
Brief Announcement: Selfishness in Transactional Memory

Raphael Eidenbenz
Computer Engineering and Networks Lab

ETH Zurich, Switzerland
eidenbenz@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Lab

ETH Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

ABSTRACT
In order to be efficient with selfish programmers, a multicore trans-
actional memory (TM) system must be designed such that it is com-
patible with good programming incentives (GPI), i.e., writing effi-
cient code for the overall system coincides with writing code that
optimizes an individual program’s performance. By implementing
a selfish strategy, we show that under most contention managers
(CM) proposed in the literature so far, TM systems are not GPI
compatible, whereas a simple randomized CM is GPI compatible.

Categories and Subject Descriptors: D.4.1 [Process Manage-
ment]: Concurrency, Scheduling, Threads; J.4 [Social and Behav-
ioral Sciences] Economics

General Terms: Performance, Human Factors, Experimentation

1. INTRODUCTION
As multicore architecture is evermore pervasive in today’s com-

puters, efficient software is to consist of several concurrent execu-
tion threads. Writing concurrent code is a challenge faced by mod-
ern developers. The paradigm of Transactional Memory (TM)[4]
has emerged as a promising approach to keep this challenge man-
ageable. A TM system provides the possibility for programmers to
wrap critical code that performs operations on shared memory into
transactions. The system then guarantees an exclusive code execu-
tion such that no other code being currently processed interferes
with the critical operations. To achieve this, TM systems employ a
mechanism called contention manager (CM). If two processes want
to access the same resource, a CM resolves the conflict, i.e., it de-
cides which transaction may continue and which must abort. The
aborted transaction will be restarted by the system until it is exe-
cuted successfully. One might think that it is in the programmer’s
interest to choose the placement of atomic blocks as beneficial to
the TM system as possible. Unfortunately, in current TM systems,
it is not necessarily true that if a thread is well designed—meaning
that it avoids unnecessary accesses to shared data—it will also be
executed faster. On the contrary, most CMs proposed so far priv-
ilege threads that incorporate long transactions rather than short
ones. This is not a severe problem if there is no competition for
the shared resources among the threads. In large software projects,
however, there are many developers, and conflicting threads often
originate from different programmers. Given developers act selfish,
it is hence realistic to assume competition in many cases. Develop-
ers are inclined to write program code that boosts their individual
transactions, even if this is bad for the project as a whole. Con-

Copyright is held by the author/owner(s).
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

sequently, a TM system that allows boosting an individual trans-
action’s performance at the expense of the overall system perfor-
mance suffers an avoidable loss of efficiency.

2. GOOD PROGRAMMING INCENTIVES
Avoiding unnecessary locks and partitioning transactions when-

ever possible is beneficial to a TM system since the former prevents
conflicts and the latter gives more freedom to the CM. Partitioning
here means that a transaction is divided into two transactions with-
out overhead. We say a CMM rewards partitioning of transactions
if in a system managed by M, it is rational for a programmer to al-
ways partition a transaction whenever the program logic allows her
to do so. Further, M punishes unnecessary locking if in a system
managed by M, it is rational for a programmer to never lock re-
sources unnecessarily, i.e., she only locks a resource when required
by the program logic. One can expect that, from a certain level of
selfishness among developers, a CM which incentivizes these two
crucial aspects of good programming, performs better than the best
incentive incompatible CM. We are therefore interested in the ques-
tion of which CMs are good programming incentive (GPI) compat-
ible. A CM is GPI compatible if it rewards partitioning and pun-
ishes unnecessary locking. Most CMs proposed in [1, 2, 5, 6] in-
corporate a mechanism that accumulates some sort of priority for
a transaction. In the event of a conflict, the transaction with higher
priority wins against the one with lower priority. The priority is
typically supposed to measure, in one way or another, the work al-
ready done by a transaction. The proposed CMs base priority on a
transaction’s time in the system, the number of conflicts won, the
number of aborts or the number of resources accessed. The intu-
ition behind this approach is that aborting old transactions discards
more work already done and thus hurts the system efficiency more
than discarding newer transactions. Although this approach seems
legitimate, it incentivizes programmers to not partition transactions
as the built-up priority would be lost. In some cases even locking
resources unnecessarily is rational since this increases priority.

THEOREM 2.1. Polite, Greedy, Karma, Timestamp and Polka
are not GPI compatible. Randomized is GPI compatible.

One example of a CM which is not priority-based is Randomized
(cf. [5]). To resolve conflicts, Randomized simply flips a coin in
order to decide which competing transaction to abort. The advan-
tage of this simple approach is that it bases decisions neither on
information about a transaction’s history nor on predictions about
the future. This leaves programmers little possibility to boost their
competitiveness. Employing such a simple Randomized CM is not
a good solution although it rewards good programming. A trans-
action’s probability P of running until commit decreases exponen-
tially with the number of conflicts, i.e., P ∼ p|C| where p is the

Figure 1: (top) Plot of all cases simulated under a Polka, a Timestamp and a Randomized CM. If a point is above the diagonal line
this indicates that in the corresponding test run, a free-rider had a larger throuhput than a good programmer. (bottom) Average
throughput in the red-black tree benchmark with 15 collaborators and one free-rider. For Karma, we used a logarithmic scale.

probability of winning an individual conflict and C the set of con-
flicts. However, there is great potential for further developement of
CMs based on randomization.

3. SIMULATIONS
We implemented free-riders in DSTM2 [3], a software trans-

actional memory system in Java, and let them compete with the
threads originally provided by the authors of the included bench-
mark. In particular, we added threads that use coarse transaction
granularities, i.e., instead of just updating one resource, a free-rider
updates several resources per transaction at once. We tested and
compared the performance of free-riding threads with collaborative
threads in two benchmarks, one with a shared ordered list and one
with a shared red-black tree. In both, there is a total number of 16
threads which start using a shared data structure for 10 seconds, be-
fore they are all stopped. All operations are update operations, i.e.,
a thread either adds or removes an element. We ran various config-
urations of the scenario in both benchmarks managed by the Polite,
Karma, Polka, Timestamp or the Randomized contention manager.
The variable parameters were the number of free-riders (0, 1, 8,
16) among the 16 threads and their transaction granularity γ. The
benchmarks were executed on a machine with 16 cores, namely 4
Quad-Core Opteron 8350 processors running at a speed of 2 GHz.
To get accurate results every benchmark was run five times with the
same configuration and averaged. The results show that a free-rider
can outperform and sometimes almost entirely deprive the collabo-
rative threads of access to the shared resources if the TM system is
managed by the Polite, Karma, Polka or the Timestamp CM. With
Randomized on the other hand, the collaborative threads are much
better off than the “free-riders”(cf. Figure 1). In all of our tests, if
the system was managed by Polite, the free-riders were always bet-
ter off. Under Karma, they were better off in 92% of all cases and
if they used granularities γ of at least 20 operations per transaction,

they always performed better. With Polka, the free-rider success
rate was 70% over all runs and 100% for γ ∈ {20, 50, 100}. Of all
tests run with Timestamp, free-riding paid off in 92% of the cases
and in 100% if the granularity γ was at least 20. Under Random-
ized, free-riders had a larger throughput in only 7% of all cases.

4. CONCLUSION
While Transactional Memory constitutes an inalienable conve-

nience to programmers in concurrent environments, it does not au-
tomatically defuse the danger that selfish programmers might ex-
ploit a multicore system to their own but not to the general good.
A TM system thus has to be designed strategy-proof such that pro-
grammers have an incentive to write code that maximizes the sys-
tem performance. Priority-based CMs are prone to be corrupted.
CMs not based on priority seem to feature incentive compatibility
more naturally.

5. REFERENCES
[1] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention

management as a non-clairvoyant scheduling problem. In PODC ’06: Proc.
25th ACM symposium on Principles of Distributed Computing, 308–315, 2006.

[2] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional
contention managers. In PODC ’05: Proc. 24th ACM symp. on Principles of
Dist. Computing, 258–264, 2005.

[3] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for
implementing software transactional memory. SIGPLAN Not.,
41(10):253–262, 2006.

[4] M. Herlihy and J. E. B. Moss. Transactional memory:architectural support for
lock-free data structures. SIGARCH Comp. Arch. News, 21(2):289–300, 1993.

[5] W. N. Scherer III and M. L. Scott. Contention Management in Dynamic
Software Transactional Memory. In PODC Workshop on Concurrency and
Synchronization in Java Programs (CSJP), St. John’s, NL, Canada, July 2004.

[6] W. N. Scherer III and M. L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC ’05: Proceedings of the
24th annual ACM symposium on Principles of Distributed Computing, pages
240–248, 2005.

