
Self-stabilizing Byzantine Clock Synchronization
with Optimal Precision?

Pankaj Khanchandani1 and Christoph Lenzen2

1 Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
kpankaj@ethz.ch

2 Max Planck Institute for Informatics, Saarland Informatics Campus,
clenzen@mpi-inf.mpg.de

Abstract. We revisit the approach to Byzantine fault-tolerant clock
synchronization based on approximate agreement introduced by Lynch
and Welch. Our contribution is threefold: (i) We provide a slightly refined
variant of the algorithm yielding improved bounds on the skew that can be
achieved and the sustainable frequency offsets. (ii) We show how to extend
the technique to also synchronize clock rates. This permits less frequent
communication without significant loss of precision, provided that clock
rates change sufficiently slowly. (iii) We present a coupling scheme that
allows to make these algorithms self-stabilizing while preserving their
high precision. The scheme utilizes a low-precision, but self-stabilizing
algorithm for the purpose of recovery.

1 Introduction

When designing synchronous distributed systems, the most fundamental question
is how to generate and distribute the system clock. This task is mission criti-
cal, both in terms of performance and reliability. With ever-growing hardware
complexity, reliable high-performance clocking becomes increasingly challenging;
concurrently, the ramifications of clocking faults become harder to predict.

Against this background, it might be unsurprising that fault-tolerant dis-
tributed clock synchronization algorithms have found their way into real-world
systems with high reliability demands: the Time-Triggered Protocol (TTP) [13]
and FlexRay [9, 10] tolerate Byzantine (i.e., worst-case) faults and are utilized
in cars and airplanes. Both of these systems derive from the classic fault-tolerant
synchronization algorithm by Lynch and Welch [18], which is based on repeat-
edly performing approximate agreement [7] on the time of the next clock pulse.
Another application domain with even more stringent requirements is hardware
for spacecraft and satellites. Here, a reliable system clock is in demand despite
frequent transient faults due to radiation. In addition, quartz oscillators are prone
to damage during launch, making the use of less accurate, electronic oscillators
preferable.

? Full paper available at arXiv.

http://arxiv.org/

Unfortunately, existing implementations are not self-stabilizing, i.e., do not
guarantee automatic recovery from transient faults. This is essential for the space
domain, but also highly desirable in the systems utilizing TTP or FlexRay. This
claim is supported by the presence of various mechanisms that monitor the nodes
and perform resets in case of observed faulty behavior in both protocols. Thus, it
is of interest to devise synchronization algorithms that stabilize on their own,
instead of relying on monitoring techniques: these need to be highly reliable as
well, or their failure may bring down the system due to erroneous detection of or
response to faults.

Accordingly, in this work we set out to answer the following questions:

1. Can the guarantees of [18] be further improved? In particular, how does the
approach perform if local clock sources are less precise than quartz oscillators?

2. Under which circumstances is it useful to apply the technique also to frequen-
cies, i.e., algorithmically adjust clock rates?

3. Can the solution be made self-stabilizing?

Our Contribution. We obtain promising answers to the above questions, in the
sense that conceptually simple (i.e., implementation-friendly!) variations on the
Lynch-Welch approach achieve excellent performance guarantees. Specifically, we
obtain the following main results.

1. We present a refined analysis of a variant of the Lynch-Welch algorithm. We
show that the algorithm converges to a steady-state error E ∈ O((ϑ−1)T+U) ,
where hardware clock rates are between 1 and ϑ, messages take between
d−U and d time to arrive at their destination, and T ∈ Ω(d) is the (nominal)
time between consecutive clock pulses (i.e., the time required for a single
approximate agreement step). This works even for very poor local clock
sources: it suffices that ϑ ≤ 1.1, although the skew bound goes to infinity
as ϑ approaches this critical value; for ϑ ≤ 1.01, the bound is fairly close to
2(ϑ− 1)T + 4U .3

2. We give a second algorithm that interleaves approximate agreement on
clock rates with the phase (i.e., clock offset) correction scheme. If the clocks
are sufficiently stable, i.e., the maximum rate of change ν of clock rates is
sufficiently small, this enables to significantly extend T (and thus decrease the
frequency of communication) without substantially affecting skews. Provided
that ϑ is not too large and max{(ϑ−1)2T, νT 2} � U , it is possible to achieve
O(U) skew.

3. We introduce a generic approach that enables to couple either of these
algorithms to FATAL [4, 5]. FATAL is a self-stabilizing synchronization algo-
rithm, but in comparison suffers from poor performance. The coupling scheme
permits to combine the best of both worlds, namely the self-stabilization
properties of FATAL with the small skew of the Lynch-Welch synchronization
scheme.

3 For comparison, the critical value in [18] is smaller than 1.025, i.e., we can handle a
factor 4 weaker bound on ϑ− 1. Non-quartz oscillators used in space applications,
where temperatures vary widely, may have ϑ close to this value, cf. [1].

On the technical side, the first two results require little innovation compared to
prior work. However, it proved challenging to obtain clean, easy-to-implement al-
gorithms that are amenable to a tractable analysis and achieve tight skew bounds.
This is worthwhile for two reasons: (1) there is strong indication that the approach
has considerable practical merit,4 and (2) no readily usable mathematical analysis
of the frequency correction scheme exists in the literature.5

In contrast, the coupling scheme we use to combine our non-stabilizing
algorithms with FATAL showcases a novel technique of independent interest. We
leverage FATAL’s clock “beats” to effectively (re-)initialize the synchronization
algorithm we couple it to. Here, care has to be taken to avoid such resets from
occurring during regular operation of the Lynch-Welch scheme, as this could result
in large skews or spurious clock pulses. The solution is a feedback mechanism
enabling the synchronization algorithm to actively trigger the next beat of FATAL
at the appropriate time. FATAL stabilizes regardless of how these feedback signals
behave, while actively triggering beats ensures that all nodes pass the checks
which, if failed, trigger the respective node being reset.

Organization of the paper. After presenting related work and the model, we
proceed in the order of the main results listed above: phase synchronization
(Section 4), frequency synchronization (Section 5), and finally the coupling
scheme adding self-stabilization (Section 6). Due to space constraints, all proofs
are omitted from this extended abstract in favor of conceptual descriptions.

2 Related Work

TTP [13] and FlexRay [9, 10] are both implemented in software (barring minor
hardware components). This is sufficient for their application domains: the goal
here is to enable synchronous communication between hardware components at
frequencies in the megahertz range. Solutions fully implemented in hardware
are of interest for two reasons. First, having to implement the full software
abstraction dramatically increases the number of potential reasons for a node
to fail – at least from the point of view of the synchronization algorithm. A
slim hardware implementation is thus likely to result in a substantially higher
degree of reliability of the clocking mechanism. Second, if higher precision of
synchronization is required, the significantly smaller delays incurred by dedicated
hardware make it possible to meet these demands.

Apart from these issues, the complexity of a software solution renders TTP
and FlexRay unsuitable as fault-tolerant clocking schemes for VLSI circuits. The
DARTS project [3, 11] aimed at developing such a scheme, with the goal of coming
up with a robust clocking method for space applications. Instead of being based
on the Lynch-Welch approach, it implements the fault-tolerant synchronization

4 A prototype FPGA implementation achieves 182 ps skew [12], which is suitable for
generating a system clock.

5 The framework in [15, 16] addresses frequency correction, but substantial specializa-
tion would be required to achieve good constants in the bounds.

algorithm by Srikanth and Toueg [17]. Unfortunately, DARTS falls short of its
design goals in two ways. On the one hand, the Srikanth-Toueg primitive achieves
skews of Θ(d), which tend to be significantly larger than those attainable with
the Lynch-Welch approach.6 Accordingly, the operational frequency DARTS
can sustain (without large communication buffers and communication delays
of multiple logical rounds) is in the range of 100 MHz, i.e., about an order of
magnitude smaller than typical system speeds. Moreover, DARTS is not self-
stabilizing. This means that DARTS – just like TTP and FlexRay – is unlikely to
successfully cope with high rates of transient faults. Worse, the rate of transient
faults will scale with the number of nodes (and thus sustainable faults). For space
environments, this implies that adding fault-tolerance without self-stabilization
cannot be expected to increase the reliability of the system at all.

These concerns inspired follow-up work seeking to overcome these downsides
of DARTS. From an abstract point of view, FATAL [4, 5] can be interpreted as
another incarnation of the Srikanth-Toueg approach. However, FATAL combines
tolerance to Byzantine faults with self-stabilization in O(n) time with probability
1− 2−Ω(n); after recovery is complete, the algorithm maintains correct operation
deterministically. Like DARTS, FATAL and the substantial line of prior work on
Byzantine self-stabilizing synchronization algorithms (e.g., [2, 8]) cannot achieve
better clock skews than Θ(d). The key motivation for the present paper is to
combine the better precision achieved by the Lynch-Welch approach with the
self-stabilization properties of FATAL.

Concerning frequency correction, little related work exists. A notable excep-
tion is the extension of the interval-based synchronization framework to rate
synchronization [15, 16]. In principle, it seems feasible to derive similar results
by specialization and minor adaptions of this powerful machinery to our setting.
Unfortunately, apart from the technical hurdles involved, this is very likely to
result in worse constants and more involved algorithms, and it is unclear whether
our approach to self-stabilization can be fitted to this framework. However, it
is worth noting that the overall proof strategies for the (non-stabilizing) phase
and frequency correction algorithms bear notable similarities to this generic
framework: separately deriving bounds on the precision of measurements, plug-
ging these into a generic convergence argument, and separating the analysis of
frequency and phase corrections.

Coming to lower bounds and impossibility results, the following is known.

– In a system of n nodes, no algorithm can tolerate dn/3e Byzantine faults. All
mentioned algorithms are optimal in that they tolerate dn/3e − 1 Byzantine
faults [6].

– To tolerate this number of faults, Ω(n2) communication links are required.7

All mentioned algorithms assume full connectivity and communicate by broad-
casts (faulty nodes may not adhere to this). Less well-connected topologies
are outside the scope of this work.

6 d tends to be at least one or two orders of magnitude larger than U .
7 If a node has fewer than 2f + 1 neighbors in a system tolerating f faults, it cannot

distinguish whether it synchronizes to a group of f correct or f faulty neighbors.

– The worst-case precision of an algorithm cannot be better than (1−1/n)U in
a network where communication delays may vary by U [14]. In the fault-free
case and with ϑ − 1 sufficiently small, this bound can be almost matched
(cf. Section 4); all variants of the Lynch-Welch approach match this bound
asymptotically granted sufficiently accurate local clocks.

– Trivially, the worst case precision of any algorithm is at least (ϑ − 1)T if
nodes exchange messages every T time units. In the fault-free case, this is
essentially matched by our phase correction algorithm as well.

– With faults, the upper bound on the skew of the algorithm increases by
factor 1/(1 − α), where α ≈ 1/2 if ϑ ≈ 1. It appears plausible that this is
optimal under the constraint that the algorithm’s resilience to Byzantine
faults is optimal, due to a lower bound on the convergence rate of approximate
agreement [7].

Overall, the resilience of the presented solution to faults is optimal, its precision
asymptotically optimal, and it seems reasonable to assume that there is little room
for improvement in this regard. In contrast, no non-trivial lower bounds on the
stabilization time of self-stabilizing fault-tolerant synchronization algorithms are
known. It remains an open question whether it is possible to achieve stabilization
within o(n) time.

3 Model

We assume a fully connected system of n nodes, up to f := b(n− 1)/3c of which
may be Byzantine faulty (i.e., arbitrarily deviate from the protocol). We denote
by V the set of all nodes and by C ⊆ V the subset of correct nodes, i.e., those
that are not faulty.

Communication is by broadcast of “pulses,” which are messages without
content: the only information conveyed is when a node transmitted a pulse.
Nodes can distinguish between senders; this is used to distinguish the case
of multiple pulses being sent by a single (faulty) node from multiple nodes
sending one pulse each. Note that faulty nodes are not bound by the broadcast
restriction, i.e., may send a pulse to a subset of the nodes only. The system is
semi-synchronous. A pulse sent by node v ∈ C at (Newtonian) time pv ∈ R+

0 is
received by node w ∈ C at time tvw ∈ [pv + d− U, pv + d]; we refer to d as the
maximum message delay (or, chiefly, delay) and to U as the delay uncertainty
(or, chiefly, uncertainty).

For these timing guarantees to be useful to an algorithm, the nodes must
have a means to measure the progress of time. Each node v ∈ C is equipped
with a hardware clock Hv, which is modeled as a strictly increasing function
Hv : R+

0 → R+
0 . We require that there is a constant ϑ > 1 such that for all times

t < t′, it holds that t′ − t ≤ Hv(t
′)−Hv(t) ≤ ϑ(t′ − t), i.e., the hardware clocks

have bounded drift. We remark that our results can be easily translated to the

case of discrete and bounded clocks.8 We refer to Hv(t) as the local time of v at
time t.

Executions are event-based, where an event at node v is the reception of a
message, a previously computed (and stored) local time being reached, or the
initialization of the algorithm. A node may then perform computations and
possibly send a pulse. For simplicity, we assume that these operations take zero
time; adapting our results to account for computation time is straightforward.

Problem. A clock synchronization algorithm generates distinguished events or
clock pulses at times pv(r) for r ∈ N and v ∈ C so that the following conditions
are satisfied for all r ∈ N.
1. ∀v, w ∈ C : |pv(r)− pw(r)| ≤ e(r)
2. ∀v ∈ C : Amin ≤ pv(r + 1)− pv(r) ≤ Amax

The first requirement is a bound on the synchronization error between the rth

clock ticks; naturally, it is desired that e(r) is as small as possible. The second
requirement is a bound on the time between consecutive clock ticks, which can
be translated to a bound on the frequency of the clocks; here, the goal is that
Amin/Amax ≈ 1. The precision of the algorithm is measured by the steady state
error9 E := limr′→∞ supr≥r′{e(r)}. Self-stabilization will be introduced and
discussed in Section 6.

4 Phase Synchronization Algorithm

Our basic algorithm is a variant of the one by Lynch and Welch [18], which syn-
chronizes clocks by simulating perpetual synchronous approximate agreement [7]
on the times when clock pulses should be generated. We diverge only in terms of
communication: instead of round numbers, nodes broadcast content-free pulses.
Due to sufficient waiting times between pulses, during regular operation received
messages from correct nodes can be correctly attributed to the respective round.
In fact, the primary purpose of transmitting round numbers in the Lynch-Welch
algorithm is to add recovery properties. Our technique for adding self-stabilization
(presented in Section 6) leverages the pulse synchronization algorithm from [4, 5]
instead, which requires to broadcast constant-sized messages only.

Properties of Approximate Agreement Steps. Abstractly speaking, the synchro-
nization performs approximate agreement steps in each (simulated synchronous)
round. In approximate agreement, each node is given an input value and the
goal is to let nodes determine values that are close to each other and within the
interval spanned by the correct nodes’ inputs.

In the clock synchronization setting, there is the additional obstacle that the
communicated values are points in time. Due to delay uncertainty and drifting

8 Discretization can be handled by re-interpreting the discretization error as part of the
delay uncertainty. All our algorithms use the hardware clock exclusively to measure
bounded time differences.

9 Typically, e(r) is a monotone sequence, implying that simply E = limr→∞ e(r).

Algorithm 1: Approximate agreement step at node v ∈ C (with synchronous

message exchange).

1 // node v is given input value xv;
2 broadcast xv to all nodes (including self);
3 // if w ∈ C, the received value x̂wv ∈ [xw − δ, xw + δ];
4 receive first value x̂wv from each node w (x̂wv := xv if no message from w

received);
5 Sv ← {x̂wv |w ∈ V };
6 denote by Sk

v the kth element of Sv w.r.t. ascending order;

7 yv ←
Sf+1
v + Sn−f

v

2
;

8 return yv;

Sf+1
v Sn−f

v

Sf+1
w Sn−f

w

yw = (Sf+1
w + Sn−f

w)/2

v

w

‖x‖+ 2δ

‖y‖ ≤ ‖x‖/2 + 2δ

yv = (Sf+1
v + Sn−f

v)/2
median

Fig. 1. An execution of Algorithm 1 at nodes v and w, where n = 4. There is a single
faulty node, whose values are indicated in red. Note that the ranges spanned by the
values received from non-faulty nodes are identical up to a perturbation of ±δ.

clocks, the communicated values are subject to a (worst-case) perturbation of
at most some δ ∈ R+

0 . We will determine δ later in our analysis of the clock
synchronization algorithms; we assume it to be given for now. The effect of these
disturbances is straightforward: they may shift outputs by at most δ in each
direction, increasing the range of the outputs by an additive 2δ in each step (in
the worst case).

Algorithm 1 describes an approximate agreement step from the point of view
of node v ∈ C. When implementing this later on, we need to make use of timing
constraints to ensure that (i) correct nodes receive each other’s messages in time
to perform the associated computations and (ii) correct nodes’ messages can be
correctly attributed to the round to which they belong. Figure 1 depicts how a
round unfolds assuming that these timing constraints are satisfied.

Denote by x the |C|-dimensional vector of correct nodes’ inputs, i.e., (x)v = xv
for v ∈ C. The diameter ‖x‖ of x is the difference between the maximum and
minimum components of x. Formally, ‖x‖ := maxv∈C{xv} −minv∈C{xv}. We
will use the same notation for other values, e.g. y and ‖y‖. For simplicity, we
assume that |C| = n − f in the following; all statements can be adapted by
replacing n− f with |C| where appropriate.

v

w

τ1(r) τ2(r)

T (r)

pv(r) tvv

twv

|∆v(r)|

pw(r)

twwtvw

tv(r − 1) tv(r)

tw(r − 1) tw(r)

Fig. 2. A round of Algorithm 2 from the point of view of nodes v and w. Note that the
durations marked on the horizontal axis are measured using the local hardware clock.

Consider the special case of δ = 0. Intuitively, Algorithm 1 discards the
smallest and largest f values each to ensure that values from faulty nodes cannot
cause outputs to lie outside the range spanned by the correct nodes’ values.
Afterwards, yv is determined as the midpoint of the interval spanned by the
remaining values. Since f < n/3, i.e., n − f ≥ 2f + 1, the median of correct
nodes’ values is part of all intervals computed by correct nodes. From this, it is
easy to see that ‖y‖ ≤ ‖x‖/2, cf. Figure 1. For δ > 0, we simply observe that the
resulting values yv, v ∈ C, are shifted by at most δ compared to the case where
δ = 0, resulting in ‖y‖ ≤ ‖x‖/2 + 2δ.

Lemma 1. ∀v ∈ C : minw∈C{xw} − δ ≤ yv ≤ maxw∈C{xw}+ δ.

Corollary 1. maxv∈C{|yv − xv|} ≤ ‖x‖+ δ.

Lemma 2. ‖y‖ ≤ ‖x‖/2 + 2δ.

Algorithm. Algorithm 2 shows the pseudocode of the phase synchronization
algorithm at node v ∈ C. It implements iterative approximate agreement steps
on the times when to send pulses. The algorithm assumes that the nodes are
initialized within a (local) time window of size F . In each round r ∈ N, the nodes
estimate the phase offset of their pulses10 and then compute an according phase
correction ∆v(r). Figure 2 illustrates how a round of the algorithm plays out.

To fully specify the algorithm, we need to determine how long the waiting
periods in each round are (in terms of local time), which will be given as τ1(r),
τ2(r), and T (r)−∆(r)− τ1(r)− τ2(r). Here, we must ensure for all r ∈ N that
1. for all v, w ∈ C, the message that v broadcasts at time tv(r − 1) + τ1(r) is

received by w at a local time from [Hw(tw(r−1)), Hw(tw(r−1))+τ1(r)+τ2(r)],
2. for all v ∈ C, T (r)−∆v(r) ≥ τ1(r) + τ2(r), i.e., v computes Hv(tv(r)) before

time tv(r).
If these conditions are satisfied at all correct nodes, we say that round r is
executed correctly, and we can interpret the round as an approximate agreement

10 Dividing the measured local time differences by (ϑ+ 1)/2 is an artifact of our “one-
sided” definition of hardware clock rates from [1, ϑ]; in an implementation, one simply
reads the hardware clocks (which exhibit symmetric error) without any scaling.

Algorithm 2: Phase synchronization algorithm at v ∈ C. Round r + 1, r ∈ N,

starts at time tv(r).

1 // Hw(0) ∈ [0, F) for all w ∈ V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 foreach round r ∈ N do
4 start listening for messages;
5 wait until local time Hv(tv(r − 1)) + τ1(r); // all nodes are in round r
6 broadcast clock pulse to all nodes (including self);
7 wait until local time Hv(tv(r − 1)) + τ1(r) + τ2(r);// correct nodes’ messages

arrived
8 for each node w ∈ V do
9 τwv := Hv(twv), where first message from w received at twv (τwv :=∞ if

none received);

10 Sv ← {2(τwv − τvv)/(ϑ+ 1) | w ∈ V } (as multiset);

11 let Sk
v denote the kth smallest element of Sv;

12 ∆v(r)← Sf+1
v + Sn−f

v

2
;

13 // T (r) denotes the nominal length of round r
14 wait until time tv(r) with Hv(tv(r)) = Hv(tv(r − 1)) + T (r)−∆v(r);

step. We will show in the next section that the following condition is sufficient
for all rounds to be executed correctly.

Condition 1 Define e(1) := F + (1 − 1/ϑ)τ1(1) and inductively for all r ∈ N
that

e(r+ 1) :=
2ϑ2 + 5ϑ− 5

2(ϑ+ 1)
e(r) + (3ϑ− 1)U +

(
1− 1

ϑ

)
(T (r) + τ1(r+ 1)− τ1(r)) .

For r ∈ N, we require τ1(r) ≥ ϑe(r), τ2(r) ≥ ϑ(e(r) + d), and T (r) ≥ τ1(r) +
τ2(r) + ϑ(e(r) + U).

Here, e(r) is a bound on the synchronization error in round r, i.e., we will show
that ‖p(r)‖ ≤ e(r) for all r ∈ N, provided Condition 1 is satisfied.

Analysis. In this section, we prove that Condition 1 is indeed sufficient to
ensure that ‖p(r)‖ ≤ e(r) for all r ∈ N. In the following, denote by p(r),
r ∈ N0, the vector of times when nodes v ∈ C broadcast their rth pulse, i.e.,
Hv(pv(r)) = Hv(tv(r − 1)) + τ1(r). If v ∈ C takes note of the pulse from w ∈ C
in round r, the corresponding value τwv − τvv can be interpreted as inexact
measurement of pw(r)− pv(r). This is captured by the following lemma, which
provides precise bounds on the incurred error.

Lemma 3. Suppose v ∈ C receives the pulses from both w ∈ C and itself in
round r at a time from [Hv(tv(r − 1)), Hv(tv(r − 1)) + τ1(r) + τ2(r)]. Then∣∣∣∣2(τwv − τvv)

ϑ+ 1
− (pw(r)− pv(r))

∣∣∣∣ < ϑU +
ϑ− 1

ϑ+ 1
‖p(r)‖ .

Using Lemma 3, we can interpret the phase shifts ∆v(r) as outcomes of an
approximate agreement step with δ = ϑU + (ϑ− 1)‖p(r)‖/(ϑ+ 1), yielding the
following corollary.

Corollary 2. Suppose in round r ∈ N, it holds for all v, w ∈ C that v receives
the pulse from w ∈ C and itself in round r during [Hv(tv(r− 1)), Hv(tv(r− 1)) +
τ1(r) + τ2(r)]. Then
1. |∆v(r)| < ϑ(‖p(r)‖+ U) and
2. maxv,w∈C{pv(r)−∆v(r)−(pw(r)−∆w(r))} ≤ (5ϑ−3)‖p(r)‖/(2(ϑ+1))+2ϑU .

This readily yields a bound on ‖p(r + 1)‖ – provided that all nodes can
compute when to send the next pulse on time.

Corollary 3. Assume that round r ∈ N is executed correctly. Then

‖p(r + 1)‖ ≤ 2ϑ2 + 5ϑ− 5

2(ϑ+ 1)
‖p(r)‖+ (3ϑ− 1)U +

(
1− 1

ϑ

)
T (r) .

This bound hinges on the assumption that the round is executed correctly.
Calculations show that the bounds imposed by Condition 1 are sufficient.

Lemma 4. Suppose that τ1(r) ≥ ϑ(‖p(r)‖ − (d − U)), τ2(r) ≥ ϑ(‖p(r)‖ + d),
and that T (r) ≥ τ1(r) + τ2(r) +ϑ(‖p(r)‖+U). Then round r is executed correctly.

We have almost all pieces in place to inductively bound ‖p(r)‖ and determine
suitable values for τ1(r), τ2(r), and T (r). The last missing bit is an induction
anchor, i.e., a bound on ‖p(1)‖. This follows from the assumption that all
hardware clocks are initialized within F time units of each other.

Corollary 4. ‖p(1)‖ ≤ F + (1− 1/ϑ)τ1(1) = e(1).

Theorem 1. If Condition 1 is satisfied, for all r ∈ N, it holds that ‖p(r)‖ ≤ e(r).
If α = (6ϑ2 + 5ϑ− 9)/(2(ϑ+ 1)(2− ϑ)) < 1 (which holds for ϑ ≤ 1.1), we can
choose parameters so that this is true and Algorithm 2 has steady state error
E = limr→∞ e(r) ≤ ((ϑ− 1)d+ (4ϑ− 2)U)/((2− ϑ)α).

5 Phase and Frequency Synchronization Algorithm

In this section, we briefly summarize our results on extending the phase synchro-
nization algorithm to also synchronize frequencies. The basic idea is to apply the
approximate agreement not only to phase offsets, but also to frequency offsets. To
this end, in each round the phase difference is measured twice, applying any phase
correction only after the second measurement. This enables nodes to obtain an
estimate of the relative clock speeds, which in turn is used to obtain an estimate
of the differences in clock speeds.

Ensuring that this procedure is executed correctly is straightforward by
limiting |µv(r)−1| to be small, where µv(r) is the factor by which node v changes
its clock rate during round r. However, constraining this multiplier means that
approximate agreement steps cannot be performed correctly in case µv(r + 1)
would lie outside the valid range of multipliers. This is fixed by introducing a
correction that “pulls” frequencies back to the default rate.

5.1 Additional Assumptions on the Clocks

We require that clock rates satisfy a Lipschitz condition as well. In the following,
we assume that Hv is differentiable (for all v ∈ C) with derivative hv, where hv
satisfies for t, t ∈ R+

0 that |hv(t′)− hv(t)| ≤ ν|t′ − t| for some ν > 0. Note that
we maintain the model assumption that hardware clock rates are close to 1 at all
times, i.e., 1 ≤ hv(t) ≤ ϑ for all t ∈ R+

0 .

5.2 Algorithm

Algorithm 3 gives the pseudocode of our approach. Mostly, the algorithm can be
seen as a variant of Algorithm 2 that allows for speeding up clocks by factors
µv(r) ∈ [1, ϑ2], where ϑhv(t) is considered the nominal rate at time t.11 For
simplicity, we fix all local waiting times independently of the round length.

The main difference to Algorithm 2 is that a second pulse signal is sent before
the phase correction is applied, enabling to determine the rate multipliers for the
next round by an approximate agreement step as well. A frequency measurement
is obtained by comparing the (observed) relative rate of the clock of node w
during a local time interval of length τ2 + τ3 to the desired relative clock rate
of 1. Since the clock of node v is considered to run at speed µv(r)hv(t) during
the measurement period, the former takes the form µv(r)∆wv/(τ2 + τ3), where
∆wv is the time difference between the arrival times of the two pulses from w
measured with Hv. The approximate agreement step results in a new multiplier
µ̂v(r + 1) at node v; we then move this result by ε in direction of the nominal
rate multiplier ϑ and ensure that we remain within the acceptable multiplier
range [1, ϑ2].

To fully specify the algorithm, we need to determine how long the waiting
periods are (in terms of local time) and choose ε. These can be determined if we
ensure that round r was executed correctly for all r ∈ N, i.e.,
1. for all v, w ∈ C, the message v broadcasts at time tv(r− 1) + τ1/µv(r− 1) is

received by w at a local time from [Hw(tw(r− 1)), Hw(tw(r− 1)) + τ1/µv(r−
1) + τ2/µw(r)],

2. for all v, w ∈ C, the message v broadcasts at time tv(r − 1) + τ1/µv(r −
1) + (τ2 + τ3)/µv(r) is received by w at a local time from [Hw(tw(r − 1)) +
τ1/µv(r− 1) + τ2/µw(r), Hw(tw(r− 1)) + τ1/µv(r− 1) + (τ2 + τ3 + τ4)/µw(r)],
and

3. for all v ∈ C, T −∆v(r) ≥ τ1/µv(r−1)+(τ2 +τ3 +τ4)/µv(r), i.e., v computes
Hv(tv(r)) before time tv(r).

Main result. Due to space constraints, we omit the analysis, noting that the
overall strategy is very similar to the one for Algorithm 2. In fact, we simply
reuse the analysis from Section 4 to show that the modified algorithm executes

11 Given that hardware clock speeds may differ by at most factor ϑ, nodes need to be
able to increase or decrease their rates by factor ϑ: a single deviating node may be
considered faulty by the algorithm, so each node must be able to bridge this speed
difference on its own.

Algorithm 3: Phase and frequency synchronization algorithm, code for
node v ∈ C. Time tv(r), r ∈ N0, is the time when round r + 1 starts.

1 // Hw(0) ∈ [0, F) for all w ∈ V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 // initialize clock rate multiplier
4 µv(0) := µv(1) := ϑ;
5 foreach round r ∈ N do
6 // phase correction step
7 start listening for messages;
8 wait until local time Hv(tv(r − 1)) + τ1/µv(r − 1);
9 broadcast clock pulse to all nodes (including self);

10 wait until local time Hv(tv(r − 1)) + (τ1 + τ2)/µv(r);
11 for each node w ∈ V do
12 τwv := Hv(twv) (first message from w while listening at time twv;

τwv :=∞ if none);

13 Sv ← {2(τwv − τvv)/(ϑ+ 1) | w ∈ V } (as multiset);

14 let Sk
v denote the kth smallest element of Sv;

15 ∆v(r)← Sf+1
v + Sn−f

v

2
;

16 // frequency correction step
17 start listening for messages;
18 wait until local time Hv(tv(r − 1)) + (τ1 + τ2 + τ3)/µv(r);
19 broadcast clock pulse to all nodes (including self);
20 wait until local time Hv(tv(r − 1)) + (τ1 + τ2 + τ3 + τ4)/µv(r);
21 for each node w ∈ V do
22 τ ′wv := Hv(t′wv) (first message from w while listening at time t′wv;

τwv :=∞ if none);
23 ∆wv := Hv(t′wv)−Hv(twv);

24 Sv ← {1− µv(r)∆wv/(τ2 + τ3) | w ∈ V } (as multiset);

25 let Sk
v denote the kth smallest element of Sv;

26 ξv(r)← Sf+1
v + Sn−f

v

2
;

27 µ̂v(r + 1)← µv(r) + 2ξv(r)/(ϑ+ 1);
28 // pull back towards nominal frequency by ε, ensure minimum and maximum

rate
29 if µ̂v(r + 1) ≤ ϑ then
30 µv(r + 1)← max{µ̂v(r + 1) + ε, 1};
31 else
32 µv(r + 1)← min{µ̂v(r + 1)− ε, ϑ2};
33 wait until time tv(r) with Hv(tv(r)) + (T −∆v(r))/µv(r); // nominal round

length is T

rounds correctly. Then we analyze the convergence of frequencies and derive
an improved skew bound by adapting Corollary 3 to yield a better bound if
frequency deviations are small. This leads to the main result, which specializes
to the following more readable corollary.

Corollary 5. Suppose that ϑ ≤ 1.01 and α := (4ϑ6 + 5ϑ3−7)/(2(ϑ3 + 1)) ≈ 1/2.
Then, for any nominal round length T satisfying T � F + d and max{(ϑ −
1)2T, νT 2} ∈ O(U), a steady state error of O(U) can be achieved.

Corollary 5 basically states that increasing T is fine, as long as max{(ϑ −
1)2T, νT 2} ∈ O(U). This improves over Algorithm 2, where it is required that
(ϑ−1)T � U , as it permits to transmit pulses at significantly smaller frequencies
(granted that ν is sufficiently small).

6 Self-stabilization

In this section, we propose a generic mechanism that can be used to transform
our algorithms into self-stabilizing solutions; for simplicity, we assume that this
algorithm is Algorithm 2 throughout this section. An algorithm is self-stabilizing,
if it (re)establishes correct operation from arbitrary states in bounded time. If
there is an upper bound on the time this takes in the worst case, we refer to it
as the stabilization time. We stress that, while self-stabilizing solutions to the
problem are known, all of them have skew Ω(d); augmenting the Lynch-Welch
approach with self-stabilization capabilities thus enables to achieve an optimal
skew bound of O((ϑ− 1)T + U) in Byzantine self-stabilizing manner for the first
time.

Our approach can be summarized as follows. Nodes locally count their pulses
modulo some M ∈ N. We use a low-frequency, imprecise, but self-stabilizing
synchronization algorithm (called FATAL) from earlier work [4, 5] to generate a
“heartbeat.” On each such beat, nodes will locally check whether the next pulse
with number 1 modulo M will occur within an expected time (local) window
whose size is determined by the precision the algorithm would exhibit after M
correctly executed pulses (in the non-stabilizing case). If this is not the case, the
node is “reset” such that pulse 1 will occur within this time window.

This strategy ensures that a beat forces all nodes to generate a pulse with
number 1 modulo M within a bounded time window. Assuming a value of F cor-
responding to its length in Algorithm 2 hence ensures that the algorithm will run
as intended—at least up to the point when the next beat occurs. Inconveniently, if
the beat is not synchronized with the next occurrence of a pulse 1 mod M , some
or all nodes may be reset, breaking the guarantees established by the perpetual
application of approximate agreement steps. This issue is resolved by leveraging
a feedback mechanism provided by FATAL: FATAL offers a (configurable) time
window during which a NEXT signal externally provided to each node may trigger
the next beat. If this signal arrives at each correct node at roughly the same
time, we can be sure that the corresponding beat is generated shortly thereafter.
This allows for sufficient control on when the next beat occurs to prevent any

node from ever being reset after the first (correct) beat. Since FATAL stabilizes
regardless of how the externally provided signals behave, this suffices to achieve
stabilization of the resulting compound algorithm.

FATAL. We sum up the properties of FATAL in the following corollary, where
each node has the ability to trigger a local NEXT signal perceived by the local
instance of FATAL at any time.

Corollary 6 (of [5]). For suitable parameters P,B1, B2, B3, D ∈ R+, FATAL
stabilizes within O((B1 + B2 + B3)n) time with probability 1 − 2−Ω(n). Once
stabilized, nodes v ∈ C generate beats bv(k), k ∈ N, such that the following
properties hold for all k ∈ N.
1. For all v, w ∈ C, we have that |bv(k)− bw(k)| ≤ P .
2. If no v ∈ C triggers its NEXT signal during [minw∈C{bw(k)} + B1, t] for

some t ≤ minw∈C{bw(k)}+B1 +B2 +B3, then minw∈C{bw(k + 1)} ≥ t.
3. If all v ∈ C trigger their NEXT signals during [minw∈C{bw(k)}+B1 +B2, t]

for some t ≤ minw∈C{bw(k)}+B1+B2+B3, then maxw∈C{bw(k+1)} ≤ t+P .

Algorithm. Our self-stabilizing solution utilizes both FATAL and the clock
synchronization algorithm with very limited interaction (rendering the approach
fairly generic). We already stressed that FATAL will stabilize regardless of the
NEXT signals and note that it is not influenced by Algorithm 4 in any other
way. Concerning the clock synchronization algorithm, we assume that a “careful”
implementation is used that does not maintain state variables for a long time.
Concretely, in Algorithm 2 this is achieved by clearing memory between loop
iterations.

Algorithm 4 gives the interface code, which is basically an ongoing consistency
check based on the beats that resets the clock synchronization algorithm if
necessary. The feedback triggering the next beat in a timely fashion is implemented
by simply triggering the NEXT signal on each M th beat, with a small delay
ensuring that all nodes arrive in the same round and have their counter variable
i reading 0. The consistency checks then ask for i = 0 and the next pulse being
triggered within a certain local time window; if either does not apply, the reset
function is called, ensuring that both conditions are met. Figure 3 visualizes
how FATAL and the clock synchronization algorithm interact. Naturally, the
stabilization mechanism requires R−, R+, and M (the parameters of Algorithm 4)
to satisfy certain constraints; we refer to the full version of the paper for the
respective list.

Analysis. Our analysis starts with the first correct beat produced by FATAL,
which is perceived at node v ∈ C at time bv(1). We first establish that the first
beat guarantees to “initialize” the synchronization algorithm such that it will
run correctly from this point on. We use this do define the “first” pulse times
pv(1), v ∈ C, as well.

Lemma 5. Let b := minv∈C{bv(1)}. We have that
1. Each v ∈ C generates a pulse at time pv(1) ∈ [b+R−/ϑ, b+ P +R+ + τ1].

Algorithm 4: Interface algorithm, actions for node v ∈ C in response to a local

event at time t. Runs in parallel to local instances of FATAL and Algorithm 2.

1 // algorithm maintains local variable i ∈ {0, . . . ,M − 1}
2 if v generates a pulse at time t then
3 i := i+ 1 mod M ;
4 if i = 0 then
5 wait for local time Hv(t) + ϑe(M);
6 trigger NEXT signal;

7 if v generates a beat at time t then
8 if i 6= 0 then

9 // beats should align with every M th pulse, hence reset
10 reset(R+);

11 else if next pulse would be sent before local time Hv(t) +R− then
12 // reset to avoid early pulse
13 reset(R+ − (Hv(t′)−Hv(t))), where t′ is the current time;

14 else if next round has not started yet at local time Hv(t) +R+ then
15 // reset to avoid late pulse and start listening for other nodes’ pulses on

time
16 reset(0);

17 Function reset(τ)
18 halt local instance of clock synchronization algorithm;
19 wait for τ local time;
20 i := 0;
21 Hv(tv(0)) := Hv(t′), where t′ is current time (i.e., tv(0) := t′);
22 restart loop of clock synchronization algorithm (in round r = 1);

2. ‖p(1)‖ ≤ e(1).
3. At time pv(1), v ∈ C sets i := 1.
4. w ∈ C receives the pulse sent by v ∈ C at a local time from [Hw(pw(1)) −

τ1, Hw(pw(1)) + τ2].
5. This is the only pulse w receives from v at a local time from [Hw(pw(1))−

τ1, Hw(pw(1)) + τ2].
6. Denoting by round 1 the execution of the for-loop in Algorithm 2 during which

each v ∈ C sends the pulse at time pv(1), this round is executed correctly.

Up to the point in time where future beats interfere, we can conclude that
the synchronization algorithm will be executed as intended.

Corollary 7. Denote by N the infimum over all times t ≥ b+B1 at which some
v ∈ C triggers a NEXT signal. If minv∈C{pv(M)+e(M)} ≤ min{N, b+B1+B2+
B3}, then all rounds r ∈ {1, . . . ,M} are executed correctly and ‖p(r)‖ ≤ e(r).

This enables to show that the first time when node v ∈ C triggers its NEXT
signal after time b+B1 falls within the window of opportunity for triggering the
next beat provided by FATAL.

[]

[] [] [] [] []

[]
unstable

p1 p2 pM−1 pM pM+1

B1 B2 B3

‖pM‖+ P

unstable

valid time range for pM

beat
could be
triggered
w/o NEXT
signals

spurious
NEXT
signals

b1

b2

Fig. 3. Interaction of the beat generation and clock synchronization algorithms in the
stabilization process, controlled by Algorithm 4. Beat b1 forces pulse p1 to be roughly
synchronized. The approximate agreement steps then result in tightly synchronized
pulses. By the time the nodes trigger beat b2 by providing NEXT signals based on pM ,
synchronization is tight enough to guarantee that the beat results in no resets.

Lemma 6. For v ∈ C, denote by Nv(1) the infimum of times t ≥ b + B1

when it triggers its NEXT signal. We have Hv(Nv(1)) = pv(M) + ϑe(M) and
b+B1 +B2 ≤ Nv(1) ≤ b+B1 +B2 +B3.

This readily implies that the second beat occurs in response to the NEXT signals,
which itself are aligned with pulse M . This yields that no correct node is reset
by the second beat.

Corollary 8. For all v ∈ C, bv(2) ∈ [pv(M), pv(M) + (ϑ+ 1)e(M) + P].

Lemma 7. Node v ∈ C does not call the reset function of Algorithm 4 in response
to beat bv(2).

Repeating the above reasoning for all pairs of beats b(k), b(k + 1), k ∈ N, it
follows that no correct node is reset by any beat other than the first. Thus, the
clock synchronization algorithm is indeed (re-)initialized by the first beat to run
without any further meddling from Algorithm 4.

Theorem 2. Suppose that Algorithm 1 is executed with Algorithm 2 as synchro-
nization algorithm. If ϑ ≤ 1.03, then all parameters can be chosen such that
the compound algorithm self-stabilizes in O(n) time and has steady state error
E ≤ ((ϑ− 1)T + (3ϑ− 1)U)/(1− β), where β = (2ϑ2 + 5ϑ− 5)/(2(ϑ+ 1)). Here,
any nominal round length T ≥ T0 ∈ O(dF + d) is possible.

Observe that, in comparison to Theorem 1, the expression obtained for the
steady state error replaces d by O(dF + d), which is essentially the skew upon
initialization by the first beat. Concerning stabilization, we remark that it takes
O(n) time with probability 1− 2−Ω(n), which is directly inherited from FATAL.
The subsequent convergence to small skews is not affected by n, and will be much
faster for realistic parameters, so we refrain from a more detailed statement.

References

1. Overview of Silicon Oscillators by Linear Technology (retrieved May 2016),
http://cds.linear.com/docs/en/product-selector-card/2PB osccalcfb.pdf

2. Daliot, A., Dolev, D.: Self-Stabilizing Byzantine Pulse Synchronization. Computing
Research Repository abs/cs/0608092 (2006)

3. Distributed Algorithms for Robust Tick-Synchronization (2005–2008),
http://ti.tuwien.ac.at/ecs/research/projects/darts. Research project [retrieved: 05,
2014]

4. Dolev, D., Függer, M., Lenzen, C., Posch, M., Schmid, U., Steininger, A.: Rigorously
Modeling Self-Stabilizing Fault-Tolerant Circuits: An Ultra-Robust Clocking Scheme
for Systems-on-Chip. Journal of Computer and System Sciences 80(4), 860–900
(2014)

5. Dolev, D., Függer, M., Lenzen, C., Schmid, U.: Fault-tolerant Algorithms for
Tick-generation in Asynchronous Logic: Robust Pulse Generation. Journal of the
ACM 61(5), 30:1–30:74 (2014)

6. Dolev, D., Halpern, J.Y., Strong, H.R.: On the possibility and impossibility of
achieving clock synchronization. Journal of Computer and System Sciences 32(2),
230–250 (1986)

7. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching Ap-
proximate Agreement in the Presence of Faults. Journal of the ACM 33, 499–516
(1986)

8. Dolev, S., Welch, J.L.: Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM 51(5), 780–799 (2004)

9. FlexRay Consortium, et al.: FlexRay communications system-protocol specification.
Version 2.1 (2005)

10. Függer, M., Armengaud, E., Steininger, A.: Safely Stimulating the Clock Synchro-
nization Algorithm in Time-Triggered Systems - a Combined Formal & Experimental
Approach. IEEE Trans. Industrial Informatics 5(2), 132–146 (2009)

11. Függer, M., Schmid, U.: Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip. Distributed Computing 24(6), 323–355 (2012)

12. Huemer, F., Kinali, A., Lenzen, C.: Fault-tolerant Clock Synchronization with High
Precision. In: IEEE Symposium on VLSI (ISVLSI) (2016), to appear

13. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the IEEE
91(1), 112–126 (2003)

14. Lundelius, J., Lynch, N.: An Upper and Lower Bound for Clock Synchronization.
Information and Control 62(2–3), 190–204 (1984)

15. Schossmaier, K.: Interval-based Clock State and Rate Synchronization. Ph.D. thesis,
Technical University of Vienna (1998)

16. Schossmaier, K., Weiss, B.: An Algorithm for Fault-Tolerant Clock State and Rate
Synchronization. In: 18th Symposium on Reliable Distributed Systems (SRDS). pp.
36–47 (1999)

17. Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. Journal of the ACM
34(3), 626–645 (1987)

18. Welch, J.L., Lynch, N.A.: A New Fault-Tolerant Algorithm for Clock Synchroniza-
tion. Information and Computation 77(1), 1–36 (1988)

http://cds.linear.com/docs/en/product-selector-card/2PB_osccalcfb.pdf

	 Self-stabilizing Byzantine Clock Synchronization with Optimal Precision

