to fill in a questionnaire. For



both, SensMeTMas well as our interface, the participants

were given the same collection, which they were not familiar

with. The collection contained approximately 1400 files

(7.5GB) and covered a broad range of music. For each

interface, the participants were given 5 minutes to create

a playlist that matched their taste and mood as closely as

possible. Afterward they had to listen through the playlists

and rate each single song on a scale from 0 (worst) to 10

(best). The resulting average ratings were 6.3 (our interface)

and 5.5 (SensMeTM).

In addition, we prepared a small questionnaire the partic-

ipants had to fill in. If not indicated otherwise, the answers

were measured on a scale ranging from 1 (worst) to 5 (best).

The major findings can be summarized as follows:

• Playlist (overall): We were not only interested in the

rating of individual songs, but also asked the partic-

ipants to judge the overall impression of the obtained

playlist. The result is in line with the song ratings (3.33

(this paper) vs. 2.44 (SensMeTM)) and suggests that the

presented interface is in fact better suited for playlist

generation.

• Diversity: People were asked to judge the playlist

diversity on a scale from 1 (too diverse) to 5 (not

diverse enough), with 3 as a neutral value (just right).

While our algorithm is not quite diverse enough (3.44),

the playlists generated by SensMeTMare too diverse

(2.44). The result suggests that both algorithms perform

similar in this respect with slight advantages for our

algorithm.6

• Usability: We wanted to know whether the interface is

intuitive to use. As expected, the simple 2-dimensional

interface of SensMeTMoutperformed our exploration

scheme for a high dimensional space. The ratings were

4.67 (SensMeTM) versus 3.67 (our interface).

• Underlying space: We asked our participants whether,

in their opinion, similar songs well group together in the

respective system. In this question our approach (4.00)

clearly outperforms SensMeTM(2.44). A possible reason

for this result is that the two dimensional representation

of SensMeTMis not capable to adequately reproduce the

underlying similarity. It might thus indicate that it is

worth to operate in higher dimensional spaces at the

expense of a less intuitive interface. Another possible

explanation, however, is that the user-behavior driven

similarity measure underlying our interface provides

better results than the audio-analysis based methods of

SensMeTM.

• Overall: We wanted to know whether our users would

use the system again. Thereby, only the answers yes and

no were allowed. Again, the result favors the interface

6Observe that our algorithm provides a parameter to control diversity.
We can thus expect that people that regularly use the system are able to
produce better playlists, as they get a better feeling for the right parameter
setting.

presented in this paper (67% yes) over SensMeTM(44%
yes), which is in line with the playlist ratings discussed

earlier.

Finally, we wanted to know how useful the cake metaphor

is. The results show that the most valuable part is the

center circle color (3.22). Cake slices (2.67) and the center

circle saturation (2.55), however, have also been used for

navigation.

V. ACOUSTIC EXPLORATION

As music is primarily perceived by the sense of hearing,

acoustic navigation through the space of music also seems

to be a natural approach. Similar as in the presented visual

exploration scheme, the goal of our acoustic interface is to

quickly guide users to music of their taste.

As opposed to the visual situation, it is impossible to

acoustically provide an instant global impression of the

space, as we are not able to listen to many tunes in parallel.7

An acoustic exploration scheme thus has to rely mainly on

local information. Moreover, people’s notion of orientation

or direction in acoustic space is much more fuzzy than

in geometric space. As a consequence, the control of the

exploration process should shift from the user towards the

device.

The goal of our interface is to dynamically generate a

sequence of songs (a playlist) that fits the user’s taste. This is

achieved by constantly appending new items to the sequence

dependent on the user’s (implicit or explicit) feedback about

the preceding songs. Thereby, the algorithm learns the user’s

taste and, ideally, selects ever better items.

Our primary interface uses explicit user feedback defined

on a continuous rating scale ranging from 0 to 1 (see

Figure 5). For scenarios that do not allow for explicit

feedback, we offer the possibility to switch to a binary

scheme that assumes a song was disliked if it was skipped,

and liked otherwise (analogously as proposed in [14]). A

continuous rating scale, however, allows to more precisely

estimate and react to the user’s needs. Thus it should be

applied whenever possible, such as when explicit feedback

is applicable.

Before we come to our exploration algorithm in more

detail, let us briefly review its major requirements:

• Taste: Clearly, the exploration algorithm should visit

areas and songs the user likes.

• Diversity: People tend to get bored when listening

to several very similar (e.g., same artist) songs in a

row. The exploration scheme should thus also provide

sufficient diversity.

• Adaptability: The algorithm should be able to adapt to

the changing mood of a person. That is, if, after some

time of listening to rock music, the listener starts feeling

7As pointed out by Tzanetakis and Cook [19], 8 simultaneous tunes form
an upper limit.



Figure 5. Acoustic exploration interface: Note the rating bar at the top.

more like jazz, the algorithm should be able to quickly

adapt to this changed condition.

• Exploration: As the name suggests, the exploration

scheme should be able to explore a collection. That

is, it should not just stick to songs the user listens to

frequently, but should be able to find songs the user

might even not have been aware of.

A. Acoustic Exploration Algorithm

The basic idea of our exploration scheme is that on

completion of a song, the algorithm looks at the ratings

acquired so far and then selects the next song in an intelligent

manner. A naive algorithm might simply select the song

most similar to the currently best rated song, thereby only

considering songs that have not yet been played. This

method, however, would most likely violate the diversity
requirement. We thus follow another strategy, which is based

on the Voronoi tesselation.

We start by outlining a simplified version of the algorithm,

which works as follows: The previously rated songs are

used as the input of a Voronoi tesselation, which is applied

to the entire collection. As a result, each previously rated

song becomes the generating point of one Voronoi cell.

We assume that ratings above 0.5 (on a scale from 0 to 1)

indicate that the user likes a song, whereas lower ratings are

seen as a sign of dissatisfaction. As a consequence, each

Voronoi cell (and thus also all the contained songs) can

be seen as either good or bad, dependent on the rating of

its generating point. The Voronoi tesselation is re-executed

on each song completion. After tessellation the exploration

algorithm selects a not yet played song from within a

good Voronoi cell. This strategy is schematically illustrated

in Figure 6. The lighter areas, which indicate good cells,

roughly approximate the user’s region of interest (shaded).

The entire process is started by selecting a song uniformly

at random from the entire collection. If this song is rated

good, everything continues as outlined before. A rating

Figure 6. Acoustic browsing (simplified): The entire collection is de-
composed by means of Voronoi tessellation. The generating points for the
Voronoi cells are given by the rated songs. Dependent on the rating each
cell is either considered good (light gray) or bad (dark gray). The shaded
areas indicate the user’s region of interest. Note that in the application a 10
dimensional, rather than a 2 dimensional space, as illustrated here, is used.

below 0.5, however, would lead to a single Voronoi cell that

is considered bad and covers the entire collection (resulting

in no playable songs). Whenever no positively rated song is

available, we therefore add a floating centroid to the system,

the position of which is determined by the modified version

of the k-means algorithm described in the visual exploration

part (keeping all previously rated positions fixed). This

procedure is repeated until the first positively rated song

is found. Afterwards, the floating centroid is removed.

Observe that this simple algorithm exhibits various weak-

nesses. First, it does not take advantage of a continuous rat-

ing scale. Moreover, it is not able to satisfy the adaptability
requirement, since regions once marked bad will never be

visited again. Finally, the good Voronoi cells only provide a

rough approximation of the region of interest. In particular

the border areas of these cells are likely to disagree with the

user’s taste. To overcome these shortcomings we improve the

outlined scheme in several points:

• Weighting: Dependent on the rating of the correspond-

ing generating point, a weight is assigned to each

Voronoi cell. The more this rating deviates from 0.5

(in either positive or negative direction), the higher

the weight. When selecting the next song to play, the

algorithm considers these weights by selecting a song

with a probability proportional to the weight of its

enclosing Voronoi cell.

• Aging: Weights are not static. Rather, on each song

completion, all weights are reduced by some constant

value. If the weight of a generating point falls below a

certain threshold t, the corresponding point is removed.

Due to the aging technique, old ratings eventually

become obsolete. Thus, the algorithm can well react

to changes in the user’s mood.

• Centering: Songs close to a positively rated generating

point lie within the user’s region of interest with higher

probability than songs at the border of the correspond-



ing Voronoi cell. Thus, such songs are selected with

higher probability by the algorithm. For simplicity, we

currently use a fixed probability distribution. However,

making this distribution adjustable by means of a pa-

rameter might allow the user to control the sequence’s

diversity.

• Escaping: At some point, the algorithm might start

playing songs from within a certain narrow area only,

as preliminary experiments have shown. The missing

diversity is then likely to become manifest in form of

repeated low ratings. We thus allow the algorithm to

break out of such gridlocked situations by selecting a

completely random song with a certain probability. This

probability is adaptive within a given upper and lower

bound. It decreases with each positive, and increases

with each negative rating.

These tweaks have shown to improve the quality of the

resulting sequences. However, our first experiments have

also revealed some performance issues. After all, a user

is not willing to wait for several seconds until the next

song is being played. As we only want to select a single

song in the end, it is obviously an unnecessary overhead to

classify each song as either good or bad in each round (i.e.

after each song completion). Instead, we move part of the

random selection process to the beginning of a round by first

selecting a random sample of the not yet played songs.

B. Evaluation

For evaluation we have compared the algorithm to two

alternative approaches:

• Shuffling: Most music players offer the possibility to

listen to a collection in a purely random fashion.

Moreover, 7 of our 9 participants said that they at least

sometimes do listen to music completely randomly.

• Pampalk: Pampalk et al. [14] have proposed an algo-

rithm that dynamically creates playlists based on the

user’s skipping behavior. Although the method was

originally proposed for use in conjunction with an

audio-feature space, it can be applied to our space,

too. The algorithm works as follows: Each song for

which the nearest good song is closer than the nearest

bad song is added to a set S. If S is non-empty,

its element with smallest distance to the nearest good
song is selected. Otherwise, the song with the lowest

dg/db ratio is played, where dg denotes the distance

to the nearest good, and db the distance to the nearest

bad song. The algorithm does not make use of rated

feedback, but uses a binary scheme solely based on

skipping behavior.

For comparison, all participants had to create a sequence

of 20 songs with each of the three methods. In all cases,

the start song was chosen randomly. Moreover, we let

the users uninformed about the internals of the different

0.3

0.4

0.5

This Paper Random Pampalk

all
ignoring first 3 songs

Figure 7. Comparison of the three different acoustic exploration methods.
The light bars indicate the average rating over all songs. To demonstrate
the learning effect, the dark bars ignore the ratings of the first 3 songs in
each sequence.

algorithms to avoid biased results. They were, however,

told that the algorithms were supposed to find their taste

(which is not exactly true for random shuffling). We used

the interface with explicit song ratings (recall Figure 5) for

all experiments. The acquired ratings were not only used to

feed the algorithms, but also to later assess the qualities of

the different playlists.

The results are summarized in Figure 7. The figure depicts

the overall average song rating for each algorithm (light

bars), as well as the average rating after ignoring the

first three songs of each sequence (dark bars). For both

algorithms that are supposed to adapt to the users taste,

the dark bars are higher, indicating that the algorithm in

fact improved over time. In the random case, by contrast,

the rating got worse, which might be explained by the

unsatisfied user expectation. The figure further reveals that

the adaptive algorithms by far outperform random shuffling.

Moreover, we can see that only the algorithm presented

throughout this paper reaches a positive average rating (i.e.,

above 0.5).

As indicated earlier, we were not only interested in the

overall rating of the resulting sequences, but also in the

algorithm’s capability to explore a collection. We have

assessed this property by means of participant questioning

as well as path visualization.

Using a questionnaire, we had the participants judging

their satisfaction concerning the sequence’s diversity on a

scale from 1 to 5 (1: too diverse, 3: just right, 5: not

diverse enough). The results are summarized in Figure 8.

As expected, the diversity of the random shuffling algorithm

was considered too high (average: 2.56, min: 1, max: 4). The

diversity of the algorithm of Pampalk et al., on the other

hand, was considered to low by all participants (average:

4.44, min: 4, max: 5). The best score (i.e. closest to 3)

was reached by our algorithm (average: 2.67, min: 1, max:

5), which scores slightly better than random shuffling, and

clearly outperforms the approach of Pampalk et al.. The fact
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Figure 8. Diversity: Average values for the diversity ratings of the
participants (1: too diverse, 3: just right, 5: not diverse enough).

that for one single algorithm the entire rating scale has been

used suggests that diversity is a very subjective measure.

It is important to note that Pampalk’s algorithm possibly

provides more diversity if applied to audio-feature spaces,

for which the algorithm was originally designed. Due to the

strong dependence of diversity on the user, and, possibly,

the underlying space, we believe that an algorithm should

be adaptive in this respect (either by means of a user settable

parameter, or by means of self-regulation). As mentioned be-

fore, we could realize this idea by incorporating a parameter

that controls the centering effect.

VI. CONCLUSION

We have presented a visual as well as an acoustic ex-

ploration scheme, to overcome the problems of music orga-

nization on mobile devices in the context of ever growing

collections. In our experiments, both interfaces outperformed

state-of-the-art alternatives in the corresponding field. To

deal with the high-dimensional properties of the underlying

space, we have introduced the lens metaphor for visual-

ization, which allows to focus at the certain area without

losing the global overview. We have further proposed to

augment the lens view with cake diagrams that support the

orientation by means of semantic information. A radically

different approach is followed by the acoustic interface. By

decomposing the high-dimensional music similarity space

dependent on the given feedback, it is able to identify regions

of interest of a given user, can thus constantly improve its

estimate of the user’s taste, and finally play ever better songs.

The successful integration into a prototype application in

conjunction with the conducted user experiments demon-

strates the practical applicability of the proposed solutions.

Our interfaces show how the attention data gathered by

social web platforms can be used to enhance the music

experience of end users.
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