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ABSTRACT
During and immediately after their deployment, ad hoc and
sensor networks lack an efficient communication scheme ren-
dering even the most basic network coordination problems
difficult. Before any reasonable communication can take
place, nodes must come up with an initial structure that can
serve as a foundation for more sophisticated algorithms. In
this paper, we consider the problem of obtaining a vertex col-
oring as such an initial structure. We propose an algorithm
that works under the unstructured radio network model.
This model captures the characteristics of newly deployed
ad hoc and sensor networks, i.e. asynchronous wake-up, no
collision-detection, and scarce knowledge about the network
topology. Our algorithm produces a correct coloring with
O(∆) colors in time O(∆ log n) with high probability in a
unit disk graph, where n and ∆ are the number of nodes
in the network and the maximum degree, respectively. Fur-
thermore, the number of locally used colors depends only on
the local node density.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory
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coloring, radio network, initialization, asynchronous wake-
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1. INTRODUCTION
Wireless multi-hop radio networks such as ad hoc or sensor

networks [1] are formed of autonomous nodes communicat-
ing via radio. Typically, if two nodes are not within their
mutual transmission range, they may communicate through
intermediate nodes. In other words, the communication in-
frastructure must be organized by the nodes themselves,
rather than being provided as part of a fixed built-in in-
frastructure as in traditional wired networks.

The lack of available a-priori infrastructure is particularly
pronounced during and after the deployment, when the net-
work is unstructured and chaotic [14, 15, 19]. Before any
reasonable communication can be carried out and before the
network can start performing its intended task, the nodes
must establish some kind of structure that allows an ef-
ficient communication scheme. Once this initial structure
is achieved, sophisticated and well-studied algorithms and
network organization protocols may be used on top of it.
Naturally, the inherent problem faced when setting up such
an initial structure is that there is no existing infrastructure
that could facilitate the task. In fact, coping with the ab-
sence of an initial structure is one of the quintessential tasks
in ad hoc and sensor networks and finding efficient solutions
for that purpose is of great practical importance. In exist-
ing systems such as Bluetooth, for instance, the initialization
tends to be slow even for a small number of devices.

In this paper, we study the construction of an initial struc-
ture useful for subsequent network organization tasks. Tech-
nically, we study how the network nodes can quickly com-
pute a good vertex coloring without relying on any exist-
ing infrastructure. A correct vertex coloring for a graph
G = (V, E) is an assignment of a color color(v) to each node
v ∈ V , such that any two adjacent nodes have a different
color. The importance of a vertex coloring as an initial struc-
ture in wireless ad hoc and sensor networks is well-motivated
because associating different colors with different time-slots
in a time-division multiple access (TDMA) scheme; a cor-
rect coloring corresponds to a medium access control (MAC)
layer without direct interference, that is, no two neighboring
nodes send at the same time.

It is well known that in order to guarantee an entirely
collision-free schedule in wireless networks, a correct vertex
coloring is not sufficient, for what is needed is a coloring of
the square of the graph, i.e., a valid distance 2-coloring [13,
26]. However, besides being a non-trivial first step towards
obtaining a distance 2-coloring, a simple vertex-coloring en-
sures a schedule in which a receiver can be disturbed by
at most (a small) constant number of interfering senders in



a given time-slot. This allows for simple randomized algo-
rithms guaranteeing every sender a constant sending prob-
ability in each scheduled time-slot. As the available band-
width (and hence the possible throughput) of a node v in
such a schedule depends on the highest color assigned in its
local 2-neighborhood, only low colors should be assigned in
sparse areas of the network, whereas the higher colors should
only be used in dense areas. Particularly, a good coloring
should have the property that the highest color assigned to a
node in each neighborhood should depend only on the local
node density of that neighborhood.

In view of our goal of setting up an initial MAC scheme in
a newly deployed network, our coloring algorithm must not
rely on any previously established MAC layer. Instead, we
are interested in a simple algorithm that quickly computes
a coloring entirely from scratch. Note that this precludes al-
gorithms working under any sort of message passing model
in which nodes know their neighbors a-priori, and in which
messages can be sent to neighbors without fearing collision,
e.g. [3, 7, 24]. Studying classic network coordination prob-
lems such as coloring in absence of an established MAC layer
highlights the chicken-and-egg problem of the initialization
phase [14]. A MAC layer (“chicken”) helps achieving a color-
ing (“egg”), and vice versa. The problem is that in a newly
deployed ad-hoc/sensor network, there is typically no built-
in structure, i.e. there are neither “chickens” nor “eggs.”

Clearly, one important aspect when studying the initial-
ization phase of ad hoc/sensor networks is to use an ap-
propriate model. On the one hand, the model should be
realistic enough to actually capture the particularly harsh
characteristics of the deployment phase. But on the other
hand, it ought to be concise enough to allow for stringent
reasoning and proofs. Recently, the unstructured radio net-
work model has been proposed as a model that attempts to
combine both of these contradictory aims [14]. It makes the
following assumptions.

• We consider multi-hop networks, that is, there exist
nodes that are not within their mutual transmission
range. Therefore, it may occur that some neighbors of
a sending node receive a message, while others experi-
ence interference from other senders and do not receive
the message. The wireless nature of the communica-
tion graph is modeled as a unit disk graph in which
two nodes are neighbors iff their Euclidean distance is
at most one.

• Nodes can wake up asynchronously. In a wireless,
multi-hop environment, it is realistic to assume that
some nodes wake up (e.g. become deployed, or switched
on) later than others. Thus, nodes do not have ac-
cess to a global clock. Contrary to work on the so-
called wake-up problem [5, 12], nodes are not woken
up by incoming messages, that is, sleeping nodes do
neither send nor receive any messages. Finally, the
node’s wake-up pattern can be completely arbitrary.

• Nodes do not feature a reliable collision detection mech-
anism. This assumption is often realistic, considering
that nodes may be tiny sensors [1] with equipment re-
stricted to the minimum due to limitations in energy
consumption, weight, or cost. Moreover, the sending
node itself does not have a collision detection mecha-
nism either. Hence, a sender does not know how many

(if any at all!) neighbors have received its transmission
correctly.

• At the time of their waking-up, nodes have only limited
knowledge about the total number of nodes in the net-
work and no knowledge about the nodes’ distribution
or wake-up pattern. Particularly, they have no a-priori
information about the number of neighbors and when
waking up, they do not know how many neighbors have
already started executing the algorithm.

Naturally, algorithms for such uninitialized, chaotic networks
have a different flavor compared to “traditional” algorithms
that operate on a given network graph that is static and
well-known to all nodes.

In this paper, we show that even in this restricted model,
a good vertex coloring can be computed efficiently. Specifi-
cally, we propose a randomized algorithm that computes a
correct vertex coloring using O(∆) colors in time O(∆ log n)
with high probability. Furthermore, our algorithm features
the property that the highest color assigned to any node in a
certain area of the network depends only on the local density
of that area.

To get a feel for the algorithm’s efficiency, consider a net-
work with maximum degree ∆. In a unit disk graph, any
correct coloring requires O(∆) colors. Also, a node having
∆ neighbors must receive a message from all its neighbors
in order to make sure that its color does not collide with
any color chosen by one of its neighbors. Because all mes-
sages must arrive without collision, this process takes at least
Ω(∆) time-slots. This implies a Ω(∆) lower bound for our
coloring problem.

The remainder of the paper is organized as follows. An
overview of related work is given in Section 2. Section 3
introduces our model of computation in detail. Our col-
oring algorithm is subsequently presented and analyzed in
Sections 4 and 5. Finally, Section 6 concludes the paper.

2. RELATED WORK
Coloring graphs belongs to the most fundamental NP -

hard problem in theoretical computer science and has been
thoroughly studied. In distributed computing, the study
of vertex coloring has lead to several seminal contributions.
Cole and Vishkin gave a deterministic distributed algorithm
for computing a correct coloring on a ring using three colors
in time O(log∗n) [3]. A generalization of the same tech-
nique can be used to color trees and arbitrary bounded-
degree graphs with 3 and ∆ + 1 colors in time O(log∗n),
respectively [7]. All these upper bounds were subsequently
shown to be tight by Linial [16], even for the case of ran-
domized algorithms. For arbitrary graphs, a ∆ + 1-coloring
can be computed in time O(log∗n + ∆2) [24] or O(∆ log n)
[6]. Moreover, [18] claims that it is possible to compute a
O(∆)-coloring in time O(log∗n). The authors of [8] present
distributed approaches for finding colorings in graphs that
admit a coloring with less than ∆ + 1 colors. Finally, an
experimental study of various vertex coloring algorithms is
given in [4].

All the above algorithms are based on a message pass-
ing model [25] that abstracts away problems such as in-
terference, collisions, asynchronity, or the hidden-terminal
problem. Specifically, it is assumed that nodes know their
neighbors at the beginning of the algorithm and that the



transmission of messages is handled flawlessly by an exist-
ing, underlying MAC layer. Furthermore, all nodes wake up
synchronously and start the algorithm at the same time. As
motivated in the introduction, these assumptions are invalid
when studying multi-hop radio networks during or immedi-
ately after their deployment.

In view of its practical importance, it is not surprising
that there has recently been a lot of effort in designing ef-
ficient algorithms for setting up initial structures, i.e., [9,
28, 19, 15]. The unstructured radio network model was first
proposed in [14] and subsequently improved and general-
ized in [15]. It is an adaptation of the classic radio network
model (e.g., [2]), combining various of its flavors in order
to model the harsh conditions during and immediately after
the deployment. [15] proposes an algorithm that efficiently
computes a minimum dominating set approximation from
scratch. The paper [20] goes one step further by giving an al-
gorithm for computing a maximal independent set in the un-
structured radio network model in time O(log3n/ log log n).
Notice that in contrast to our paper, all of the above re-
sults require three independent communication channels. In
[21], the above mentioned MIS algorithm was improved to
O(log2n) using only a single communication channel.

Coloring networks for the purpose of obtaining a chan-
nel assignments or TDMA scheme has been studied in [13,
26], among others. Moreover, coloring a network in which
all nodes are within mutual transmission range of all other
nodes (single-hop networks) reduces to the so-called initial-
ization problem. This problem has been feverously studied
and analyzed during the past years [22, 23]. For several rea-
sons, the approach taken in these papers cannot be trans-
lated into efficient algorithms for the unstructured radio net-
work model. First and foremost, the multi-hop character of
our network model complicates matters. In the single-hop
case, if there is a collision, no node in the network receives a
message, whereas in our multi-hop scenario, it is likely that
some neighbors of the sender may receive the message, while
others experience a collision and do not receive the message.
This difference renders it impossible for nodes to keep a co-
herent picture of the local situation. Secondly, most initial-
ization papers assume strong communication [11], that is, a
sending node can hear whether its message was successfully
received by all nodes or whether it has caused a collision. In
a multi-hop scenario, this assumption does not make sense.
Finally, unlike [22, 23], we consider asynchronous wake-up
where nodes can wake up at any time.

There has also been work on models containing asyn-
chronous wake-up. In the so-called wake-up problem [5, 12],
the goal is to wake up all nodes in the graph as quickly as
possible by sending them messages. The assumption made
in these papers is that a node is woken up by an incoming
message. While this leads to interesting algorithmic prob-
lems, it does not reflect the reality in newly deployed ad hoc
or sensor networks.

3. MODEL AND NOTATION
In the unstructured radio network model [14], we consider

multi-hop radio networks without collision detection. That
is, nodes are unable to distinguish between the situation in
which two or more neighbors are sending and the situation
in which no neighbor is sending. A node receives a message
if and only if exactly one of its neighbors sends a message.
Nodes may wake up asynchronously at any time.

Upon wake-up, a node has no information as to whether
it is the first to wake up, or whether other nodes have been
running the algorithm for a long time already. We call
a node sleeping before its wake-up, and awake thereafter.
Only awake nodes can send or receive messages, and sleep-
ing nodes are not woken up by incoming messages. The two
extreme cases of our asynchronous wake-up model are the
following. First, all nodes start synchronously at the same
time, or only one of the sleeping nodes wakes up while all
others remain sleeping for a long time. Recall again that
nodes are unaware which (if any) of the two extreme cases
holds. The time complexity T i of a node vi is defined as the
number of time-slots between the node’s waking up and the
time it has made its irrevocable final decision on its color.
The algorithm’s time complexity is the maximum number
T i over all nodes in the network.

As customary, we consider Unit Disk Graphs (UDG) to
model the wireless multi-hop network. In a UDG G =
(V, E), there is an edge (u, v) ∈ E iff the Euclidean distance
between u and v is at most 1. Note that due to asynchronous
wake-up, some nodes may still be asleep, while others are
already sending. Hence, at any time, there may be sleeping
nodes which do not receive a message in spite of their being
within the transmission range of the sender. When waking
up, nodes have only scarce knowledge about the network
graph’s topology. In particular, a node has no information
on the number of nodes in its neighborhood. However, every
node has estimates n and ∆ for the number of nodes in the
network and the maximum degree, respectively. In reality,
it may not be possible to foresee these global parameters
precisely by the time of the deployment, but it is usually
possible to pre-estimate rough bounds.

For the sake of simplicity, we assume time to be divided
into discrete time-slots that are synchronized between all
nodes. This assumption is used merely for the purpose of
facilitating the analysis, i.e., our algorithm does not rely
on this assumption in any way (see the standard argument
given in [27]), as long as each node’s internal clock runs at
the same speed.

In each time-slot, a node can either send or not send.
If a node sends in a time-slot t, it does not receive any
messages in time-slot t. A node v receives a message in a
time-slot t only if exactly one node in its neighborhood sends
a message in this time-slot (and if it is not sending itself).
The message size in our model is limited to O(log n) bits
per message. Further, notice that in contrast to previous
work on the unstructured radio network model [14, 15, 20],
we do not make the simplifying assumption of having several
independent communication channels. In our model, there is
only one communication channel, i.e., two messages received
at the same time always collide.

Every node has a unique identifier, which does not need
to be in the range 1, . . . , n. Particularly, the algorithm does
not perform explicit operations on the node’s IDs. Instead,
the ID is merely required to let a receiver recognize whether
or not two different messages were sent by the same sender.
In some papers on wireless sensor networks, it is argued that
sensor nodes do not feature any kind of unique identification
(such as a MAC number, for instance). In such a case, each
node can randomly choose an ID uniformly from the range
[1 . . . n3] upon waking up. The probability that two nodes
in the system end up having the same ID is bounded by
PambIDs ≤

(
n
2

)
1

n3 ∈ O( 1
n
).



We denote by Ni the set of neighbors of node i and define
N+

i = Ni ∪ {i}. Further, let N 2
i be the two hop neighbor-

hood of node i, i.e., the set of all nodes within distance at
most 2 from i. The degree δi = |N+

i | of a node is the num-
ber of its neighbors. Finally, the color assigned to node v
is denoted by color(v) and pi is the sending probability of
node i in a given time-slot. Throughout the paper, we will
use the following well-known mathematical fact.

Fact 1. For all values of n and t with n ≥ 1 and |t| ≤ n,
it holds that

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

During the course of executing the algorithm, each node
can be in various node sets. At any point in time, every node
is in exactly one of the sets, i.e., the sets form a partition
of the node set V . For future reference, we conclude the
section with an enumeration of the different sets.

Z: set of sleeping nodes.
W: set of nodes in the waiting phase.
L: set of leaders.
A: set of nodes that are trying to become a leader.
R: set of slave nodes requesting a color-range from

their leaders.
K: set of slave nodes that have received a color-range

from their leader and are in the process of verify-
ing a color from that range.

C: set of slave nodes that have decided on their color.

4. ALGORITHM
We start with an intuitive overview of Algorithm 1. The

sequence of states that a node can be part of during the
course of the algorithm is shown in Figure 1. Each solid
arrow represents a state transition which is made when the
event denoted by the arrow’s label occurs. A dashed arrow
between two states indicates the message type which is sig-
nificant for the communication between nodes in these two
states. However, note that the dashed arrows merely illus-
trate the purpose of the various message types in Algorithm
1, because all neighbors of a sending node – regardless of
their current state – either receive the message or experi-
ence a collision. Furthermore, note that each node executes
the algorithm after its wake-up without having any knowl-
edge whether some of its neighbors have already started the
algorithm beforehand.

The main idea of the algorithm is the following. The algo-
rithm first elects a set of mutually independent leaders and
associates each non-leader or slave with a leader within its
neighborhood. This naturally leads to the notion of a clus-
ter consisting of all nodes associated with the same leader.
The task of the leader is to assign unique color-ranges to
all nodes in its cluster. That is, within each cluster, no two
nodes have the same color-range. Unfortunately, assigning
an arbitrary color from these color ranges is not sufficient
for a proper coloring since two neighboring nodes that are
in different clusters may be assigned the same color-range.
Hence, upon receiving a color-range from its leader, each
node has to verify its color against other nodes from differ-
ent clusters that may have received the same color-range.

The algorithmic difficulty of the above process stems from
the fact that since nodes wake up asynchronously and do
not have access to a global clock, the different phases of
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Figure 1: Sequence of states in Algorithm 1

the algorithm may be arbitrarily intertwined or shifted in
time. Hence, while some nodes may still compete for be-
coming leader (not knowing that they are already covered
by a leader), their neighbors may already be much more
advanced in their coloring process.

A detailed code fragment of the procedure described above
can be found in Algorithm 1. For the sake of clarity, we
use the following notational shortcut in which a part of the
program such as

A : if counter ≥ dσ∆ln ne then

state := L; q := qL; j := 0;

end if

is meant to be executed only by nodes whose current state
is A. The same holds for all other states.

Upon waking up, each node first enters state W, waiting
for messages from neighboring leaders for O(∆ log n) time-
slots. If it does receive a message, it will directly join state
R. The reason for this initial waiting phase is that nodes
waking up late in a region that is already covered by a leader
should not try to compete for becoming a leader themselves.
Nodes that have not received a message from a leader at the
end of the waiting phase will then join set A and compete
for leadership. The process of leader selection works as fol-
lows. In each time-slot, a competing node sends its ID with
probability qs = 1/∆. At the same time, starting from 0, it
increases a counter in each time-slot.

As soon as a node v ∈ A receives a message ML from a
leader v` ∈ L, it stops competing, changes its state to R,
and sets v` as its leader. When receiving a message MCand

from another node v′ ∈ A, v compares the counter value
of v′ to its own. If the two counters are within γ∆ln n of
each other, v resets its own counter in Line 33. If on the
other hand, a node in A succeeds in incrementing its counter
up to the threshold of dσ∆ln ne (Line 6), it will become a
leader, joining L. Its color will be set to 0, and its sending
probability increases to qL = 1/5.



Algorithm 1 Coloring Algorithm (Node v)

upon wake-up do:
decided := false; sending := false;
κ := 22; j := 0; counter := 0; qL := 1/5; qs := 1/∆;
state := W; mycolor := −1; {Current state and color}
q := qs; {Current sending probability}
Lv := −1; {Identity of v’s leader}
Q := ∅; {Queue}
1: for dα∆ln ne time-slots do
2: if ML received then Lv := m.id; state := R;
3: end for
4: while true do
5: counter = counter + 1;
6: A: if counter ≥ dσ∆ln ne then
7: state := L; mycolor := 0; q := qL; j := 0;
8: end if
9: K: if counter ≥ dσ∆ln ne then

10: state := C; decided := true;
11: end if
12: L: if counter ≥ dβ ln ne then
13: if Q 6= ∅, remove tuple from Q;
14: counter := 0;
15: end if

16: sending :=

{
true with probability q
false with probability 1− q

17: if sending then
18: A: counter := max {counter, γ∆ln n + 1};
19: send MCand(id, counter);
20: R: send MReq(id, lid);
21: K: counter := max {counter, γ∆ln n + 1};
22: send MV eri(id, mycolor, counter);
23: C: send MCol(id, mycolor);
24: L: if tuple (sid, i) is current tuple
25: then send ML(id, sid, [iκ, . . . , (i + 1)κ− 1]);
26: else send ML(id);
27: end if
28: else if not sending and received a message m then
29: A: if m = ML then
30: state := R; counter := 0; Lv := m.id;
31: else if m = MCand then
32: ∆c := |counter−m.counter|;
33: if ∆c ≤ dγ∆ln ne then counter := 0;
34: end if
35: R: if m = ML ∧m.id = Lv ∧m.sid = id then
36: mycolor := iκ; state := K;
37: end if
38: K: if m = MCol ∧m.color = mycolor then
39: counter := 0; mycolor := mycolor + 1;
40: else if m = MV eri then
41: ∆c := |counter−m.counter|;
42: if ∆c ≤ dγ∆ln ne then counter := 0;
43: end if
44: L: if m = MReq ∧m.lid = id then
45: add tuple (m.lid, j) to Q; j := j + 1;
46: end if
47: end if
48: end while

The technique of using counters and critical ranges guar-
antees that quick progress is made in all parts of the network.
Specifically, this method ensures that after a limited (con-
stant) number of trials, at least one leader will emerge in

every region of the graph. At the same time, we will prove
that the method also guarantees with high probability that
no two neighboring nodes become leader, i.e., the resulting
set L is independent.

Slave nodes continue their algorithm by sending requests
MReq for a color-range to their respective leader. Upon re-
ceiving a message MReq, a leader node assigns a color-range
[φ, . . . , φ + κ − 1] consisting of κ consecutive colors to such
a slave node by sending ML(range) messages. The con-
stant κ ≤ 22 denotes the number independent nodes than
can maximally be packed in a disk of radius 2. For each
subsequent slave, the leader shifts the color range such that
within a single cluster, no two assigned color ranges over-
lap (The shifting is done in Line 45). Eventually, the slave
node will receive one of these ML(range) messages from the
leader, upon which it will take this color-range and move on
to the verification state K. Within a cluster, color-ranges
do not interfere, but clusters assigned to different leaders
may overlap and the same color-range may be assigned to
neighboring nodes by different leaders. Therefore, a slave
node cannot simply choose a color from its color-range, but
it has to verify it. This verification procedure works similar
as the initial leader selection procedure. All nodes assigned
to the same color-range [φ, . . . , φ + κ− 1] begin by trying to
get the first color φ. In the verification procedure, each node
v ∈ K uses a counter value that is incremented until either
v receives a message MCol from a node v′ ∈ C that has de-
cided on color φ; or v’s counter reaches a certain threshold
upon which v decides to take color φ and joins the set C. If
v does not decide on φ, it continues the algorithm by veri-
fying color φ+1 instead (Line 39). If in its next verification
attempt, v does not decide on color φ + 1 either (because a
neighboring node decides on φ + 1 earlier), v continues the
same process with color φ+2, and so forth. In Section 5, we
show that every node is capable of obtaining a color from
the color-range assigned by its leader fast enough to avoid a
deterioration of the algorithm’s runtime. Once v decides on
a color, it sends its color in a message MCol, informing its
neighbors that the particular color has already been taken.

Finally, the part of the leader is quite simple. Upon receiv-
ing a request message MReq from one of its slaves, it sends
for β∆ln n time-slots with probability qL = 1/5 a message
ML(range) with the assigned color-range. If it receives sev-
eral requests within a short amount of time, a leader buffers
these requests in an internal queue Q. This is necessary in
order to keep all messages within the size of O(log n) bits,
assuming the ID space to be polynomial in n.

The four parameters in Algorithm 1, α, β, γ, and σ can be
chosen as to trade-off the running time and the probability
of correctness. Generally, the higher these parameters, the
less likely the algorithm fails in producing a correct coloring.
In order to obtain the high probability result of Section 5,
the parameters are set as α ≥ 2γ, β ≥ γ, and

γ =
10eκ

1− 1
∆

(
5

4

)5

, σ ≥
(

5e

4

)κ
2κ

(1− 1
∆

)
+ γ,

for ∆ ≥ 2. Clearly, these constants are large. However, this
is an artifact of our worst-case analysis. Our simulation re-
sults show that for most practical purposes, it is sufficient
to set the constants to small values. In fact, the constants
are small enough to yield a practically efficient coloring al-
gorithm for wireless ad hoc and sensor networks that can be
employed for the purpose of initializing the network.



5. ANALYSIS
In this section, we will prove that our algorithm is both

correct and complete. Correctness means that no two adja-
cent nodes have the same color, completeness leaves no node
without a color. Roughly, we begin by proving that the set
of leaders L forms an independent set with high probabil-
ity. Based on this result, it follows that all other color classes
form correct independent sets as well, thus yielding a correct
coloring. Furthermore, we prove that every node decides on
a color after at most O(∆ log n) time-slots. For clarity of
exposition, we will omit the ceiling signs in our analysis.
Further, let ci(t) be the value of the counter of node i at
time t. We call a node covered if either itself or one of its
neighbors is in L. For succinctness, we define the constant
λ := (1− qL)5 = (4/5)5.

We start the analysis with a simple geometric argument
bounding the number of independent nodes in the 2-hop
neighborhood of a node to a constant factor κ and the num-
ber of two-hop neighbors to κ∆. Circles of radius 1/2 around
two independent nodes cannot overlap. Let L2

v be the num-
ber of leader nodes in the two hop neighborhood of node
v. By a simple area argument, we can derive the following
claim.

Lemma 5.1. Let G = (V, E) be a unit disk graph. For
every node v ∈ G, |N 2

v | ≤ κ∆ and |L2
v| ≤ κ, where κ ≤ 22.

Another UDG property that we are going to use through-
out the paper is that a node v ∈ V can have at most 5
independent neighboring nodes [17].

We now state two lemmas that give us probabilistic bounds
on the amount of time required until a message is correctly
transmitted from a sender v to a receiver u in Algorithm 1.
Notice that both lemmas are based on the assumption that
the set L of leaders does indeed form a correct independent
set.

Lemma 5.2. Assume L forms an independent set. Con-
sider nodes u, u′, and v with (u, v), (u′, v) ∈ E, such that,
u ∈ V \ L and u′ ∈ L. Let I and I ′ be time intervals of
length γ∆ln n and γ ln n, respectively. The probability Pno

(P ′no) that v does not get a message from u (u′) during an
interval I (I ′) is bounded by Pno ≤ 1/n2κ.

Proof. The probability that a given node u succeeds in
sending a message to v in an arbitrary time-slot is

Ps = q
∏

i∈Nv

(1− pi) = q
∏

i∈Nv∩L
(1− pi)

∏

j∈Nv∩(V \L)

(1− pj)

≥ q · (1− qL)|Nv∩L| · (1− qs)
|Nv∩(V \L)|

≥ q

(
4

5

)5 (
1− 1

∆

)∆

≥ qλ

e

(
1− 1

∆

)
,

where the last inequality follows from Fact 1. For the case
u /∈ L, we can compute the probability Pno as

Pno = (1− Ps)
|I| =

(
1− qsλ

e

(
1− 1

∆

))γ∆ ln n

=

(
1−

λ
e

(
1− 1

∆

)

∆

)γ∆ ln n

≤ n−
λ
e
(1− 1

∆ )γ < n−2κ,

where the last inequality follows from the definition of λ.
An almost identical calculation proves the second claim of

the lemma, i.e., the case u ∈ L with an interval of length
γ ln n.

P ′no = (1− Ps)
|I′| =

(
1− qLλ

e

(
1− 1

∆

))γ ln n

=

(
1− λ log n

5e log n

(
1− 1

∆

))γ ln n

≤ n−
λ
5e

(1− 1
∆ )γ < n−2κ.

For the next lemma, we first define the notion of a success-
ful sending. A node v sends successfully in a given time-slot
t if all nodes v ∈ Nv within the transmission range of v
receive the message, i.e., there is no collision. The second
helper lemma considers an arbitrary active node v ∈ A in
the network graph. We show that with high probability,
at least one node in v’s neighborhood can send successfully
during any interval of length η∆ln n, where for convenience,
η is defined as η := 2κeκ

(1−qL)κ(1− 1
∆ )

.

Lemma 5.3. Assume L forms an independent set. Let
v ∈ A be a node in the graph. Further, let I be a time
interval of length |I| = η∆ln n. With probability at least
1 − 1

n2κ , there is a time-slot t ∈ I such that, at least one

node u ∈ N+
v ∩ A sends successfully.

Proof. Consider a node v ∈ A. By Lemma 5.1, there are
at most κ∆ nodes in the 2-neighborhood of v, |N+

v | ≤ κ∆.
If in a certain time-slot t, a node w ∈ N+

v ∩ A manages
to be the only sending node in N 2

v , w sends successfully.
Define λ2 := (1− qL)κ and let Ps be the probability that a
successful sending occurs at a given time-slot. Ps is lower
bounded by

Ps =
∑

w∈N+
v ∩A


pw

∏

u∈N2
v

u6=w

(1− pu)




≥
∑

w∈N+
v ∩A

pw

∏

u∈N2
v \L

(1− pu)
∏

u∈N2
v∩L

(1− pu)

≥
∑

w∈N+
v ∩A

pw (1− qs)
|N2

v \L| (1− qL)|N
2
v∩L|

≥
Lm 5.1

qs (1− qs)
κ∆ (1− qL)κ

≥
Fact 1

e−κ

∆

(
1− 1

∆

)
λ2 ≥ e−κ

∆

(
1− 1

∆

)
λ2

because |N+
v ∩A| for v ∈ A is at least 1. Finally, we compute

the probability Pno that no node inN+
v ∩A, manages to send

successfully within the interval I as

Pno = (1− Ps)
|I| ≤

(
1− λ2

e−κ

∆

(
1− 1

∆

))η∆ ln n

≤
Fact 1

e−λ2e−κ(1− 1
∆ )η ln n = n−λ2e−κ(1− 1

∆ )η <
1

n2κ
.

The last step follows from the definitions of λ′2 and η.

The above lemma and its proof can be identically stated
for nodes in set K, instead of A.



Lemma 5.4. Assume L forms an independent set. Let
v ∈ K be a node in the graph. Further, let I be a time
interval of length |I| = η∆ln n. With probability at least
1 − 1

n2κ , there is a time-slot t ∈ I such that, at least one

node u ∈ N+
v ∩ K sends successfully.

Lemmas 5.2, 5.3, and 5.4 are based on the assumption that
the set of leaders L forms an independent set. Therefore, in
order to make full use of these lemmas, we need to prove that
this assumption holds with high probability for the entire
duration of the algorithm.

Intuitively, the reason for our claiming that the set of
leaders L forms an independent set at all times is the fol-
lowing. Whenever a node v can send successfully, all neigh-
boring nodes having a counter value within the critical range
γ∆ln n of w’s counter will reset their counter. Afterwards,
none of these nodes can block v from becoming a leader
anymore, because their counter is outside the critical range.
The idea is that once a node joins L, it has enough time
to inform all neighbors of its being a leader (by means of
a message ML) before, potentially, a neighboring node may
also join L.

Lemma 5.5. The set of leaders L forms an independent
set at all times t with probability of at least 1−O(n−1).

Proof. At the beginning, when the first node wakes up,
the claim certainly holds, because L = ∅. We will now show
that with high probability the claim will not be violated.
Consider an arbitrary node v ∈ A and assume for contra-
diction that v is the first node to violate the independence
of L. We show that the probability of this event is at most
n−2. Consequently, the probability that there is at least one
node v ∈ V that violates the independence of L is bounded
by n · n−2 = n−1.

The crucial observation is that since v is the first node
to violate the independence of L, we know that before the
violation occurs, L is a correct independent set. Hence,
under the assumption that v is the first node to create a
violation, we can safely use Lemmas 5.2 and 5.3 until v
becomes a leader and joins L.

We first show that a node waking up in an already covered
location will with high probability not become a leader. In
Lines 1-3 of the algorithm, each node v waits for α∆ln n
time-slots after wake-up. By Lemma 5.2, if there exists a
leader in v’s neighborhood, it will be able to send a message
to v during that interval without collision with probability
exceeding 1 − 1

n2κ . Throughout the proof, it is important
to observe that the constant σ is defined to be large enough
such that, σ > η + γ.

The more interesting case is when v does not receive a
message from a leader during the waiting period, i.e., when
it wakes up in an uncovered region. Let tv be the time v
reaches Line 4 of the algorithm, i.e., the first time it may
send a MCand message, competing for leadership. We know
by Lemma 5.3 that at least one node w ∈ N+

v ∩ A is able
to send successfully during the interval I = [tv, tv + η∆ln n]
with probability 1− 1

n2κ . Say this happens at time t∗w. We
distinguish the two cases w = v and w 6= v, starting with
the case w = v. According to Line 33 in the algorithm, all
nodes u ∈ N+

w ∩A whose counter cu(t∗w) at time t∗w is in the
range

[cw(t∗w)− γ∆ln n, . . . , cw(t∗w) + γ∆ln n]

will reset their counter at time t∗w. In Line 18 of the algo-
rithm, the sending node sets its counter to at least γ∆ln n+
1. Therefore it holds that for all nodes u ∈ Nw ∩ A,

|cu(t∗w + 1)− cw(t∗w + 1)| > γ∆ln n. (1)

Notice that because cw(t∗w) ≥ γ∆ln n + 1 and the fact that
new nodes joining A start with counter equal to 0, this also
holds for new nodes u ∈ A. Further, due to α > 2γ, the
above claim also holds for nodes that were still sleeping at
the time t∗w and started the waiting phase thereafter.

This means that no node x ∈ A adjacent to w has a
counter close enough to cw and therefore, no node x ∈ A
is able to stop w from joining L after t∗w. Hence, there re-
mains only one way to prevent w from incessantly increasing
its counter until reaching the threshold σ∆ln n. Namely, the
only way w can be prevented from joining L is if it receives a
message ML before its counter reaches the required thresh-
old for joining L. This message ML must come from a node
x that managed to join L before w. Specifically, as w had
been able to send successfully at time t∗w, we know that at
time t∗w, x’s counter value was at least

cx(t∗w) > γ∆ln n + cw(t∗w).

In other words, x must have joined L at least γ∆ln n time-
slots earlier than w. By Lemma 5.2, the probability that w
hears x ∈ L during one of these time-slots is at least 1− 1

n2κ .
This result suffices because upon receiving ML, w = v will
become a slave and hence, will not violate the lemma. In
other words, the case v = w can occur at most once for a
node v.

In the case v 6= w, our argument becomes more tricky
because potentially, a node v can reset its counter an infi-
nite number of times and we must therefore handle the high
probability results with care. In particular, we must be able
to bound the number of times a node v can be in a situation
that holds with high probability.

Again, let v be the node that, by assumption, is the first
to violate the independence of L. Let w ∈ A be the node
that managed to send successfully at time t∗w in the interval
[tv, tv + η∆ln n]. Recall that by Lemma 5.3, such a time-
slot t∗w exists with probability 1− 1

n2κ . After t∗w, v will reset
its counter. By the same “counter argument” (Equation
(1)) as before, there remain the following two possibilities.
Either w’s counter reaches σ∆ln n, i.e., w will join L, or
there exists a node x ∈ Nw that joins L earlier than w and
w receives a message ML from x. In the first case, w joins L
at least γ∆ln n time-slots before v can join L, too. Again,
by Lemma 5.2, the probability that v receives a message ML

from w ∈ L is at least 1− 1
n2κ .

Finally, we have to consider the second possibility, namely
that w itself is blocked from joining L by another leader x
after time t∗w. In this case v may not become covered within
the next σ∆ln n time-slots. However, as node x must have
become a leader in order to stop w, and because we assume
v to be the first node violating independence, a constant
fraction of the disk with radius 2 around v must have been
covered by x (see Figure 2 for a visualization). Clearly, this
scenario can happen only a constant number of times before
v ends up being covered (possibly by itself). By Lemma 5.1,
we can crudely bound this constant by κ. After v’s resetting,
the same arguments as above holds, i.e., there is at least one
node w ∈ N+

v ∩ A capable of sending successfully during
the interval I = [t′v, t′v + η∆ln n] and the entire reasoning



����

����

����

� �� �� �
� �� �� �

� �� �� �
	 		 		 	 
 

 

 


� �� �� �

� �� �� �
   

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �
� �� �� �

x

w
v

Figure 2: Whenever a node x joins L without cover-
ing v, a constant fraction of the large disk becomes
covered.

repeats itself. By the argument in Figure 2, however, it can
repeat itself at most κ times. In every repetition, there are
two events that hold with high probability. First, one of
v’s neighbors can send successfully during a given interval
and secondly, a node that joins L earlier than another has
enough time to inform its neighbors. Both events hold with
probability 1− 1

n2κ . Therefore, the probability Pv that v is
the first node to violate independence is upper bounded by

Pv ≤ κ ·
(

1−
(

1− 1

n2κ

) (
1− 1

n2κ

))
≤ 2κn−2κ, (2)

which, together with |V | = n, concludes the proof.

Having the high probability result of Lemma 5.5 renders
the remainder of the analysis easier since we can now use
Lemmas 5.2, 5.3, and 5.4 without restriction. What remains
to be shown is that no two neighboring nodes decide to take
the same color, or in other words, that all color classes form
correct independent sets at all times.

Lemma 5.6. With probability at least 1−O(n−1), all color
classes form independent sets at all times throughout the
execution of the algorithm.

Proof. In the algorithm, the leader assigns unique color-
ranges of the form [i, . . . , i + κ − 1] to all nodes within its
cluster. The idea is that following the geometric argument
of Lemma 5.1, at most κ neighboring nodes (each of which
is assigned to a different leader node) can be assigned the
same color-range. Therefore, there are enough colors for
each of the at most κ nodes to get one unique color from its
assigned range. All nodes assigned to the same color-range
[i, . . . , i + κ − 1] will first try to verify color i, by starting
incrementing their counter upon sending their first MV eri

message. The whole process is then a copy of the initial
leader election mechanism discussed above. Nodes increase
their counter trying to reach the threshold σ∆ln n upon
which they become eligible to definitely decide on color i.
Once a node decides on a color, it starts sending messages
MCol messages in order to inform neighboring nodes. There
is only one difference to the initial leader election mecha-
nism. That is, if a node v that tries to obtain color i re-
ceives a MCol (corresponding to ML) from a node u ∈ Ci,
v remains in state K, but it starts attempting to verify the
next higher color, i + 1.

By exactly the same argument as in the proof of Lemma
5.5 (replacing Lemma 5.3 by Lemma 5.4), it is clear that a
single phase (i.e., the verification of a color i) of the above
process succeeds with probability 1−O(n−1). If everything
goes right, all nodes will have decided on a unique color in
their color-range after at most κ phases. The probability
Pno that at least one of these κ phases is not successful is
therefore Pno ∈ O(n−1).

For practical purposes, the assignment of colors to nodes
plays a crucial role. Generally, the colors assigned to each
node should be as “low” as possible. If the vertex coloring
in the graph is used for setting up a time-division scheduling
in a wireless network, for instance, the bandwidth assigned
to a node v is often inversely proportional to the value of the
highest color in its neighborhood. The highest color assigned
to a neighbor of a node v by Algorithm 1 is dependent only
on local graph properties. This allows nodes located in low
density areas of the network to send more frequently than
nodes in dense and congested parts.

Theorem 5.7. Let θv := maxw∈N2
v

δw be the maximum

node degree in N2
v and let χv be the highest color assigned to

a node in N+
v . With high probability, Algorithm 1 produces

a coloring such that, for all v ∈ V , χv ≤ κ · θv ∈ O(θv).

Proof. Let w ∈ L be a leader and let sw be the number
of slaves assigned to w. Each leader w ∈ L assigns unique
color ranges [iκ, . . . , iκ + κ − 1], for i = 0, . . . , sw − 1 to its
slaves. Hence, for each slave v assigned to leader w, it holds,
color(v) ≤ swκ+κ−1 with high probability. Since sw ≤ δw

and every node u ∈ Nv is assigned to a leader w ∈ N2
v , the

theorem follows.

Correctness of the algorithm now follows as an easy con-
sequence of Lemmas 5.5 and 5.6, as well as Theorem 5.7.

Theorem 5.8. Algorithm 1 produces a correct coloring
with at most κ∆ colors with probability 1−O(n−1).

It remains to prove the claimed running time of the algo-
rithm. The following theorem shows that with high prob-
ability, each node decides within time O(∆ log n) after its
waking up.

Theorem 5.9. Every node decides on its color within time
O(∆ log n) after its wake-up with probability 1−O(n−1).

Proof. Let T i
Y be the number of time-slots a node vi

spends in set Y, and let T i be the total running time of
node vi, i.e., the number of time-slots from its wake-up to
its final decision for a color. For each node vi, we have

T i = T i
W + T i

A + T i
R + T i

K

For leaders vi ∈ L it holds T i
R = T i

K = 0, because leaders
decide on their color – 0 – the moment they join L. Also,
note that for slaves, T i

A can be 0 in case a node receives a
message ML from a leader while waiting in state W. In the
sequel, we show the running time for each part individually.

By definition of the algorithm, in Line 1, it is clear that

T i
W = α∆ln n. (3)

As for T i
A, let t∗v be the time-slot in which node vi joins

set A. By Lemma 5.3, a node w in N+
v ∩ A is able to

send successfully in [t∗v . . . , t∗v + η∆ln n], with probability



1−O(n−2κ). Now, either w joins L σ∆ln n time-slots there-
after, or there exists a node x ∈ N+

w ∈ N2
v that becomes

leader before w, that is, before time tx ≤ t∗v + η∆ln n +
σ∆ln n. In the first case, v is covered and changes to state
R by Lemma 5.2 with probability 1 − O(n−2κ) (because v
will receive a message ML from w within that time). By
Lemma 5.1 and the fact that with probability 1 − O(n−1),
the set L is independent (Lemma 5.5), the second case can
occur at most κ times. Therefore,

T i
A ≤ κ(η∆ln n + σ∆ln n) = κ(η + σ)∆ ln n (4)

with probability 1−O(n−1).
The time T i

R is the time between v starting to request a
color-range from its leader to the time leader w ∈ L succeeds
in sending to v without collision. We divide T i

R into two
parts. First, by Lemma 5.2, v is able to send its request
MReq to w within time γ∆ln n with probability 1−O(n−2κ).
Upon reception, w may queue v’s request until it has served
all its other slaves. By Line 12 of the algorithm, a leader tries
for β ln n time-slots to send a message ML to each of its slave
nodes before moving on to the next request, if available.
Because β ≥ γ, Lemma 5.2 holds for w’s response to v with
high probability. Because w can have at most ∆ slaves, T i

R
is at most

T i
R ≤ γ∆ln n + ∆ · β ln n = (γ + β)∆ ln n

Finally, T i
K – the time it takes for a slave to verify its color,

after having been assigned a color-range – follows a similar
argument as T i

A. By Lemma 5.4, a node w in N+
v ∩K is able

to send successfully in [t∗v . . . , t∗v + η∆ln n] with probability
1 − O(n−2κ). Again, either w decides on its color σ∆ln n
time-slots thereafter, or there exists a node x ∈ N+

w ∈ N2
v

that decides on a color before w. By a geometric argu-
ment, there can be at most 2κ leaders in v’s three hop neigh-
borhood and therefore, at most as many nodes in N2

v that
are assigned to the same color-range. So, with probability
1−O(n−1), we have

T i
K ≤ 2κ(η∆ln n + σ∆ln n) = 2κ(η + σ)∆ ln n. (5)

Plugging equations 3 to 5 together, we get

T i = T i
W + T i

A + T i
R + T i

K
≤ (α + 3κ(η + σ) + γ + β)∆ ln n ∈ O(∆ log n),

which concludes the proof.

6. CONCLUSIONS
Setting up an initial structure in newly deployed ad hoc

and sensor networks is a challenging task that is of great
practical importance. In this paper, we have given a ran-
domized algorithm that computes an initial coloring from
scratch. This is a step towards the ultimate goal of estab-
lishing an efficient medium access control scheme. In view
of the trivial Ω(∆) lower bound for vertex coloring in our
model, there remains a gap of O(log n) between the lower
bound and our upper bound. Closing this chasm is an in-
teresting open problem.

Another direction for future research is to address the
issue that our algorithm is based on the assumption that
nodes know an estimate of n and ∆. In single-hop radio net-
works with synchronous wake-up, there are efficient methods
enabling nodes to approximately count the number of their
neighbors [10]. If such techniques could be adapted to an

asynchronous multi-hop scenario, nodes might be able to es-
timate the local maximum degree, which could then be used
instead of ∆ throughout the algorithm.
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