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Abstract

A peer-to-peer system is a distributed system with no
physical or logical central authority. We give a formal
model of a peer-to-peer system where agents commu-
nicate through read-modify-write registers that can
be accessed by exactly two agents. For this model, we
study so-called ordering decision tasks for wait-free
agents. We show how agents can determine their po-
sition in a total linearizable order in the peer-to-peer
model. We also show that electing a leader among
the agents and finding a predecessor agent in the to-
tal ordering cannot be implemented without a central
authority. Our peer-to-peer model is related to other
models of distributed computing, specifically to con-
current objects in asynchronous shared memory and
to switching (counting) networks.

1 Introduction

After a first wave of successful Internet applica-
tions, such as electronic mail or the World Wide
Web, we are currently witnessing a second wave
of distributed applications, which are often dubbed
“peer-to-peer.” Peer-to-peer computing is the shar-
ing of computer resources and services by direct
exchange between client systems. These resources
and services include the exchange of information
(Napster, Freenet, etc.), processing cycles (dis-
tributed.net, SETI@home, etc.), or disk storage for
files (OceanStore, Farsite, etc.). It is anticipated that
future middleware, groupware, or service platforms
might also be built in a peer-to-peer manner.

Current algorithmic peer-to-peer computing research
focuses on content location service. Data structures
that allow fault-tolerant non-centralized distributed
dictionary services are studied [KLL*97, PRR97,
KBE™00, DRO1, RFH'T01, RRVV01l, SMKT'01].
These services are at the heart of any file sharing
application such as Napster. However, file sharing is
a simple form of a peer-to-peer application. Major
industry leaders are currently promoting their “plat-

form for services; the next generation of software
that connects our world of information, devices and
people.” These Internet based distributed services
will need organization and coordination structures
beyond content location and distributed dictionar-
ies. In this paper we therefore study fundamental
coordination primitives that are all-time favorites in
distributed computing.

There is no clear consensus on what peer-to-peer
is!. In this paper we think of a peer-to-peer sys-
tem as a distributed system with no (physical or log-
ical) central authority. In the next section we will
present a formal model of computation, intuitively,
however, our peer-to-peer system is as follows. In
the peer-to-peer system there are agents (processes,
nodes) and registers (communication channels, mem-
ory cells). Agents can only communicate through
registers. Each pair of agents has a private register
that cannot be accessed by any other agent. There is
no register that is shared by more than two agents.
When visiting a register, an agent reads the content
in the register and writes new content into the reg-
ister in one atomic step. The write depends on the
read; it is allowed that an agent stores its whole state
(after the read) in the register.

Agents want to solve a decision task, for example
electing a leader among them. We are interested
in “wait-free” implementations [Her91], that is, an
agent wants to decide definitively after a finite num-
ber of steps (visits of registers) without waiting for
other agents. Agents are asynchronous: The time be-

!Some argue that peer-to-peer computing is a post-
client/server paradigm where every client is also a server and
vice versa (Gnutella names a hybrid client/server node a “ser-
vent” ), sometimes it is stressed that all those nodes need equiv-
alent computational power. Often it is argued that peer-to-
peer computing takes advantage of existing desktop comput-
ing power and networking connectivity, allowing off-the-shelf
clients to leverage their collective power beyond the sum of
their parts. Others even believe that the most important as-
pect of peer-to-peer computing is a post-IP and post-DNA
addressing system (Clay Shirky, What Is P2P... And What
Isn’t?, www.openp2p.com). Our model captures some of these
aspects, but they remain in the background.



tween two register visits is unbounded [AW98]. Also,
there is no global starting time for agents; it is possi-
ble that an agent completes all its steps and therefore
chooses its value of the decision task before another
agent even “wakes up”.

In this paper we focus on ordering decision tasks.
The agents try to totally order themselves; however,
no agent needs to know the whole order. Instead,
each agent only needs to have a partial view of the
total order. Examples for ordering decision tasks are:

e Leader Election: each agent needs to know the
first agent in the total order

e Position: each agent needs to know its position
in the total order

e Predecessor: each agent needs to know its pre-
decessor agent in the total order

To rule out trivial solutions, we want the total order
to be “linearizable” [HW90]: If in a particular execu-
tion an agent A has never directly or indirectly heard
of agent B, agent A needs to have a lower position
than agent B in the total order.

For the reader familiar with the rich and well-studied
asynchronous shared memory model® our peer-to-
peer model can be expressed as one of its specializa-
tions. Agents are called processes. We allow registers
to be of the strongest read-modify-write type: A pro-
cess can read, compute a function of the read value,
and write the value of the function to the register,
all in one atomic step. However, each “peer-to-peer”
register is only accessible by exactly two processes.
A peer-to-peer implementation for only 2 agents is
trivial because both agents can access the same reg-
ister. The model becomes interesting with 3 agents,
so we will first show all results for the simpler case
of 3 agents and then apply them to larger systems.
This paper is organized as follows. Section 2 de-
fines a formal model of peer-to-peer computation. In
Section 3 we define the structural basis on which
we prove in Section 4 that Leader Election and
Predecessor cannot be achieved in the peer-to-peer
model, whereas Position can. We will prove these re-
sults with a variety of different techniques: topolog-
ical/structural (similar to [HS99]), by construction,
and by reduction. In Section 5 we describe the rela-
tionship between our peer-to-peer model and switch-
ing networks. We conclude the paper in Section 6
with a summary, a discussion on the relation of our

>The other major model for distributed computing—
message passing—will be discussed in Section 6.

peer-to-peer model to other computational models,
and open problems.

2 Formal Peer-to-Peer Framework

The purpose of this section is to introduce the
notation we are going to use. The main entities we
consider are agents and registers. Agents can write
into or read from registers to which they have access.

Agent. The peer-to-peer framework contains a
finite number of agents. Each agent is assigned a
unique identity from the set A ={1,...,n}.

Register. Registers are of read-modify-write type.
That is, a read and a write operation can be
combined into one atomic operation where the write
can depend on the read operation.

Each pair of agents shares a read-modify-write
register. Thus we have (g‘) registers in total. We
denote the register shared by agents ¢ and 7, 7+ < 7,
as 7.

Figure 1: In the classical model of computation,
depicted on the left, all agents can access all reg-
isters. The right figure represents our peer-to-peer
model, where each register can only be accessed by
two agents.

Register access. We denote an access of agent
i to the register shared with agent j by the pair (i, 7).

Agents access the registers within their reach in a
certain order. We call this order a strategy.

Strategy. The strategy S; of agent ¢ forms a tree.
The nodes of the tree are accesses of the form (i,-).
The children (i, 71),. .., (4, jx) of a node (i,7) denote
the possible accesses performed after accessing regis-
ter 7;;. Which of the registers r;;, ,...,7;j, is accessed



next depends on the access (i,7). If the tree degen-
erates to a sequence, the strategy is called oblivious.
Otherwise it is called non-oblivious.

Lemma 1 A non-oblivious strategy can always be
simulated by an oblivious one.

ProOOF. Consider the strategy of agent i. All nodes
in the strategy tree are of the form (7,-). The depth
of a node in the tree is the number of edges in the
path that connects the node with the root of the
tree. Assume that the maximum depth of a node
in the tree is k. We construct a sequence from the
strategy tree as a concatenation of rounds Ry, ..., Ry
as follows: R; is a set containing all different accesses
in nodes of depth j. The accesses in round R; can
be ordered arbitrarily. Ry is for instance the round
of size one that contains only the access in the root
of the strategy tree. The concatenated rounds define
an oblivious strategy that is sufficient to simulate the
original strategy of agent 7. In every round, ¢ only
considers the information gathered in one access; the
choice of this access depends on the information seen
in the previous rounds. O

In the following we assume that all protocols are
oblivious.

EXAMPLE 1: OBLIVIOUS STRATEGIES FOR

THREE AGENTS.

Agent 1: (1,2), (1,3), (1,2)
Agent 2: (2,1),(2,3),(2,1)
Agent 3: (3,2), (3,1),(3,2)

Protocol and execution. Every agent follows
its own strategy. All these individual strategies
together define an access protocol P of the agents.
The protocol is a class of access sequences. Every
such sequence contains all accesses of every agent
and the accesses of the agents are ordered as
prescribed by the agent protocols. We call an access
sequence A € P an execution.

EXAMPLE 2: THREE EXECUTIONS OF THE PRO-
TOCOL DEFINED BY THE STRATEGIES OF EXAM-
PLE 1.

(1,2),(1,3),(1,2),(2,1),(2,3),(2,1),(3,2),(3,1),(3,2)
(1,2),(1,3),(1,2),(2,1),(2
(1,2),(1,3),(1,2),(2,1),(3,2),(2,3),(2,1),(3,1),(3,2)

We associate with every execution A € P a directed
acyclic graph (DAG). The DAG captures all the
information of A that we need later on. Essentially,
the execution DAG captures how information flows
between the agents.

Execution DAG. Given an execution A € P. Let
A = aq,...,a,. The vertices of the execution DAG
are the accesses in A. A pair (a;, ap) defines an edge
of the DAG if and only if [ < [’ and one of the two
conditions holds

(1) a; and ap are of the form (3, -).
(2) ay is of the form (7, ) and ay is of the form (7, 7).

The edges induced by the first condition reflect the
ordering in the strategies of the agents. The edges
induced by the second condition reflect the ordering
of the accesses of two agents to their common
register in the execution A.

ExXAMPLE 3: DAGS THAT CORRESPOND TO
THE EXECUTIONS IN EXAMPLE 2. REPEATED
ACCESSES TO ONE REGISTER IN THE SAME
STRATEGY ARE IDENTIFIED BY SUPERSCRIPT
NUMBERS. THE LEFT DAG CORRESPONDS TO
THE FIRST TWO EXECUTIONS, THE RIGHT ONE
TO THE THIRD EXECUTION. NOTE THAT THE
ONLY DIFFERENCE BETWEEN THE TWO DAGS
CONSISTS IN REVERSAL OF THE MARKED (*)
EDGE.

B— (32 B— (32

13 (13)
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(2{—/»(3,1)2

(23)
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(2{—/»(3,1)2

Task. A task function
t:{Ll,...,n} = {1,...,n}

assigns to every agent the identity of another agent.
A task is a class of task functions. The task can be
defined by constraints which itself can depend on the
execution of a protocol. The agents perform a task



if they compute a task function in the prescribed
class of task functions.

3 Protocol Graph

The execution DAG carries all the information we
need about an execution. In this section we use the
execution DAG to define a protocol graph which we
will use to prove results in our peer-to-peer model
of computation. To define the protocol graph we
use an indistinguishability relation on P, the set of
all executions of a protocol. This relation describes
whether two executions can be distinguished by the
agents. We call two executions indistinguishable
for agent ¢ if ¢ cannot distinguish which one of the
two executions is actually performed. We call two
executions simply indistinguishable if none of the
agents can distinguish which execution is performed.

Indistinguishability relation. Two protocol exe-
cutions A, B € P are indistinguishable if and only if
they have the same associated execution DAG. If A
and B are indistinguishable we write A ~ B. Indis-
tinguishability is an equivalence relation on P, that
is, the following holds:

(1) A~ Aforall A € P (reflexivity)
(2) A~ B = B ~ A (symmetry)
(3) A~ BAB~C = A~ C (transitivity)

For every agent we prune the DAG and use the
pruned DAG to define an equivalence relation on P
for every agent.

A vertex a; of the DAG is reachable from vertex ap
if there is an oriented path in the DAG from ay to
a;. For agent ¢ the pruned DAG retains all vertices a
such that there is a vertex of the form (7, -) reachable
from a.

Informally speaking, the pruned DAG describes the
information flow relevant to agent . An information
flow path is removed if ¢ does not learn about it.
We call two executions A, B € P indistinguishable
for agent ¢ if the pruned execution DAGs associ-
ated with A and B are identical. If A and B are
indistinguishable for agent i, we write A ~; B.
Indistinguishability for agent i is also an equivalence
relation on P.

Now we are prepared to define the protocol graph
for some protocol P.

EXAMPLE 4: PRUNED DAGS FROM EXAMPLE
3. PRUNING BOTH DAGS FROM EXAMPLE 3
WITH RESPECT TO AGENT 1 RESULTS IN THE
SAME DAG WITH THREE VERTICES (ON THE
LEFT). PRUNING WITH RESPECT TO AGENT 2
RESULTS IN TWO DIFFERENT DAGS (IN THE
MIDDLE AND ON THE RIGHT).

@3 @3

12——>(12 (L2— (12
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Protocol graph. The protocol graph G = (V, E) is
a labeled multigraph. It consists of a vertex set V'
and a set of labeled edges F defined as follows:

Vertices V: equivalence classes of the set P
with respect to the indistinguish-
ability relation ~

two vertices u and v define an
edge {u,v} with label 7 if there
exists A € w and B € v such
that A ~; B

Edges E;:

Lemma 2 The protocol graph G for n > 2 s con-
nected.

PrOOF. Let A € P be an arbitrary execution con-
sisting of m accesses a1, a9, ..., a, and G be the pro-
tocol graph of P. We prove this lemma by induc-
tion over the last p < m accesses of A. Assume the
subgraph of the total protocol graph formed by all
legal permutations of ap,—py1,...,a, is connected.
(A legal permutation is compliant with the strate-
gies of all agents, that is, accesses by the same agent
may not be permuted.) We can show that, given the
above assumption, the subgraph formed by the legal
permutations of the last p + 1 accesses is connected.
Together with the induction base at the end of the
proof, it follows that the total protocol graph is also
connected.

Consider the access a,,—, performed just before the
p last accesses. We assume a,,_, and a,,—,+1 are not
executed by the same agent: Transposing a,,—, and
am-—p+1 will result in a legal execution. (If both of
those accesses are performed by the same agent, an-
other access can be moved to the front by making use
of the induction assumption. If the last p accesses of
A exclusively contain accesses by the same agent, the



EXAMPLE 5: PROTOCOL GRAPH OF THE PRO-
TOCOL DEFINED BY THE STRATEGIES OF EX-
AMPLE 1. A TOTAL OF 1680 POSSIBLE EXECU-
TIONS ARE PARTITIONED INTO 34 VERTICES.
THE FIRST TWO EXECUTIONS OF EXAMPLE
2 ARE ELEMENTS OF VERTEX u, WHEREAS
THE THIRD EXECUTION IS CONTAINED IN VER-
TEX v. THE TWO VERTICES ARE LINKED
WITH AN EDGE LABELED 1, SINCE AGENT 1
CANNOT DISTINGUISH THE CONTAINED EXECU-
TIONS (SEE EXAMPLE 4).

considered protocol subgraph consists of one vertex
containing exactly one execution, in which case the
induction step works trivially.) We call A the execu-
tion before switching a,,—, and a,,—p4+1, and B the
execution after this transposition. When switching
the places of a,,—p and a,,—p41, we have to distin-
guish three cases:

® 4y, pand a,,_py are of the form (i1, 1), (42, j2)
and 71 # jo or 49 # j1, that is, 7 and j access two
different registers. No agent can distinguish A
and B, which are therefore elements of the same
protocol graph vertex.

® Gp—p and ap—py1 are of the form (4,5) and
(7,4): Agents 7 and j access their common reg-
ister. In addition, there is at least one agent
k # 1,7 which cannot distinguish the two exe-

cutions; that is, there is no path in any of the
DAGs of A and B from one of the accesses (i, )
or (j,7) to an access of the form (k,-). Since
1 and j can distinguish the executions due to
their altered access order to the same register,
A and B are elements of two different protocol
graph vertices v and v. However, u and v are
connected in G' by an edge labeled k.

® a,,_p and a,;,—py1 access the same register and
all agents can distinguish the two executions.
That is, am—p, am—p+1 are of the form (4, 5), (4,%)
and for all k£ # 4,7 there is a path from one of
the accesses (4,7), (4,4) to an access (k,-) in the
DAGs of A and B. All n agents can distinguish
A and B, which lie in two vertices u and v. The
protocol graph G therefore contains no edge be-
tween u and v. However, we can construct an
execution A’ as follows: We permute the last
p — 1 accesses in such a way that all remaining
accesses performed by one “third party” agent
k #i,j occur directly after a,,—p41. (Note that
there exist such accesses (k,-) among the last
p — 1 accesses of A; otherwise, k& would not learn
about the transposition of a,—, and apy—pi1.)
The execution B’ now results from a transposi-
tion of accesses apy—p and apm—py1 in A'. k can-
not distinguish A’ and B’, since neither ¢ nor
7 will have an opportunity to inform k& before
its termination. According to the induction as-
sumption, it is consequently possible to find a
path A - A’ - B' - B in G, that is, u and v are
connected.

The analysis of the above cases shows that if the pro-
tocol subgraph formed by the legal permutations of
the last p accesses is connected, it is possible to move
am—p among the last p accesses without breaking con-
nectivity of G. Since the accesses of the execution
are chosen arbitrarily, it follows that the subgraph
formed by the legal permutations of the last p + 1
accesses of any execution is connected.

As to the induction base, transposing the last two
accesses of any execution is perceived solely by the
two involved agents, if at all. Since the total number
of agents is greater than two, at least one agent
cannot distinguish the two executions; this protocol
subgraph is connected. 0



4 Peer-to-Peer Computability

In this section we study three tasks: Leader Election,
Position, and Predecessor. The functions in these
tasks are constrained by a relation on A that we again
derive from the execution DAG. That is, these tasks
depend on the execution of a protocol. We will show
that Position can be solved by the agents in contrast
to Leader Election and Predecessor.

As the indistinguishability relation on P, the in-
visibility relation on A is defined via the execution
DAG. The invisibility relation indicates whether one
agent is invisible for another agent in the execution
A of protocol P, i.e. it indicates if one agent can
decide if another agent is alive or not.

Invisibility relation. Given A € P. Agent
j is invisible for agent ¢ if there is no oriented
path in the execution DAG of A from an access
of the form (j,7) to an access of the form (i,7).
Invisibility is a relation on A that we denote by
«+ A; we write ¢ <~ 4 j if agent j is invisible for agent 7.

We use the invisibility relation to define three tasks
the agents have to perform. All three tasks are
ordering tasks, that is, the agents compute a total
order over themselves according to the execution.
This order forms the basis for the actual task
computation. In the Leader FElection task, all agents
have to agree on the first agent’s identifier. In the
Position task, every agent finds its own position
within the total agent order. In the Predecessor
task, the first agent chooses its own identifier,
whereas every other agent computes the identifier of
its direct predecessor in the agent order.

Leader Election: (1) For all4,j € A:
lead(i) = lead(j).
(2) If i -4 j then lead(i) # j.

Position: (1) If i # j then pos(i) # pos(j).
(2) If i <4 j then pos(i) < pos(j).
) ~ _ Jiifpos(i) =1
Predecessor: pred(i) = {j if pos(j) = pos(i) — 1

In the following, we analyze the computability of
these tasks in our peer-to-peer model using the struc-
tures defined so far.

Theorem 1 Leader Election is impossible forn > 2.

PrOOF.  According to the definition of Leader
Election, an execution beginning with all accesses

of the form (i,-) before any other access results in
lead(j) = i for all agents j. Since the protocol P
contains all executions, there is such an execution
for all agents 4. Translated to the protocol graph
G of P this means, that G contains for each agent
i at least one vertex whose executions result in
lead(j) = 4 for all j. Since a result is computed
for every execution of P, the vertices V of G are
partitioned into n sets of vertices V;, 1 < i < n,
where V; denotes the set of all vertices containing
executions which result in lead(j) = i for all agents
j. Since the protocol graph is connected, there exist
edges connecting two such sets of vertices S; and
Sj, i # j. There is consequently at least one agent
which cannot distinguish two executions A € S; and
B € §; and will choose the same result in both
executions. This contradicts the task definition,
according to which in A all agents have to choose i
and in B they have to choose j. O

Note that this result can also be found with an FLP-
type proof [FLP85]. Such a proof would argue over
a point in time, at which a decision as to the Leader
Election result has to be taken. We think, however,
that in this case, our proof based on complete execu-
tions yields deeper insight into the structure of the
peer-to-peer model.

Theorem 2 Position is possible for n = 3.

ProOOF. For this theorem we give a constructive
proof, defining a concrete protocol which solves the
Position task for three agents. Consider the proto-
col with the agent strategies S; = (1,3),(1,2), (1, 3),
Sy = (2,3),(2,1), and S5 = (3,2),(3,1). As shown
in Figure 2, the protocol graph for this protocol al-
lows assignment of a Position result order to each
vertex of the protocol graph without conflicts over
edges. Although, for each edge (u,v), the labeling
agent, say 7, cannot distinguish executions in u and
v and therefore has to choose the same result for exe-
cutions in both u and v, there is no conflict: In every
such case, 7 assumes the same position in the result
order of both u and v.

In other words, after executing the protocol each
agent knows where the performed execution lies
within the protocol graph, since, informally speak-
ing, most executions are distinguishable.  The
few cases where single agents cannot distinguish
executions from different vertices do not provoke
any conflicts, as the respective agents can choose
the same result for all indistinguishable vertices. In
order to compute the result of the Position task
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Figure 2: Protocol graph for 3 agents with strategies S1 = (1,3),(1,2),(1,3), Sy = (2,3),(2,1), and

S3 = (3,2),(3,1). The vertices are labeled with the corresponding Position task results. 7 < j is short for
pos(i) < pos(j). The conditions on the task result imposed by the invisibility relation define a total agent
order for the executions in vertices a, b, d, f, g, j, and k. The invisibility relation only defines a partial
agent order for vertices c, e, h, i, and | (italics). Note that for all of these vertices, a unique total agent
order is inferred by the indistinguishability relation (edges). In particular, vertex c is attributed the same

agent order as vertex b, h as g, i as j, and 1 as k, whereas vertex e assumes the order 3 < 1 < 2.

function, each agent finds the vertex containing
the current execution within the protocol graph
and chooses its result according to the label of
that vertex. This interpretation of the information
gathered during the protocol execution can be
considered a distributed algorithm. 0

Theorem 3 Predecessor is impossible for n = 3.

PrROOF. We prove this theorem by reduction to the
Leader FElection task. Assume the three agents can
solve the Predecessor task, that is, each agent knows
which other agent is its predecessor in the agent
order. Since the Position task is solvable for three
agents, each agent can additionally—and in parallel
to the computation of its predecessor—compute its
own position within the order. Assume that the
result of the execution is pos(i) < pos(j) < pos(k).
Agent ¢ knows that it is the first agent. Agent
j knows that it is in position 1 and that ¢ is its
predecessor and therefore the first agent. Agent k
knows its position and its predecessor, and can infer
from this information, that agent ¢ must be the first
agent, since n = 3. If each agent knows both its own
position within the result order and its predecessor,
it also knows which agent holds the first position:
Leader Election is possible. As we have shown that
Leader FElection is impossible, our assumption on
the Predecessor task must be wrong. 0

Corollary 1 Predecessor is impossible for n > 3.

PROOF. Assume there exists an n > 3 for which
the solution of the Predecessor task is possible with
a protocol P and some Predecessor computation al-
gorithm «. Consider three agents ¢, 7, and k and let

Pijr. be the subset of all executions in which all ac-
cesses of the agents 4, j, and k occur before any access
by another agent. According to the order conditions
imposed by the invisibility relation, all executions in
Pijk place the agents 7, j, and k among the first three
positions of the result order. Let 4, j, and k taken
together perform a total of m accesses. Note that
any two executions A, B € P;j; with the same prefix
of length m yield the same task result for agents ¢, 7,
and k, since the rest of the execution is immaterial
to them.

We define an algorithm o' as follows: Use protocol
P and algorithm « but let the three agents 4, j, and
k ignore all accesses performed by any agent other
than 4, j, and k. Using o/, 7, j, or k never see an
access by any other agent [ # 7, j, k and assume they
terminate before [ performs its first access. From the
point of view of 4, j, or k, any execution A € P is
indistinguishable from any execution B € P;;; whose
prefix of length m corresponds to the relative order
of the accesses by 4, j, or k in A. 4, j, and k compute
the same result as with algorithm « for execution B,
that is, they place themselves among the first three
positions of the agent order and compute the correct
Predecessor result for three agents.

Based on a protocol solving Predecessor for n > 3,
we can solve the same task for three agents. Since,
however, we have shown that Predecessor is impossi-
ble for three agents, there cannot exist any protocol
solving this task for n > 3 agents. 0

5 Switching Networks

In this section, we focus on the relationship be-
tween our peer-to-peer model and switching net-



Figure 3: “Triangle” Counting Network

works. First, we describe switching networks in gen-
eral. Then we show the correspondence between lin-
earizable counting networks [HSW96] as a special
type of switching networks and the solution of the
Position task in our peer-to-peer model.

5.1 General Switching Networks

A switching network is a directed acyclic graph con-
sisting of switches (vertices) and links (edges) con-
necting switches. Tokens are sent along the links
from switch to switch. Each token enters the net-
work at an input link—one out of a number of “open”
edges without source switch—and leaves the network
at an output link—output links being edges with-
out destination switch. Switches—usually connect-
ing several input links to several output links—decide
according to a function where to route incoming to-
kens, that is, on which output link to forward a to-
ken received on an input link. This routing func-
tion can depend on a state internal to each switch.
The depth of a switching network is the maximum
number of switches a token has to traverse. For a
detailed introduction on switching networks see for
example [AHS94, BM96].

5.2 Counting Networks

Counting networks are a special class of switching
networks. As shown in Figure 3, a counting network
is usually drawn as a set of horizontal wires and verti-
cal balancers, each one connecting two wires. Tokens
enter the network on the left end of a wire and are
routed to the right end of a wire, where they leave the
network. Each balancer routes incoming tokens inde-
pendently of the wire it arrives on; the first arriving
token is forwarded to the balancer’s upper output
wire, whereas all subsequently arriving tokens are
routed alternately to the lower and the upper output
wire. Figure 3 shows a linearizable counting network
as introduced in [HSW96], where balancers are po-
sitioned in a well-defined triangle-like structure. An

arrow next to a balancer indicates its current routing
direction; it is reversed after forwarding a token.
Using the terminology of general switching networks,
the balancers correspond to switches with two in-
put and two output links and having a one-bit inter-
nal state deciding where to route incoming tokens.
The wire segments between the single balancers cor-
respond to the general switching network links.

5.3 Switching Networks and the Peer-To-
Peer Model

The main idea of this section is to simulate switching
networks with the peer-to-peer model. In particular,
we study switching networks containing no balancer
that routes more than two tokens. This implies that
routing decisions by switches can be taken in a peer-
to-peer way. All agents know the structure of the
switching network; each token is represented by an
agent. Particularly:

Theorem 4 In the peer-to-peer model we can sim-
ulate any switching network with finite depth if no
more than two tokens traverse any switch and if
the switch function is computable in the peer-to-peer
model.

Proor. We will prove this theorem by showing
how this simulation takes place in the peer-to-peer
model. First, each token ¢ entering the switching
network is associated to an agent ;. The execution
of agent 7 will simulate how token ¢ is routed
through the network. Token ¢ reaching a balancer
b is simulated by agent ¢ initiating a “sweep”
(2,1)... (¢, —1),(¢,e + 1)...(¢,n) over all registers
within its reach: In every register r;;, agent 4 checks
whether another agent j has already marked that
its associated token has passed balancer b; if so,
agent i concludes that token ¢ is second, (and should
be routed to the lower output wire of balancer b in
case of a counting network). Otherwise, it writes
information into register r;;, signaling that balancer
b has forwarded a token. If agent ¢ completes this
register “sweep” without finding information about
any other token previously passing balancer b, it
can conclude that token i is the first token arriving
at balancer b (and will consequently continue on b’s
upper output wire in case of a counting network).
Note that—except in special cases—agent ¢ cannot
predict which other token j is going to pass balancer
b. O



It is proved in [HSW96, Theorem 4.10] that the
REVERSED-SKEW is a linearizable counting net-
work. For our model it is however sufficient to con-
sider the simpler “triangle” counting network of Fig-
ure 3 with as many wires as there are agents in the
peer-to-peer model. The “triangle” counting network
is a linearizable counting network, that is, if a token
exits on wire 7, we can be sure that it has “seen”
the tokens that exit on wires j with 7 < ¢. Both
conditions required in Theorem 4 hold for the “tri-
angle” counting network. We can therefore conclude
directly:

Corollary 2 Position is possible for n > 3.

Note that in the peer-to-peer model not only count-
ing networks but also more general switching net-
works can be simulated as long as the switch routing
function is computable in the peer-to-peer model. If
impossibility results can be proved for the peer-to-
peer model, they can directly be transferred to these
switching networks.

6 Conclusions

In this paper we have proposed a first theoreti-
cal model for peer-to-peer computability. We have
shown that some ordering decision tasks, such as
Leader Election or Predecessor, cannot be imple-
mented in the peer-to-peer model, whereas others,
such as Position, can. We have focused on order-
ing tasks, that is, tasks without inputs; it is clear,
however, that also tasks with inputs can be studied.
The Consensus decision task for example cannot be
solved for the same reasons as Leader Election, and
Prefiz Sum (a.k.a. fetch-and-add) can be solved for
the same reasons as Position.

Our peer-to-peer model of computation is related to
other models in distributed computing. When we
translate our model into asynchronous shared mem-
ory, our ordering decision tasks have the one-shot
concurrent object equivalents test-and-set, fetch-and-
inc, and swap [HW90]. In asynchronous shared mem-
ory one primary research issue is the assessment of
the power of different register types. Herlihy has pre-
sented a hierarchy of more and less powerful types,
on the basis of how many processes are required to
reach consensus [Her91]. It is notable that all the
concurrent objects we study in this paper have con-
sensus number 2; however, a one-shot fetch-and-inc
can be implemented whereas a one-shot swap cannot.
The most studied asynchronous shared memory reg-
ister type is the read/write register, where pro-

cesses can either read or write a register atomi-
cally but not both. Israeli and Li [IL93] and Vi-
tanyi and Awerbuch [VA86] have shown that a multi-
writer multi-reader register can be simulated with
single-writer single-reader registers. A single-writer
single-reader register is clearly a peer-to-peer reg-
ister, if however a “weak” one. In our work we
show that the omnipotent—but peer-to-peer—read-
modify-write register cannot simulate an omnipotent
globally shared read-modify-write register (because
we cannot solve Leader FElection with peer-to-peer
registers, but we can solve Leader Election with a
globally shared register).

Clearly, our peer-to-peer model is a shared-memory
variant. Instead of restricting the way to access
a register we restrict who can access a register.
Contention—one of the main issues in the context
of shared-memory models [DHW97]—naturally be-
comes noncritical, since no more than two agents ac-
cess one register.

Some of our results could also have been attained
with FLP-type proofs [FLP85] by reasoning over
points in time at which agents have to come to a de-
cision. In contrast, our approach considers complete
executions and is of topological/structural nature,
similar to the theory introduced in [HR95, HS99].

In some sense, a message passing based model
would better fit the peer-to-peer philosophy of hav-
ing loosely coupled agents. However, message pass-
ing lacks a reliable and asymmetric communication
channel. We could not find a message passing peer-
to-peer model with such a rich structure as our peer-
to-peer shared memory model. We feel that this is a
challenging open research area, though.

In Section 5 we showed that our peer-to-peer model
can simulate switching networks, first introduced to
the distributed computing community in the form of
counting networks [AHS94]. This means that impos-
sibility results for the peer-to-peer model translate to
switching networks. In the recent years, several pa-
pers with impossibility results (or lower bounds) for
switching networks were presented [HSW96, FHO1].
We feel that the peer-to-peer model gives simpler
means to prove these negative results.

In this paper we concentrate on computability rather
than on efficiency. How to compute Position or other
decision tasks or to work with distributed objects ef-
ficiently (and without simulating a linear-sized net-
work) is another interesting open research problem.
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