
Inferring Touch From Motion in Real World
Data

Pascal Bissig, Philipp Brandes, Jonas Passerini, and Roger Wattenhofer

ETH Zurich, Switzerland,
firstname.lastname@ethz.ch,
http://www.disco.ethz.ch/

Abstract. Most modern smartphones are equipped with motion sensors
to measure the movement and orientation of the device. On Android and
iOS, accessing the motion sensors does not require any special permis-
sions. On the other hand, touch input is only available to the application
currently in the foreground because it may reveal sensitive information
such as passwords. In this paper, we present a side channel attack on
touch input by analyzing motion sensor readings. Our data set contains
more than a million gestures from 1’493 users with 615 distinct device
models. To infer touch from motion inputs, we use a classifier based on
the Dynamic Time Warping algorithm. The evaluation shows that our
method performs significantly better than random guessing in real world
usage scenarios.

Keywords: motion sensing, side-channel attack, touch input

1 Introduction

Smartphones have become an integral part of our daily lives. Motion sensors
measure the movement and orientation of such devices which are useful to, e.g.,
adjust the screen orientation or to control games. These sensors are not con-
sidered to reveal sensitive information. Therefore, they can be accessed by any
application installed on the device, even by applications running in the back-
ground. This holds for Android as well as iOS devices, together making up more
than 90% of the market share in mobile operating systems in 2014. For secu-
rity reasons, the same does not apply for touch screen input. Only foreground
apps are granted access to touch input data since it reveals, among other things,
characters being typed on the on-screen keyboard which may include passwords
or private information in text messages. However, when touching the screen of a
phone, the phone will also move. Depending on the usage scenario this motion
might be very small and hard to track, for example when the phone is lying on
a table. Interaction with handheld mobile devices usually causes the device to
move so much that the built in accelerometer and gyroscope sensors are able
to track this motion. In addition to that, it has been shown that this motion
varies, as different areas of the screen are being touched. This tight relation be-
tween touch and motion raises the question how well one can infer touch from

2

motion input? Being able to do so presents a security threat for most of today’s
smartphones.

Mobile devices are by design used in a large variety of environments that di-
rectly influence the motion sensor readings. This drastically complicates the task
of inferring touch from motion and therefore has to be taken into account when
evaluating any inference mechanism. To build a data set that reflects variable
real world environments, we collect data through an Android game. Players are
not instructed to hold or interact with the device in a specific way. Therefore,
we do not know or take into account if a player is sitting in a train or walking
while playing.

The player’s task is to memorize and imitate patterns that mimic the lock-
screen patterns found on most current mobile operating systems.

We describe how an attacker could collect both touch and motion data to
train a classifier, that can be used to derive touch input in any application being
used on the device under attack. We use the Dynamic Time Warping (DTW)
algorithm to compare and classify gestures and evaluate classification accuracy
for touch inputs. By performing this side channel attack, an attacker can steal
passwords or at least reduce the number of guesses required to do so. Our results
are based on a large scale user study that covers arbitrary and unknown usage
scenarios, 1’493 users and 615 of different Android device models. We show that
varying environmental influences impact performance heavily.

2 Related Work

Touch-Motion Side Channel Attacks Motion sensors have previously been
used for side channel attacks. In most cases data was recorded in controlled
environments, thereby reducing the impact of real world effects such as varying
user activities. An attacker cannot be sure that motion data was recorded when
the user was sitting still, instead the user might be walking or riding a train.

Examples of such results include the paper by Cai and Chen [3], who showed
that side channel attacks on touch input using motion sensors are feasible in
a lab environment. Aviv et. al. [2] collected data from 26 participants while
sitting or walking. Although this study helps understanding the effects of added
disturbances, the environment is still controlled and known. The study with
the largest data set has been performed by Cai et. al. [4]. They collected 47’814
keystrokes from 21 test persons, with 4 devices in a lab setting. Miluzzo et. al. [11]
performed a study comparing multiple classification algorithms with data from
10 test persons while sitting or standing. Although their results identify how to
best infer touch from motion input, their data set also limits the applicability
of their results in the real world. The work of Xu et. al. [15] focuses on tap
gestures and describes a game which collects training gestures when running in
the foreground and test gestures when running in the background. However, their
data set spans only three users and was recorded in a controlled environment.
Owusu et. al. [13] focus on random forests to detect passwords on smartphones by
analyzing the accelerometer readings of 4 test persons. Other studies [16,7] show

3

that smartphone users can be distinguished based on their touch and motion
input behavior. Hinckley et al. [6] show that the combination of touch and motion
data can be used to create novel ways to interact with our mobile devices.

In contrast to the papers described above, we focus on collecting data in
uncontrolled environments. Namely, our data set originates from users that were
primarily concerned with playing a game on their smartphone and were not
instructed about how and where to do so. The environments may range from
office spaces to airplanes or trains. Since our data acquisition process can be
replicated by an attacker, our data set allows us to assess how realistic a side
channel attack on touch input really is. We collected data from 1’493 test users,
which generated more than a million gestures on 615 distinct device models. This
is roughly 50 to 200 times more participants and up to 20 times more gestures
than in previous studies. To our knowledge, there is no similar work with the
same magnitude of collected data in similarly unconstrained environments.

Smartphone Side Channel Attacks Touch input was not the only target of
side channel attacks using motion sensor data. Liu et. al. [8] tried to infer three-
dimensional, free-hand movements using accelerometer readings. They collected
4’480 gestures from 8 test persons over several weeks. With (sp)iPhone, Mar-
quardt et. al. [9] developed a mechanism to infer input on a physical keyboard
by analyzing the motion sensor readings of a phone laying next to the keyboard.
The proof of concept Android application Gyrophone [10] demonstrates that it
is possible to recognize speech using a gyroscope sensor. Niu et. al. [12] used Dy-
namic Time Warping to measure the similarity of gestures to authenticate users.
Recognizing ten distinct gestures, Chong et. al. [5] used the motion sensors to un-
lock the phone by performing a user defined series of gestures. Since the gesture
detection is performed independently of the user and the raw information is not
used in the authentication process, this is very similar to a password composed
of ten letters that are entered through performing gestures instead of pressing
keys.

3 Data Collection

To simulate a realistic attack scenario, we decided not to invite test persons
into a test laboratory with a predefined and controlled environment. Instead, we
developed an Android game, which we distributed on the Google Play store1 to
collect data. The same method can be used by an attacker and might already be
exploited. In the game, the player’s task is to memorize and reproduce patterns
on the screen as shown in Figure 1. The patterns are displayed in the bottom
half of the screen, where one usually finds the keyboard or pin input field. As
the levels get harder, the grid resolution is increased from 3 × 3 to 4 × 4 touch
elements, which we call cells. The game not only asks the user to press specific

1 Game on Google Play. https://play.google.com/store/apps/details?id=ch.

ethz.pajonas.ba.imitationgame.android (2015-03-13)

https://play.google.com/store/apps/details?id=ch.ethz.pajonas.ba.imitationgame.android
https://play.google.com/store/apps/details?id=ch.ethz.pajonas.ba.imitationgame.android

4

cells in this area, which we call tap gesture, but also to connect cells using swipe
gestures. In contrast to an attacker, we informed users upon installation and first
launch of the game that motion data is collected for research purposes and only
when the game is running in the foreground. Touch input is measured in terms
of x,y coordinates or a series of them for swipe gestures. In addition to touch
input, the game also records the x,y,z coordinates of both accelerometer and gy-
roscope sensors built into the device. All recorded data is linked to a randomly
generated unique id that is generated when the game is first installed. Since dif-
ferent users might play the game on the device, this unique id is device (and not
user) specific. In addition to this, we collect basic device information such as the
device manufacturer and type. When connected to a WLAN, the compressed log
files are sent to a central database. When analyzing users with bad classification
performance, we observed that their motion sensor measurements contain ran-
dom readings close to zero. This indicates, that the device might not be moving
enough, possibly being placed on a table or otherwise fixed. We excluded such
users from our experiments. The number of users evaluated for each experiment
are mentioned in the respective sections.

Fig. 1: Screens of the game showing the main menu, and both the 3× 3 as well
as the 4× 4 grid the player interacts with during the game.

4 Preprocessing

The motion data is first segmented using the touch input as ground truth. To
account for device motion that occurs before and after the screen is touched,
we leave a variable amount of sensor readings before the touch gesture starts

5

and after it ends. The time window is at most 100 ms. Figure 2 illustrates the
segmentation process in more detail. This segmentation can also be performed in
an attack scenario, at least for the training data collection phase, using the same
technique. For the classification task, we can use device events to segment motion
data. For example, power on and unlock events provided by the operating system
can be used to segment pattern or pin inputs performed to unlock the device.
To remove the effects of gravity and gyroscope drift, we remove the mean values
for each individual sensor axis. We thereby implicitly assume that the device
orientation and velocity is the same at the beginning and at the end of each
gesture.

Timex[ms]

A
cc

el
er

at
io

nx
[m

/s
²]

0 50 100 150 200 250 300 350 400 450 500 550 600

−
2

0
2

4
6

8
10

● ●● ●● ●● ●●
●●

●●

●●

●●
●●

●● ●● ●●
●● ●●

●●

●● ●●
●●
●● ●●

●● ●● ●● ●● ●● ●●
●●●●●●●

A B C

● ●●●● ●● ●● ●●
●●

●● ●●

●●

●● ●●
●● ●●

●●

●●

●●●●
●●

●●
●●
●●

●●●●
●●

●●
●●

●● ●●●● ●

D E F

●

x
y
z

Fig. 2: Accelerometer readings containing two gestures before they get segmented
into separated gestures. The vertical lines represent the touch down and touch
up events respectively. Segments A, B, and C describe the first, D, E, and F the
second gesture. A marks the pre-measurements, B encloses all measurements
between the touch down and touch up events, and C contains the post measure-
ments (the same applies to D, E, and F for the second gesture). C and D may
overlap, but not C with E nor D with B. The length of the segments A and C
(D and F respectively) may vary and are set to 150 ms in this example.

5 Classification

We do not attempt to guess the exact pixel the user touched, but rather predict
the cell, which was pressed or swiped by the user. We build a classifier for

6

each separate unique id and assume an id to relate to one single player although
multiple users might play the game on the same device. To quantify the similarity
of two gestures, we use the DTW algorithm [1] with varying cost functions to
compare individual time samples as described in Section 5.1. The user model M
consists of 10 motion sensor recordings for each cell i on the grid Mi. In order to
classify a test gesture t, our algorithm computes the DTW distance to all samples
in M and selects the cell with the minimal DTW distance (see Equation 1). We
also evaluated different metrics, such as the average and median DTW distance
(Equation 2).

class(t) = arg min
x

min
i∈Mx

dtw(t, i) (1)

class(t) = arg min
x

(
1

|Mx|
∑
i∈Mx

dtw(t, i)

)
(2)

However, the average DTW distance is not robust against outliers in the
training set, and therefore was expected to produce worse results than the min
and median distances. Alternative classification techniques used in similar work
are Hidden Markov Models [2] or feature based approaches, Support Vector
Machines [14].

5.1 Dynamic Time Warping Cost Functions

To perform the time series analysis using the DTW algorithm, we need to select
features, which we can use to describe the distance or matching cost between two
sensor events from two different gestures. Each motion sensor event consists of
3 accelerometer and 3 gyroscope measurements, one for each spatial dimension.
These 6 coordinates form a feature vector A = {accx, accy, accz, gyrox, gyroy,
gyroz}, representing the values of the x, y, and z accelerometer and gyroscope
coordinates of a single sensor event in a touch or swipe gesture. One possible
metric to calculate the distance between two sensor events is the Euclidean dis-
tance, as Niu et al. suggest in their work [12]. Cai et al. [4] propose a different
feature, calculating the two-argument arctangent (atan2) using the x and y axis
of the accelerometer readings, arguing that motion data on the z axis is not a
good feature to infer keystrokes (see Equation 3). We designed a new metric
which pairwise calculates atan2 for all accelerometer and gyroscope axes combi-
nations and then sums up their absolute differences (Equation 4). The equations
below show how those three metrics are used to compare two sensor events i, and
j in two different gestures A and B. Variations of the metrics above and others
like the Manhattan distance or the L∞-norm are also included in our experi-
ments. The Manhattan distance is the sum of the accelerometer and gyroscope
differences between two measurements.

cxyacc(Ai, Bj) =
∣∣atan2(Ai,x

acc, A
i,y
acc)− atan2(Bj,x

acc, B
j,y
acc)

∣∣ (3)

cacc(Ai, Bj) = cxyacc(Ai, B) + cxzacc(Ai, Bj) + cyzacc(Ai, Bj)

7

csum(Ai, Bj) = cacc(Ai, Bj) + cgyro(Ai, Bj) (4)

5.2 Dynamic Time Warping Penalty

In order to penalize sequences whose time axis needs to be stretched a lot, we
employ different penalization factors p. See Equation 5 for the recursive definition
of an entry in the DTW matrix d(i, j). In the penalization experiment, we use
the csum distance metric to compare two measurements Ai and Bj at times i
and j respectively. By increasing p, the cost of advancing time i and j unevenly
is penalized. This leads to a higher DTW matching cost for sequences of uneven
length or speed.

d(i, j) = min{ d(i− 1, j − 1) + csum(Ai, Bj)
d(i, j − 1) + csum(Ai, Bj) · p
d(i− 1, j) + csum(Ai, Bj) · p }

(5)

6 Data Set

At the end of the 4 month data collecting phase, the game reached 2’049 installa-
tions. Most of the users are from India, USA, Italy, or Switzerland. The Android
application received 70 ratings in the Google Play Store, with an average rating
of 4.01 stars out of 5. The most used device to play the game is the Google Nexus
5. Figure 3 shows that most players’ phones are produced by Samsung, and the
most popular Android version is 4.4. Data has been collected from 615 device
models with over 38 different screen sizes. The server application received data

N
o
n
e

4.4.x (54.3%)

4.2.x (9.0%)

4.1.x (6.6%)

5.0.x (5.8%)

4.3.x (3.6%)

4.0.x (1.6%)

5.1.x (0.1%)

Others

Android Versions

Samsung (42.5%)
LG (6.9%)
Sony (5.4%)
Motorola (5.0%)
HTC (3.7%)
Others

Manufacturers

Fig. 3: Variety of the devices and Android versions on which we collected our
data set. Data has been collected from 615 distinct device models from 25 man-
ufacturers with over 38 different screen sizes.

from 1’493 users, who played a total of 87’962 levels. With an average of 15 ges-
tures per level, this corresponds to more than a million collected gestures. Since
the data has not been collected in a laboratory, it contains unknown external
influences on the motion data, devices with malfunctioning motion sensors, and
users with very few gestures.

8

7 Evaluation Setup

A training gesture is a gesture for which we know the motion sensor readings
as well as the ground truth touch data, which we collected with our Android
application. A test gesture on the other hand, is a gesture for which the touch
input is ignored and the task is to infer the correct touch gesture using only the
motion sensor readings. Only users with working accelerometer and gyroscope
sensors are included in the experiments. Not all players generated enough data to
generate a model for each cell. In these cases, we only classify cells with at least
10 recorded training gestures. Hence, a user might have fewer than 9 or 16 cells
with enough training data. The random guessing probability is adapted to com-
pensate for the reduced solution space of the classification problem. To generate
enough training data for every single cell, a user is required to interact with
the Android application for about 30 minutes. Depending on the experiment,
between 10 and 500 players were used to evaluate performance changes.

0.0 0.2 0.4 0.6 0.8 1.0

Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

Timedelta 0ms

Timedelta 100ms

Timedelta 500ms

Random

Fig. 4: Comparison of different segmentation time windows. A larger window
means that there are more pre- and post- measurements. In this plot, tap gestures
on the 3× 3 board from 14 users have been evaluated

7.1 Segmentation Time Window

The segmentation time window controls the number of pre- and post-measurements
of each gesture. This window can be varied to optimize the classification perfor-

9

1.0 1.5 2.0 2.5 3.0 3.5

Penalty Factor

0.240

0.242

0.244

0.246

0.248

0.250

0.252
S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

Fig. 5: Influence of different penalties on the classification performance. In this
experiment, all users have been evaluated for tap gestures on the 3 × 3 board.
We have evaluated the probability of correctly guessing the label with the first
attempt.

mance since the device moves already before touch input is registered. For this
experiment, we use our sum of atan2 cost function as described in Equation 4.
The DTW penalty is set to 240% and we use the min classification method as
described in Equation 1. Figure 4 shows different time windows of the length
0 ms, 100 ms, and 500 ms. Including no measurements that are recorded be-
fore the touch gesture starts produced bad results. This leads to the conclusion
that the motion of the device before the touch event actually starts is the most
discriminant. The time window of 500ms also performs significantly worse than
100ms, which is why we chose 100ms for all the other experiments. In our work,
we do not focus on the segmentation of the test gestures. To detect the unlock
pattern, it seems to be sufficient to trigger the measurements using the unlock
events of the smartphone. To infer PIN entries or multiple gestures, one would
need to segment the test gestures. According to previous results [4,15], there
exist promising segmentation methods to achieve this.

7.2 DTW Penalty

To evaluate the effect of varying DTW time penalties, we analyzed the classifi-
cation results from all players on the 3×3 grid utilizing the sum of atan2 metric
as described in Equation 4 and the min classification method as described in

10

0.0 0.2 0.4 0.6 0.8 1.0

Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

Atan xy

AtanSum

Euclid

Random

Fig. 6: Comparison of the distance metrics used in the DTW algorithm (de-
scribed in Section 5.1). The sum over all atan2 features performs best and is
used as the distance metric for the other experiments. In this plot, all users have
been evaluated for tap gestures on the 3× 3 board.

Equation 1. We evaluate the penalty in the range of p = 100% to p = 350%
in 10% increments. Figure 5 shows the effect of a varying DTW penalty. As
expected, penalties that are very small or large result in worse performance.
For very small penalties, sequences can be stretched beyond what is to expect
due to the natural variance each user causes. In case of very high penalties, the
DTW algorithm mostly matches sequences without stretching either time axis,
resulting in a score that is very close to the sum of all corresponding sample
costs. The best classification results can be achieved with p at 240% but as one
can see, the performance differences are marginal for non extreme choices of p.

7.3 DTW Cost Functions

Figure 6 shows the comparison of the four presented distance metrics in the
DTW algorithm. For this experiment, all users were evaluated using a DTW
penalty of 240%. Our proposed sum over all atan2 features metric performs
slightly better than the atan2 function and is therefore chosen as the distance
metric in all other experiments. The euclidean distance function performs worse
than both of the other distance metrics, but still much better than other metrics
we tested (Manhattan, L∞) which we omit on this plot.

11

0.0 0.2 0.4 0.6 0.8 1.0

Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

Average

Median

Minimum

Random

Fig. 7: Comparison of the classification methods min, mean and median as de-
scribed in Section 5. The min metric performs best and is used for the other
experiments. In this plot, all users have been evaluated on the 3× 3 board.

7.4 Classification Methods

The performance comparison for the presented classification distance metrics for
all users on the 3 × 3 grid is shown in Figure 7. The DTW penalty was set to
240%. Interestingly, performance variations are insignificant for all three meth-
ods. Since our training sets may include outliers, we expected the average method
to perform significantly worse than the min and median method, respectively. If
the user e.g., bumped into someone or walked up steps while performing the tap
gesture, then this outlier will skew the results and make the classification task
more difficult. The minimum distance method performed best in this experiment
and is therefore used in the other evaluation tasks.

7.5 External Influences

To evaluate the impact of changing environments, we compare the performance
of heavy- and light-users while using a fixed training set of 10, a DTW penalty of
240%, the min classification method (Equation 1), and the sum of atan2 features.
Heavy users played more levels and hence, produced more data. We expect their
data set not only to be bigger, but also to contain more varied environments.
Since we limit the training set size to 10 for both user groups, we expect the
performance for heavy users to be bad since the small training set cannot capture
all environments the game was played in. Figure 8a shows the 20 users with the

12

0.0 0.2 0.4 0.6 0.8 1.0
Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
u
si

n
g
 o

u
r

cl
a
ss

if
ie

rs

Average of Top 20
Average of Bottom 20
Random

(a) Performance comparison between
heavy- and light users with fixed training
set size. The environments in which heavy
users played the game cannot be captured
by a small training set size. Therefore,
small training sets are sufficient, as long
as the environmental effects are similar in
both the training and testing phase.

0.0 0.2 0.4 0.6 0.8 1.0
Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
u
si

n
g
 o

u
r

cl
a
ss

if
ie

rs

Average of Top 20
Average of Bottom 20
Random

(b) Impact of varying training set sizes on
the classification performance. In this ex-
periment, all training samples were used
for each user on the 3×3 grid. Users with
the most training data (in blue) show sim-
ilar performance as compared to the users
with the least training data (in red).

Fig. 8: Classification performance heavily depends on the range of environments
in which the motion data is recorded.

most collected gestures (heavy) in blue and the 20 users with the least gestures
in red (light) out of more than 200 users in total. Guessing the correct cell in
the first try for the bottom 20 users is with 29% roughly 10% higher than for
the top 20 users (19%).

7.6 Training Set Size

The results in the previous section beg to evaluate the same two user groups
while using larger training sets for the heavy users. Performance for heavy users
should increase as the training set captures more environments. To evaluate
the effect of varying training set size, we lifted the restriction to only use 10
and instead trained our model with as all available samples for each user. This
means that only the test gesture is excluded from the training set. Thereby we
remove the advantage of light users being able to capture a larger fraction of the
environmental effects in the training set when compared to the heavy users. In
our data set this means that the training set can be up to two orders of magnitude
larger. Classification was performed using the min metric (Equation 1). Figure 8b
shows the 20 users with the most collected gestures in blue and the 20 users with
the least gestures in red (out of more than 200 users in total). The classification

13

rate of the top 20 users differs insignificantly (1.5% on the first guess) from the
bottom 20.

Since both heavy- and light-users are tested using training sets that capture
all environments the game was played in, performance is consistent for both user
groups. For an attacker, this means that small training set sizes are sufficient, as
long as the environment under which touch input inference should be performed
is similar to the one predominant during training data set collection.

Both the experiment on the training set size, as well as the one on the en-
vironmental effects were performed using the exact same two user groups. As
long as the training set captured the external influences affecting the classifica-
tion phase, performance is insensitive to the size of the training set. Collecting
a large training set therefore helps capturing more environmental influences but
does not allow the classification accuracy to improve significantly once an envi-
ronment has been captured.

7.7 Repeated Attack

In this section we try to emulate an attack on the user’s pin code to unlock
the screen. Since users enter the same pin code over and over again, an attacker
could use multiple motion measurements to improve the guessing accuracy. We
know that after turning on the screen, the first number entered is always the
first digit of the pin code. Thus, instead of using one test gesture, we use several
of them. The task is now to classify these gestures, about which we know that
they belong to the same label, but not to which one. The simplest approach is to
cast a vote for each test gesture’s most likely label according to the previously
described method and then pick the label with the highest number of votes.
Note that we limit our setting to k gestures in order to evaluate the influence of
the number of votes on the classification accuracy we can achieve. If a user has
more than k gestures, we limit it to k artificially and we keep the training set
size fixed to 10.

The results are shown in Figure 9. As one can seen in Figure 9a, the chance
to correctly guess the label in the first attempt increases with k. The chance
dramatically increases for very small values of k. Performance stagnates around
40% when using more than 20 test gestures at once and starts deteriorating
when using more than 35 test gestures. We believe that this is because of the
limited training set size for users as discussed in Section 7.6. If we only consider
users with more than 30 gestures per label, then these users need to have a lot
of gestures and thus have played the game in varying environments. Hence, the
more we increase k, the noisier the data gets. Thus, the advantage of having
more votes to cancel out noise is balanced out by more noise introduced by later
samples. As show in Figure 9b the performance not only increases for the first
guess, but helps predicting the correct gesture with higher accuracy also for the
following guesses. In our case, the peak performance of 40% of first guesses being
correct was reached when using 27 test gestures. This means that an attacker
can more easily guess pins or passwords that are repeatedly entered.

14

0 10 20 30 40 50

Number of votes casted

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

(a) The probability of guessing the cor-
rect label for a given set of test gestures
improves from less than 20% to more than
40% when increasing k from 1 to 27 test
gestures

0.0 0.2 0.4 0.6 0.8 1.0

Success probability by guessing randomly

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ilt

y
 u

si
n
g
 o

u
r

cl
a
ss

if
ie

rs

1 vote

6 votes

11 votes

16 votes

21 votes

26 votes

31 votes

Random

(b) Not only the first guess accuracy im-
proves, but all consecutive guesses are
more accurate as well. More than 50%
of gestures are classified correctly in two
guesses.

Fig. 9: Credentials are often entered repeatedly. By collecting the data repeatedly
the same input, we can reduce the influence of noise in the measurements. The
accuracy of the attack increases as the number test gestures available to guess
one label grows.

In addition to that, the attacker needs to solve the problem of recognizing
repeated inputs. In case of device unlock pins or patterns, this is easily achieved
through events triggered by the operating system.

8 Additional Observations

We observed a heavy preference in which direction a gesture is performed. Most
people have a preference on how they imitate a certain pattern. A pattern with
a straight horizontal line can either be drawn with a swipe gesture from left
to right or a swipe gesture from right to left. The same applies for vertical or
diagonal lines. We analyzed the behavior of 452 users. The results are shown in
Figure 10. One can see that most of the people prefer to perform the vertical
gestures downwards and the horizontal gestures from left to right. When it comes
to the diagonal gestures, there is an overall preference for the ”Down - Right”
gesture instead of the opposite direction, but for the ”Up - Right” respectively
”Down - Left” gestures, there is less of a general preference.

The profiles created in the previous subsection may reveal further information
about the user. For single test persons, we observed that the gesture preference
may be related to the handedness of the user.We could not confirm this claim,

15

Diagonal Gesture Preferences

Down − Right [%]

U
p

−
 R

ig
ht

 [%
]

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Straight Gesture Preferences

Up − Down [%]

Le
ft

−
 R

ig
ht

 [%
]

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Fig. 10: Gesture preferences of 452 analyzed users. ”Down - Right” indicates a
downward diagonal line from left to right, ”Up - Right” an upward diagonal line
from left to right. ”Up - Down” is a downward, vertical line, ”Left - Right” a
horizontal line from left to right.

since we did not collect the corresponding ground truth data with the Android
application. In future work, one could collect this data from test users to answer
this question.

9 Conclusion

In this paper, we discussed a side channel attack on touch input by analyzing
motion sensor readings. Firstly, we collected data by distributing an Android
application. Secondly, we trained a DTW based classifier using the collected
data to infer touch gestures. In contrast to similar work, we collected real world
data in a way an attacker could also do. The evaluation has shown that the side
channel attack presents a realistic threat. Especially for touch input which is
repeated often, such as unlock patterns or pin codes, motion sensor data can
help an attacker to guess the correct touch input.

As opposed to software vulnerabilities, the side channel attack we analyzed
in this paper is not caused and cannot be fixed by app developers. Background
access to motion sensors needs to be limited on the operating system level be-
cause otherwise no application can protect itself against these attacks. Since we
expect motion sensors to become more accurate in the future, the risk of a suc-
cessful side channel attack grows even further. With mobile payment solutions
becoming more and more popular, the incentive to spy on touch input on mobile
devices increases.

16

References

1. Dynamic time warping. In Information Retrieval for Music and Motion, pages
69–84. Springer Berlin Heidelberg, 2007.

2. Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. Practicality
of accelerometer side channels on smartphones. In ACSAC, pages 41–50. ACM,
2012.

3. Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen from
smartphone motion. In HotSec, pages 9–9, 2011.

4. Liang Cai and Hao Chen. On the practicality of motion based keystroke inference
attack. In TRUST, volume 7344 of Lecture Notes in Computer Science, pages
273–290. Springer, 2012.

5. Ming Ki Chong, Gary Marsden, and Hans Gellersen. Gesturepin: using discrete
gestures for associating mobile devices. In Mobile HCI, pages 261–264. ACM, 2010.

6. Ken Hinckley and Hyunyoung Song. Sensor synaesthesia: touch in motion, and
motion in touch. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 801–810. ACM, 2011.

7. Sarah Martina Kolly, Roger Wattenhofer, and Samuel Welten. A personal touch:
Recognizing users based on touch screen behavior. In Proceedings of the Third
International Workshop on Sensing Applications on Mobile Phones, page 1. ACM,
2012.

8. Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan.
uwave: Accelerometer-based personalized gesture recognition and its applications.
In PerCom, pages 1–9. IEEE Computer Society, 2009.

9. Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor.
(sp)iphone: decoding vibrations from nearby keyboards using mobile phone ac-
celerometers. In ACM CCS, pages 551–562. ACM, 2011.

10. Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing speech
from gyroscope signals. In 23rd USENIX Security Symposium, pages 1053–1067,
San Diego, CA, August 2014. USENIX Association.

11. Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. Tapprints: your finger taps have fingerprints. In MobiSys, pages 323–
336. ACM, 2012.

12. Yuan Niu and Hao Chen. Gesture authentication with touch input for mobile
devices. In MobiSec, volume 94 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 13–24.
Springer, 2011.

13. Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Accessory:
Password inference using accelerometers on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems and Applications, HotMobile ’12,
pages 9:1–9:6, New York, NY, USA, 2012. ACM.

14. Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shijian Li. Gesture recogni-
tion with a 3-d accelerometer. In UIC, volume 5585 of Lecture Notes in Computer
Science, pages 25–38. Springer, 2009.

15. Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: inferring user inputs on smartphone
touchscreens using on-board motion sensors. In WISEC, pages 113–124. ACM,
2012.

16. Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. You are how you touch: User
verification on smartphones via tapping behaviors. In Network Protocols (ICNP),
2014 IEEE 22nd International Conference on, pages 221–232. IEEE, 2014.

	Inferring Touch From Motion in Real World Data

