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ABSTRACT
In this paper we study a model for ad-hoc networks close
enough to reality as to represent existing networks, being at
the same time concise enough to promote strong theoreti-
cal results. The Quasi Unit Disk Graph model contains all
edges shorter than a parameter d between 0 and 1 and no
edges longer than 1. We show that—in comparison to the
cost known on Unit Disk Graphs—the complexity results
in this model contain the additional factor 1/d2. We prove
that in Quasi Unit Disk Graphs flooding is an asymptoti-
cally message-optimal routing technique, provide a geomet-
ric routing algorithm being more efficient above all in dense
networks, and show that classic geometric routing is possi-
ble with the same performance guarantees as for Unit Disk
Graphs if d ≥ 1/

√
2.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations, routing and layout ;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems;
C.2.2 [Computer-Communication Networks]: Network
Protocols—routing protocols

General Terms
Algorithms, Performance, Theory
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1. INTRODUCTION
Ad-hoc networks are formed by mobile devices communicat-
ing via radio. If two ad-hoc nodes are too far apart to com-
municate directly, intermediate nodes can relay their mes-
sages.

A widely employed model for the study of ad-hoc networks
is the so-called Unit Disk Graph model: Nodes are located
in the Euclidean plane and are assumed to have identical
(unit) transmission radii. Consequently an edge between
two nodes u and v—representing that u and v are in mutual
transmission range—exists iff |uv|, their Euclidean distance,
is not greater than one. On the one hand, clearly, this is
a glaring simplification of reality, since, even if all network
nodes are homogeneous, this model does not account for the
presence of obstacles, such as walls, buildings, mountains—
or also weather conditions—, which might obstruct signal
propagation. On the other hand, Unit Disk Graphs are sim-
ple enough to promote strong theoretical results (such as the
cost for routing [20, 21] or topology control [1, 11, 30]).

In this paper we study a graph model which is considerably
closer to reality [4]. We maintain the assumption that all
mobile nodes are placed in the plane (that is, they have co-
ordinates in �2). In a Quasi Unit Disk Graph, two nodes are
connected by an edge if their distance is less than or equal
to d, d being a parameter between 0 and 1. Furthermore, if
the distance between two nodes is greater than 1, there is
no edge between them. In the range between d and 1 the
existence of an edge is not specified.

In this paper we first establish a constructive lower bound
for Quasi Unit Disk Graphs showing that basically any al-
gorithm without routing tables requires sending of Ω

�
( c

d
)2
�

messages to route from a source s to a destination t, where c
is the length of the shortest path between s and t. We show
that, with the aid of a topology control graph structure, a
restricted flooding algorithm is guaranteed not to perform
worse and that this technique is consequently asymptotically
message-optimal.

If we attribute the network nodes with information about
their own and their neighbors’ positions and assume that the
message source knows the position of the destination—the
basic assumptions of geometric routing—, a more subtle ap-
proach than flooding of the network is possible. We present a
combination of greedy routing and restricted flooding. This
yields a routing algorithm that is still asymptotically opti-



mal in the worst case, but also efficient in the average case,
as previous work on average-case efficiency of geometric ad-
hoc routing algorithms suggests [6, 22]. Finally, if we assume
d to be at least 1/

√
2, we show that it is possible to locally

introduce virtual edges and perform the classic variations of
geometric routing while preserving performance guarantees
known from Unit Disk Graphs.

After discussing related work in the following section, we
state the model and provide definitions in Section 3. In Sec-
tion 4 we establish a lower bound for the message complexity
of so-called volatile memory routing algorithms. Section 5
contains the description of the topology control structure
forming the basis for the subsequent algorithms. Section 6
provides the analysis of flooding algorithms with respect to
message and time complexity. Section 7 discusses the com-
bination of flooding with a greedy approach for geometric
routing, whereas Section 8 shows that for large enough d,
classic geometric routing can be employed. Section 9 draws
the conclusions of the paper.

2. RELATED WORK
So far, the most popular network structure to model mobile
ad-hoc networks has been the Unit Disk Graph. The under-
lying assumption of this model is that the nodes are placed
in the plane, all of them having the same—normalized to
one—transmission range. A more general model is provided
by disk graphs where in contrast to Unit Disk Graphs, nodes
can have different transmission ranges. Disk graphs have
also been widely used, but, while for Unit Disk Graphs a
number of theoretical results have been achieved, most of
the knowledge on disk graphs bases on simulations. Disk
graphs provide a simple method to analyze unidirectional
links, however, it is not possible to model any kind of ob-
stacles. Barrière et al. [4] describe a model which is—up
to scaling—identical to our Quasi Unit Disk Graph model.
Similarly to the technique stated in Section 8, [4] exploits
local construction of virtual links to allow for correct (i.e.
arrival of message guaranteed) geometric routing on Quasi
Unit Disk Graphs for d ≥ 1/

√
2. In Section 8, we extend

this result towards efficiency.

In this paper, we give different complexity results concerning
the Quasi-UDG model. We show how to construct a sub-
graph of the network graph G which enables cost-optimal
flooding and we show how the flooding overhead can be re-
duced (in practice) by using geometric routing for d ≥ 1/

√
2

and a combination of geometric routing and flooding for ar-
bitrary d. Constructing a sub-structure G′ of G such that
G′ features some desirable properties is often termed topol-
ogy control. Topology control is used to reduce the number
of nodes and the number of edges involved in protocols such
as routing. An important issue of such a precomputation
is the reduction of interference effects, message complexity,
or energy consumption. Sometimes, algorithms need net-
work graphs with special properties; for example all face-
routing based geometric routing algorithms [6, 16, 18, 20,
21, 22] need a planar graph to operate correctly. For Unit
Disk Graphs, a number of different ideas in order to reduce
the complexity of the network topology have been proposed.
Many of them are based on dominating sets [1, 10, 11, 13,
14, 19, 29] or angle of arrival [30]. For finding planar sub-
graphs, various constructions of different quality and com-

plexity have been conceived [9, 11, 28]. A recent survey
on topology control algorithms for ad-hoc networks can be
found in [26].

Flooding is an essential ingredient of many ad-hoc routing
algorithms [15, 25]. It is therefore crucial to reduce the
number of messages sent. One way to reduce the cost of
flooding is to lower the complexity of the network by us-
ing appropriate topology control mechanisms. Apart from
this there are other approaches which try to optimize flood-
ing performance by using geometric information about the
destination [5, 17]. These algorithms differ from our greedy
routing/flooding approach in that they only try to flood into
the right direction but they do not apply real geometric rout-
ing whenever possible.

Geometric routing (also known as location-based, position-
based or geographic routing) has also mainly been studied
on Unit Disk Graphs. Greedy routing algorithms have been
studied in [8, 11, 12, 18, 27]. Greedy routing behaves well in
practice, but no guarantee can be given about the arrival of
messages for all of them. The first algorithms with guaran-
teed delivery were [6, 18] followed by a slightly changed ap-
proach in [16]. The first geometric routing algorithm whose
cost is bounded by a function of the cost c of an optimal
path was given in [21]. The cost O

�
c2
�

was shown to be
optimal and the routing scheme of [21] was later extended
to also achieve practical efficiency [20, 22].

3. MODEL
This section provides definitions of the model employed in
this paper. We first give a formal definition of our ad-hoc
network model:

Definition 3.1. (Quasi Unit Disk Graph) Let V ⊂
�

2 be a set of points in the 2-dimensional plane and d ∈ [0, 1]
be a parameter. The symmetric Euclidean graph (V, E), such
that for any pair of points u, v ∈ V

- (u, v) ∈ E if |uv| ≤ d and

- (u, v) /∈ E if |uv| > 1,

is called a Quasi Unit Disk Graph (Quasi-UDG) with pa-
rameter d.

In the subsequent section we establish a lower bound for
the message complexity of so-called volatile memory routing
algorithms. With this model nodes are attributed with a
short-term memory in which for each message a constant
number of bits may be stored temporarily.

Definition 3.2. (Volatile Memory Routing Algo-
rithm) The task of a volatile memory routing algorithm is
to transmit a message from a source s to a destination t on
a graph, where each node of the graph holds a memory in
which O(log n) bits1 may be stored as long as the message is
en route.

1We need a logarithmic number of bits to enable all nodes
to concurrently flood the network.



In particular this model allows to store message identifiers
required for flooding (cf. Section 6).

The second important algorithm model discussed in this pa-
per is geometric routing [21]:

Definition 3.3. (Geometric Routing Algorithm)
The task of a geometric routing algorithm is to transmit a
message from a source s to a destination t on a graph while
observing the following rules:

- Every node is informed about its own and all of its
neighbors’ positions.

- The source of a message knows the position of the mes-
sage destination.

- A message may contain control information about at
most O(1) nodes.

- A node is only allowed to temporarily store a message
before retransmission; no other memory is available.

As stated above, in original geometric routing a node is al-
lowed to store messages only temporarily before relaying
them. In order to enable an algorithm to employ flooding,
this assumption can be relaxed:

Definition 3.4. (Geometric Volatile Memory Rout-
ing Algorithm) A geometric volatile memory routing al-
gorithm is a volatile memory routing algorithm additionally
observing the first three rules of the definition of geometric
routing algorithms.

In the following we provide a concise overview of basic con-
cepts of distributed computing vital for the understanding
of this paper. More detailed descriptions can be found in
textbooks, such as in [23].

At certain points of the paper we have to distinguish between
the synchronous and the asynchronous model of distributed
computation. In the synchronous model, communication
delays are assumed to be bounded. As a consequence it can
be assumed that all processes running on different network
nodes perform their message sending and receiving opera-
tions in simultaneous and globally clocked rounds. In the
asynchronous model, message delays are unbounded. No
assumptions can be made on the duration of single process
operations.

Two fundamental measures in distributed computing are
message and time complexity. The message complexity of
a distributed algorithm is the total number of messages sent
during its execution. The definition of time complexity de-
pends on the synchrony model: In the synchronous model,
time complexity is the total number of rounds elapsed be-
tween algorithm start and algorithm termination. In the
asynchronous model such a simple time model cannot natu-
rally be obtained, since the transmission delay of a message
is unbounded. The common solution to this is the assump-
tion that the message delay is at most one time unit.

t

h

d+ε

≈1

s

Figure 1: Message Complexity Lower Bound for
Volatile Memory Routing Algorithms on Quasi-
UDGs

Finally, since we consider message complexities in this pa-
per, we define the cost of a path according to the link dis-
tance metric, that is, the cost of a path is the number of
edges on the path. Similarly, we consider spanner graphs
with respect to the link distance metric: A graph G′ =
(V, E′) is a spanner of a graph G = (V, E) with stretch fac-
tor k iff for any pair of nodes (u, v) the cost of the shortest
path on G′ is at most k times the cost of the shortest path
on G.

4. LOWER BOUND
In this section, we present a lower bound on the message
complexity of any volatile memory routing algorithm.

Theorem 4.1. Let c be the cost of a shortest path from s
to t. There exist graphs on which any (randomized) volatile
memory routing algorithm has (expected) message complex-
ity Ω(( c

d
)2).

Proof. We provide a constructive proof by describing a
class of graphs for which the theorem holds.

The basic element used for the construction of these graphs
is formed by k nodes (k to be determined later) equidistantly
placed on a line, such that the distance between two adja-
cent nodes is d + ε for a small ε > 0 (cf. vertical chains in
Figure 1). There exists an edge between every pair of nodes
(u, v), such that (� 1

d
	−1) d < |uv| ≤ 1, that is, the nodes are

connected by all the edges with maximum Euclidean length
not greater than 1. In addition there is a head node having
an edge to each one of the first � 1

d
	 − 1 nodes on the line

(the head node has to be located such that all additional



edges have length at most 1). As shown in Figure 1, k such
vertical chains are placed side by side with distance d + ε
such that the nodes form a matrix. The head nodes of these
chains now are interconnected in a way that they among
themselves have the same chain structure (uppermost row
in Figure 1) with their head node (of second order) denoted
by s. The node t—located near the bottom right corner of
the node matrix—is connected to one of the end nodes of
exactly one of the vertical chains by a simple chain of nodes.
Note that the constructed graph is a Quasi Unit Disk Graph.

The main property posing a problem for a routing algorithm
is that a matrix column consists of �1

d
	−1 interleaved chains

which are only connected via the head node. (The same also
holds for the first matrix row.) Consequently only one of s’s
neighbors leads to h, the head node of the column connected
to t, and only one of h’s neighbors leads to the bottom node
connected to t. Since a volatile memory routing algorithm
has no a priori information about the graph structure, a
deterministic algorithm has to explore every matrix node
before finding the path to t. (For a randomized algorithm t
can be connected to the matrix such that the algorithm has
to explore roughly half of the matrix nodes in expectation.)
A volatile memory routing algorithm therefore has to send
Ω(n) messages, where n is the total number of nodes. The
optimal path on the other hand—almost exclusively using
edges of length nearly 1—has cost about 2 k · d, which—
together with k ≈ √

n—establishes the theorem.

5. TOPOLOGY CONTROL
In the previous section we introduced a lower bound graph
class, on which any volatile memory routing algorithm can-
not find the destination with message complexity less than
Ω(( c

d
)2). In this section we now describe how to obtain

a subgraph of a given Quasi Unit Disk Graph which forms
the basis for our algorithms matching the lower bound. This
Backbone Graph features two important properties exploited
for routing: (1) It contains in a given area A at most O

�
A
d2

�
nodes and (2) it is a O

�
log( 1

d
)
�
-spanner.

Given a Quasi Unit Disk Graph G, the Backbone Graph is
constructed in three steps. Steps 1 and 2 can be performed
by a standard distributed algorithm (as described in [1]) by
having the nodes send dominator and connector messages.
We do not discuss the details of this algorithm for space
reasons.

1. The first step consists of a clustering process. We con-
struct a Maximal Independent Set MIS of nodes on G.
Note that since MIS is an independent set on G, any
two nodes in MIS have distance greater than d and
consequently a given area A contains at most O

�
A
d2

�
nodes in MIS . For the purpose of routing, the nodes in
MIS will later become cluster heads: Since the nodes
in MIS also form a Dominating Set, any node in G will
have at least one node from MIS within its neighbor-
hood and will choose one of these as its cluster head.

2. In a second step the cluster heads are linked together
by connector nodes, resulting in the Complete Back-
bone Graph GCBG. Note that since MIS is a Dominat-
ing Set, the cluster heads can be connected by bridges

Figure 2: Construction of a Sparse Spanner: Grid
Structure

consisting of at most two nodes. Also note that GCBG

is a constant-stretch spanner of G.

3. GCBG can contain Ω( A
d4 ) nodes in a given area A,

which is too many by a factor of 1
d2 compared to the

lower bound. The size of MIS matching the lower
bound, the third step now reduces the number of con-

necting bridges between cluster heads. Let G
(v)
CBG de-

note the graph with node set MIS and (virtual) edges
between all nodes connected by bridges in GCBG. Our

objective is now to construct a subgraph G
(v)
BG of G

(v)
CBG

with O
�

A
d2

�
(virtual) edges within the area A. It even-

tually follows that the final Backbone Graph GBG—

where the (virtual) edges in G
(v)
BG have again been re-

placed by connector nodes and their adjacent edges—
contains at most O

�
A
d2

�
nodes within the area A.

In order to obtain a graph G
(v)
BG with the desired prop-

erty, the plane is divided by a grid into square cells
of side length 6. In each cell z all nodes and edges
completely contained within z temporarily form a lo-
cal network. (Note that we assume for this operation
that the nodes are informed about their positions.)
The number of nodes contained within z is at most
O
�

1
d2

�
. We now apply an algorithm constructing a

sparse spanner [2, 23, 24] to reduce the number of
edges contained in z to O

�
1

d2

�
.2 This procedure is re-

peated three times on grids with their origin shifted by
(3, 0), (0, 3), and (3, 3) relative to the origin of the first
grid (cf. Figure 2). (Note that these are local opera-
tions, since the subgraphs are of bounded size.) The

edge set of graph G
(v)
BG is finally formed by the union

of all edges resulting from the edge reduction steps on
all four grids.

Lemma 5.1. In a given area A (with constant extension
in each direction) the number of nodes and the number of
edges in the Backbone Graph are both bounded by O

�
A
d2

�
.

2The mentioned algorithm constructs for a constant κ ≥ 1
an O(κ)-spanner with at most n1+1/κ edges. Setting κ =
log n and since n = 1

d2 , we obtain a graph with the required
properties.



Proof. The grids employed for the edge reduction steps

are chosen to have two properties: (1) Every edge in G
(v)
CBG

is completely contained in at least one cell and (2) any region
(with constant extension in each direction) is intersected by
at most a constant number of grid cells (for instance a square
of side length 3 can be intersected in total by at most 9 grid
cells). Property (1) guarantees that every edge is considered
at least with one of the four grids: Together with the fact
that the edge reduction step does not alter the number of
components in a cell subgraph, it follows that the number
of components in the complete graph is not altered either.
Since each resulting subgraph contains at most O

�
1

d2

�
edges

and together with Property (2), it follows that also the union

of all remaining edges—that is the number of edges in G
(v)
BG

is not greater than O
�

1
d2

�
for a constant region. The fact

that each edge in G
(v)
BG corresponds to at most two nodes

and three edges in GBG and G
(v)
BG having at most O

�
A
d2

�
nodes for an area A (the nodes in MIS ) finally leads to the
lemma.

Lemma 5.2. The Backbone Graph GBG is a spanner of
GCBG with stretch factor O

�
log( 1

d
)
�
.

Proof. Every edge in G
(v)
CBG is contained in at least one

grid cell and consequently also considered in at least one of
the according subgraphs. Since the edges retained in each
subgraph form a O

�
log( 1

d
)
�
-spanner (on the subgraph), this

property also holds for the union of all subgraphs, G
(v)
BG.

Finally, each edge in G
(v)
BG resulting in at most three edges

in GBG, the lemma follows.

In distributed computing a distinction can be made between
the one-hop broadcast model and the point-to-point commu-
nication model: In the one-hop broadcast model a node can
simultaneously send a message to all its neighbors, whereas
in the point-to-point communication model a message is sent
over an edge to one distinct neighbor. The algorithms de-
scribed in the remaining sections are assumed to execute
on GBG. Since on this graph the number of nodes and the
number of edges are asymptotically equal in a given area,
the two models can be employed interchangeably, depending
on whether we argue over the number of nodes or edges in
the graph.

When routing a message m from a source s′ to a destination
t′, the nodes s′ and t′ will in general not be cluster heads.
The complete process of routing therefore consists of

1. s′ sending m to its associated cluster head s,

2. routing m from s to t, the cluster head associated to
t′, and

3. t sending m to t′.

Since steps 1 and 3 incur only constant cost with respect to
both message and time complexity, we exclusively consider
step 2 in the remaining part of the paper. Whenever men-
tioning a source s or a destination t we therefore assume
that s and t are cluster heads.

6. MESSAGE-OPTIMAL FLOODING
In this section we discuss the message and time complexities
of the Echo algorithm on Quasi Unit Disk Graphs. Due to
space reasons we only give a short outline of the algorithm
execution; more detailed information can be found in [7, 23].
The Echo algorithm consist of a flooding phase and an echo
phase.

- The flooding phase is initiated by the source s by send-
ing a flooding message—containing a Time To Live
(TTL) counter τ—to all its neighbors. Each node re-
ceiving the flooding message for the first time decre-
ments the TTL counter by one and retransmits the
message to all its neighbors (with the exception of
the neighbor it received the message from). In the
synchronous model this flooding phase constructs a
Breadth First Search (BFS) tree.

- From the leaves of this tree—the nodes where the τ
counter reaches 0—echo messages are sent back to to
the source along the BFS tree constructed during the
flooding phase. An inner node in the BFS tree can
decide locally when to send an echo message to its
parent in the tree by awaiting the receipt of an echo
message from all of its children.

By initiating the first flooding phase with τ set to 1 and
relaunching a flooding phase with doubled τ whenever the
echo messages indicate that the destination has not yet been
reached, both time and message complexities can be bound-
ed:

Theorem 6.1. Employed on GBG in the synchronous
model, the Echo algorithm reaches the destination with mes-
sage complexity O

�
( c

d
)2
�

and time complexity O
�
c · log( 1

d
)
�
,

where c is the cost of a shortest path between s and t. This is
asymptotically optimal with respect to message complexity.

Proof. The Echo algorithm floods the complete network
with message complexity O(m) and time complexity O(D),
where m is the number of edges in the network and D is the
diameter of the network. Since no edge in GBG is longer
than 1, all nodes reached with a certain τ lie within the cir-
cle centered at s with radius τ . The number of edges within
this circle is bounded by O

�
( τ

d
)2
�
. Note that the destination

is reached at the latest for τ = 2 · c. Since τ is doubled after
each failure, the total number of visited edges is dominated
by the number of edges in the circle with maximum τ , from
which the message complexity follows. Asymptotic optimal-
ity follows from the lower bound established in Section 4.

The time complexity follows from the fact that the BFS tree
constructed during the flooding phase contains a shortest
path from s to t. Since GBG is a log(1

d
)-spanner of G, the

shortest path on GBG, on which the algorithm is executed,
is c · log(1

d
). The time complexity of a single flooding-echo

round being proportional to τ and again the total time com-
plexity asymptotically being dominated by the maximum τ
used, the time complexity follows.

In the asynchronous model the synchronizer construction
introduced in [3] can be employed.



Theorem 6.2. When employed on GBG in the asynchro-
nous model, the Echo algorithm reaches the destination with
message complexity O

�
( c

d
)2 · log3( c

d
)
�

and time complexity

O
�
c · log( 1

d
) · log3( c

d
)
�
, where c is the cost of the shortest

path between s and t.

Proof. The synchronizer construction introduced in [3]
incurs a cost factor of O

�
log3( 1

d
)
�

with respect to both mes-
sage and time complexity. Plugging in the above Echo algo-
rithm for the synchronous model yields the lemma.

For geometric routing as discussed in the following section, a
variant of Echo can be defined by replacing the Time To Live
counter by a geometric argument: The flooding message is
retransmitted only by nodes located within a circle centered
at s with a certain radius r.

Lemma 6.3. The geometric Echo algorithm reaches t with
message and time complexity O

�
( c

d
)2
�
, where c is the link

cost of the shortest path. This holds for both the synchronous
and the asynchronous model and is asymptotically optimal
with respect to message complexity.

Proof. In contrast to the above Echo algorithm using
TTL, all nodes located within the restricting circle centered
at s with radius r participate in the execution of the geomet-
ric algorithm. This circle containing at most O

�
( r

d
)2
�

nodes,
the message complexity follows, where the remaining reason-
ing is analogous to the one in the proof of Theorem 6.1. The
time complexity follows from the fact that time complexity
cannot be greater than message complexity.

7. GREEDY ECHO ROUTING
Although asymptotically message-optimal, a flooding-based
algorithm is prohibitively expensive in most networks for
practical purposes. Previous work showed that this prob-
lem can often be tackled by combining a correct routing
algorithm (that is guaranteed to find the destination) with
a greedy routing scheme [6, 22]. In this section we there-
fore describe a geometric volatile memory routing algorithm
that tries to leverage the advantages of a greedy routing
approach with respect to both conceptual simplicity and
message-efficiency: In order to route a message, a node sim-
ply forwards it to its neighbor closest to the destination.
Greedy routing can however run into a local minimum with
respect to the distance to the destination, that is a node
without any neighbors closer to t. In our case such a lo-
cal minimum is circumvented by employment of restricted
flooding, in particular by the aid of the geometric Echo al-
gorithm as described in the previous section. In this section
we therefore refer by Echo to the geometric Echo algorithm.
We denote with Echor the subalgorithm of geometric Echo
consisting of the flooding and the corresponding echo phase
for the radius r.

Our algorithm GEcho combines both greedy routing and
flooding in two modes: Generally the message is forwarded
in greedy mode as long as possible. Whenever running into
a local minimum, the algorithm switches to echo mode. In
order to keep the cost of flooding-based echo low, the algo-
rithm tries to fall back to greedy mode as early as possi-
ble. The fallback criterion is chosen such that the combined

routing algorithm is asymptotically optimal with respect to
message complexity. In particular, the Echo algorithm does
not terminate only when finding t, but already when find-
ing a node v which is significantly closer to t than the local
minimum, as described in Step 2 of the GEcho algorithm:

GEcho
The value q is a constant parameter chosen prior to algo-
rithm execution such that 0 < q ≤ 1.

0. Start at s.

1. (Greedy Mode) Forward the message to the neigh-
bor in G closest to t. If t is reached, terminate. If a
local minimum is reached, continue with step 2, oth-
erwise repeat step 1 at the next node.

2. (Echo Mode) Execute algorithm Echo starting at the
local minimum u until either reaching t—in which case
the algorithm terminates—or finding a node v, such
that |ut| − |vt| ≥ q · r, where r is the currently chosen
radius in Echo’s subalgorithm Echor. Proceed to v
and continue with step 1.

In the following we obtain a statement on the asymptotic
complexity of the algorithm. We first show that the number
of messages sent in Greedy mode is bounded:

Lemma 7.1. The number of messages sent in Greedy mode
is bounded by O

�
( c

d
)2
�
.

Proof. Let us exclusively consider the sequence U of
nodes sending messages in Greedy mode or receiving mes-
sages sent in greedy mode during the execution of the al-
gorithm. Note that the distance to t is strictly decreasing
within U . Since the algorithm stays in greedy mode un-
til reaching a local minimum, U is partitioned into subse-
quences U1, U2, . . . , Uk, k ≥ 1 of nodes by the occurrence of
local minima: A local minimum only receives a Greedy mes-
sage without being able to send it to a subsequent node in
Greedy mode. Within a subsequence Ui = u1, u2, . . . , u�i ,
�i ≥ 2 any two nodes uj , uj+2, 1 ≤ j ≤ �i − 2 have distance
greater than d (otherwise uj would have sent the Greedy
message directly to uj+2). On the other hand also the dis-
tance between a local minimum u�i and the first node in
the following subsequence Ui+1 have distance greater than
d (otherwise u�i would be no local minimum). Together
with the fact that all nodes in U are located within the cir-
cle C centered at t with radius |st|, the number of nodes in
the total sequence U is therefore bounded by two times the
maximum number of nodes with relative distance greater
than d—or likewise the maximum number of nonintersect-
ing disks of radius d/2—that can be placed within C. With
|st| ≤ c, the lemma follows.

We now confine ourselves to the number of messages sent in
Echo mode. Note that after each round, defined to be one
execution of Step 1 or Step 2, the algorithm is strictly closer
to t than before that round.



Lemma 7.2. For a given r the subalgorithm Echor is ex-

ecuted at most � |st|
q r

− 1	 times.

Proof. According to the criterion described in Step 2, an
Echo round initiated at node u terminates—unless arriving
at t—only if it finds a node v, such that |ut| − |vt| ≥ q · r.
For any r (also if at a particular node Echor fails and r is

doubled) such a progress can be made at most � |st|
q r

− 1	
times, since after each round the algorithm is strictly closer
to t than before.

With this property we can obtain the total number of mes-
sages sent in Echo mode during algorithm execution.

Lemma 7.3. The total number of messages sent in Echo
mode is at most O

�
( c

d
)2
�
.

Proof. We obtain the total number of messages sent in
Echo mode by summing up over all nodes ever contained in a
circle bounding Echor. Since the number of nodes contained
in a given circular area is asymptotically proportional to
the size of the area, it is sufficient to compute the total
area covered by all Echor bounding circles. Let ri = 2i, i =
1, 2, 3, . . . denote the radii of the Echo bounding circles. The
maximum ri can be found by the observation that (1) all
Echo restricting circles have their centers at a node closer
to t than s and (2) the circle centered at any node closer to
t than s having radius 2 c completely contains the shortest
path. Since the value of r in Echor is obtained by doubling,
the maximum ri used over all is less than 4 c; the maximum
i reached is consequently �log(4 c)	. With ni being the total
number of bounding circles used with radius ri, we obtain

A =

�log(4 c)��
i=0

ni · πr2
i

for the total covered area A. Using Lemma 7.2 we obtain

A ≤ π ·
�log(4 c)��

i=0

� |st|
q ri

− 1	 · r2
i

< π ·
�log(4 c)��

i=0

|st|
q

· ri ≤
(|st|≤c)

π c

q
·
�log(4 c)��

i=0

2i

=
π c

q
· 2�log(4 c)�+1 − 1

3
∈ O

�
c2
�

.

The Area A containing at most O
�

A
d2

�
nodes (cf. Section 5),

the lemma follows.

Lemma 7.4. The algorithm GEcho finds the destination
with both message and time complexity O

�
( c

d
)2
�
, where c is

the link cost of the shortest path.

Proof. The message complexity bound follows directly
from the previous two lemmas. The time complexity bound
follows from the fact that time complexity cannot be greater
than message complexity.

Theorem 7.5. The algorithm GEcho is asymptotically op-
timal with respect to message complexity.

Proof. Follows from Lemma 7.4 and Section 4.

8. LARGE D-VALUES
This section treats the special case where the parameter d
of the Quasi Unit Disk Graph G is d ≥ 1/

√
2. This case

has already been considered by Barrière et al. in [4]. There,
it is shown that for d ≥ 1/

√
2 standard geometric routing

is possible. Here, we extend their results and present a ge-
ometric routing algorithm which is asymptotically optimal,
i.e. whose cost is quadratic in the cost of an optimal path
(cf. [21]).

The structural difference between Quasi-UDGs for d < 1/
√

2
and Quasi-UDGs for d ≥ 1/

√
2 lies in the local environment

of intersecting edges. If d ≥ 1/
√

2, all intersections can be
detected locally. This is shown by the following two lemmas.

Lemma 8.1. Let e = (u, v) be an edge and w be a node
which is in the disk with diameter (u, v). Either u and w or
v and w are connected by an edge.
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Figure 3: w is either connected to u or to v

Proof. The following proof is illustrated by Figure 3.
Because |uv| ≤ 1, the regions of the points whose distances
to u and v are greater than 1/

√
2 do not intersect inside C

(hatched areas in Figure 1). Thus either |uw| ≤ 1/
√

2 or
|vw| ≤ 1/

√
2. In the picture, this holds for u and w and

therefore there is an edge between the two nodes in G.

Lemma 8.2. Let e1 = (u1, v1) and e2 = (u2, v2) be two
intersecting edges in a Quasi-UDG G with parameter d ≥
1/

√
2. Then at least one of the edges (u1, u2), (u1, v2),

(v1, u2), and (v1, v2) exists in G.

Proof. We have to show that one of the four sides of the
quadrangle (u1, u2, v1, v2) is shorter than 1/

√
2. Because

the sum of the interior angles of the quadrangle is 2π, at
least one of the angles has to be greater or equal to π/2.
W.l.o.g. let it be the angle at node u2. In this case u2 lies in
the disk with diameter (u1, v1) and the lemma follows from
Lemma 8.1.



We will now give an overview of the results of [4]. The
algorithm consists of three steps. In a first step, the Quasi-
UDG G is extended by adding virtual edges. Whenever
there is an edge (u, v) and a node w which is inside the circle
with diameter (u, v), for at least one of the nodes u and v—
w.l.o.g. let it be u—the distance to w is smaller than or equal
to 1/

√
2 (Lemma 8.1) and therefore u has a connection to w.

If there is no edge between v and w, a virtual edge is added.
Sending a message over this virtual edge is done by sending
the message via node u. This process is done recursively, i.e.
also if (u, v) is a virtual edge. The graph obtained by adding
the virtual edges to G is called super-graph S(G). Barrière
et al. prove that on S(G) the Gabriel Graph GG(S(G)) can
be constructed yielding a planar subgraph of S(G). In the
Gabriel Graph construction, an edge (u, v) is removed if and
only if there is a node w in the disk with diameter (u, v) [9].
On GG(S(G)), any correct geometric routing algorithm is
applied ([6, 18]).

In order to obtain an optimal geometric routing algorithm,
we have to change the algorithm of [4] in two ways: i) the
planar graph which we need for geometric routing should
be a spanner and the number of nodes in a given area A
should not be larger than O(A), and ii) we have to replace
the geometric routing algorithm by a more elaborate variant
such as AFR [21] or one of its successors GOAFR [22] and
GOAFR+ [20]. One of the bounding factors for the span-
ning property is given by the recursive depth of the virtual
edge construction, i.e. the length of paths corresponding to
virtual edges. From [4] we have the following result.

Lemma 8.3. Let λ be the minimum Euclidean distance
between any two nodes. If d ≥ 1/

√
2, the length of the route

in G corresponding to a virtual edge in S(G) is at most
1 + 1

2λ2 .

Proof. The lemma directly follows from Property 1 in
Section 5 of [4].

We cannot assume that there is a minimum Euclidean dis-
tance λ between any two nodes. However, by using the
Backbone Graph GBG (cf. Section 5) we obtain a Quasi-
UDG with bounded degree, a property which we prove to
be equivalent to the minimum distance assumption.

Precisely, we start by constructing GBG. This gives us a set
of dominator nodes D = MIS and a set of connector nodes
C. We transform GBG into a Quasi-UDG G′

BG = (V ′, E′)
by setting V ′ = D ∪ C and by including all possible edges
of E in E′ (all edges between nodes of V ′).

Lemma 8.4. The degree of each node in the Quasi-UDG
G′

BG is bounded by a constant.

Proof. Because the dominator nodes D have distance at
least 1/

√
2 from each other, the number of dominators which

are within three hops from a node v ∈ V ′ is bounded by a
constant. Only those nodes can add connector nodes which
are neighbors of v. Each of them can only add a constant
number of connector nodes and therefore, the degree of node

v has to be constant. A more detailed proof can be done
analogously to the proof for the same lemma for Unit Disk
Graphs [1, 29].

G′
BG is now used for the Gabriel Graph construction. First,

virtual edges are added as in the algorithm of [4] resulting in
a super-graph S(G′

BG). Then GG(S(G′
BG)) is constructed.

Analogously to Lemma 8.3 we are able to get a bound on
the maximum route length for any virtual edge.

Lemma 8.5. Let G = (V, E) be a Quasi-UDG with maxi-
mum node degree Δ. If d ≥ 1/

√
2, the length of the route in

G corresponding to a virtual edge in S(G) is at most O
�
Δ2
�
.
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Figure 4: Recursive Depth of Virtual Edges

Proof. Let (u, v) ∈ E be an edge of G. Further let
w1, . . . , wk be a sequence of nodes which recursively force the
creation of new virtual edges ei for which the corresponding
route contains (u, v). Let �0 := |uv| and �i be the Euclidean
length of the virtual edge ei (see Figure 4 as an explanation).
λi is the length of the edge which together with ei−1 provides
the route for ei (λi ≤ d). For the length �i of the ith virtual
edge ei we get

�i ≤
�

�2i−1 − λ2
i =

�
1 − λ2

i

�2i−1

· �i−1

≤
�

1 − λ2
i

�20
· �i−1 ≤

�
1 − λ2

i · �i−1.

The second inequality follows from �0 ≥ �i−1, the last in-
equality follows from �0 ≤ 1. We therefore get

�k ≤
k�

i=1

�
1 − λ2

i · �0 ≤
k�

i=1

�
1 − λ2

i . (1)

We define λ := 1/k
�k

i=1 λi to be the average length of
the edges corresponding to the λi. It can be shown that
the expression of Equation (1) can be upper-bounded by
replacing each λi by λ:

�k ≤
�	

1 − λ2

k

=
�
1 − λ2�k/2

. (2)

In a Quasi-UDG all nodes in a disk with radius d/2 are
neighbors of each other. Therefore, when starting at a node
u, after at most Δ + 1 hops, one has to leave the disk with
radius d/2 around u. Thus, the sum of the lengths of Δ + 1
successive edges on a cycle-free path has to be greater than



d/2, i.e. for d ≥ 1/
√

2 this is a constant. The average edge
length of any cycle-free path is thus O(1/Δ). In Figure 4, we
see that the λi form two paths. Therefore, the average λi has
to be in the order of λ = O(1/Δ). Because (1−1/n)n ≤ 1/e,
we set k = 2/λ2 = O

�
Δ2
�

in (2) and get

�k ≤ (1 − λ2)1/λ2 ≤ 1/e ≤ 1/
√

2.

Because the length of a virtual edge ek has to be �k ≥ 1/
√

2,
this concludes the proof.

Lemma 8.6. The Gabriel Graph GG(S(G′
BG)) is a span-

ner for the Quasi-UDG G.

Proof. By Lemma 8.4 and Lemma 8.5, we see that the
virtual edges only impose a constant factor on the cost of
a path. We can therefore proceed as if all virtual edges
were normal edges of G. Further, it is well known that
the Gabriel Graph construction retains an energy-optimal
path (edge cost = square of the Euclidean edge length) (see
e.g. [21]). This is because whenever an edge is removed,
there is an alternative (two-hop) path with lower or equal
energy cost. Because the average edge length of S(G′

BG) is
a constant (cf. proof of Lemma 8.5), the number of hops and
the energy cost of a path only differ by a constant factor and
therefore, the minimum energy path is only by a constant
factor longer than the shortest path connecting two nodes.
For further details, we refer to the analysis for Unit Disk
Graphs [20].

Theorem 8.7. Let G be a Quasi Unit Disk Graph with
d ≥ 1/

√
2. Applying AFR [21], GOAFR [22], or GOAFR+

[20] on GG(S(G′
BG)) yields a geometric routing algorithm

whose cost is O
�
c2
�
, where c is the cost of an optimal path.

This is asymptotically optimal.

Proof. Because G can be the Unit Disk Graph, the lower
bound follows from the lower bound for Unit Disk Graphs
in [21]. The number of nodes as well as the number of edges
of GG(S(G′

BG)) in a given area A is proportional to A and
therefore, the O

�
c2
�

cost also directly follows from the re-
spective analyses in [20, 21, 22].

8.1 Alternative Construction
We conclude the section on Quasi-UDG for d ≥ 1/

√
2 with

the description of an alternative construction of a planar
graph which can be used to perform geometric routing. By
Lemma 8.2, all edge intersections of a Quasi-UDG with d ≥
1/

√
2 can be detected locally (one communication round).

Instead of the virtual edges/Gabriel Graph construction, we
can define virtual nodes at all intersections of two edges.
These virtual nodes are managed by the end-points of the
intersecting edges; sending a message from or to a virtual
node means sending a message from or to a neighbor (not
virtual) of the virtual node. If this is applied on G′

BG, we
obtain a planar (by definition!) graph with only O(A) nodes
in any given area A. Because this planar graph is a spanner,
we get a geometric routing algorithm with cost O

�
c2
�

by
applying AFR, GOAFR, or GOAFR+ [20, 21, 22].

9. CONCLUSION
What is the benefit of oversimplified models about which in-
teresting properties can be proven, that have however barely
anything in common with reality? But what if we adjust our
model to imitate reality to the least detail and obtain noth-
ing but a system far too complex for stringent reasoning?
These are the two extremes for which we study a potential
way out in the field of ad-hoc network modeling: A model
capturing the essence of ad-hoc networks, yet concise enough
to permit stringent theoretical results. For the Quasi Unit
Disk Graph model—having edges between all nodes with
distance at most d, d lying between 0 and 1, and no edge of
length greater than 1—we constructed a message complexity
lower bound for any volatile memory routing algorithm. We
showed that a flooding algorithm matches this lower bound
and is consequently asymptotically optimal with respect to
message complexity. We described a geometric routing al-
gorithm combining greedy routing and geometric flooding,
resulting in a message-optimal algorithm in the worst case
and message-efficient algorithm in the average case. We fi-
nally showed that classic geometric routing algorithms can
be employed with the same performance guarantees as for
Unit Disk Graphs if d is at least 1/

√
2.
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