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ABSTRACT
The spread of touch screen based smart phones has been constantly
increasing over the last few years. However, there are still many
open research questions concerning the basic input properties of
these devices. We performed a large scale study to research the
users’ touch screen behavior on standard UI elements. To do so
we programmed and published a quiz game that logs touch data
and sends it back for evaluation purposes. Over 14,000 persons
have played this game so far and sent back statistical data. We use
the collected data to present basic touch properties, such as mean
hold time and pressure dynamics, and to show that touch screen
based input is individual for each person and that one can identify
a specific user in a set of 5 users with a precision of about 80%,
based on just a few touch events.

Keywords
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sourcing
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1. INTRODUCTION
Although touch screen devices are known since the early 1970s,

only recently they gained popularity with the raise of touch screen
based smart phones and tablets.

It has been shown for popular input methods such as keyboard
and mouse that the way people interact with it are individual and
one can recognize who is using it, by analyzing input patterns.
Even though touch screen based devices have become the primary
means of user interaction of personal smart phones and touch screen
based devices are often shared among several persons, little is known
about the individuality of general touch screen input.
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1.1 Contribution.
In this paper we present a large scale touch screen behavior study

on smart phones. Towards this end, we collected touch events of
over 14,000 users from around the globe, a total of about ten Gi-
gabytes raw touch data. We study whether users have “a touch
of identity”, i.e. whether we can distinguish users regarding their
touch screen behavior, that is, to what extent their behavior is char-
acteristic. For instance, when choosing five of our users randomly,
we can correctly identify a user with a probability of about 80% af-
ter just the touch of ten buttons. To the best of our knowledge, this
is the first study that tries to differentiate users according to input
characteristics on touch screens.

In contrast to other large scale studies about touch behavior, we
paid attention to use only standard UI elements in the game, which
allows to generalize our observations to other applications that use
standard buttons and lists.

2. RELATED WORK
The raising popularity of touch screen smart phones has lead to

an increased effort to understand and enhance touch screen based
input methods. In the following we give a compact overview on
relevant recent approaches in this area.

2.1 Describing and Understanding Touch In-
put.

Research in touch screen based input methods has revealed two
basic problems: poor accuracy and missing haptic feedback. The
deficient accuracy was attributed a long time to the so called fat
finger problem [28]. It states that users are not able to point pre-
cisely on a touch screen because the softness of the skin leads to a
big, hardly controllable touch area and that the target is not visible
because it is occluded by the finger. Recently, Holz et al. have in-
stead proposed a generalization of the perceived input point model
that should be used instead of the fat finger model, which explains
the inaccuracy through the different angles in which the screen is
touched and most importantly the mental model a user has of ac-
quiring the target [9]. In that paper they clearly state: ”the inac-
curacy of touch is primarily the result of failure to distinguish be-
tween different users and finger postures, rather than the fat finger
problem”. In a follow-up work they further show that using the
perceived input point model, one can achieve much better pointing
accuracy, if the user and his input point model is known [10]. Sim-
ilar results were reported Findlater et al., who observed that typing
patterns on touch screens vary widely among users but were highly
reliable for an individual user [6]. The touch events collected in
our study seem to confirm this reported individual position offset
on buttons.

Stewart et al. investigated the role of pressure on mobile devices



and stated that humans are not that good at consciously controlling
the applied pressure, which also points to the direction that pressure
as a touch characteristic could be individual for a user [25].

2.2 HCI Input Analysis.
It was well known for a long time that the way a person interacts

with a technical device is specific to this person and highly individ-
ual. Back in 1899 Bryan and Harter published their observations
on telegraph operators. They found out that telegraph operators
had distinctive patterns of keying messages over telegraph lines and
that often operators recognized who was transmitting information,
just by listening to the characteristic pattern [14]. With the increas-
ing proliferation of personal computers, a considerable area of re-
search analyzing keystroke patterns evolved. Spillane et al. first
described the use of keystrokes for the purpose of user identifica-
tion [24]. In the eighties and nineties this became a popular topic.
Most research groups reported that the inter-key time was the most
distinctive feature [11, 18, 27]. However, Robinson et al. stated
that in their experiments the hold times were even more useful to
distinguish users [21]. Attempts to perform user classification on
smart phones, based on keyboard input, had less success than most
of the PC counterparts, due to the limited computation power avail-
able [2, 3]. A good overview on the different approaches can be
found in [4, 19]. Also the dynamics of the computer mouse were
used for biometric authentication (eg. [1, 17]).

An interesting recent approach was published by Saevanee et al.,
who compared the input of users typing a PIN on a touchpad [23].
Additionally to the keystroke patterns, they reported that the touch
pressure information was more discriminative than the timing.

Another research direction in HCI input analysis is the predic-
tion of the emotional state of a user, based on the user’s input. An
experiment with 12 subjects revealed that it is possible to recognize
different emotional states by looking at the keystroke patterns [5].
Similarly, the touchpad characteristics were used to detect nega-
tive affect in two different projects. Mentis et al. concluded that it
might be possible to recognize negative affect of a user, but did so
based on a user study of only 3 participants [16]. McLaughlin et
al. presented a user study with 9 participants in which they were
not able to recognize frustration reliably, due to large differences
among the users [15].

Recent works that used crowdsourcing to understand the users
touch behavior in games and on soft keyboards are the publications
of Henze et al. and Dmitry et al. Henze et al. used a game for smart
phones to record touch events of about 100,000 users. The game
consisted of quickly touching circles of different size that appeared
at different positions on the screen. They showed that the point-
ing error rate can be reduced by considering the systematical skew
of touch positions [8]. In contrast to their work, our goal was to
research the touch behavior of standard UI elements in everyday
situations. Therefore, we focused on standard UI touch elements,
such as buttons, lists, and radio buttons. Moreover, our game did
not put time pressure on the participants in order to receive touch
events that are as close as possible to the ones of a everyday us-
age of the device. Dmitry et al. presented a text-typing game for
touch screen based smart phones that offered adaptive key resizing,
based on the pointing precision of a user on a on-screen keyboard
[22]. Their results indicate that the systematic pointing offset might
be individual for a user, but is not very pronounced. Therefore,
this work motivates the research question about the individuality of
touch gestures.

2.3 Crowdsourcing User Studies.
In the last years, crowdsourcing has become more and more pop-

ular. Tools like Amazon’s Mechanical Turk or Yahoo Answers
provide an easy to use platform to take advantage of the idle ca-
pacities of millions of Internet users. Kittur et al. describe how
Amazon’s Mechanical Turk can be used to explicitly perform user
studies [12]. In contrast to this, there are the games with a purpose,
as presented by Law et al. [13]. They present the concept of using
games that rely on input agreement to collect labeled data. While
these platforms were first mainly used for a lot of human computa-
tion tasks, recently some research groups have started utilizing the
potential of crowdsourcing HCI user studies [20, 26]. Examples
are the iPhone app of Zhai et al. or Henze et al., who both used the
mobile app stores to distribute application for HCI studies [29, 7].

3. METHOD
Even though touch screen based smart phones are becoming stan-

dard, little is known about their basic input properties and the user-
specific differences. It is therefore the goal of our research to shed
a light on the characteristics of this input method. In this section
we describe the approach we took to gain insights about the touch
input behavior of a large number of smart phone users.

3.1 Recording Touch Data.
Opposed to other smartphone operating systems, the Android

platform allows to retrieve detailed information about a touch event,
which was the reason for us to develop the touch-recording applica-
tion for Android. As soon as a person starts to touch the display, the
Android OS delivers touch events approximately every 20 millisec-
onds. An event consists of a timestamp (unix time in milliseconds),
the type of the event (up/down/move), the coordinates of the event
(x/y in pixels), the normalized pressure value (range [0, 1]), and
the normalized area value (range [0, 1]). First experiments revealed
that the reported touch-area value of Android is currently unusable,
due to a poor and device-dependent precision. We therefore ig-
nored the area value for the rest of our work.

3.2 Large Scale Deployment.
We decided to crowdsource the user study by designing a quiz

game, because it is comparably easy to program and allows to place
standard UI elements unobtrusively in the game. Moreover, by
choosing a popular topic, a game can quickly attract a large num-
ber of users. The quiz consists of questions about the Harry Potter
novel and film series. Different types of questions were used to
allow the placement of various UI elements:

• Guesstimates. This type of question requires to guess or es-
timate a number related to Harry Potter. A seek bar is offered
to enter the answer.

• Puzzles. Users have to uncover a picture behind a wall by
removing as little bricks as possible. Bricks can be removed
by double-clicking on them. Once they think they know the
right answer they can select it from a list.

• Multiple Choice. Users can answer a question by selecting
one of several choices and pressing the ok button.

These different questions types were alternatively repeated in 7 dif-
ficulty levels. Each level consists of three questions of each type.
Additionally, the touch events of all buttons in the menus and be-
tween the questions were logged.

All sizes and shapes of the control elements in the game are the
same as in common productive Android applications. The only



0 150 300
ms

0

400

800

1200

1600

Figure 1: The distribution of the mean touch time of a button
per user over all users. The mean touch time over all users is
122ms and the mean standard deviation over all users is 47ms.

visual adjustment we applied to the UI elements is that we changed
the color of the buttons to match the Harry Potter theme.

4. USER STATISTICS
This section is based on the touch recordings of 14,890 users,

who generated a total of over 1 million button touch events and
over 2 million list touch events while playing the Harry Potter game
and navigating in the menu. The analysis sheds a light on three
basic properties of touch: the timing, the pressure, and the position
relative to the target. These three elements can be measured in most
touch interactions.

4.1 Timing.
Research in keyboard input analysis has revealed how character-

istic the timing of a user’s input can be. The two main properties
in this context are hold time and inter-key time. Considering touch
screen input, two comparable features can be found: the contact
time on the screen (hold time) and the inter-touch time in double-
clicks. We have computed the mean hold time for each user, which
results in the distribution of mean hold times as seen in the plot in
Figure 1.

The standard deviation of the mean hold times of all users (36 ms)
is in the same order of magnitude as the mean standard deviation
of a user (47 ms), which means that this feature is well suited to
differentiate individuals.

The mean double click frequency is 4.2Hz with a standard de-
viation of 1.4Hz per user. With the same argument as for the hold
time, the double click frequency is well suited to differentiate users.
However, as for touch screens the double click is a less common UI
element, the recognition based on the double click frequency might
be less relevant in practice.

4.2 Position.
Another property of touch events that is very interesting to ob-

serve is the exact position, where a touch is registered by the hard-
ware. To account for different device sizes and display densities
we computed the statistics about the touch position only for a sub-
set of devices (5616 devices) that all have the same pixel density
and display resolution.

The perceived input point model states that the offset of a user’s
actual touch position to the target is based on a mental model, that
might be individual for each user. Therefore, we evaluated the land-
ing position of each button touch. The distribution of the touch po-

Figure 2: The plot shows the mean landing positions on a but-
ton (each point is the mean of one user). One can see the con-
centration around the center of the button and the slight offset
towards the bottom.

sitions on a button of 5616 users can be seen in Figure 2. These
different means of touch points, confirm the assumption behind the
perceived input point model, that users have an individual and quite
constant offset in horizontal and vertical direction. However, if one
looks at the horizontal and the vertical offset separately, differences
become visible. The mean offset of a user in horizontal direction is
0.57 density-independent-pixels (dp) to the left and the mean offset
in vertical direction is 2 dp to the bottom. This clear tendency to
a vertical offset is also visible in Figure 1. Moreover, the average
standard deviation of a user over his touch events is smaller in ver-
tical direction than in horizontal direction. This indicates that the
offset in vertical direction is more systematic and individual than
in horizontal direction.

4.3 Pressure.
One important feature that separates keyboard based input from

touch screen input is the ability to measure the pressure a user ap-
plies to the touch surface. Even though all modern capacitive smart
phone touch screens are capable of sensing the pressure quite pre-
cisely, there are significant differences in the reporting of these
values. Basically the Android API states that the measured pres-
sure value is normalized to the range of zero to one. However,
this does not implicate that all devices return the same value if the
same physical pressure is applied. To account for that, we did not
include devices that report obviously imprecise measurements for
the pressure (i.e. that have only very few discrete values). Still,
slight differences among devices may exist.

Despite these constraints, interesting observations concerning the
pressure dynamics can be made. Figure 3 depicts how the pressure
develops during a touch event. It shows the mean over all button
touches from all users. To account for the different hold times of the
touch events, the time axis has been normalized before averaging
the pressure values. The plot shows, that the maximal pressure is
normally reached at about 1

3
of the total touch time. The high start

value can be explained by the threshold that is used to recognize
the start of a touch event.

5. USER RECOGNITION
As described in Section 2, a lot of researchers have successfully

developed algorithms to identify users based on their keyboard typ-
ing patterns or their mouse input. It seems only natural to ask the
question if the same can also be done for touch screen input. The
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Figure 3: Left: The pressure development of a button click over
time, averaged over all users. The high start value most cer-
tainly originates from the threshold Android uses to trigger a
touch event. Right: The distribution of the mean of the second
derivative in vertical direction, while scrolling in lists. Negative
values indicate a curvature to the right and positive values a
curvature to the left.

previous section has shown that the mean of some of parameters in
touch screen interaction differs from user to user. Based on these
observations we conducted experiments to find out how well one
can identify users based on their touch behavior and on which fac-
tors this depends.

As mentioned before, different device types might exhibit hardware-
dependent differences, concerning the measurement of pressure. To
prevent that the recognition is based on the difference of the hard-
ware rather than on difference of the users, we decided to run the
user identification experiments only on sets of identical devices,
i.e., the recognition experiments only compare users with the same
device.

All experiments described in the following are based on button
and list touches only (i.e. no radio buttons or seek bars). This de-
creases on the one hand the recognition quote, but shows on the
other hand how little touch information is needed to identify a per-
son.

Moreover, in all experiments we have separated training and test
data sets to avoid overfitting. If not mentioned differently the ex-
periments are performed using ten button touches and five list touch
event for training and five button/list touch events for classification.

5.1 Features.
In machine learning, the standard approach to supervised learn-

ing is to extract meaningful features from a labeled data source and
to train a classifier on these features and labels. We used the ob-
servations of our large scale user statistics to derive the following
set of promising features on which the classifier will work: The
mean and the maximal pressure of a touch event, the point in time
when the maximal pressure occurs, the minimal and the maximal
gradient of the pressure, the hold time of a touch event, the mean X
and Y position (relative to the center of the touch element), and the
variance of the touch event in X and Y direction.

5.2 Classifiers.
In literature, a wide variation of classifiers are described for su-

pervised learning problems. To get an impression of how well
which classifier works, we used the Weka machine learning toolkit
to compare a large amount of classifiers on a subset of our data
from the large scale user study. Based on these preliminary experi-
ments we concentrated on the naive Bayes classifier to differentiate
multiple users and for anomaly detection, as it has a low compu-
tation complexity and performs not significantly worse than other
common classifiers on our test data.

The restriction to use a classifier with low computation complex-
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Figure 4: The graphs show the influence of the number of train-
ing samples and the number of events that are used to recognize
a user, on the recognition rate of the naive Bayes classifier. On
the one hand, one can see that for 5 users a recognition rate of
about 80% can be achieved and on the other hand the recogni-
tion rate does not significantly profit from more than 10 train-
ing samples or more than 5 test samples.
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Figure 5: The influence of the number of users on the recogni-
tion rate on the naive bayes classifier. For two user the recogni-
tion rate is 94%, whereas for ten users it is at 68%.

ity allows to perform the user recognition also in the resource con-
strained environment of smart phones.

5.3 Recognition Factors.
The difficulty of recognizing a user out of given set of users de-

pends on several factors. In the following we highlight three of
them (see Figure 4 and Figure 5): The number of touch events used
to train the classifier, the number of test events used to classify a
user, and the size of the set of user, out of which the users should be
recognized. It can be seen in Figure 5 that the recognition rate de-
pends highly on the number of users the classifier should be able to
differentiate. For small groups of up to 5 persons, it works reason-
ably well (80% or more), whereas for larger groups the recognition
rate drops significantly. Concerning the number of needed training
samples, one can see that as little as ten button touch events and
ten list scroll events are needed to train the classifier to recognize a
user. Using more than five touch event to classify a user, does not
significantly increase the recognition probability.

5.4 Anomaly Detection.
Another scenario of touch based input analysis is detecting if a

different person than the true owner of the device, for example a
thief, is using it. In comparison to just differentiating between a
given set of users, as described above, this scenario needs other
methods. In this case, one has to learn the distribution of the data
in the normal case (i.e. the true owner), without knowing how the
data would look like in an abnormal case (i.e. a thief). This prob-
lem is often referred to as anomaly detection. We have used the
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Figure 6: Simple anomaly detection using a naive Bayes clas-
sifier. The plot shows the false accept rate versus false reject
rates over different thresholds.

collected usage data to test a simple touch based anomaly detection
algorithm.

In our experiment, we use the features of five button touch events
from the true owner to learn the distribution of the features. This is
done by assuming a Gaussian distribution of the feature values and
estimating the mean and the variance of each feature. Whenever
a new touch event is observed, one can use these distributions to
compute the probability that the observed event was generated by
the true owner. A threshold is used to determine if a touch event
should be considered as coming from the true owner or not.

We trained and tested this algorithm with random users from our
data set and varied the probability threshold to generate the false-
accept/false-reject plot in Figure 6.

One can see that the equal error rate is at approximately 30%,
which is not very low, compared to other input based anomaly de-
tection methods. However, this experiment should clearly be seen
a proof of concept and the equal error rate could certainly be im-
proved by using more elaborate anomaly detection algorithms and
by including more touch dynamics.

6. CONCLUSION
After many years of input analysis on keyboard patterns, we have

demonstrated that the potential that lies in the analysis of touch
screen events on smart phones is at least comparable to the one of
keyboard input analysis. Many UI elements in touch interfaces lead
to interesting dynamic usage patterns that, in some cases, differ
widely among the users and result in a very individual usage profile.
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