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Abstract We present a novel distributed algorithm for the maximal independent set

(MIS) problem.1 On bounded-independence graphs (BIG) our deterministic algorithm

finishes in O(log∗ n) time, n being the number of nodes. In light of Linial’s Ω(log∗ n)

lower bound our algorithm is asymptotically optimal. Furthermore, it solves the con-

nected dominating set problem for unit disk graphs in O(log∗ n) time, exponentially

faster than the state-of-the-art algorithm. With a new extension our algorithm also

computes a δ + 1 coloring and a maximal matching in O(log∗ n) time, where δ is the

maximum degree of the graph.
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1 Introduction

Minimum dominating sets (MDS) and connected dominating sets (CDS) are well-

studied theoretical problems in wireless multi-hop networks, such as ad hoc, mesh,

or sensor networks. In hundreds of papers they have been identified as key to efficient

routing, media access control, or coverage, to just name three popular examples of

usage. Consequently, the networking community has suggested a great number of al-

gorithms towards computing CDS et al.; almost all of these algorithms are distributed,

as wireless networks tend to be unreliable and dynamic, and conventional global algo-

rithms seem too slow to cope with this constant churn. However, most algorithms are

also heuristic in nature, and have been shown to perform poorly in efficacy and/or effi-

ciency, when analyzed rigorously. However, there are exceptions; we will discuss them

in detail in Section 2.

Given the huge impetus from the application side, recent research mostly concen-

trated on special graph classes that represent the geometric nature of wireless networks
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well. The classic theoretical model for wireless networks is the so-called unit disk graph

(UDG) model, where the nodes are points in the plane, and two nodes are neighbors

in the graph if and only if their Euclidean distance is at most 1. However, wireless

radios will never transmit in perfect circles, and hence the UDG model has recently

gotten a lot of stick. Instead the community started looking into generalized models,

e.g. the quasi unit disk graph (QUDG) model, or the unit ball graph (UBG) model.

In Section 3 we adopt the so-called bounded-independence graph (BIG) model (also

called growth-bounded graph (GBG) model [14]); the BIG model only restricts the

number of independent nodes in each neighborhood and is therefore a generalization

of the UDG, QUDG and UBG models.

In Section 4 we present a novel distributed algorithm for the maximal indepen-

dent set (MIS) problem. On bounded-independence graphs our algorithm finishes in

O(log∗ n) time, n being the number of nodes. As we will discuss in more detail in

Section 2, our algorithm beats all existing algorithms for geometric models such as

UDG or BIG by an exponential factor. Indeed, thanks to a lower bound argument

by Linial [18], our algorithm is asymptotically optimal. In the BIG model a MIS is a

constant approximation of a MDS, hence our algorithm gives the fastest constant MDS

approximation. In Section 6 we will also quickly mention how to compute a CDS, how

to obtain a polynomial time approximation scheme (PTAS), and an asymptotically

optimal algorithm for computing a δ+1 coloring, as well as a distance two coloring.

2 Related Work

Symmetry breaking is one of the main problems in distributed computing. Determin-

istic algorithms need a way to distinguish between nodes, i.e. IDs. In their pioneering

work Cole and Vishkin [8] established the “deterministic coin tossing” method. They

applied it to compute a MIS in a ring graph. For more than two decades their deter-

ministic coin tossing technique has been a method of choice for breaking symmetries.

Consequently it has been used in various algorithms [11,3,15,14,13]. In [8] each node

v has a successor s(v), which is a neighbor of v. Based on its own serial number rv
(initially, the ID of node v) and the one of its successor rs(v), it iteratively computes

a new serial number r′v, which is the least bit number i in which both serial num-

bers differ with the bit at position i in rv appended. For example, if rv := 10110 and

rs(v) := 11110, we have i = 3 = 11 (binary) for little endian notation with bit 3 of rv

being 0 and thus r′v := 110. After O(log∗ n) computation node v’s color corresponds

to its serial number. However, this only allows for a node to get a new serial number,

which is distinct from its successor (but not necessarily from other neighbors). Thus

it seems that the technique is limited to simple graphs of low degree such as rings or

other constant-degree graphs. In contrast to Cole/Vishkin our technique extends to

unbounded degree. Roughly speaking, in our algorithm a node does not monotonously

stick to the same successor but takes into account the serial numbers of all nodes

whenever a new serial number is computed based on the previous one. More precisely,

a node’s “successor” is the node with current minimum serial number. Furthermore,

we allow a node to pause for a while, i.e. it does not compute a new serial number

for a couple of rounds. Additionally, a node might restart the computation of a serial

number, e.g. a new serial number based on its own ID and the IDs of its (non-pausing)

neighbors is computed.
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The MIS problem has also been studied in graphs beyond the ring (and other con-

stant degree graphs). In sparse graphs, such as planar graphs, an algorithm based on

Nash-Williams decompositions computes a MIS in a sublogarithmic number of com-

munication rounds [6]. In general graphs the simple and elegant randomized algorithm

by Luby [19] with running time of O(logn) (see as well [1,12]) outperforms the fastest

known deterministic distributed algorithm [20] which is in O(n
√

c/ log n) with constant

c. In Luby’s algorithm neighbors try to enter the MIS based on their degrees, the de-

terministic algorithm uses network decompositions introduced in [4]. In general graphs

every algorithm requires at least Ω(
√

logn/ log logn) or Ω(log∆/ log log∆) commu-

nication rounds for computing a MIS [16].

In this paper we concentrate on geometric graph classes that are relevant in wireless

networking, breaking the lower bound for general graphs. For these geometric graphs

the relevant lower bound is by Linial [18]. He showed that even on a ring topology at

least time Ω(log∗ n) is required to compute a MIS. Only very recently (and probably

stirred by the interest in wireless networking) MIS algorithms for geometric graphs

(such as UDG or BIG) have been discovered. The currently fastest randomized algo-

rithm by Gfeller and Vicari [10] runs in O(log logn · log∗ n) time. Using randomization

a set S is created, where every node v ∈ S has at most O(log5 n) neighbors in S.

Thereafter the fastest deterministic algorithm up to now [13] with time complexity

O(log∆ · log∗ n) is used, which computes an O(log∆)-ruling independent set in time

O(log∆ · log∗ n) in the first phase. (For an α-ruling independent set, every two nodes

in the set have distance at least two and any node not in the set has a node in the

set within distance α.) The O(log∆)-ruling independent set is transformed into an

3-ruling independent set, and this set in turn is taken to compute a MIS using again

the deterministic coin tossing technique. Our algorithm is not only exponentially faster

than the state-of-the-art [10], it is also deterministic, and last not least simpler. Thanks

to Linial’s lower bound we know that it is asymptotically optimal. If a node knows the

distances to its neighbors, then [15] also achieves asymptotic optimality for computing

a MIS in BIG. The main idea is to maintain a set of active nodes (initially, all nodes

are active) and only consider edges between active nodes of distance at most r. In every

iteration the radius r is doubled (up to 1/2) and a MIS is computed on all active nodes.

Only nodes in the MIS stay active. The degrees in the considered graphs are small and

thus a MIS can be computed efficiently (via a coloring). It is rather surprising that we

can match the bound of [15] without any distance information.

3 Model and Definitions

The communication network is modeled with a graph G = (V,E). For a node v its

neighborhood Nr(v) represents all nodes within r hops of v (not including v itself). A

set T ⊆ V is said to be independent in G if no two nodes u, v ∈ T are neighbors. A set

T ⊆ V is said to be independent in G if no two nodes u, v ∈ T are neighbors. A set is

(α, β)-ruling if every two nodes in the set have distance at least α and any node not in

the set has a node in the set within distance β. A set S ⊆ V is a maximal independent

set (MIS), if it is (2,1)-ruling. A MIS S of maximum cardinality, i.e. |S| ≥ maxMIS T |T |,
is called a maximum independent set (MaxIS). We consider bounded-independence

graphs, which are defined as:
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Definition 1 A graph G = (V,E) is of bounded-independence if there is a bounding

function f(r) such that for each node v ∈ V , the size of a MaxIS in the neighborhood

Nr(v) is at most f(r), ∀r ≥ 0. We say that G if of polynomially bounded-independence

if f(r) is a polynomial p(r).

Equivalently, one might use the notion of a d-local α-doubling metric, i.e. a metric

is d-local α-doubling if any ball of radius r ≤ d can be covered by at most α balls

of radius r/2. A graph G = (V,E) is of bounded-independence if it obeys the d-local

f(d)-doubling metric for some function f .

In particular, this means that for a constant c the value f(c) is also a constant.

A subclass of bounded-independence graphs are quasi unit disk graphs and unit disk

graphs, which are often used to model wireless communication networks and have

f(r) ∈ O(r2). However, we do not require the graph to be of polynomially bounded-

independence, e.g. f(r) might as well be exponential in r.

Our algorithm is uniform, i.e. it does not require any knowledge of the total num-

ber of nodes n. Communication among nodes is done in synchronous rounds without

collisions, i.e. each node can exchange one distinct message of size O(logn) bits with

each neighbor. We understand that such a powerful communication layer is unrealistic

in many application domains; in wireless networks for instance transmission collisions

will happen, and must be addressed. We will discuss this in detail in the conclusions.

Definition 2 The function log∗() is defined recursively as follows log∗ 0 = log∗ 1 =

log∗ 2 = 0 and log∗ n = 1 + log∗dlogne for n > 2.

Expressed differently, log∗ n describes how often one has to take the logarithm to end

up with at most 2. We denote by log(j) n the binary logarithm taken j times recursively.

Thus log(1) n = logn, log(2) n = log logn, etc.

Every node has a unique ID represented by l bits, where l is upper bounded by

logn. An ID and all other binary numbers are in little endian notation and have the

form: xl, xl−1, ..., x1, where xi ∈ {0, 1}. Observe that for technical reasons the low

order bit has index 1 (not 0).

4 MIS Algorithm

Let us start by giving an informal description of our deterministic MIS algorithm.

Each node performs a series of competitions against neighbors, such that more and

more nodes drop out until only nodes joining the MIS remain. For all nodes not in the

MIS or not adjacent to a node in the MIS, the process is repeated.

To get a deeper understanding of a competition we take a closer look at the very

first competition. A node v competes against the neighbor u with minimum ID. If

IDu is larger than IDv, i.e. node v has the smallest ID among all neighbors, the result

is 0. If IDv is not the smallest of all neighbors, the result of the competition is the

maximum position for which v’s ID has a bit equal to 1 and u’s ID has a bit equal to

0. For IDv being 11101 and IDu being 10001, the two differing positions are 3 and 4

and thus the result of the competition for v is 4, i.e. rv = 4.

The result rv of the first competition forms the basis for the next competition, the

result of that competition in turn is used for the following competition and so forth.

A node can be in one of five states, which it might alter after each competition

(see Algorithm Update State). Initially each node is a competitor. If the result of the
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competition for node v is (strictly) smaller than that of all its competing neighbors,

node v becomes a dominator and joins the MIS. All adjacent nodes of a dominator

become dominated. Both dominators and dominated nodes are not involved in further

competitions. In case the result of a node is as small as that of all its neighbors and

at least one neighbor has the same result, the node becomes a ruler. A neighbor of

a ruler gets ruled (if not dominated). A ruler immediately ends the current phase of

becoming a dominator (lines 4 to 14 in Algorithm MIS), becomes a competitor again

and proceeds to the next phase. After a node has advanced to the cth phase (where

c is some number depending on the function f() - see Definition 1) by changing back

and forth between competitor and ruler only, i.e. without ever being ruled, it must

be dominated or a dominator. A ruled node, ends the phase and stays quiet until all

neighbors are ruled (or dominated). Then it starts the algorithm again as competitor,

i.e. it is again in its first phase (of becoming a dominator). During a phase a node

executes at most log∗ n + 2 recursive competitions (as will be shown in Section 5.1)

and every competing node must change its state. In the subsequent competition (the

first one of a new phase) all competitors compete again by using IDs. For some more

examples including updates of states consider Figure 1.

Fig. 1 Graph showing a complete execution of Algorithm MIS. Dominators and dominated
nodes are shown with a dotted line. Ruled nodes with a dashed line.

Next, we give a more formal definition of a competition to clarify our notation. Let

rj
v denote the result of the jth (recursive) competition for node v. The first competition

is always based on the IDs. Thus we define r0v := IDv. Any number rj−1
v consists of l
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Algorithm MIS

For each node v ∈ V
1: repeat
2: state sv := competitor
3: repeat
4: {Phase start} r0

v := IDv

5: if sv = ruler then sv := competitor end if
6: j:=0
7: repeat
8: {Competition start} j:= j+1
9: if sv = competitor then

10: Select competitor u ∈ N(v) with rj−1
u = minw∈N(v) rj−1

w

11: rj
v := max({k|(yk

v > yk
u) ∧ (rj−1

v > rj−1
u )} ∪ {0})

12: end if
13: Execute Update State sv {Competition end}
14: until @u ∈ (N(v) ∪ v) with su = competitor {Phase end}
15: until @u ∈ (N(v) ∪ v) with su = ruler
16: until sv ∈ {dominator,dominated}

bits (l ≤ log(j) n as shown in Lemma 2) and has the form rj−1
v = yt

v, y
t−1
v , ..., y1

v . A com-

petitor only competes against nodes that are also competitors, i.e. the results of ruled

or dominated nodes are not considered. In order to perform the jth (recursive) compe-

tition with j ≥ 1 node v chooses a competitor u ∈ N(v), s.t. rj−1
u = minw∈N(v) r

j−1
w .

In case the length of rj−1
u and rj−1

v differ, we make them equal by prepending zeros

to the smaller number rj−1. The result rj
v for node v gives the maximum position, s.t.

the (rj
v)th bit of number rj−1

v is 1 (i.e. y
rj

v
v = 1) and the (rj

v)th bit of rj−1
u is 0 (i.e.

y
rj

v
u = 0). If rj−1

v is a minimum of all rj−1 (i.e. rj−1
v ≤ rj−1

u ), then we set rj
v = 0.

Taking into account both cases yields: rj
v := max({k|(yk

v > yk
u)∧(rj−1

v > rj−1
u )}∪{0}).

Observe that by definition all bits higher than the (rj
v)th bit are the same (i.e. yi

u = yi
v

for rj
v < i ≤ log(j) n) if rj−1

v ≥ rj−1
u .

Fast termination of Algorithm MIS will be shown in Section 5.1 for bounded-

independence graphs. However, the algorithm is robust in the sense that it is correct

for general graphs as well (see Section 5.2).

A node executes phases in a synchronous manner with its neighbors (see also

Lemma 3). For a reader not familiar with distributed computing this might seem a

too strong assumption. A simple way to solve the problem is that we let all nodes

know an upper bound of n. With that all nodes can execute all steps of the algorithm

in lock-step, even if some of the nodes are not participating in some of the steps (be-

cause they are not competing anymore, for instance). On the one hand this guarantees

global synchronization, on the other hand our algorithm is not uniform anymore.

A better solution is to use a local synchronizer (i.e. synchronizer α). With that,

all messages can be exchanged completely asynchronously; the only constraint is that

nodes need to wait until their neighbors have signalled that they are okay with executing

the next step of the algorithm. Using a synchronizer it may happen that some nodes

already are two rounds ahead of others, however, locally all nodes are always within

one step.
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Algorithm Update State

1: if sv = competitor then
2: Exchange rj with competing neighbors T ⊆ N(v)

3: if ∀t ∈ T holds rj
t > rj

v then
4: sv := dominator
5: else if ∀t ∈ T holds rj

t ≥ rj
v then

6: sv := ruler
7: end if
8: end if
9: Exchange state s with all neighbors t ∈ N(v)

10: if ∃ t ∈ N(v) with st = dominator then
11: sv := dominated
12: else if (sv 6= ruler) ∧ (∃ t ∈ N(v) with st=ruler) then
13: sv := ruled
14: end if

5 Analysis

We analyze Algorithm MIS for bounded-independence graphs as well as for general

graphs.

5.1 Bounded-independence graphs

The proof for Algorithm MIS is done by showing correctness of the computed MIS

first, i.e. dominators are independent and every node has a dominator as a neighbor

in case the algorithm finishes. Then we focus on termination and give evidence that

a node ends a phase after at most log∗ n + 2 competitions. In other words no node

can be a competitor for more than log∗ n + 2 consecutive competitions without ever

changing its state. In addition we prove that after every phase some nodes near a

competitor v stop competing with v (at least) until v becomes ruled. As a next step,

we prove that after the f(2)th phase every competing node must end up in exactly one

clique of rulers and thus in the (f(2) + 1)st phase the node in the clique with smallest

ID becomes a dominator. Then we show that every non-dominated node and non-

dominator has another dominator within hop distance f(2) + 3 after O(log∗ n) rounds

of communication. Since dominators are independent and the number of independent

nodes within distance f(2) + 3 is constant, it follows that after O(log∗ n) the MIS is

computed.

Lemma 1 No dominators can be adjacent. On termination of Algorithm MIS every

node is either a dominator or must have at least one dominator as a neighbor.

Proof When a node v becomes a dominator, no neighbor u ∈ N(v) turns into a domi-

nator in the same competition, since result rv is smallest for all neighbors.

When a node v becomes a dominator, no neighbor can become a dominator or a

ruler in a later competition. This follows from the facts that a dominator does not

alter its state and that all neighbors u ∈ N(v) have su = dominated after executing

Algorithm Update State. They will remain in that state, as long as they are adjacent

to a dominator.

The property that every node gets dominated or is a dominator after the execution

of Algorithm MIS follows directly from the condition in line 16.
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The upcoming lemma bounds the number of competitions per phase and further-

more says that all competitors must change their states during a phase. Since nodes

that have become rulers immediately start the next one, the following lemma also

bounds the time until rulers progress to the next phase.

Lemma 2 After a phase, i.e. after at most log∗ n+ 2 recursive competitions, no node

is a competitor.

Proof The first competition is based on the IDs, which have at most logn bits. The

result of the first competition r1 gives an index of a bit of the ID and thus requires

at most dlog logne bits. The result r2 of the second competition is a number less than

dlog log ne and uses at most dlog log logne bits etc. In general rj needs up to dlog(j+1) ne
bits. After log∗ n+1 (see Definition 2) competitions the result will be a single bit, i.e. 0

or 1. If (rlog
∗ n+1

v = 0)∨
(
∀u ∈ N(v) holds rlog

∗ n+1
u = 1

)
then sv ∈ {dominator,ruler}

else sv ∈ {dominated,ruled}. Thus every node becomes a non-competitor once. Since

within the loop (lines 7 to 14) no node turns from a non-competitor into a competitor,

the lemma follows.

The next Lemma 3 essentially guarantees that phases are started and executed

locally synchronously. Recall that once a node has become ruled, it stays quiet until all

its neighbors are ruled or dominated and then starts the algorithm again as competitor

in the first phase (of becoming a dominator).

Lemma 3 If node v is a competitor in the ith phase (of becoming a dominator) all

competing neighbors must also be in the ith phase. Moreover, for a node v executing

the jth competition, all competing neighbors must also execute the jth competition.

Proof Since we assume synchronous wake-up the very first competition and phase is

started by all nodes in parallel. So assume all nodes execute the same phase and the

same competition. As long as node v is a competitor all neighbors must be competing

in the same competition or be dominated. If node v has been ruled and starts again

with the first competition of the first phase (of becoming a ruler), then all neighbors

must be ruled or dominated as well and thus if a neighbor starts a new phase it must

also be the first phase and the first competition. If a node becomes a ruler in the jth

competition of phase i, then all neighbors u ∈ N(v) that have become rulers in the

same competition, will start phase i+1 concurrently. All other neighbors must be ruled

or dominated and thus cannot start a new phase until all neighbors become ruled or

dominated.

Definition 3 Let the set U ⊆ V be a connected set of competitors of maximal size,

s.t. no competitor w /∈ U is a neighbor of a node v ∈ U . For any vertex v, let U i
v denote

a connected set of competitors of maximal size that contains v in the beginning of the

ith phase of node v.

Lemma 4 ensures that all nodes of a set of connected rulers have the same result r

(and the results in the previous competition have the same prefix). Afterwards, Lemma

5 shows that in each phase some nodes near every ruler stop competing with it.

Definition 4 A node u ∈ V can be reached by a path p of rulers from v in competition

j of phase i, if ∃p = (v = t0, t1, ..., u = tq), s.t. ∀(0 ≤ k < q) holds that node tk has

become a ruler in competition j of phase i.
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Lemma 4 If nodes U i
v with i > 0 became rulers in competition j in phase i − 1 of

node v then for any node u ∈ U i
v, rj

u is the same as rj
v, and the prefixes of rj−1

v are

the same as those of rj−1
u , i.e. yi

v = yi
u for rv

j < i ≤ logn

Proof Assume u was reachable by the path p = (v = t0, t1, ..., u = tq) of rulers from v

and rj
v 6= rj

u. Due to the maximality of U i
v (see Definition 3) all rulers ti are in U i

v, i.e.

ti ∈ U i
v for 0 ≤ i < q. By assumption there would have to exist two neighboring rulers

tl, tl+1 ∈ U i
v with rj

tl
6= rj

tl+1
. Since either rj

tl
> rj

tl+1
or the other way round, they

could not both have become rulers in the same competition (This would contradict

Lemma 3). Assume their prefixes differed, i.e. yi
v 6= yi

u for rj
v < i ≤ logn. Then rj

v

could not be equal to rj
u.

The next lemma gives evidence that for a ruler v after every phase one node w at

hop distance two and all its neighbors N(w) will not compete with v (at least) until it

gets ruled. Since there are at most f(2) of such nodes w (see Lemma 8) only f(2) + 1

phases are needed until a ruler has no two hop neighbors and thus must be in a clique.

After the first competition of the next phase a dominator is chosen in every clique (see

Lemma 9) and all other nodes in the clique are dominated.

Definition 5 Let the set W i
v ⊆ U i

v be the set of nodes at distance two from node v

that compete with v in phase i, i.e. W i
v := (N2(v) \N(v)) ∩ U i

v.

Fig. 2 Graph of some nodes that participated with node v in the first competition. Assume
nodes v, x, y became rulers and furthermore IDv > IDu > IDw. In this case w cannot be
reachable by a path P of rulers, such as P = (v, y, w) or P = (v, y, x, w).

Lemma 5 Consider a node v in phase i, which has become a ruler in the jth compe-

tition for any j ≥ 0. If |W i
v| > 0 then ∃w ∈ W i

v, which cannot be reached by a path of

rulers from v.
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Proof Case j = 0, i.e. let us investigate the first competition, which is based on IDs.

Consider the value r1v of node v. If r1v = 0, then v has a smaller ID than all its neighbors

and thus is a dominator. If r1v = logn, then by definition ylog n
v = 1 and node v must

have had a neighbor u with ylog n
u = 0. This neighbor u must have r1u < logn and thus

v cannot be a ruler. So assume r1v ∈ [1, logn− 1].

Due to Lemma 4 all rulers s reachable by a path of rulers from v must have rj
s = rj

v

and their values rj−1 must have the same prefix as v. By definition of rj
v there must

exist a node u ∈ N(v), s.t. yi
v = yi

u for rj
v < i ≤ logn and 1 = y

rj
v

v > y
rj

v
u = 0. Thus

IDv > IDu. Since nodes u and v differ in position r1v, we have r1u 6= r1v. Since v is a

ruler, r1v < r1u. Because r1v < r1u and IDv > IDu, this neighbor u must itself have a

neighbor w with IDw < IDu and yi
w = yi

u for r1u < i ≤ logn and 1 = y
r1

u
u > y

r1
u

w = 0.

Apart from that, v and u have an ID with the same prefix from bit (at most) logn

down to bit r1v + 1. The node w cannot be a neighbor of any ruler x ∈ U i
v with value

r1x = r1v, since otherwise r1v ≥ r1u because 1 = y
r1

u
v = y

r1
u

u > y
r1

u
w = 0, i.e. the prefix of w

is smaller than that of v. See Figure 2.

Case j > 0, i.e. let us look at the jth competition for j > 0. Assume node v was

competing in all previous competitions and was in particular not a ruler after the

(j − 1)st one. The arguments are similar to those of the first competition.

Assume 0 < rj
v ≤ log(j) n then the same reasoning applies as for the first compe-

tition – only the value for r1v has to be substituted by rj
v, IDv by rj−1

v and logn by

log(j) n.

Assume rj
v = 0. Since v was not a ruler (or dominator) in competition j − 1,

there exists a neighbor u ∈ N(v) with rj−1
u < rj−1

v . Neighbor u cannot participate in

competition j, since otherwise by definition rj
v > 0. Since v is a ruler, u must have

become dominated or ruled in competition j− 1 by a neighbor w ∈ N(u). If w became

a dominator in round j − 1, all neighbors s ∈ N(w) became dominated in round j − 1

as well. Thus w cannot be reached by a path of rulers from v. If w turned into a ruler

in competition j − 1 and v in competition j, then due to Lemma 3 nodes w, v cannot

be in the same connected set of rulers and thus node w cannot be reached by a path

of rulers from v.

Figure 3 illustrates that no edge can exist between a node w having been a ruler in

competition j− 1 and a ruler v in current competition j, since otherwise node v would

have been already ruled (or dominated).

Lemma 6 shows that every connected set of competitors, containing node v in phase

j, must be a subset of a previous connected set of competitors, containing node v in

phase i with i < j. This will be used by Lemma 7 to show that if a set of arbitrary

nodes does not have a common node with a set of connected competitors in some phase,

then this will hold for all proceeding phases.

Lemma 6 If node v has been either a ruler or a competitor during j phases, then

Uj
v ⊆ U i

v for i < j.

Proof Let the neighborhood N(T ) of a set of nodes T ⊆ V be the set {s | ∃u ∈ T : s ∈
N(u) \ T}.

Let w ∈ U i
v be the (or one of the) first node(s) that become a ruler or dominator

in phase i (say in competition k). By definition all nodes N(U i
v) have been ruled or

dominated in competition k and thus cannot become rulers. Thus U i+1
w ⊆ U i

v and all

neighboring nodes N(U i+1
w ) of U i+1

w are ruled or dominated as well. Consider the next
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Fig. 3 Graph of some nodes that participated with node v in competition j − 1 and j

competition l with l > k, where some node t ∈ (U i
v \ (U i+1

w ∪ N(U i+1
w )) becomes a

dominator or ruler. Ten we have that U i+1
v ⊆ (U i

v \ (U i+1
w ∪ N(U i+1

w )) ⊆ U i
v. The

argument proceeds in the same manner. Thus we have that U i+1
v ⊆ U i

v. Analogously,

it follows that U i+2
v ⊆ U i+1

v ⊆ U i
v a.s.o.

Lemma 7 For a set T ⊂ V , s.t. U i ∩ T = ∅ holds that Uj
v ∩ T = ∅ with i < j.

Proof Due to Lemma 6, we have that Uj
v ⊆ U i

v. Due to the disjointedness of U i
v and

T , Uj
v and T must also be disjoint.

The next two lemmas together give an upper bound of the number of (consecutive)

phases until a node becomes a dominator.

Lemma 8 If a node v has become a ruler in the f(2)th phase, then it is in a clique of

competitors in phase f(2) + 1.

Proof Let a node w, as defined in Lemma 5, for phase i be denoted by wi ∈W i
v. Lemma

5 implies that no neighbor t ∈ N(wi) can be a ruler reachable by a path of rulers from

v. Thus by definition U i+1
v ∩ N(wi) = {}. Due to Lemma 7, no node t ∈ N(wi) ∪ wi

will be reachable by a path of competitors from v until (at least) v has become ruled.

Since by definition W i
v ⊆ U i

v, this implies that W i+1
v ⊆ (W i

v \ (N(wi) ∪ wi)). As a

consequence nodes wi ∈ W i
v and wk ∈ W k

v with i 6= k (i.e. from different phases) are

independent. The size of a maximum independent set in N2(v) is upper bounded by

f(2). In every phase i, at least one node wi ∈ W i
v at distance two from v is removed.

Thus after at most f(2) phases, node v cannot reach any competitor at hop distance

at least 2 by a path of competitors, i.e. W
f(2)+1
v = {} and the nodes U

f(2)+1
v form a

clique.

Lemma 9 If a node v is still competing in the (f(2) + 1)st phase then either v or a

neighbor of v will become a dominator in that phase.

Proof Using Lemma 8, we have that each competitor v is in a clique in the beginning

of the (f(2) + 1)st phase. Thus in the first competition the node with the smallest ID

of the clique will become a dominator.
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Fig. 4 Algorithm MIS on an instance of a UDG. It shows the state of each node after the
very first competition. For dominators and rulers a circle indicating the transmission range
is shown. Rulers are depicted by diamonds, ruled nodes by big crosses, dominated nodes by
small crosses, dominators by small circles and competitors by boxes. As can easily be seen,
most nodes are already dominated after the first competition. After the second there are no
competitors left and after the first competition of the next phase the algorithm is done.

Next we show that for every non-dominated node v a dominator is chosen within

constant distance from v. Essentially this is because a node cannot end a phase as a

ruled node without having a ruler advancing to the next phase in its neighborhood (see

Algorithm Update State). Due to Lemma 9 after a constant number of phases a node

must become a dominator or dominated.

Since dominators are independent (see Lemma 1) and in a bounded-independence

graph the number of independent nodes within constant distance is also a constant,

only O(log∗ n) rounds of communication are needed (see Theorem 1).

Lemma 10 After O(log∗ n) rounds of communication each node v either becomes a

dominator or there exists an additional node that has become a dominator within hop

distance f(2) + 3.

Proof We will show that the distance between a ruler in phase i and node v is at most

i. After the first phase, every node v is a ruler itself or adjacent to a ruler.
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Assume the distance was at most i − 1 after the (i − 1)st phase. In the ith phase

only rulers become competitors again (line 5) and participate in the competitions. Thus

after the ith phase, every competitor will become a ruler or a dominator or have at

least one of the two in its neighborhood. Thus the distance between a ruler and a ruled

node grows at most by 1 per phase.

Due to Lemma 9 every competitor or one of its neighbors must become a dominator

in the (f(2)+1)st phase. Assume node u ∈ U0
v started competing with v. Since a phase

has at most log∗ n+ 2 competitions (see Lemma 2) and to perform a competition the

algorithm requires three communication rounds, after at most 3·(f(2)+1)·(log∗ n+2) ∈
O(log∗ n) rounds, node u must have got a dominator within distance f(2) + 2. Assume

node u is ruled, then at least one of its neighbor must be competing or it starts

competing again itself. Thus after at most O(log∗ n) rounds of communication it must

have got an additional dominator within hop distance f(2) + 3.

Theorem 1 The total time to compute a MIS is in O(f(f(2) + 3) log∗ n) and each

message is of size O(logn).

Proof Due to Lemma 10 within O(log∗ n) every node gets a dominator within distance

f(2) + 3. Since dominators are independent (Lemma 1), the number of dominators

within distance f(2) + 3 is upper bounded by the size of a maximum independent set

in Nf(2)+3(v), which is f(f(2) + 3). This yields that f(f(2) + 3) ·O(log∗ n) rounds of

communication are needed.

For initialization all IDs (of maximum length logn) have to be exchanged among

neighbors requiring one communication round for the first competition to execute. The

following update of the state needs every message to be of size O(log log n) and takes

three rounds of communication. Namely, exchanging the result of the prior competition

which also serves as input for the next. Additionally, a request and possibly delayed

reply of the current state of all neighbors. Apart from that no communication has

to take place for initialization and the first competition. In an analogous derivation

the second competition requires only messages of size O(log log logn) etc. and three

communication rounds. Thus each message is of size at most O(logn).

5.2 General Graphs

For a general graph the size of a MaxIS in the neighborhood Nr(v) of a node v can

be bounded by a function g(|Nr(v)|), since the size of a MaxIS including nodes up to

distance r cannot be larger than the size of the neighborhood Nr(v).

Theorem 2 Let the function g(∆r) be such that for each node v ∈ V , the size of a

MaxIS in the neighborhood Nr(v) is at most g(∆r), ∀r ≥ 0. Then algorithm MIS needs

at most O(min(n, g(g(∆2) + 3)) time.

Proof To see that the running time is in O(g(g(∆2)+3)) the same analysis as in Section

5.1 can be used. Thus let us focus on the case that the number of rounds is also in

O(n).

While not all nodes are dominated or dominators, there always exists at least one set

U of connected competitors (or rulers that become competitors immediately). Consider

the connected set of competitors U i
v (see Definition 3) for phase i. For a competition we

can distinguish two outcomes: First, all nodes u ∈ U i
v become rulers, ruled, dominated
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or dominators. Second, at least one node w ∈ U i
v remains a competitor and at least one

node u ∈ U i
v becomes a ruler or a dominator. (Observe, that it is not possible that all

nodes remain competing, since the node with minimum result will become a ruler or

dominator.) In case, some nodes W ⊂ U i
v became rulers, say node s ∈ U i

v for instance,

then due to Lemma 5 in phase i+1 there exists a node w ∈W \U i+1
s . Therefore, there

exist two independent non-empty sets U i+1
s and U i

v \ U i+1
s (at least w ∈ U i

v \ U i+1
s ).

Apart from that the set U i
v \ U i+1

s either contains a dominator or a ruler. In the next

competition (the first of phase i + 1) the node with minimum ID in U i+1
s becomes

a dominator and if the set U i
v \ U i+1

s contained a ruler also the node with minimum

ID in this set. Assume for phase i it takes j > 1 competitions until all nodes in U i
v

become non-competitors. The number of dominators u ∈ U i
v obtained during the last

j − 1 competitions in phase i plus the number of dominators in the first competition

of phase i + 1 of nodes u ∈ U i
v, is at least max{j − 1, 1}. Thus, in the worst case all

nodes u ∈ U i
v become non-competitors after two competitions and only one dominator

can be accredited to these two competitions which yields at most 2 · n competitions.

To perform a competition the algorithm requires three communication rounds.

The running time can indeed be O(n) as shown by the following graph: Each node v

with 0 < IDv < n−1 has edges to nodes u,w with IDu = IDv−1 and IDw = IDv +1.

A node v having its last two bits equal to 1 (i.e. IDv mod 100 = 11) is additionally

connected to all nodes with higher ID and to the node u with IDu = IDv − 2 (see

Figure 5). The states of the nodes during the execution of the algorithm follow a pattern

which repeats every three rounds of communication. In the first round the node with

smallest ID (with the last two bits being 00) becomes a dominator and its neighbor

becomes dominated (its ID ends with 01). All other nodes remain competitors. In the

second round the two nodes with smallest IDs (having the last two bits 10 and 11)

change to rulers and all others become ruled. In the third round the node with smallest

ID (ending with 10) turns into a dominator and its neighbor becomes dominated. All

ruled nodes switch back to competitors again.

Fig. 5 Algorithm MIS running on a unbounded-independence graph, taking time O(n). The
solid lines show competitors. The dotted lines are dominators and dominated nodes. The
dashed lines indicate ruled nodes.
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6 Applications of MIS

Our MIS algorithm serves as a key building block to tackle many other problems for

bounded-independence graphs.

6.1 CDS and MDS

In order to obtain a CDS given a MIS S, each node v ∈ S chooses a shortest path

to every node u ∈ (N3(v) ∩ S) with IDu < IDv and adds all nodes from the path

to the CDS. Because the size of the set N3(v) ∩ S is at most f(3) and the length of

any chosen path is at most 3, at most 3 · f(3) · |S|+ |S| nodes form the CDS. Since S

is a constant approximation of the MDS in a bounded-independence graph, we get a

constant approximation of the Minimum CDS (MCDS) in O(log∗ n) time. See also [2].

Due to a lower bound [17,9] of Ω(log∗ n) to get a constant approximation of an MDS,

our algorithm has asymptotically optimal time complexity for the MDS and MCDS

problem. (Observe that the lower bound is also valid for the MCDS problem, since a

MCDS is a constant approximation of an MDS in a bounded-independence graph.)

6.2 PTAS for MDS and MaxIS

By using the clustering technique from [14] together with our MIS algorithm, a (1+ ε)-

approximation for the MDS and MaxIS problem is computed in O(log∗ n/εO(1)) time.

More precisely, we use Theorem 5.8 from [14]:

Theorem 3 (Theorem 5.8 [14]) Let G = (V,E) be a polynomially bounded-

independence graph. Then, there exist local, distributed (1 + ε)- approximation algo-

rithms, ε > 0, for the MaxIS and MDS problems on G. The number of communication

rounds needed for the respective construction of the subsets is O(TMIS +log∗ n/εO(1)),

where TMIS is the time to compute a MIS in G.

6.3 δ+1 Coloring

We state two methods for computing a δ+1 coloring, both relying on the same obser-

vation that a node v can color all its neighbors if no other node u ∈ N3(v) does so at

the same time. See Figure 6.

In the first procedure a node v competes against a neighbor u ∈ N3(v), i.e. we

compute a MIS S on the graph G′ = (V,E′) with E′ = E ∪ {(u, v)|{(u, s), (s, v)} ⊆
E}∪({(u, v)|{(u, s), (s, t), (t, v)} ⊆ E}). All MIS nodes v ∈ S color all their neighbors in

G and themselves, taking into account already used colors of colored nodes w ∈ N2(v).

This procedure is repeated for all uncolored nodes. In each iteration i a MIS Si is

computed and an uncolored node u ∈ V either gets colored or has distance at most

three in G to a node v ∈ Si. The union of MIS Si and Sj with i 6= j forms an

independent set in G. The number of independent nodes for node v at distance at

most three is bounded by f(3). Thus after at most f(3) computations of a MIS in G′

node v gets colored. The graphs G′ is also bounded-independence with f ′(r) ≤ f(3 · r),
yielding an overall running time of O(log∗ n). Due to Linial’s Ω(log∗ n) [18] lower bound

our algorithm is asymptotically optimal. Observe that in order to compete against all
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Fig. 6 Illustration showing that the distance between two nodes concurrently coloring their
neighbors must be at least 4

nodes in Nk(v) messages of size O(logn) are sufficient, since a node only needs to know

the minimum result of a competition. At first a node broadcasts its own result to all

neighbors and from then on forwards the smallest result it received so far for k − 1

rounds. A distance two coloring with the same message and time complexity can be

obtained, when every node v competes against all nodes u ∈ N6(v) instead of N3(v)

and colors its two hop neighborhood.

Alternatively to the above method a MIS S on G = (V,E) can be computed first.

Next we consider the graph G′ defined by nodes S and edges between two nodes

u, v ∈ S, if they can reach each other by a path of length at most three, i.e. G′ =

(S,E′) with E′ = {(u, v)|u, v ∈ S ∧
(
(∃s ∈ (V \ S)({(u, s), (s, v)} ⊆ E) ∨ (∃s, t ∈

(V \ S)({(u, s), (s, t), (t, v)} ⊆ E)
)
}. We compute a MIS S′ ⊆ S on G′. Every node

v ∈ S′ colors all its neighbors, respecting already used colors. The process is repeated

for all uncolored nodes. Thus in an iteration a node v either gets colored or a neighbor

u ∈ N4(v)∩S′ colors itself and all its neighbors. Since colored nodes are not considered

any more, for a node v there are at most f(4) such neighbors u ∈ N4(v). Therefore in

total at most 2 · f(4) MIS computations are required, giving an overall running time

of O(log∗ n).

6.4 Maximal matching

We can use the same idea as for the coloring in Section 6.3. We compute a MIS S such

that all nodes in the MIS have distance at least 6. This allows a node v in the MIS S

to compute a maximal matching for all nodes u ∈ N(v) ∪ v, i.e. it can pick any edge

e = (u,w) with w ∈ N2(v) and add it to the matching. All nodes adjacent to an edge

in the matching and those that have no unmatched neighbors are removed and the
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process repeats, i.e. again a MIS S′ is computed for the remaining nodes, such that all

nodes in the MIS have distance at least 6.

Whenever a MIS S is computed, any node is either matched and stops or a node

within distance 6 matches all its neighbors. Since the number of nodes that can match

all their neighbors within distance 6 corresponds to the size of a maximum independent

set, we need to compute at most O(f(6)) MIS S, giving an overall running time of

O(log∗ n).

6.5 Others

Our algorithm MIS has been used in the area of self-assembling systems [25], to compute

a PTAS for minimum clique partition in the UDG model [22], to approximate the robot

assignment [7] and the facility location problem [21] just to name a few.

7 Experimental results

We compared three algorithms namely Algorithm MIS, Luby’s [19] and Algorithm

MAX, where a node joins the MIS if its ID is maximum among all neighbors. In fact,

we slightly adapted algorithm MIS, such that before it performs the first competition,

it updates the state based on the IDs, i.e. all nodes become dominators that have

minimum ID among their neighbors and dominated nodes inform their neighbors.

For a competition our algorithm needs three communication rounds: One to exchange

the result of a competition and two more to let all neighbors know about the new

state. Algorithm MAX needs two rounds to inform all neighbors about the new states.

Both algorithms MIS and MAX need an initial round to exchange the IDs among the

neighboring nodes. For Luby’s algorithm the update of the states takes two rounds and

we assumed that one initial round is needed to get to know the degree of the nodes.

We considered random graphs, where an edge between two nodes was added with

probability p. Our experiments were conducted for UDG and random graphs with 1500

nodes. They indicate that Luby’s algorithm performs worst in general. Algorithm MIS

and MAX perform relatively similar (see Figures 7 and 8), however Algorithm MAX

lacks good worst case guarantees for UDG graphs. In particular for loosely connected

networks, the chance that there are long chains of nodes with increasing IDs increases

with the network size and thus algorithm MAX performs worse in such scenarios.

Due to the random arrangement of nodes the first selection of dominators in Algo-

rithm MIS and MAX is similar to the one of Luby, except for the fact that Algorithm

MIS and MAX do not face the problems of multiple neighbors joining the MIS at the

same time and that no nodes join at all. If there are many small (unconnected) sub-

graphs of nodes not covered by the MIS, Luby’s algorithm has a high chance that at

least for some of them, no node decides to join the MIS, whereas Algorithm MIS and

MAX both will select at least one.

8 Conclusions

In this paper we have presented a novel deterministic coin tossing technique which

enables us to achieve an asymptotically optimal distributed algorithm for computing a
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Fig. 7 Simulations on Erdős Rényi graphs of 1500 nodes; The probability of an edge between
two nodes is indicated on the x-axis. The y-axis shows the number of communication rounds.
The dashed line shows the rounds needed for Luby’s algorithm, the dotted one for Algorithm
MAX and the solid one for our Algorithm MIS.

Fig. 8 Simulations on UDGs of 1500 nodes. The probability of an edge between two nodes is
indicated on the x-axis. The y-axis shows the number of communication rounds. The dashed
line shows the rounds needed for Luby’s algorithm, the dotted one for Algorithm MAX and
the solid one for our Algorithm MIS.

MIS in bounded-independence graphs. Although the hidden constants in the analysis

are significant, our simulations indicate that the constants will be small in practice.

Indeed, quite surprisingly, the example of Figure 4 was completed after 3 rounds of

communication only. Our algorithm has been applied in various settings beyond the

MIS problem, for instance for computing a δ+1 coloring, an asymptotically optimal

CDS in O(log∗ n) or for solving the facility location problem [21].

We believe that our paper strikes a chord with symmetry breaking. Randomized

symmetry breaking has the problem of only producing results “in expectation”. Often

however symmetry breaking algorithms are used as building blocks, and then they

need to work “with high probability” which regularly causes a logarithmic overhead.

In other words, when it comes to “ultra-fast” distributed algorithms, determinism may

have an advantage over randomization
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Finally, as promised in Section 3, let us discuss the communication model in more

detail. We presented our algorithm in the classic local model, where each node can talk

to each neighbor in each round. In some application domains, in particular in wireless

networks, this assumption is too demanding, as it asks for a perfect (and hence non-

existent!) media access control (MAC) protocol. In reality MAC protocols are quite

unreliable, with messages not being received because of wireless channel fluctuations,

or message collisions. One way to address this is to study the problem in a model that

includes the MAC layer, in the sense that the algorithm designer has to exactly specify

at what time the nodes transmit or receive. This is a cumbersome job, especially since

the result is often related to the algorithm in the clean local model, e.g., the without

collision detection model [24] uses the local algorithm presented in this paper as a

building block.

What about situations where the software engineer has no control over the MAC

layer? How should our algorithm be implemented? We argue that one should simply

simulate our algorithm in the ”rollback compiler“ self-stabilization framework [5]. Note

that our algorithm does not use all the flexibility provided by the local model, instead

the result messages ri
v can be broadcast in the neighborhood. In the self-stabilization

framework our protocol then boils down to repeatedly transmitting the same single

message, containing information about the relevant result values computed in the in-

dividual phases/competitions. This message is of logarithmic size, and resilient to a

whole array of failures and dynamics, e.g., message collisions, message failures, even

nodes rebooting and topology changes due to mobility or late node wake-ups. Nodes

will always have a correct MIS at most O(t log∗ n) time after the last failure, assuming

that each node can successfully transmit a message at least once in time t!
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