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Locality...

• Many modern networks are large-scale and highly complex
– Internet
– Peer-to-Peer Networks
– Wireless Sensor Networks
– Human Brain, Society...?

No node has global information

Each node can gather information from its 
neighborhood only  (local information)

Yet, nodes have to come up with a global goal!
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Local Computation

In    communication round(s):123

In time k, a node can 

obtain information 

from at most its

k-hop neighborhood.
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Local Computation

• Fundamental trade-off between the amount of 
communication and the quality of the global solution! 

TRADE-OFF
LOCALITY

Communication
Rounds

GLOBAL GOAL
e.g. Approximation

• Upper Bounds:

Local Distributed (Approximation) Algorithms

• Lower Bounds: 

Time Lower Bounds

Hardness of Distributed Approximation
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Clustering

• Clustering in Radio Networks
• Choose clusterheads such that

– Every node is either a clusterhead or...
– ...has a clusterhead in its neighborhood.

• Goal: We want only few clusterheads!

Nodes have only local information

Nodes have to optimize a global goal
If we want fast

algorithms!

Inherent Problem:
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The Importance of Being Clustered...

• In wireless multi-hop networks,...
• ... clustering helps in structuring the network. 

• Particularly, clustering helps in...
A) ...facilitating communication between distant nodes

• Virtual Backbone routing

B) ...organizing communication between adjacent nodes
• MAC layer, spatial multiplexing, topology control

C) ...improving energy efficiency
• Synchronized Sleep/Awake schedules within a cluster

D) ...helps in initializing the network
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What kind of clustering...?

• Minimum Dominating Set (MDS)
(Choose minimum S ⊆ V, s.t. each v∈V is in S or has 

at least one neighbor in S)

• Maximal Independent Set (MIS)
(Choose a dominating set without neighboring dominators)

Both problems
appear to be local

in nature!

What can be 

computed locally?

[Naor, Stockmeyer, 93]
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The Locality of Clustering

In this talk, I give an overview of recent 

results on the locality of clustering. 

Outline:

1. Locality and Distributed Algorithms

2. Clustering in Radio Networks

3. Results and Techniques

a) Unit Disk Graphs vs. General Graphs

b) Graphs with Bounded Independence

c) Unstructured Radio Networks

4. Conclusions

Unfortunately, no time for proofs...

LOCALITY GLOBAL GOAL
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Distributed MDS Algorithm - Overview

0.2
0.5

0.2

0.80

0.2

0.3

0.1

0.3

0

Input:
Local Graph

Fractional
Dominating Set

Dominating 
Set

Connected
Dominating Set

0.5

Phase C:
Connect DS 
by “tree” of 
“bridges”
O(1) rounds

Phase B:
Probabilistic
Algorithm
O(1) rounds

Phase A:
Distributed
linear program
rel. high degree 
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Upper Bounds

• First algorithm by Kuhn and Wattenhofer [PODC 2003]
• Improved algorithms [Kuhn, Moscibroda, Wattenhofer @ SODA 2006]:

a) Algorithm computes an O(∆1/k)-approximation of phase A with 
logarithmic sized messages in O(k2) rounds 

O(log2∆ / ε4) time for a (1+ε)-approximation

b) If messages can be of unbounded size, algorithm computes an 
O(n1/k)-approximation in O(k) rounds 
constant approximation in O(log n) 

Is it any good?

Locality is only
constraint!
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Locality Lower Bounds: Intuition…
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• Two graphs (m << n). Optimal dominating sets are marked red.

|DSOPT| = 2.
|DSOPT| = m+1.
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Locality Lower Bounds: Intuition…

• In local algorithms, nodes must decide only using local knowledge.
• In the example green nodes see exactly the same neighborhood.

• So these green nodes must decide the same way!
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Locality Lower Bounds: Intuition…
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• But however they decide, one way will be devastating (with n = m2)!

|DSOPT| = 2.
|DSOPT without green| ≥ m.

|DSOPT| = m+1.
|DSOPT with green| > n



Thomas Moscibroda, ETH Zurich @ LOCALITY 2005 14

The Lower Bound

• Locality lower bounds (Kuhn, Moscibroda, Wattenhofer @ PODC 04):

– Model: In a network/graph G (nodes = processors), each node can 
exchange an unbounded message with all its neighbors for k 
rounds. After k rounds, node need to decide.

– We construct the graph such that there are nodes that see the 
same neighborhood up to distance k. We show that node ID’s do 
not help, and using Yao’s principle also randomization does not.

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0
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The Lower Bound - Results

In k communication rounds, no 

algorithm can approximate MDS 

better than  Ω(nc/k2/k) or Ω(∆1/k/k). 

• randomized...

• unbounded messages...

• unique IDs in [1..n]...

• synchronous model...

holds even if...

For polylogarithmic (or constant)

approximation, every algorithm 

requires at least time

The same time bounds 

hold for distributed MIS!

LOCALITY GLOBAL GOAL
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A much better, faster, and simpler algorithm!

• Assume that nodes know 
their position (GPS)

• Assume that nodes are in 
the plane; two nodes are 
within their transmission 
radius if and only if their 
Euclidean distance is at 
most 1 (UDG, unit disk 
graph)

1

u

v
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A much better, faster, and simpler algorithm!
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Comparison

• First algorithm 
(distributed linear program)

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(∆O(1)/k log ∆) approximation

• General graph
• No position information

• Second algorithm 
(virtual grid)

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Unit disk graph (UDG)
• Position information (UDG)

The model determines the distributed 

complexity (i.e., locality) of clustering!
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph
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Locality in Real Networks

R

R

Unit Disk GraphUnit Disk Graph
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Locality in Real Networks
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Locality in Real Networks

• No links between far-away nodes

• Close nodes tend to be connected

• In particular: Densely covered area many connections

Wireless Networks are not unit disk graphs, but:

We want to understand the complexity
distributed algorithms in real networks!

LOCALITY!
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Unit Ball Graphs

• ∃ metric (V,d) describing distances between nodes u,v ∈ V

such that:  d(u,v) · 1 : (u,v) ∈ E
such that: d(u,v) ≥ 1 : (u,v) ∈ E

• Assume that doubling dimension of metric is constant

• Doubling Dimension: log(#balls of radius r/2 to cover ball of radius r)

Unit Ball Graph

UBG based on
underlying doubling metric.
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Dominating Set Algorithm

• Algorithm computes a dominating set:
– Initially: all nodes are active
– Distance to next active node incremented by · d in each iteration

– Sum of all d values is smaller than 1

• Constant approximation:
– Distance between two dominators >1/4

– Underlying metric is doubling

1. dmin := min. distance between 2 nodes;

2. d := 2dmin;
3. while (d<1/2) do
4. Gd := graph induced by edges of length at most d;

5. compute MIS S on Gd;
6. only keep nodes of S;

7. d := 2d
8. od
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Dominating Set Algorithm

• Number of while loop iterations: O(log(1/dmin))

• On doubling UBG: Gd has bounded degree

• Computing MIS S: O(log*n) rounds O(log*n) time per iteration

1. dmin := min. distance between 2 nodes;

2. d := 2dmin;
3. while (d<1/2) do
4. Gd := graph induced by edges of length at most d;

5. compute MIS S on Gd;
6. only keep nodes of S;

7. d := 2d
8. od

Naive Implementation 
has time complexity of

O(log*n log(1/dmin))
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Exploiting Locality

• Every k-round local algorithm can be transformed into the following 
canonical form:

1. Collect complete k-neighborhood
2. Compute solution locally be simulating relevant part of algorithm

• Using this transformation, we achieve:           [KMW @ PODC 05]

Time Complexity: O(log*n)

Approximation Ratio: O(1)
Compare with much 
stronger lower bound on
general graphs!

For MIS, this is tight! (Due to Ω(log*n)
lower bound on ring by Linial)
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph

In a doubling 
metric:

Number of
independent
neighbors
is bounded
(UDG: 5)
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• Def.: A graph G has bounded independence if there is a function f(r)
such that every r-neighborhood in G contains at most f(r)
independent nodes.
– Note: f(r) does not depend on size of the graph !
– Polynomially Bounded Independence:  f(r) = poly(r)

Bounded Independence

1) A node can have many neighbors
2) But not all of them can be 

independent!
3) Can model obstacles, walls, ... 

• Definition includes:
- (Quasi) Unit Disk Graphs, Bounded Disk Graphs,...
- Coverage Area Graphs, ...

f(1) = 5f(1) = 6
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Beyond Constant Approximation - Local PTAS

• TMIS ∈ O(log ∆ · log*n)
in all graphs with bounded independence!

• TMIS ∈ O(log*n) 
in UBG with underlying doubling metric!
if nodes have distance information!

In graphs with bounded independence

An (1+ε)-approximation can be computed

in time O(TMIS+log*n/εO(1)) 

[Kuhn, Moscibroda, Nieberg, Wattenhofer @ DIALM 05]
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Deterministic Distributed MIS

• One of the outstanding questions in distributed computing theory
[Linial 92]

• Partial affirmative answer: 

In graphs with polynomially bounded independence, 
we have a distributed deterministic O(log ∆ · log*n) 

time MIS algorithm. 

Is there a distributed, deterministic MIS 

algorithm for general graphs?

KMNW @ DISC 2005
Talk: Wednesday 11:25 !!!
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

Bounded 
Independence

Unit Ball
Graph

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model

[KMW, Mobicom 04]
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Unstructured Radio Network Model 

• Multi-Hop
• No collision detection

– Not even at the sender!

• No knowledge about (the number of) neighbors
• Asynchronous Wake-Up

– Nodes are not woken up by messages !

• Unit Disk Graph (UDG) to model wireless multi-hop network
– Two nodes can communicate iff Euclidean distance is at most 1

• Upper bound n for number of nodes in network is known 
– This is necessary due to Ω(n / log n) lower bound

[Jurdzinski, Stachowiak, ISAAC 2002]
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• Can MDS and MIS be solved efficiently in such a harsh model?
[Moscibroda, Wattenhofer @ PODC 2005]

Unstructured Radio Network Model

There is a MIS algorithm 
with running time

O(log2n) with high probability. 

Optimal up to 
O(loglog n) factor

Compare with O(log n) 
or  O(log*n)  in message 

passing model!



Thomas Moscibroda, ETH Zurich @ LOCALITY 2005 34

Summary  (MIS)

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded 
Independence

UBG
Distances

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model

[KMW, Mobicom 04]

UDG, no
Distances
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Summary  (MIS)

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded 
Independence

UBG
Distances

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model

[KMW, Mobicom 04]

UDG, no
Distances
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• What can be computed locally?

• Theory of Locality:
– Key for designing fast algorithms      
– Allows a classification of problems!   
– Allows a classification of computational models! 

Theory of Locality

Locally solvable
problems!

Locally unsolvable
problems!

MST

Count number of nodes

Count neighbors

Problems in 
the middle!

MIS, MDS

Coloring

Ring, UDG w. distances
UBG w. distances

General Graphs

Locality is crucial in

distributed computing!
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Questions?
Comments?
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