
A Concept for an Introduction to Parallelization in Java:
Multithreading with Programmable Robots in Minecraft

Klaus-Tycho Förster
ETH Zurich, Switzerland

foklaus@ethz.ch

Michael König
ETH Zurich, Switzerland
mikoenig@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland
wattenhofer@ethz.ch

ABSTRACT
We explore a new concept to teach parallelization in Java to
college-level students. Using a modified version of the vir-
tual world game Minecraft, the students implement agents
that interact with the world’s objects in parallel, with faults
leading to the removal of the agents. We perform a promis-
ing pilot study in a computer laboratory course and plan to
extend our line of work in the next semesters.

CCS Concepts
•Software and its engineering → Multithreading;
Virtual worlds software; •Social and professional
topics → Computing education programs;

Keywords
Parallel Programming, Computing Education, Java

1. INTRODUCTION AND BACKGROUND
A tried and proven approach to treat the important and

intricate topic of multiprocessor programming is to use“con-
current threads [to] manipulate a set of shared objects” [1].

Analogously, in Minecraft, a virtual world game cen-
tered around changing the Lego-like structured environment,
agents can manipulate the world’s terrain, which is shared
amongst them.

We use this analogy for our programming course, extend-
ing two lines of previous work by introducing multiple agents
controlled by separate threads: First, following Seymour Pa-
pert, by taking the viewpoint of the object, intricate pro-
gramming tasks become easier to manage, cf. [2], and sec-
ondly, programming an agent to automatically perform tasks
in Minecraft [4]. Our approach was tested in a pilot study
with second year EE students.

2. SETUP AND METHODOLOGY
We use a modified version of Minecraft that allows agents

to connect via a TCP connection each. More specifically,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGITE’16 September 28 - October 01, 2016, Boston, MA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4452-4/16/09.

DOI: http://dx.doi.org/10.1145/2978192.2978243

we provide a Java environment in which multiple agent pro-
grams can be run in parallel threads. This allows the agents
to cooperatively manipulate the environment. The students
can observe their agents’ behavior using a Minecraft client.
As Minecraft is easy to deploy, cf., e.g., [3], and has low
hardware requirements, standard lab hardware suffices.

We assume previous Java experience, but no Minecraft
experience, and allocate a four hour slot for the students.
Their first task is to get familiar with the new program-
ming setting by solving an exemplary building task with
one agent. Afterwards, they have to build a larger and
more complex structure, a given tower, as quickly as pos-
sible. This requires coordinating multiple threaded agents
to share the workload and avoid collisions. When two agents
collide they are both removed from the world, which under-
lines the importance of proper synchronization.

For instruction and support, we provide a page with infor-
mation, and five assistants are available to answer questions.

3. STATUS AND OUTLOOK
We conducted a pilot study with two groups of 10 and 20

second year EE students, integrated into a computer labora-
tory course. Both groups of students were able to complete
the programming tasks successfully in the allotted time and
liked the Minecraft teaching approach. The students needed
less assistance than expected in both groups, i.e., we can in-
crease the group sizes. For the next iteration, we plan to
formally assess the students’ results and also to extend the
Minecraft approach: Instead of having the students work
in separate game worlds, we supply a central server for a
third building task. To guarantee joint success, the students’
agents will need to collaborate beyond thread synchroniza-
tion on a single machine.

4. REFERENCES
[1] M. Herlihy and N. Shavit. The Art of Multiprocessor

Programming. Morgan Kaufmann, 2008.

[2] A. Repenning, D. C. Webb, C. Brand, F. Gluck,
R. Grover, S. B. Miller, H. Nickerson, and M. Song.
Beyond minecraft: Facilitating computational thinking
through modeling and programming in 3d. IEEE
Computer Graphics and App., 34(3):68–71, 2014.

[3] P. Shipman and R. Bull. Lab on a stick. In Proc.
SIGITE, 2015.

[4] C. Zorn, C. A. Wingrave, E. Charbonneau, and J. J. L.
Jr. Exploring minecraft as a conduit for increasing
interest in programming. In Proc. FDG, 2013.


