
DISS. ETH NO. 23589

Adversarial Input in Games and Markets

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

PHILIPP BRANDES

M. Sc., University of Paderborn, Germany

born on 01.08.1986

citizen of
Germany

accepted on the recommendation of
Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Martin Hoefer, co-examiner

2016

Abstract

We start by considering the trade-off between space and write overhead of
flash memory. Every flash memory has additional space for wear leveling; we
denote the space overhead with σ. Furthermore, every flash memory is forced to
rewrite valid data when a block is erased; we denote the write overhead with ω.
We show that space and write overhead are inversely proportional with σω ≥ 1.
Our analysis is tight, as our algorithm achieves σω ≤ 1 even if the data is
updated adversarially.

We study the dynamics of social networks in Chapter 3. Each node has to
decide locally which other node it wants to befriend, i.e., to which other node it
wants to create a connection in order to maximize its welfare, which is defined
as the sum of the weights of incident edges. With the limitation that each node
can only have a constant number of friends, we show that every local algorithm
is arbitrarily worse than a globally optimal solution. Furthermore, we show that
there cannot be a best local algorithm, i.e., for every local algorithm there exists
an initial social network in which the algorithm performs arbitrarily worse than
some other local algorithm. However, one can simulate a constant number of
local algorithms in order to be competitive with the best of them. After looking
for good friends, we try to hide unwanted content in the next chapter. Unwanted
content on web pages can take many forms, be it ads, malicious code, or specific
topics that the user does not want to read about (yet). We focus on the latter.
The user can define terms based on which we prevent the disclosure of undesired
information (e.g., the latest sports result). We define this formally as the node
removal problem and show its equivalence to the NP-hard knapsack problem.
Our evaluation shows that our heuristic correctly distinguishes between wanted
and unwanted content in approximately 9 out of 10 cases.

In the two last chapters, we analyze markets. First, we consider online auc-
tions with buyback; a form of auction where bidders arrive sequentially and the
bidders have to be accepted or rejected immediately. Each bidder has a valuation
for being allocated the good and a preemption price for which the good can be
bought back from the bidder. We study the clairvoyant model, a model sitting
between the traditional offline and online models. In the clairvoyant model, a
sequence of all potential customers (their bids and compensations) is known in
advance to the seller, but the seller does not know when the sequence stops. We
present an algorithm for computing the difficulty ∆, the optimal ratio between
the clairvoyant mechanism and the offline mechanism. If the number of goods
is unbounded, then the problem in the clairvoyant model is NP-hard. We show
that there is a tight gap of Θ(∆5) between the offline and the online model if the
mechanisms know the difficulty ∆ of the input sequence. In our last chapter, we
analyze the job market. Frey and Osborne quantified the automation of jobs,
by assigning each job a probability to be automated. We refine their results
in the following way: Every job consists of a set of tasks, and these tasks can
be related. We use a linear program to assign probabilities to tasks, such that
related tasks have a similar probability and the computerization probabilities of

the tasks can explain the computerization probability of a job. Analyzing jobs
on the level of the much more concrete tasks helps comprehending the results.
Our approach allows us to automatically detect inconsistencies in the results of
Frey and Osborne.

Zusammenfassung

Wir beginnen, indem wir den Kompromiss zwischen Speicher- und Schreib-
Overhead von Flashspeicher betrachten. Jeder Flashspeicher hat zusätzlichen
Speicherplatz für Wear Leveling; diesen bezeichnen wir Speicher-Overhead σ.
Weiterhin ist jeder Flashspeicher gezwungen gültige Daten erneut zu schrei-
ben, wenn ein Block gelöscht wird; wir bezeichnen den Schreib-Overhead mit ω.
Wir zeigen, dass Speicher- und Schreib-Overhead invers proportional sind mit
σω ≥ 1. Unsere Analyse ist scharf, da unser Algorithmus σω ≤ 1 erreicht, selbst
wenn die Daten nachteilig aktualisiert werden.

Wir analysieren zusätzlich die Dynamik in sozialen Netzwerken in Kapitel 3.
Jeder Knoten muss lokal entscheiden, welchen Knoten er befreunden möchte. Er
muss also entscheiden zu welchem anderen Knoten er eine Verbindung erstellen
will um seine Wohlfahrt, die als Summe der inzidenten Kanten definiert ist, zu
maximieren. Mit der Beschränkung, dass jeder Knoten nur eine konstante Anzahl
von Freunden haben kann, zeigen wir, dass jeder lokale Algorithmus beliebig
viel schlechter als eine globale, optimale Lösung ist. Ferner zeigen wir, dass es
keinen besten lokalen Algorithmus gibt. Es gibt für jeden lokalen Algorithmus
ein initiales soziales Netzwerk, bei welchem er beliebig viel schlechter als ein
anderer lokaler Algorithmus ist. Man kann jedoch eine konstante Anzahl von
lokalen Algorithmen simulieren um mit dem besten von ihnen kompetitiv zu sein.
Nachdem wir gute Freunde gesucht haben, versuchen wir im folgenden Kapitel
unerwünschten Inhalt zu verstecken. Unerwünschter Inhalt auf einer Webseite
kann viele Formen annehmen, sei es Werbung, bösartiger Code oder spezifische
Themen über die der Nutzer (noch) nichts lesen will. Wir konzentrieren uns auf
den letztgenannten Punkt. Der Nutzer kann Begriffe angeben und basierend auf
diesen verhindern wir das Anzeigen von unerwünschtem Inhalt (z.B. das aktuelle
Sportergebnis). Wir definieren dieses Problem formal als das Knoten-Entfern-
Problem und zeigen seine Äquivalenz zu dem NP-harten Rucksack-Problem.
Unsere Evaluation zeigt, dass unsere Heuristik in 90% der Fälle korrekt zwischen
erwünschtem und unerwünschtem Inhalt unterscheidet.

In den letzten zwei Kapiteln analysieren wir Märkte. Zuerst betrachten wir
Online-Auktionen mit Rückkauf; eine Form von Auktion bei der Bieter nachein-
ander erscheinen und die Bieter unmittelbar akzeptiert oder abgelehnt werden
müssen. Jeder Bieter hat eine Bewertung dafür das Gut zu erhalten und einen
Verdrängungspreis für welchen das Gut vom Bieter zurückgekauft werden kann.
Wir analysieren das hellseherische Modell, ein Modell welches sich zwischen dem
traditionellen Offline- und dem Online-Modell befindet. In dem hellseherischen
Modell ist dem Verkäufer die Sequenz an potentiellen Kunden im voraus be-
kannt, aber der Verkäufer weiß nicht, wann die Sequenz endet. Wir präsentie-
ren einen Algorithmus um den Schwierigkeitsgrad ∆, das optimale Verhältnis
zwischen dem hellseherischen Mechanismus und dem Offline-Mechanismus, zu
berechnen. Wenn die Anzahl Güter unbeschränkt ist, dann ist das Problem im
hellseherischen Modell NP-hart. Wir zeigen, dass es eine scharfe Lücke von

Θ(∆5) zwischen dem Offline- und dem Online-Modell gibt, wenn der Mecha-
nismus den Schwierigkeitsgrad ∆ weiß. In unserem letzten Kapitel analysieren
wir den Arbeitsmarkt. Frey und Osborne haben die Automatisierung von Arbeit
quantifiziert, indem sie jedem Beruf eine Automatisierungswahrscheinlichkeit ge-
geben haben. Wir verfeinern ihre Ergebnisse auf die folgende Art: Jeder Beruf
besteht aus einer Menge von Aufgaben und diese Aufgaben können verwandt
sein. Wir nutzen ein lineares Programm um diesen Aufgaben eine Wahrschein-
lichkeit zuzuweisen, so dass verwandte Aufgaben eine ähnliche Wahrscheinlich-
keit haben und dass die Automatisierungswahrscheinlichkeiten der Aufgaben die
eines Berufs erklären. Berufe auf diesem viel konkreteren Level zu analysieren
hilft dabei die Ergebnisse zu verstehen. Unser Ansatz erlaubt es uns automatisch
Inkonsistenzen in den Ergebnissen von Frey und Osborne zu detektieren.

Acknowledgements

My time as a PhD student in the Distributed Computing Group was an inter-
esting experience. I enjoyed the opportunity to explore all kinds of weird ideas,
even if most of them cannot exactly be called successful. The thesis that you
are now reading would not have been possible without the help of many people
that I would like to thank in the following.

First, I want to thank my supervisor Roger Wattenhofer for giving me the
opportunity to write my thesis in his group and supporting me throughout the
time. He allowed me to test my ideas on lots of students, which resulted in quite
a few interesting projects.

Then, I would also like to thank my co-referee Martin Hoefer for taking the
time to review this thesis and to serve on my committee.

Furthermore, there are also the other people that made my time in the
Distributed Computing Group a wonderful experience; my colleagues and co-
workers. I want to thank (in alphabetical order) Barbara Keller for always re-
membering Philipp street, Beat Futterknecht for having a guy for every problem
I ever encountered, Benny Gächter for “svn pls”, Christian Decker for explain-
ing Bitcoin to me and helping me with so many of my programming problems,
Darya Melnyk for entertaining me during my last few months at disco, David
Stolz for his wisdom, Friederike Brütsch for offering free chocolate and always
lending me an ear, Georg Bachmeier for the rage, Jara Uitto for the extremely
entertaining first few months in Zurich, Jochen Seidel for having BBQ at his
place more often than I can count, Katie Howard for showing me the pubs and
bars of Zurich, Klaus Förster for being the kindest person that I know (and for
having pitch black sense of humor), Laura Peer for her amazing driving skills,
Manuel Eichelberger for being our 9am alarm clock, The King (Michael König)
for creating great software that does not even require a database, Pankasch
Khanchandani for nearly spelling my name correctly, Pascal Bissig for making
me cringe regularly; years after I thought you couldn’t do that anymore, Tobias
Langner for showing me that it is possible, Samuel Welten for being one of the
founding members of our morning coffee and great emails, Sebastian Brandt for
always getting it again, Yuval Emek for being an excellent nanny, Yuyi Wang
for nearly always going to the correct exercise.

Last but not least, I want to thank the people most important in my life:
My parents for nurturing the nerd in me; Christoph and Sibylle for allowing me

to visit sunny Florida whenever the weather here was horrible and being perfect
hosts; and Andre, Eva, and Ole whose (near) constant willingness to provide me
with (funny) cats and moral support was vital to help me get through the more
difficult times. I will always be grateful for that. Thank you!

4

Contents

1 Introduction 1
1.1 Collaborations and Contributions 4

2 Space and Write Overhead 6
2.1 Introduction . 6
2.2 Related Work . 7
2.3 Model . 8
2.4 Cycling Algorithm . 10
2.5 Lower Bound . 11
2.6 Different Access Pattern . 14
2.7 Conclusion . 15

3 Finding Friends 16
3.1 Introduction . 16
3.2 Model . 19
3.3 On Welfare . 20
3.4 Conclusion . 30

4 Hiding Adversarial Content 31
4.1 Introduction . 31
4.2 Related Work . 32
4.3 Model . 33
4.4 NP-hardness . 34
4.5 Concept . 36
4.6 Evaluation . 37
4.7 Conclusion . 39

5 Clairvoyant Mechanisms 41
5.1 Introduction . 41
5.2 Related Work . 43
5.3 Model . 44
5.4 Auctioning Off a Single Good . 46
5.5 Auctions with Several Goods . 54
5.6 Conclusion . 58

6 Automatable Jobs and Automatable Tasks 59
6.1 Introduction . 59
6.2 Related Work . 60
6.3 Model . 61
6.4 From Task Frequencies to Task Shares 62
6.5 From Jobs to Tasks . 64
6.6 Linear Program Results . 65
6.7 Further Analysis . 71
6.8 Conclusion . 73

7 Conclusion 74

1
Introduction

To the extent we have been successful, it is because we concentrated
on identifying one-foot hurdles that we could step over rather than
because we acquired any ability to clear seven-footers.

Warren Buffet

Warren Buffet has been very successful with his approach of only tackling
easy problems. He has made billions of dollars by investing in the right com-
panies. But not all of us have the luxury to be able to pick and choose our
problems. We all face difficult problems from time to time. Solving those cor-
rectly takes a lot of time and effort, but neither guarantees success. Luckily,
we can make the dreaded seven-foot hurdles as easy as one-footers simply by
practicing. We know that “practice makes perfect”. A problem that a beginner
considers difficult is no challenge for an expert; and to become an expert one
needs to practice. Thus, people spend hours practicing – playing a musical in-
strument, writing a research paper, solving a Rubik’s cube, or performing any
other skill. It even has been quantified that it takes about 10,000 hours of prac-
tice to become an expert [57]. As a comparison, we work around 2,000 hours
each year. This approach is therefore only feasible for at most a handful of skills.

Practicing a song for so long just to be able to play it once is clearly not the
most efficient way. There are ways for a beginner to solve a difficult problem by
using shortcuts or tricks; tricks that do not require putting in that many hours.
Instead of playing the original song, a simplified version might sound nearly
as good – or maybe one could hire a band. Instead of P vs NP, one could
tackle easier problems or develop heuristics. Instead of solving a Rubik’s cube,
one could just tear it apart and rebuild it from scratch. Not every trick works
for every problem; but for most problems, there are shortcuts. This raises the
question: Why deal with the worst case if there are good and easy ways around

CHAPTER 1. INTRODUCTION 2

it? And more importantly, how do we find those? This is the main thread of
this thesis. We analyze a wide set of games with a focus on adversarial input.
After showing that these are indeed difficult problems, we look for shortcuts or
tricks. We find the equivalent of playing a simplified version of a song for some
problems; others, we take apart to rebuild them from scratch.

We start by considering write overhead in flash memory in Chapter 2. A
problem that has a simple, yet effective solution. Flash memory has become
ubiquitous due to its ever falling price and massive speed advantage over tra-
ditional hard disk drives. In its early days, flash memory had the reputation
of having a short lifespan since every block of the disk can only be written to
about 10,000 times. Flash memory has another peculiar property. The data
is stored in pages, which are grouped in blocks; and a page cannot be erased
individually. A block must always be erased as a whole. Data stored in a block
that is being erased must be moved to other pages to avoid data loss. Hence,
more data is being written and the lifespan of the disk is decreased even further.
So called flash translation layer (FTL) algorithms apply heuristics to even out
the usage of each block and thus alleviate this problem. Nevertheless, every
FTL algorithm causes write overhead ω – intuitively unnecessary writes – and
every flash memory must have space overhead σ – intuitively unused space, but
space available for FTL algorithms. These two must fulfill σω ≥ 1 if the data
is updated adversarially. Thus, one should either reserve a lot of free space for
the FTL algorithm or accept that the lifespan of the disk is very short. We also
present a simple algorithm with σω ≤ 1, i.e., that matches this bound.

We continue with a game that at a first glance does not include an adversary:
how to find and stay friends. Our analysis starts with the observation that we
spend time with people whose company we enjoy, i.e., good friends, and not
with people whose company we do not enjoy, i.e., bad friends. Furthermore,
we can only spend a certain amount of time with our friends. Combined, this
means that we need to prioritize and thus choose the best friends possible. We
formalize this setting in Chapter 3. People are modeled as nodes in a graph in
which edges represent friendships. A friendship between two nodes u, v has a
quality q(u, v) ∈ [0, 1]. Every node can only have a limited number of friends
and might need to sever an old friendship to create a new one. A new friendship
between nodes can only be created if they both want to be friends and if they
might end up being invited to the same event; formally if they are within ` hops
of each other. If the input, i.e, the initial friendship graph, is created by an
adversary, then any local algorithm to find friends performs arbitrarily worse
than a global algorithm that is not restricted to finding friends at most ` hops
from its current friends. We also prove that for any local algorithm, there exists
an initial friendship graph such that it performs arbitrarily worse than another
local algorithm. We slightly alleviate this problem by proposing an algorithm
that uses its memory to simulate several algorithms at the same time. The
output of this is, despite the local view of the nodes, at least half as good as the
best solution of the simulated algorithms.

In the next chapter, Chapter 4, we look at the more practical problem of
filtering content on web pages. Whereas this already works well for ads and

CHAPTER 1. INTRODUCTION 3

malware, topic specific filtering only exists for a small set of topics. We want to
give the user the possibility to personalize her web experience by entering the
topics that she does not want to read about. This problem is analyzed from
a theoretical and practical point of view. We show that a formalized version
of this problem is NP-hard. Thus, if the content is placed on the web page
by an adversary, solving it exactly would make the web surfing experience very
unpleasant. Hence, the Firefox extension that we developed uses a heuristic to
remove unwanted content. In our evaluation we show that it removes more than
90% of the unwanted content while removing less than 15% of the good content.

In Chapter 5 we turn towards markets, more specifically towards online auc-
tions. A good is sold at an auction – without requiring all the bidders to be
present at the same time. If a bidder shows up and bids for the good, we want
to give her an answer immediately. After the good is “sold”, our mechanism
can buy back the good from the bidder by paying her preemption price. Thus,
if we want to reallocate the good to another bidder, the new bidder must pay
enough to allow the mechanism to buy back the good. Any online auction fares
badly against an offline mechanism that knows the sequence of bidders and sim-
ply picks the best one. The following example illustrates the problem: the first
bidder bids $1 for the good and has an extremely high preemption price. If the
good is not allocated to her, no other bid is made. If she is allocated the good, a
second bidder is willing to pay much more, but not enough to pay the preemp-
tion price of the first bidder. An online mechanism will thus always make the
wrong choice. We do the equivalent of taking the problem apart to rebuild it
from scratch by analyzing it in the clairvoyant model, a hybrid between an on-
line and offline model. In this model the mechanism knows the input sequence,
but has to be prepared that it stops at any time. Thus, it must always have a
“good” solution. We present a mechanism that solves this setting optimally and
is always at most a factor of ∆ worse than the optimal offline solution. Note
that ∆ depends on the input – an input that is chosen by an adversary. We
also analyze online mechanisms that know ∆, but nothing else about the input
sequence. This class of mechanisms is Θ(∆5) competitive with respect to the
optimal offline solution.

In the next chapter, Chapter 6, we analyze one of the largest markets in the
world – the job market. With the recent advance in machine learning there are
jobs where no one spends 10,000 hours to become an expert any more – a cheap
and easily available expert already exists: our computer. This phenomenon,
called computerization, has already left its marks on the job market and is
expected to cause an upheaval in the job market and thus the economy as a
whole. Frey and Osborne were the first to quantify this change and came to
the conclusion that 47% of US employment is at risk of being automated in the
next few decades [52]. They provide a probability for every job in the O*NET
database that this job will be automated. Frey and Osborne may state that a
job has a 87% automation probability, but leave the reader wondering what this
actually means. We reinterpret their results and break them down to the tasks
of a job. We assign each task an automation probability such that 87% of the job
are automatable. Thus, the reader knows which parts of a job will be automated

CHAPTER 1. INTRODUCTION 4

in the next few decades. The additional depth of automation probabilities for
the much more concrete tasks sheds light on their results. During our evaluation,
we detect a few inconsistencies in the probabilities by Frey and Osborne.

We summarize our findings and draw a conclusion in Chapter 7.

1.1 Collaborations and Contributions

This thesis is based on several publications and drafts I worked on during my
time as a PhD student at the Distributed Computing group at ETH Zurich under
the supervision of Prof. Dr. Roger Wattenhofer. Research often is a collabora-
tive effort. I shall list in the following the publications or drafts underlying the
respective chapters along with a list of the respective co-authors. Note that the
authors of the papers are listed in alphabetical order and therefore do not repre-
sent the degree of contribution of the individual authors. Besides this, all articles
listed below are joint work with my supervisor Prof. Dr. Roger Wattenhofer.

Chapter 2 is based on the publication Space and Write Overhead are Inversely
Proportional in Flash Memory [23].

Chapter 3 is based on the publication On Finding Better Friends in Social
Network [22].

Chapter 4 is based on the publication Spoilers Ahead - Personalized Web
Filtering [17]. Co-authors were Pascal Bissig and Roman Willi.

Chapter 5 is based on the publication Clairvoyant Mechanisms for Online
Auctions [21]. Co-authors were Zengfeng Huang and Hsin-Hao Su.

Chapter 6 is based on the publication draft Opening the Frey/Osborne Black
Box: Which Tasks of a Job are Susceptible to Computerization?.

CHAPTER 1. INTRODUCTION 5

2
Space and Write Overhead

2.1 Introduction

We start with a game that features high cost if the input is adversarial.
Flash memory is omnipresent in smartphones and cameras. Solid state disks

(SSDs) based on NAND flash increasingly become the default choice for comput-
ers of any kind, from laptops to servers. They massively outperform traditional
hard disk drives, especially in random access. Unfortunately, NAND flash is also
known for having a limited lifetime, as the multi-level cells used to physically
store data can only be written and erased about 10,000 times [2]. Afterwards,
cells can no longer reliably store data. As a result, despite not having moving me-
chanical parts, flash memory is perceived as more failure prone than traditional
hard disk drives.

This problem is aggravated due to another technical property of flash mem-
ory. The smallest storage unit, a page, cannot be erased on its own, but only
with the rest of the pages of a block. A block usually consists of 64 pages, with
each page being able to store up to 2,048 bytes [94–96]. When a block is erased
to create free pages, the valid data stored in the block needs to be preserved,
i.e., written to other pages in different blocks to avoid data loss. These writes
are not issued by the user but by the system, and are as such not necessary from
the user’s point of view. We call them write overhead. Since additional writes
decrease the lifetime of the disk, write overhead should be minimized. Flash
memory is worn out, if data can no longer be written on it reliably, i.e., after at
least one block has been erased 10,000 times.

If some data gets updated often and is always stored in the same physical
block, this block will be worn out quickly. Such an access pattern is common
in a real world environment [30, 31]. To alleviate this, a logical data address is
mapped to a physical page address using a flash translation layer (FTL). This

6

CHAPTER 2. SPACE AND WRITE OVERHEAD 7

allows to distribute writes more evenly over the blocks. Using a FTL can also
improve write overhead significantly.

In Section 2.2, we will discuss various advanced heuristic algorithms that
manage to extend the lifetime of flash memory by moving data in a sophisticated
way. The internal storage capacity of the hardware is generally higher than
announced to the consumer, and this space overhead is used to move data less
often. It is known that write overhead and space overhead are related; in general
this relation depends on the application that is using the flash memory.

We study the trade-off between write overhead ω and space overhead σ in
Section 2.5. We show that there is an inversely proportional law connecting the
two. If we assume that the data is updated adversarially (by an application that
accesses data in a worst-case way), any FTL algorithm must obey

σω ≥ 1.

Moreover, in Section 2.4 we show that this inequality is tight: Our FTL
algorithm, the cycling algorithm, can achieve equality, and hence is worst-case
optimal.

In Section 2.6 we analyze the cycling algorithm with an average-case analysis.
More concretely, we assume that some data is static and never updated. The
remaining data is dynamic and updated uniformly at random. In this setting
the cycling algorithm achieves σω < 1, more precisely the write overhead is at
most µ·T+δ·T ·e

1−α
αδ

T−(µ·T+δ·T ·e
1−α
αδ)

with µ, δ, and ϕ being the fraction of the flash memory
that is filled with static data, dynamic data, and no data, respectively.

2.2 Related Work

As mentioned in the introduction, FTLs have been around as long as flash mem-
ory. Thus, we can only provide a shortened overview in this section.

The work closest to ours, as in that it also considers worst cases analysis, is
by Ben-Aroya and Toledo [16]. In their model the flash memory has T blocks
out of which only V are visible to the user, and the remaining ones solely exist
for the sake of wear leveling. They show that there exists for every algorithm
an input sequence such that the algorithm can fulfill at most (T − V + 1) · H
write requests, with H being the maximal number of writes a block can endure.
They assume that every block has exactly one page. Since this guarantees that
there is always a block that has either only free pages or only invalid pages, this
greatly simplifies the problem. It is therefore not necessary preserve the valid
data stored in the block, i.e., write it to a page in another block to avoid data
loss. Hence, write overhead does not exist.

Some papers assume a uniform distribution of write accesses and then try
to find a closed form expression for write amplification depending on the over-
provisioning [2, 118]. They use powerful (and therefore in practice rather slow)
FTL algorithms that can erase the block with the most invalid pages if no block
with a free page exists. Some work analyses specific strategies, e.g., choosing
the “best” block from a sliding window, again using a uniform distribution to

CHAPTER 2. SPACE AND WRITE OVERHEAD 8

model the write accesses [73]. In Section 2.6, we use a similar access pattern.
We assume that some data is static and never updated and the remaining data
is updated uniformly at random. But our focus is the trade-off between space
and write overhead in an adversarial setting. The trim command, i.e., marking
pages as invalid, and its effects on write amplification, are also studied under
a uniform write distribution [51]. Non-uniform write distributions are analyzed
in [44]. They employ the least recently written strategy, which is similar to our
cycling algorithm.

FTL heuristics have been around right from the start. In addition to the
mostly secret implementations by hardware manufacturers, FTL algorithms have
been published as well. We can only list a small subset of these algorithms.
The so called dual-pool algorithm tries to store cold data, i.e., data that is not
accessed much, in blocks which have been erased often [28]. This work has been
refined later [29–31]. Another approach is to use a log buffer based FTL. This
is a hybrid between page-level mapping and block-level mapping. Requests are
written to log blocks. Once such a block is filled, the data is merged with other
data from the same LBA and written into a new block, thus allowing block-level
mapping. A popular FTL algorithm is commonly referred to as FAST [88]. A
survey about FTL algorithms can be found in [35].

With the emergence of PCM-based memory, wear leveling remains an im-
portant topic even beyond current NAND flash [106]. Low level technical details
about flash memory can be found in [94–96]. There exists a journaling file
system that is developed exclusively with flash drives in mind [117].

Since details about flash memory and SSDs in particular were initially trade
secrets and thus not accessible to research, simulators were written to compen-
sate for the secrecy of the manufacturers. One of them, CPS-SIM [87], takes the
number of buses and low level clocks into account. DiskSim, a disk simulator
framework, was extended to include energy usage by [80] and parallelism and
write ordering by [3].

2.3 Model

The flash memory we consider consists of n blocks b0, . . . , bn−1. Each block bi
in turn consists of m pages pi0, . . . , pim−1. A page is the smallest accessible unit,
i.e., a page can only be accessed (read or written) as a whole. The physical pages
in flash memory store data.

A physical page continuously cycles through three distinct states: free, valid,
and invalid. First the page is free, and data can be written into it. After data was
written into the page, the page is valid as it stores useful data. Later the data
might be updated, and stored in a free flash memory page. The old page storing
the old version of that data becomes invalid. However, the old page cannot be
written again, first it needs to be erased. Because of technical limitations of
NAND flash, all pages in a block must be erased together. Before a block can
be erased, all valid pages must first be moved (written to other pages). After a
block is erased, all pages in the block are free again, and a life cycle of the page
is complete.

CHAPTER 2. SPACE AND WRITE OVERHEAD 9

Let T be the total number of pages of our flash memory, that is, T = m·n. Let
V denote the maximum number of valid pages that can be stored, the capacity
available to the user. The ratio α = T

V > 1 is referred to as over-provisioning.
We denote the space overhead with σ = T−V

V = α − 1. This σ is the relative
amount of storage that is hidden from the user, and used to improve the lifetime
of our flash memory.

Since blocks can be erased only about 10,000 times, unbalanced data access
will wear out some blocks earlier than others. The flash translation layer (FTL)
maps logical addresses to physical pages.1 This mapping is not static but evolves
over the life time of the flash memory, and is determined by the FTL algorithm.
Note that the FTL resides inside the flash memory and is invisible to the user.

To write data on flash memory, a write request must to be issued. A write
request contains the data and a logical address. The task of an FTL algorithm is
to accept write requests and choose for each write request a physical page, where
the data will be stored. We distinguish between two types of write requests. To
write new data or update existing data, an external write request will be issued.
Apart from Section 2.6, we assume that an adversary issues these external write
requests. The adversary knows the FTL algorithm and the current state of the
flash memory at any moment. Whenever a block bi that still contains valid pages
will be erased, these valid pages first need to be written to a free page to avoid
data loss. Thus, any FTL algorithm also needs to issue internal write requests
to avoid data loss.

Let Eik and Iik be the number of external and internal write requests written
into a physical page pik of block bi, respectively. Thus, the total number of
external write requests is E = ∑n−1

i=0
∑m−1
k=0 E

i
k and the total number of internal

write requests is I = ∑n−1
i=0

∑m−1
k=0 I

i
k. This allows to define the average number

of external write requests per physical page as E/T . The local write overhead ωik
of page pik is Eik+Iik

E
T

− 1, i.e., the total number of write requests over the average
number of write requests minus 1. The minus 1 is included in the term since we
focus on the overhead. We can now define the write overhead ω as

ω = max
0≤i≤n−1,1≤k≤m

ωik

= max
0≤i≤n−1,0≤k≤m−1

{
Eik + Iik

E
T

− 1
}
.

Intuitively, this is means that we are interested in the worst page. In the liter-
ature, write amplification A is defined as as the total number of write requests
W over the total number of external write requests, i.e., A = W

E = E+I
E .

We assume that the flash memory has a volatile memory (RAM) of two
blocks to temporarily store m incoming write requests and every page of one
single block. Hence, after buffering m write requests a block bi can be read and
its valid pages stored in the buffer, then block bi can be erased, and finally the
m write requests can be written into block bi.

1Some FTLs instead use a block based mapping scheme, where flash memory is addressed
on the level of blocks. In this chapter we address memory on the page level.

CHAPTER 2. SPACE AND WRITE OVERHEAD 10

2.4 Cycling Algorithm

We now present the cycling algorithm. It keeps track of the most recent block bi
it has written data into. After m write requests, these write requests are written
as a whole to the next block bj with j = i + 1 mod n. For every valid page of
this block a new internal write request is issued to avoid data loss. Note that if
bj contains only valid pages, then all these pages are written into the next block
bj′ (with j′ = i + 2 mod n). This process is repeated until less than m write
requests are buffered. This must eventually happen because we have T > V .
The pseudocode is presented in Algorithm 2.1. This algorithm is also known as
circular buffer scheme and a special case of the algorithm presented in [73]. Note
that buffering the data and writing m write requests at once is not necessary,
but it simplifies the proof. Before we start, we need a small helper lemma.

Algorithm 2.1 Cycling
1: i← 0
2: for every write request do
3: while number of outstanding write requests ≥ m do
4: issue write request for every valid page from block bi
5: erase block bi
6: write data from write requests into bi
7: i← i+ 1 mod n
8: end while
9: end for

Lemma 2.2. The write overhead ω is always larger than the ratio between the
total number of internal and external write requests, i.e., ω ≥ I

E .

Proof. To see that the inequality holds consider the average local write overhead
of an arbitrary page pj` of block b`. We have Ej` = E/T and Ij` = I/T and
therefore ωj` = Ej

`
+Ij

`
E
T

− 1 = E/T+I/T
E/T − 1 = I

E . The pigeon hole principle now
yields that there must be a physical page that has local write overhead of at
least I

E .

Theorem 2.3. The cycling algorithm guarantees σω ≤ 1.

Proof. To see this, consider one run from “left to right”, i.e., from block b0 to
block bn−1. We briefly show data that is not updated can only cause one internal
write request per run. W.l.o.g. let bi be the block in which the data is stored. We
now analyze what happens when this block is erased. Since the corresponding
page is valid, this causes an internal write request. Thus, the data is later written
to some block bj with j > i. The next write requests are written into block bj+1.
Thus, no second write request for the data is issued in this run.

Data that is updated does not cause an internal write request after it has
been updated. W.l.o.g. let us assume that this data was written in block bi. The
next block into which data is written in this run is block bj with j > i. Thus,
the data stored in bi does not cause an internal write request.

CHAPTER 2. SPACE AND WRITE OVERHEAD 11

In the beginning, there are V valid pages and thus T − V free or invalid
pages. While writing T pages, we have to issue up to V internal write requests
to avoid data loss. Thus, in one cycle the T write requests are made up by V
internal and E external write requests. Since exactly the same number of write
requests is written into each block, the average local write overhead is identical
to the write overhead. Thus, we obtain ω = I/n+E/n

E/n − 1 = (V)/n+(T−V)/n
(T−V)/n − 1 =

V
T−V = V

V (α−1) = 1
α−1 = 1

σ .

2.5 Lower Bound

We now show that there is no algorithm that can be better than our simple
algorithm in the worst case, i.e., when the data is updated adversarially. But
before we continue, let us introduce a few terms. We define d to be 1

α ·m. A block
is called sparse if it has less than d valid pages, and is called dense if it has at
least d valid pages. We assume w.l.o.g. that d is an integer. Note that each block
can be dense, i.e., contain at least d valid pages because we have up to V valid
pages in total. We assume for technical reasons that there are m additional valid
pages stored on the flash memory. Thus, even when the algorithm has buffered
m write requests, every block can still be dense.

Theorem 2.4. No algorithm can guarantee σω < 1.

Proof. We will first make a few simplifying assumptions that will be lifted later
on. We assume that every block contains exactly the same number of valid pages,
i.e., d = 1

α ·m valid pages in the beginning and we assume that every algorithm
writes only once its buffer is full. Furthermore, we do not allow static wear
leveling, i.e., moving valid pages from one block to another without an external
write request.

The main idea of this proof is that the adversary can choose which page
becomes invalid by updating the corresponding data. Thus, he is able to always
invalidates pages in such a way that every block remains dense. Thus, only a
“few” external write requests can be written into a block until there are no free
pages left in a block. Because the block is still dense, “a lot” of internal write
requests have to be issued to avoid data loss. Thus, the write overhead is “high”
and therefore also the product of space and write overhead.

Figure 2.5: The green pages are free, the blue pages are valid. The adversary will
invalidate pages from block b5, since it is the only block with more than d valid pages.

CHAPTER 2. SPACE AND WRITE OVERHEAD 12

An example is shown in Figure 2.5. The pages in block b5 will be invalidated,
since this is the only block that has more than d valid pages.

Recall that I denotes the total number of internal write requests and E
denotes the total number of external write requests. As shown in Lemma 2.2,
we have ω ≥ I

E . Thus, it suffices to show that I
E ≥

1
σ holds. We do this by

carefully accounting for the number of external and internal write requests per
block and showing that no block achieves a better ratio.

When any algorithm writes m write requests into a block, it has to issue d
internal write requests to preserve the d valid pages. Note that this means that
the buffer of the algorithm is not empty, but contains d write requests. From
now on, it can accept m−d external write requests until its buffer is filled and it
writes m pages. Thus, the write overhead is d

m−d =
1
α
m

m− 1
α
m

=
1
α

1− 1
α

= 1
α−1 = 1

σ .
This is equivalent to σω = 1.

We start by lifting the assumption that any algorithm writes data only when
its buffer is full. The proof above can easily be adapted such that the adversary
no longer invalidates pages from the one dense block, but from any dense block.
Note that such a block must always exist since the average number of valid pages
in a block is d. If we now consider the write overhead of each block separately, it
is easy to see that the same approach works with more fine grained writing/in-
validating. Every block can accept at most m − d external write requests and
issues d additional internal write requests when it is erased. Thus, we obtain
ω = d/(m− d) = 1

σ .
Next, we allow the data to be unevenly distributed on the flash memory in

the beginning. Note that, once again, the adversary only invalidates pages of
dense blocks. These pages now need to be written into a new block. Let bi
be the block selected by the algorithm. If bi is dense, then the algorithm can
only write m − d pages into it before it is full. If bi is now erased, then there
were at most m− d external write requests but m write requests in total. Thus,
the write overhead is d/(m − d) = 1

σ . Let bi be a sparse block. The algorithm
can write up to d pages per sparse block and thus up to n · d pages in total in
sparse blocks until there is no sparse block left. Note that the adversary will
not invalidate a page of a sparse block and thus will not create a sparse block.
Hence, at most V external write requests can be written and therefore it does
not affect the asymptotic behavior.

Figure 2.6: The green pages are free, the blue pages are valid. The adversary will
invalidate pages from block b1, b2, b6, since they have more than d valid pages.

An example is shown in Figure 2.6. Every block that has more than d valid

CHAPTER 2. SPACE AND WRITE OVERHEAD 13

pages will have at least one page invalidated. In our example this means 2 pages
from block b1, 3 pages from block b2, and 3 pages from block b6.

We continue by showing how to lift the assumption that the algorithm does
not perform static wear leveling. We start with the simple case that an algorithm
erases blocks while they still have free pages. If algorithm A chooses to erase
this block prematurely, then there were at most m−d−1 external write requests
written to this block. Since the adversary ensures that every block is dense, there
are d internal write requests. Thus, the write overhead is at least d/(m−d−1) >
d/(m− d) and therefore σω > 1.

We now focus on static wear leveling, i.e., valid pages being moved between
blocks. We prove our result by carefully accounting for the external and internal
write requests. Let k be the number of pages that have been moved from block bi
before block bi needs to be erased. Note that if this block is not erased, then it is
clear that issuing the k internal write requests only increases the write overhead.
Thus, we can assume that block bi is erased later on.

If pages from a dense block are moved and the block remains dense, then it is
easy to see that when this block is erased at most m− d external write requests
can be written into this block and d internal write requests are issued. Thus,
we obtain the familiar expression d/(m − d) for the write overhead. The same
argument holds if the page becomes dense again before it is being erased.

Hence, let s < d be the number of valid pages when block bi is erased. We
proceed by showing that between now and the last time this block was erased,
its write overhead is 1

σ . Since the block started with d valid pages, it could only
accept m−d external write requests. Because of the static wear leveling at least
d−s internal write requests were issued. To preserve the data another s internal
write requests were issued. Thus, the total number of internal write requests
issued for data from this block is at least (d− s) + s = d. Combined this yields
ω = ((d− s) + s)/(m− d) = d/(m− d) = 1

σ . Hence, static wear leveling has not
decreased the write overhead. But now the block contains only s valid pages.
We will now proceed to show that the result of it also does not decrease the
write overhead.

We now show that between now and until the next time block bi is erased,
the write overhead is at least α/(α − 1). Keep in mind that the adversary
will continue to only invalidate pages from dense blocks. Thus, this block will
inevitably become dense. Until the next time this block is erased, there can
be m − s many external write requests and there are at least d many internal
write requests. We consider the d − s pages that were moved and denote them
emigrant pages. It is easy to see that each block that stores an emigrant page
can accept one less external write request before being erased. We account these
to block bi. Thus, there are m−s−(d−s) = m−d many external write requests.
The number of internal write requests is d (simply to preserve the valid pages).
Thus, we obtain ω = d/(m− d). This yields the claim.

2.5.1 Total Number of Pages Written

Note that the blocks of a flash memory need to be used evenly to maximize the
life of the flash memory. In a perfect scenario flash memory with T pages and

CHAPTER 2. SPACE AND WRITE OVERHEAD 14

each block being able to withstand H writes, then this flash memory can endure
up to H · T pages being written before its end of life. Due to the fact that not
every block is worn equally and write overhead, this cannot be achieved.

It is easy to see that the cycling algorithm wears the blocks out evenly.
Hence, the write overhead is the only criteria, which determines the how many
write requests can be written. Since its write overhead is optimal, the cycling
algorithm can write a T ·H

ω+1 pages. This leads to the following corollary.

Corollary 2.7. The cycling algorithm maximizes the amount of data written on
the flash memory in the worst case.

2.6 Different Access Pattern

Until now we have assumed that an adversary chooses which page is invalidated
and we have given the adversary complete knowledge about the employed wear
leveling algorithm. This is a rather pessimistic point of view. Thus, we now
assume a simple access pattern and analyze the performance of the algorithm
described above. It is easy to see that if data is simply written sequentially
and the “oldest” data is always being invalidated, then the cycling algorithm is
optimal and has no write overhead (independent of the space overhead). Hence,
the effect of the access pattern should not be neglected.

2.6.1 Uniform Write Access Pattern

Let us describe a more realistic write access pattern, albeit a very simple one:
the logical address of a write request is chosen uniformly at random. We say
that a write request is random when its logical address is chosen uniformly at
random. Let us give an intuition why this write access pattern should positively
influence the write overhead. The worst case analysis assumed that while cycling
from block b0 to bn−1, V internal write requests were issued. But if the write
requests are uniform at random, some pages will inevitably be invalidated and
thus it is not necessary to issue an internal write request for these.

Lemma 2.8. The cycling algorithm has an expected write overhead of at most
e

αeα−e if the external write requests are uniform at random.

Proof. We first calculate the probability that a page in a block that is currently
being written into is still valid when the algorithm has cycled through the flash
memory once and then use this to calculate the expected write overhead.

Consider a fixed physical page. We use the same argumentation as in the
proof of Theorem 2.3 to show that there are at least T−V external write requests
until the cycling algorithm writes again in this block. The probability that the
logical address associated with this physical page is invalidated by one external
write request is 1

V . Thus, the probability that it is not invalidated and still valid
after T − V external write requests is at most

(
1− 1

V

)T−V
=
(
1− 1

V

)V (α−1)
≈

e−(α−1). We conclude that the expected number of internal write requests is at
most e−(α−1) ·V while writing V pages. Note that it suffices to consider V pages

CHAPTER 2. SPACE AND WRITE OVERHEAD 15

because we only need to look at the V logical addresses that are valid. Thus, we
obtain ω ≤ e−(α−1)·V

T−e−(α−1)·V = e
αeα−e .

Note that σω ≤ σ e
αeα−e = σ e

e(αeα−1−1) = σ
(σ+1)eσ−1 = σ

σeσ+eσ−1 ≤
1
eσ < 1.

In order to make our access pattern more realistic, we divide the data into
two types: static and dynamic. Static data is data that is never invalidated
whereas dynamic data is data that is invalidated uniformly at random. Let µ, δ,
and ϕ be the fraction of static data, dynamic data, and free space, respectively.
Thus, we have µ+ δ + ϕ = 1.

Theorem 2.9. If the external write requests are uniform at random, then the

cycling algorithm has write overhead ω ≤ µ·T+δ·T ·e
1−α
αδ

T−(µ·T+δ·T ·e
1−α
αδ)

.

Proof. It is easy to see that while cycling from “left” to “right”, i.e., from block
b0 to block bn−1, every page containing static data is still valid and thus causes
an internal write request to avoid data loss. The dynamic data can be analyzed
as before. Consider a fixed valid physical page containing dynamic data. The
probability that one external write request invalidates this page is 1

δ·T . While
cycling from left to right, we can lower bound the number of external write
requests by T − V . Thus, the probability that this page is not invalidated while
cycling once from left to right is at most (1 − 1

δ·T)T−V ≈ e
1−α
αδ . Hence, the

number of internal write requests from dynamic data is δ ·T · e 1−α
αδ while cycling

through the flash memory once. This leads to an expected write overhead of at
most µ·T+δ·T ·e

1−α
αδ

T−(µ·T+δ·T ·e
1−α
αδ)

2.7 Conclusion

We have analyzed the connection between write overhead ω and space overhead
σ in flash drives. We have shown that they are fundamentally connected and that
σω ≥ 1 must always hold if the data is being updated adversarially. This bound
is tight as there exists a simple algorithm that achieves σω ≤ 1 independent of
how the data is being updated. Thus, if we have to assume that data is being
accessed adversarially and we thus face a difficult problem, our simple algorithm
is optimal.

3
Finding Friends

3.1 Introduction

We now look at a game that does not seem to involve adversaries: how friendships
evolve in social networks. Our focus is on initial friendship graphs that are
created by an adversary.

Psychologists claim that you have a limit of how many friends you can han-
dle [47]. Consequently, you should assess your current friends, and drop those
that are unsatisfactory, to make room for new ones! We study the computational
side of finding friends in social networks. We assume that people can only choose
new friends among their current social environment, i.e., one can only become
friends with friends of friends, or more generally with acquaintances in the `-hop
neighborhood of the current friendship graph. If people constantly improve on
their friendships with this local strategy, will this eventually lead to a social op-
timum, or at least an approximate solution? What is the best strategy to find
new friends? Should one just greedily pick the best available friends? Or should
one rather try to be friends with a diverse set of people, in order to profit from
a larger set of possible new friends?

Not so surprisingly, we show that any local friend-finding strategy will only
converge to a solution that is arbitrarily worse than a global optimum. More
surprisingly however, there is no best local strategy. No matter what the strategy
is, there is always a possible input scenario where other local strategies are much
better. We also study mixing strategies, i.e., we allow everyone to use several
strategies to find their friends. Additionally, we investigate slightly changed
valuation models. We show that judging a friend not on his own, but also by his
friends, can lead to unstable states, i.e., nodes switch friends indefinitely. We
also analyze a valuation model in which breaking up a friendship reduces the
valuation of the friendship permanently.

16

CHAPTER 3. FINDING FRIENDS 17

3.1.1 Related Work

An early ancestor of our work is the stable marriage problem, introduced by
Gale and Shapley [40] in 1962: We are given n nodes, partitioned into two sets
commonly denoted as men and women. Each woman has a strictly ordered
preference list over all men and vice versa. They now want to create a stable
matching. A matching is called stable if there is no pair of man and woman such
that, instead of being matched to their current partner, they would prefer to be
matched to each other. The roommate problem [40] is another related research
area, where the nodes are not partitioned into two disjoint sets. Each node again
has a complete, strictly ordered preference list. In this basic setting there might
not be a stable matching. The problem is further investigated in [1, 45], stating
restrictions to allow and find stable matchings. An overview on stable marriage
can be found in e.g., [63] and a more detailed analysis of matchings in bipartite
graphs in [108]. Stable marriage has also been studied as an online problem
where the preferences of the men are revealed one at a time [79]. In this setting
there are Ω(n2) initially unstable marriages in the worst case.

Much research has been done in the stable marriage area on preference lists
with ties [48, 77], i.e., when the constraint of strictly ordered preference lists is
lifted. In our model we assume locality of information, i.e., nodes do not know
their complete preference list. Furthermore, we do not require the nodes to have
a strict ordering. Finding a maximum matching for stable marriage with these
extensions, ties and incomplete preference lists, is known to be NP-hard [74,91].
It can be approximated within a factor of 2 [91]. It can also be approximated
within a factor which depends on the number of ties in the preference lists [66].

There have been several approaches to solve stable marriage in a distributed
way. In [49] the nodes can only try to be matched to a fixed set of adjacent
nodes.

Generally related to our work are network formation games from the field
of economics. The nodes create links, as a one shot game or dynamically, to
generate welfare which depends on the created links. This welfare is allocated
to the players according to some specific rules. These games include models of
so called market sharing agreements, in which companies can agree not to sell
goods on each others markets to increase their profits [15], and labor markets,
where workers get jobs offered and pass the offer to one of their friends if they
are already employed [26]. Another example is the model of a general buyer and
seller market in which a link represents a potential transaction [83]. A survey
on this area is in [75].

So far, the possible matching edges were a fixed set of edges. In [6], the nodes
are partitioned into two sets, workers and firms. There are static connections
between some workers which indicate friendship. The workers are matched using
a local variant of the Gale-Shapley algorithm, but only to firms which are known
to their friends. This introduces a dynamic set of matching partners. If a worker
changes his company, this can change the set of possible matching partners for
his friends. The model used by Martin Hoefer generalizes this [71]. The set of
nodes is not partitioned and nodes can possibly have more than one matching
partner. In his paper, Hoefer studies the convergence time of matching edges

CHAPTER 3. FINDING FRIENDS 18

in a social network, with a limited lookahead `. For ` = 2 this means that
the nodes only know the neighbors of their neighbors. In general, nodes can
only create a connection to nodes which are in a distance of at most ` hops.
Hoefer’s model distinguishes between social links and matching links. Social
links are static edges, which already exist in the initial graph, and keep existing
throughout the execution of the algorithm. Matching links on the other hand
are created and possibly removed by the algorithm. We drop this difference, and
only use one kind of (dynamic) edges. If needed, we can easily emulate social
(static) links by adding edges with maximal quality, which will not be removed
at Whereas Hoefer’s focus was primarily on runtime, we primarily investigate
the achieved welfare. Since our model is used to describe cooperation between
different players or actual friendship, we also assume that both partners value a
potential relationship identically.

Later, it was shown that deciding reachability, i.e., whether a certain fixed
matching can be reached starting from a fixed initial friendship graph, is NP-
hard [72].

3.1.2 Our Contributions

We describe our model and our assumptions in Section 3.2. We first describe
local algorithms that try to maximize the welfare of the participants, i.e., try to
find good friends. This is done by selfishly maximizing the sum of the qualities
of incident edges. We prove in Section 3.3 that there cannot be an optimal, local
algorithm. We do this in two steps. First, in Section 3.3.1, we show that no local
algorithm can compete with a global, optimal algorithm, i.e., any local algorithm
will be arbitrarily worse in certain scenarios. Afterwards, in Section 3.3.2, in the
spirit of [4], we compare local algorithms with other local algorithms. We prove
that there is no best local algorithm, i.e., one which is always at least as good
as every other local algorithm. For every local algorithm there exists an initial
friendship graph where it is arbitrarily worse than another local algorithm. This
includes randomized algorithms. In Section 3.3.3 we allow the nodes to execute
several algorithms in parallel by allowing them to use memory. Although every
local algorithm can be arbitrarily worse than a global optimum, we show that
the nodes can achieve a factor 2 approximation in comparison to the best of the
executed algorithms.

In Section 3.3.4 we study a slightly modified model, where friends of friends
also matter how we value a friend. We show that there exist initial friendship
graphs in which a simple algorithm no longer achieves a stable state. In Sec-
tion 3.3.5 we assume that ending a friendship permanently damages the quality
of a friendship. If we assume that a breakup reduces the quality of the friendship
by a constant value, then the runtime of any algorithm is O(n2). If we assume
that a breakup reduces the quality of the friendship by a constant factor, then
there are initial friendship graphs where the stable state that can be reach with-
out using memory is a factor of Θ(n) worse than the stable state that can be
reached when using memory.

CHAPTER 3. FINDING FRIENDS 19

3.2 Model

We model a social network with a set V of nodes (human beings), n = |V |.
There exists a quality function q : V × V → [0, 1] that represents the quality
of a friendship for any two nodes u, v ∈ V . A higher value means a better
friendship. We do not consider negative edge qualities since no node has an
incentive to create an edge, which reduces its welfare. The quality is symmetric,
i.e., q(u, v) = q(v, u). Without symmetry we can create a similar cycle as in the
roommate problem [40] and thus not reach a stable state. Initially, the nodes are
connected by an arbitrary graph G = (V,E), representing the initial knowledge
graph. In other words, if two nodes are neighbors in G, they are initially friends.
Nodes might decide to create new friendships (edges), and friendships can also
be ended. The set of edges E is as such highly dynamic.

A node’s welfare (happiness) depends on the quality of its friendships. For-
mally, the welfare of a node v is defined as ∑u∈N(v) q(u, v), where N(v) denotes
the set of neighbors (current friends) of v. Nodes try to maximize their personal
welfare by finding new friends with high quality values.

In reality, one cannot be friends with everybody. However, since our edge
qualities are non-negative, nodes could just accumulate more and more friends,
until G is a clique. We do not want this effect in our study; as such each node v
has a maximum number of possible friends kv, an individual constant parameter.
If a node v already has kv friends, and fancies a new friend, it must first drop
an old friend.

Nodes cannot choose their friends arbitrarily. Instead, they can only choose
friends that are already within their visibility. More formally, we define the con-
stant parameter ` which we call lookahead. A node can only initiate a friendship
to nodes within ` hops of graph G. For example, if ` = 2, apart from its friends
(neighbors in G) a node can only see its 2-hop neighbors (friends of friends); new
friends can only be found among these 2-hop neighbors. As such we deal with
so-called `-local algorithms. A node has all the information in its `-hop neigh-
borhood. In particular it knows about all the friendships and all the qualities in
the `-hop neighborhood.

Nodes run `-local algorithm in order to optimize their friendship graph. Since
friendships are a serious business with lots of potential for conflicts of interest,
one needs to be careful about the issue which node can propose friendships
to which other node at what time. There are various meaningful models here.
Indeed, our proofs are relatively robust and work in different kinds of algorithmic
models.

We suggest the round-robin model. In this model, all nodes take turns in
a round-robin fashion. Whenever it is the turn of a node v, v can propose
friendship to different nodes in its `-hop neighborhood. The order in which it
asks these nodes is completely up to v; this order is basically the friend-finding
algorithm. If v has already kv friends, it only proposes to nodes whose friendship
is more valuable (edge quality is higher) than that of v’s worst friend, i.e., to
better friends. A node u that is asked by v evaluates the proposed friendship.
If u still has room for a new friend, or if v’s proposed friendship is better than

CHAPTER 3. FINDING FRIENDS 20

Figure 3.1: Two subgraphs G1, G2 which are never in contact with each other because
they are separated by a bridge GB with a diameter of at least `.

the worst of u’s current friendships, u will accept the edge (and drop its worst
friendship if necessary). In other words, a new edge is only added to the graph
if both nodes u, v adjacent to edge (u, v) want the edge. If a node gets rejected
from a potential new friend, it continues to ask other candidates according to
the ordering.

If a node does not find any better friend, the round-robin model asks the next
node to find a friend. The procedure ends if no new friendships can be discovered,
i.e., if a whole round-robin loop does not change the friendship graph anymore.
We call this a stable state.

Note that the initial friendship graph G constrains the final outcome. If
two nodes are in different connected components of the initial graph G, then
they can never become friends as they cannot learn about each other. Also,
connected components may partition into smaller connected components during
the execution of the algorithm. For the sake of simplicity, we assume that the
initial friendship graph G is connected; however, alternatively, just think of our
analysis to take place in one of the original connected components.

We can imagine various ways to increase the power of the nodes. In partic-
ular, nodes might have additional, constant size memory. Memory allows nodes
to remember special former partners, e.g., the best ones they dropped, nodes for
which the creation of the corresponding edge had some specific properties, or
any other mechanism imaginable. Nodes stored in the memory can be added to
the list of candidates which will be asked by the algorithm. An algorithm might
try to combine several algorithms into one by executing them in parallel. This
can be done by performing one round of each algorithm alternately and using
the memory to remember the states of the other algorithms. Note that due to
the constant memory, only a constant number of algorithms can be combined in
this way.

3.3 On Welfare

In this section we compare different algorithms. As a measurement we use the
welfare in the stable states. We compare the globally achieved welfares, i.e., the
sum of welfare achieved by all nodes. Algorithm A is said to be arbitrarily worse
than algorithm B if the welfare in the stable state of A is O(n · ε) whereas it is
Ω(n) in the stable state of algorithm B. Note that ε can be arbitrarily small,
e.g., as small as any function in n such as ε = 2−n.

CHAPTER 3. FINDING FRIENDS 21

In the model section we have described algorithms, which only choose bene-
ficial partners. Let us justify why we focus on this class of algorithms. We show
that temporarily accepting up to c worse friends results in a constant increase
in the lookahead from ` to `c.

Lemma 3.2. If all nodes are allowed to temporarily choose c worse neighbors,
the length of shortest path between two nodes u, v can only decrease by at most
a constant factor.

Proof. Let u, v be two nodes which are not neighbors. If the graph is connected,
there exists a path of length k from u to v via nodes u1, . . . , uk. If each node
is only allowed to select one worse partner, the distance is minimized if every
`-th node connects to a node in distance ` bypassing the `− 1 now unnecessary
nodes in between. The path now consists of the nodes u, u`, u2`, . . . , v. Hence,
the distance can be reduced by at most a factor of ` in total, i.e., to at least k

`
which is a constant factor reduction since ` is independent of n. Thus, if every
node chooses a worse friend at most c times, then the distance decreases by a
factor of at most `c, which is only a constant.

Hence, if nodes are allowed to temporarily choose worse partners, all the
proofs still hold by increasing the distances from ` to `c. Thus, we will not treat
this separately but mention it briefly in the proofs.

3.3.1 Local vs Global Algorithms

Let us now analyze how local algorithms perform when compared against a
global optimum, i.e., a graph which maximizes the sum of welfare achieved by
all nodes.

Theorem 3.3. For nodes with a constant lookahead ` and a constant size mem-
ory there exist initial friendship graphs for every local algorithm such that its
reached welfare is arbitrarily worse than a global optimum.

Proof. Consider an initial friendship graphs as depicted in Figure 3.1. The graph
consists of three subgraphs G1, G2 and GB. The two larger subgraphs G1, G2
are connected through a bridge GB, which has a diameter of at least ` and each
node v in the bridge has already kv friends. The valuations are such that for
every pair (u, v) ∈ G1 ×G2 the quality is 1, for every pair (u, v) ∈ Gi ×Gi with
i ∈ {1, 2}, we have q(u, v) = ε. Furthermore, for every (u, v) ∈ Gi × GB with
i ∈ {1, 2}, q(u, v) = ε/2, except for the nodes in Gi that are connected to nodes
in GB. These nodes value each other with ε as well. Every node v ∈ GB values
every other node u ∈ GB with 2ε if the edge exists in the initial friendship graph
and with 0 otherwise.

Hence, the nodes in the bridge already have their best possible friends and
therefore will not change their friends. These valuations represent an initial
friendship graph in which no node really likes his friends, but does not know any
better candidates.

This initial friendship graph is a stable state, hence no local algorithm will
create an edge between any node from G1 with any node from G2 because of

CHAPTER 3. FINDING FRIENDS 22

Figure 3.4: A track going from left to right. The dashed, gray edges are created by the
execution of a local algorithm, the black edges are given in the initial friendship graph.

the distance between those subgraphs. This holds due to Lemma 3.2 even if the
nodes are allowed to choose non-beneficial partners. Furthermore, the nodes in
GB are not appealing for any node and thus remain isolated. Therefore, the
best achievable stable state is O(n · ε). In the optimal solution the nodes from
the sets G1, G2 are connected to each other to achieve a stable state with value
Θ(n− |GB|) = Θ(n).

Note that this result relies on the fact that any reasonable, local algorithm
is only willing to create connections to beneficial partners or is only willing to
accept a worse partner a constant number of times. Let us further remark that
the initial friendship graph and any stable state reached by a local algorithm
is not necessarily Pareto efficient. This means that there are initial friendship
graphs where we can easily improve the welfare of some nodes without lowering
the welfare of other nodes, e.g., by moving one node v from G1 to G2. Now v
can make better friends. This increases v’s welfare (and the welfare of the nodes
which are now friends with v) but does not lower the welfare of any node.

3.3.2 Local vs Local Algorithms

We now show that there cannot be a best local algorithm, i.e., an algorithm,
which can achieve a stable state whose welfare is at least as good as the welfare
of any other local algorithm. We prove that for every local algorithm there
exist initial friendship graphs in which it is arbitrarily worse than another, local
algorithm. But first, we need a few more terms.

Definition 3.5. A track of length j consists of two disjoint sets, each with j
nodes. The nodes of each set are initially arranged in a line as shown in Fig-
ure 3.4 (connected to each other with the edges colored in black). The dashed,
gray edges have a strictly monotonic increasing quality from left to right. The
black edges from the initial friendship graph have a quality of O(ε). The remain-
ing edges have a quality of 0 and are therefore never used. Every node v of a
track has kv ≥ 4. After the initial edge e is created, any algorithm in our model
will create the dashed, gray edges, starting with e1, one by one from left to right,
i.e., in increasing order regarding their quality. The creation of one dashed, gray
edge allows the creation of the next dashed, gray edge since those nodes are now
within ` hops of each other. We call the creation of the edges exploration of a
track.

CHAPTER 3. FINDING FRIENDS 23

Definition 3.6. A successful track generates a welfare of Ω(n) if the initial edge
e is created. In such a track we can set the quality of the edges in the initial
friendship graph to O(ε) and the edge quality of the selected edges connecting
those two sets, i.e., the dashed, gray edges in Figure 3.4 to a constant. A suc-
cessful track must have length Ω(n). Upon creating the initial edge e on the left,
the track can be explored. After every dashed, gray edge is created, the welfare
is Ω(n); without the initial edge the welfare is generated only by the edges of the
initial friendship graph and thus O(n · ε).

Definition 3.7. A track T is said to be blocked if, during the exploration, no
further edge is created because at least ` consecutive nodes have already friends
that are better than those of the track T . This stops the exploration since the
nodes have no incentive to continue to explore the track.

Similarly, a track T2 blocks another track T1 if nodes of T2 are part of the
reason why T1 is blocked. An example of this can be seen in Figure 3.8.

Figure 3.8: Two tracks T1 and T2 interacting. T1 is blocked by T2 since the shared
nodes of both tracks have no incentive to create the edges of T1 since they are content
with the edges of T2.

Theorem 3.9. For nodes with a constant lookahead ` and a constant size mem-
ory there exist initial friendship graphs for every deterministic, local algorithm
such that its reached welfare is arbitrarily worse than that of another determin-
istic, local algorithm.

Proof. Consider two concatenated tracks T1, T2 each of length at least `. On top
of each of the ` nodes of the first track T1 are four nodes in a line, i.e., each node
ui is connected to a different intermediate node v′i which is connected to node
vi. This subgraph of the initial friendship graph is depicted in Figure 3.10. We
define kvi = 2 and kui = 4 for all nodes ui, vi with i ∈ {1, . . . , `}, i.e., every node
ui can create a connection to exactly one more node whereas vi must sever an
edge to create a new edge. Let v′i be vi’s worst friend. The qualities are such
that q(ui, vi) > q(ui, xi) holds. Let the edges from the initial friendship graph
have a quality larger than q(ui, vi) for all i ∈ {1, . . . , `} to guarantee that they
will not be severed.

CHAPTER 3. FINDING FRIENDS 24

Node vi has two options. It can either create a connection to node ui or to
node wi; all other nodes are valued with 0. If every node vi with i ∈ {1, . . . , `}
decides to create a connection with ui, then node ui will not create the edge
(ui, xi) because of q(ui, vi) > q(ui, xi). Thus, track T1 is blocked. Consequently,
track T2 will not be explored. On the other hand, if every node vi with i ∈
{1, . . . , `} decides to create a connection with wi, then track T2 will be explored.

Note that it is unimportant if the nodes vi may have the option to temporarily
revise their decision by using their constant memory. It only matters whether
the track T2 is explored at some point execution of the algorithm.

Track T2 is either explored or not explored – depending on the joint local
decision of node vi with i ∈ {1, . . . , `}. If track T2 is not explored, it is a successful
track, i.e., its exploration generates Ω(n) welfare. If track T2 is explored, then it
blocks a successful track T3. This subgraph is shown in Figure 3.8. Since these
scenarios are indistinguishable for any algorithm, the remainder of the graph
can be such that its choice is wrong. It is easy to see that there is another
local algorithm which decides correctly for this particular scenario. Limiting the
quality of the edges in the subgraph to O(ε) yields the theorem.

Figure 3.10: A subgraph of size O(1) with outgoing track. Node vi must now decide
if it wants to create a connection to node wi or to node ui. If all the connections to
ui are made, the track cannot be explored. Note that edge e is not part of the initial
friendship graph.

We can prove a similar result for algorithms, which try to execute a constant
number of different algorithms in parallel to avoid the aforementioned problem.
This allows them to emulate algorithms where one might explore a track whereas
another might not.

Theorem 3.11. For nodes with a constant lookahead ` and a constant size mem-
ory there exist initial friendship graphs for every local algorithm, which executes
several algorithms in parallel, such that its reached welfare is arbitrarily worse
than that of another local algorithm.

Proof. Imagine a subgraph with two for the nodes indistinguishable outgoing
tracks T1, T2 of length Ω(`). These tracks are constructed as in the proof of
Theorem 3.9. Any algorithm has four options available. Either it explores no

CHAPTER 3. FINDING FRIENDS 25

track, T1, T2 or both. W.lo.g. half of the nodes explore either T1 (and possibly T2
as well) or explore no track at all. The graph is such that T1 blocks a successful
track T3. Furthermore, exploring T2 is necessary in order to eventually start
the exploration of T3. Thus, an optimal algorithm explores only track T2. Note
that algorithms which explore both tracks will not explore T3. Hence, half of
the executed algorithms have chosen in a way such that they cannot be optimal
anymore.

Track T2 leads to another subgraph where the process is repeated. This
subgraph has also two, for the algorithm indistinguishable, outgoing tracks. One
of the tracks blocks the successful track T3 and the other one leads to the next
subgraph. Since we can create the remainder of the graph always such that
at least half of the remaining algorithms “fail”, this process only needs to be
repeated a constant number of times. In the last subgraph one of the tracks is
the successful track T3 and the other track blocks track T3.

By setting the edge qualities in the subgraphs to O(ε), we ensure that the
local algorithm only chooses edges with quality O(ε) and thus has a welfare of
O(n · ε). This yields the claim.

Theorem 3.12. For nodes with a constant lookahead ` and a constant size
memory there exist scenarios for every randomized, local algorithm such that
its reached welfare is arbitrarily worse than that of another deterministic, local
algorithm.
Proof. We use a graph similar to the one in the proof of Theorem 3.9. Any
randomized local algorithm either chooses to explore the track with probability
at least 1

2 or chooses not to explore the track with probability at least 1
2 . Hence,

we can first concatenate b of these structures with b = Θ(logn) such that the
probability that the randomized algorithm chooses correctly is at most 2−b, i.e.,
with probability n−α for some constant α > 0. There exists a local algorithm that
always chooses deterministically and correctly that achieves an optimal solution.
By choosing the edge values accordingly, we can ensure that the achieved stable
states differ sufficiently.

3.3.3 Executing Local Algorithms in Parallel

We have seen that the welfare in the stable states that different algorithms reach
differs significantly. As seen in Theorem 3.11, there is no optimal algorithm.

Nevertheless, if we execute several algorithms in parallel, we want to be able
to get the best outcome of any of these algorithms. Due to the fact that the nodes
only have a local view, they cannot know which of their friendships are part of
the best achieved solution. With their limited knowledge, we let the nodes pick
greedily. This does not yield the best solution as shown in the example depicted
in Figure 3.14. Every node in this graph can only have one friend. The optimal
solution is to pick the edges (u, v) and (x,w), but the greedy approach picks
(v, w) and (u, x). We show that greedily picking yields a factor 2 approximation
compared to the welfare achieved by any of the executed algorithms. To be able
to pick edges greedily, we need to prove an upper bound on the runtime, which
allows the nodes to know when any algorithm has terminated.

CHAPTER 3. FINDING FRIENDS 26

Figure 3.14: The best solution consists of the edges (u, v) and (w, x) whereas our
greedily picked solution consists of (u, x) and (v, w) and is thus a factor of 2 worse than
the best solution.

Lemma 3.13. The runtime of any local algorithm that only chooses higher qual-
ity edges is 2n2.

Proof. We use a potential function to prove this. Consider a bit string of length
n2. The i-th bit represents the edge with the i-th largest quality. There is a 1
at position i if and only if the edge with the i largest quality exists in the graph.
The bit string can be regarded as a counter. Since we only allow beneficial
changes, this potential function increases with every change. This limits the
total runtime of any algorithm of this type to 2n2 .

Note that the nodes cannot know when exactly the execution has terminated
because of their limited view, but only know the rather weak upper bound of
2n2 . Hence, greedily selecting the edges will start after 2n2 rounds. Since at least
one edge is picked every round (the edge with the highest remaining quality),
this allows the nodes to output a valid solution after O

(
2n2 + n2

)
rounds.

Theorem 3.15. By running several algorithms in parallel and greedily selecting
the best edges at the end, we obtain a factor 2 approximation compared to the
best of the executed algorithms.

Proof. This proof is similar to the proof that any maximal matching is a factor
2 approximation of a maximum matching. Consider the union of edges of all
solutions. If two nodes mutually agree to pick an edge, then this edge can
either be part of the best solution in which case the choice is good. Otherwise,
choosing this edge prevents the nodes from picking at most two edges from the
best solution. But both of these edges must have a lower quality than the chosen
edge. Hence, our solution is at least half as good the best solution in the union
of all solutions and therefore must be at least half as good as the best solution.
Continuing this inductively yields the claim.

CHAPTER 3. FINDING FRIENDS 27

Figure 3.16: The edges (a, b), (c, d) exist. In this setting b prefers to be paired up with
c and c would be happier with that matching. Afterwards a would match with c and
thus b with d. In the next round, the cycle would start anew.

3.3.4 Valuing Friends of my Friends

In a real social network it might not be sufficient to evaluate a friend on her
own. In order to evaluate a friendship, it is necessary to consider the friends of a
friend. Thus, we introduce this friendship valuation variant. An edge continues
to represent an existing friendship, but the new edge quality is a weighted,
combined value of the node and its neighbors. Formally, this can be expressed
as Q(u, v) := q(u, v)+α

∑
x∈N(v)\{u} q(u, x) where q denotes the quality function

as defined before and α is some constant. In this model every edge quality Q(·, ·)
is directed, i.e., Q(u, v) 6= Q(v, u) is possible.

In this model, there may not be a stable state. This is due to the asymmetric
valuations of the nodes, which can be used to create valuations similar as in the
roommate problem in [40].

Theorem 3.17. If we include the neighbors of a node in the valuation function,
there are initial friendship graphs in which a local algorithm does not reach a
stable state.

Proof. It is sufficient to consider the nodes a, b, c, d, e and their friends, which we
denote with Va, Vb, Vc. and Vd, respectively. This graph is depicted in Figure 3.16.
The valuations of node e are such that it neither has it any incentive to choose
another friend nor do any of his friends want to sever the edge with e. The other
edge qualities are as follows: q(a, b) = q(a, c) = q(b, c) > q(a, d) = q(b, d) =
q(c, d). This means the three nodes a, b, c prefer each other over node d. Now
we can set the edge qualities of the friends of each node such that the final edge
qualities are Q((a, b)) > Q((a, c)) > Q((a, d)). Node a prefers the friends of b
over those of node c and over those of node d. Furthermore, we require Q(b, c) >
Q(b, a) > Q(b, d) and Q(c, a) > Q(c, b) > Q(c, d). A similar construction as
above yields these inequalities. The evaluations of node d do not matter.

A brief technical remark has to be made. The nodes in Vu with u ∈ {a, b, c, d}
have to be content with being friends with u. Furthermore, the nodes in Vu with

CHAPTER 3. FINDING FRIENDS 28

Figure 3.19: A counter as presented by Hoefer [71]. Edges which are created from the
algorithm in dashed, gray, the others in black.

u ∈ {a, b, c, d} have no incentive to initiate a connection with any other node
than u.

This enables us to create a cycle.
If node a is friends with node b and node c is friends with node d, then both

node b and node c prefer each other over their current matching partner.
If node a is friends with node c and node b is friends with node d, then both

node a and node b prefer each other over their current matching partner.
If node a is friends with node d and node b is friends with node c, then both

node a and node c prefer each other over their current matching partner.
Thus, no matter which node is matched with node d, it wants to change to

another node which is willing to do so. Hence, no stable state can be reached.

Clearly, neither a statement about the convergence time nor about the glob-
ally achieved welfare is possible in this setting.

3.3.5 Breaking Up a Friendship is Expensive

In a real social network, breaking up friendships is seldom without consequences
to that friendship. To model this, we assume that the edge quality decreases
every time the corresponding edge is removed. We consider two ways to reduce
the quality of an edge: Either reduce it by a constant term or by a constant
factor.

Let us first analyze the effect of this to the runtime of any local algorithm.
In [71] it has been proven that a simple greedy algorithm which uses memory
has a runtime of Ω

(
2Θ(n)

)
. We obtain a dramatically smaller runtime if the

quality of the edge gets reduced by a constant.

Theorem 3.18. If the edge quality q(e) gets reduced by a constant term every
time the edge e is removed, the runtime of any local algorithm is O

(
n2).

Proof. Every edge can only be created and severed O(1) times before the nodes
have no incentive to create that edge because its quality is 0. Hence, after O

(
n2)

any algorithm must terminate.

Before we describe the effects of reducing the edge qualities by a constant
factor, let us describe an initial friendship graph. It is the same used in [71] to

CHAPTER 3. FINDING FRIENDS 29

prove the lower bound for the simple algorithm. We will show that the result
still holds if the edge quality is decreased and consider the consequences for the
welfare.

Imagine the nodes arranged as show in Figure 3.19. The edge qualities are
such that q(e1) < q(e4) < q(e3) < q(e2) < q(e5) holds. The graph is constructed
by concatenating these blocks. We assume that the edge qualities are O(1) in
the beginning. For every node v its value kv is such that it can create one
additional friendship. For simplicity’s sake, we now assume that the lookahead
` is limited to 2. We analyze a greedy local algorithm which always chooses the
best available option.

Let us describe what happens in this friendship graph. At the beginning edge
e1 can be created which enables the partnership e2. While creating e3, this edge
will also be severed. Thus, the creation of edge e1 is again possible. Since the
edge e2 cannot be created, the simple algorithm creates e4, thereby severing e1
the second time. Finally, the partnership e5 is formed. Note that edge e1 was
created twice in order to create e5.

Lemma 3.20. The runtime of the greedy algorithm that does not use memory
is Ω

(
2Θ(n)

)
.

Proof. The inequalities stated above still hold even if we decrease the quality
by a constant factor every time we remove the corresponding edge. We can
concatenate b of those structures with b = Θ(n). Since e1 must be created twice
in order to create e5 once and e5 in turn must be created twice in order to enable
the partnership e9, the concatenation of these blocks requires e1 to be created
Ω(2b) times and thus the lemma follows.

Theorem 3.21. If the edge quality q(e) gets reduced by a constant factor ev-
ery time the edge e is removed, there is an initial friendship graph such that
the combined quality of the edges created by the greedy algorithm can be upper
bounded by a constant. But in the same friendship graph, using memory enables
an algorithm to create edges with a combined quality of Θ(n).

Proof. As explained above, every edge gets recreated often, i.e., in the i-th build-
ing block b − i times. Let 1/x be the factor by which each edge quality gets
reduced upon removing. The total welfare of the edges created in the i-th block
is at most c ·2b−i with c being some constant. Summing up over all blocks yields
a total welfare of

c ·
b∑
i=1

1/xb−i = c ·
(

x

x− 1 −
x1−b

x− 1

)
= O(1).

We now consider an algorithm that remembers every friend it had (which is a
constant in this scenario). This means that after the first creation of e5, it is no
longer necessary to sever and recreate e1. Thus, every edge gets only removed
and recreated a constant number of times. This allows the total welfare to be
Θ(n).

CHAPTER 3. FINDING FRIENDS 30

Note that we can adapt this proof for ` > 2 by using a slightly different way
to construct the graph. But the main idea remains unchanged: we concatenate
blocks in which one edge needs to be created twice in order to create another
edge.

3.4 Conclusion

We have analyzed local algorithms for finding better friends. Our model allowed
a friendship if it is beneficial to both participants. We have proved that local
algorithms can be arbitrarily worse than global algorithms if the initial friend-
ship graph represents a worst case, i.e., is adversarial. We also showed that
there exists no best local algorithm. For every local algorithm there exists an
initial friendship graph such that it performs arbitrarily worse than another local
algorithm. If the nodes have constant memory, they can execute several local
algorithms at once. Even though this does not help in the worst case, the nodes
can achieve a factor 2 approximation compared to the best executed algorithm
by choosing their friends greedily after the execution of all algorithms.

Thus, we have shown that no matter how you choose your friends, be it
greedily or in a way that maximizes the number of acquaintances, if the initial
friendship graph is adversarial, it might be the worst strategy possible.

4
Hiding Adversarial Content

4.1 Introduction

In the previous chapter we tried to find good friends. In this chapter, instead of
finding something good, we want to avoid seeing something bad.

Be it ads, spam or malicious code, unwanted content on the web can take
many forms. While there exist great filters for ads, spam and malicious code,
all these problems share the property that one filter mostly fits all users. For
example, if one user considers content to be an ad, most other users will do so
as well. The same holds for malware and spam. This means that filters can be
constructed once and applied to all users which is how ad- or malware filters
usually work. In addition to that, ad filters [105] as well as spam filters heavily
rely on blacklisting of hosts that serve either content type.

We focus on filtering user specific content. For scalability reasons it is impos-
sible to have a specialized filter for each user specific topic. Even worse, classical
host blacklisting techniques do not apply in our case since undesired content may
very well be served by the same host as the content the user wants to see. Think
of a news site that reports on the latest sports results. Since you did not watch
the event yet, you do not want to know the result but may still be interested in
the latest political developments, which are shown on the same web page. The
upside in our scenario is that we are not competing with companies selling ads
or black-hats distributing malware.

We present a personalized filter that removes content from a web page based
on user specified terms or topics. The running example in this chapter is a spoiler
such as a plot development in a TV show or a sports result. Some communities
have dealt with this by requiring spoiler tags but this requires manually tagging
every post and is topic but not user specific. However, our filter is universally
applicable to remove undesired content and we use the notion of a spoiler just

31

CHAPTER 4. HIDING ADVERSARIAL CONTENT 32

as an example.
HTML objects are by definition organized in a tree structure. The Document

Object Model Tree (DOM Tree) maps an HTML document to a tree structure
whose nodes can be addressed and manipulated easily. These nodes include text,
links, images, and all other content displayed on a website. We replace nodes
that contain undesired content with placeholder nodes that reveal the original
content when clicked. This preserves the overall layout of a web page when
removing undesired content.

We explore the trade-off between removing as many spoilers as possible while
not removing too much unrelated content. Only hiding all user defined terms on
a web site does not lead to the desired outcome since spoilers will be revealed by
text or pictures nearby. For example, sentences like ” Justin Bieber arrested for
drunk driving“ or ”The New England Patriots won the Super Bowl 28–24“ still
reveal a lot of information even though the spoiler terms are hidden. Especially
since the user herself defined which terms to filter. Blocking the whole web page
greatly diminishes the user experience when applied to sites that serve content
that is mostly unrelated to the users filter terms, yet contains a small section
that reveals spoilers. Thus, neither of the two extremes – solely hiding all user
defined terms or blocking the whole web page – are desirable. Unfortunately, the
middle ground – removing as many bad words from the web page while removing
as little good words as possible – turns out to be an NP-hard problem.

Hence, we use a heuristic to exploit the locality of content in the DOM tree
to filter entire paragraphs or sections of a website that may contain spoilers.

4.2 Related Work

There is a large number of different content filters. Designed to filter specific
undesired content types, they span from lightweight browser based filters up to
search-engine filters, which may offer safety filters to exclude inappropriate links
from the search results. In between those two approaches, there are solutions
such as network-based filtering and content-limited filters offered by Internet
service providers [41].
Classic Content Filtering Problems. Advertisements and malware are con-
tent types that received a lot of attention. Both content types share the property
that different people share a common view of what qualifies as malicious content
or ads. This means that filtering such content comes down to the task of identi-
fying content that should be filtered once. The obtained list of elements which
should be hidden can then be shared with all users such that the filtering logic
on the client side is simple and fast.

One example of such a filter is Prophiler [27]. The focus of the system is set
on finding websites that serve malicious JavaScript code to its visitors. Mali-
cious behavior is detected by executing JavaScript in a virtual environment which
tracks behavior such as drive-by downloads. While such systems identify mali-
cious scripts with high accuracy, it is computationally intensive to sift through
large amounts of websites. To reduce the computational requirements, Prophiler

CHAPTER 4. HIDING ADVERSARIAL CONTENT 33

uses machine learning to quickly discard benign websites. The results can be
used to efficiently blacklist websites that serve malicious code to its visitors.

ZOZZLE [39] is a browser plug-in that recognizes JavaScript malware through
static code analysis, while a user is visiting websites. Our method follows ZOZ-
ZLE’s idea of filtering content within the clients browser without using global
blacklists. However, since malware is the same for most users, we do not see
the advantage of such a solution when filtering malware instead of user specific
content. The growing amount of junk email has led to the development of email
spam filters [110]. The arms race between spammers and filter providers has fu-
eled the development of a large number of different filtering mechanisms ranging
from host blacklisting [46] to content analysis [100].
User Specific Content Filtering. Systems that allow users to filter con-
tent based on personal preferences or circumstances have also been proposed
before. While malware- and Ad-filters are vastly popular, user specific filters, to
our knowledge, are rarely applied. Since user specific topics should be filtered,
building a global blacklist is usually not practical since each topic would require
a custom blacklist. This is the main reason why such filters, in general, are im-
plemented to filter content on the client machine. Existing filters do not apply
to both: general websites and arbitrary topics.

Goldbeck et al. [58] filter tweets according to user defined TV shows or sport-
ing events. However, their filtering mechanism is only applied to tweets. Using
blacklist creation methods that are specific to the given scenario (TV shows or
sporting events), the system hides undesired content with high success rates.
However, to achieve this performance, many tweets that do not contain any
spoilers were hidden. While our approach uses user defined keywords similar to
the ones presented in this chapter, we do not limit the application scenario to
twitter and topics can be chosen freely. Guo et al. [62] use Latent Dirichlet Allo-
cation to hide spoilers in movie reviews found on IMDB. The effectiveness of the
system is remarkable. However, its application range is strongly limited due to
the focus on IMDB in both design and evaluation of the method. Boyd-Graber et
al. [20] show that crowd-sourcing is a viable option to obtain annotated training
data for their spoiler filter.

4.3 Model

We model a website as a rooted tree G = (V,E) with n being the number of
nodes |V |. Each node v ∈ V contains b(v) many keywords (bad words) and
g(v) many unrelated (good) words. Note that inner nodes of the tree can and
do contain good and bad words. We can remove any node v from the graph,
we denote this with cutting. Upon removing v, by extension, all its children
are removed from the graph as well. We denote with β(v) and γ(v) the sum
of the bad and good words of v and all of its children, respectively. Hence,
β(v) = b(v) for every leaf v of the tree. Let R denote the set of nodes that
were removed. This set includes the children of explicitly removed nodes. The
user has to specify a threshold t. Our goal is to remove as many bad words as

CHAPTER 4. HIDING ADVERSARIAL CONTENT 34

1

7 112

3 4 5 6 8 9 10

cut 1 cut 2 cut 3 cut 4

Figure 4.1: Placing the cuts only at the leaf nodes to filter the keywords

possible subject to
∑

v∈R g(v)∑
v∈R b(v) ≤ t, i.e., without removing too many good words.

We call this the node removal problem.

4.3.1 Example

We show a simplified example in Figure 4.1. The four nodes containing keywords
are shown in red and the corresponding text of a node is replaced by the ID of
that node.

In order to filter all nodes containing keywords at the leaf node level, we
need to perform four cuts in the tree at nodes 3, 4, 6, and 9 (indicated by a box
surrounding the corresponding node). If we use the minimal number of cuts,
namely one cut at the root node 1, we remove the whole web page.

4.4 NP-hardness

We now show that finding the best set of cuts for a given tree is NP-hard. We
show this by a reduction from the knapsack problem, which is well known to be
NP-hard [113].

Theorem 4.2. The node removal problem is NP-hard.

Proof. We now describe the traditional knapsack problem before we present the
main idea of the reduction. There are n items z1, . . . , zn and each item zi has
weight wi and value yi. The knapsack has a capacity of W . The task is to
pack the knapsack and maximize the value of the set S of items that are in the
knapsack that fit in it, i.e., to maximize ∑zi∈S yi subject to ∑zi∈S wi ≤W .

We will mimic the knapsack problem in our graph. Each node v that we
remove will add value (bad words), but use up space (removes too many good
words compared to the number of bad words, i.e., g(v)

b(v) > t). The size of the
knapsack is mimicked by a single node v0 that has b(v0) = W and g(v0) = 0.

CHAPTER 4. HIDING ADVERSARIAL CONTENT 35

v0 v1 v2 v3 v4

root

nodes v0 v1 v2 v3 v4

g(vi) 0 5 3 7 4
b(vi) 5 3 1 4 2

node removal problem

items z1 z2 z3 z4

wi 2 2 3 2
yi 3 1 4 2

knapsack problem

Figure 4.3: Instance of knapsack problem with W = 5 (and therefore b(v0) = 5) and
the transformed instance of the node removal problem. We set t = 1. Thus, the number
of bad words b(vi) is the value of the item zi, and the number of good words g(vi) is the
sum of the value and the weight of the item zi. The optimal solution S of the knapsack
problem is z2 and z3 (total value is 5). The optimal solution R of the node removal
problem is v0, v2, v3. The number of bad words that are removed is 5 + 2 + 3. The ratio

is
∑

vi∈R
g(vi)∑

vi∈R
b(vi)

= 0+3+7
5+2+3 ≤ 1 = t.

Hence, maximizing the number of bad words that are removed while staying be-
low the threshold is equivalent to maximizing the value of items in the knapsack
while staying below the capacity of the knapsack.

Given an instance I of the knapsack problem with I = (W, (z1, . . . , zn)) with
each item zi = (wi, yi) and size of the knapsack W , we create a rooted tree
G = (V,E) with n + 2 nodes and set the threshold t to any positive number.
The root node has n + 1 children, v0, . . . , vn. Note that this tree has depth 1.
Node v0 has b0 = W and g0 = 0. Every node vi with 1 ≤ i ≤ n has b(vi) = yi and
g(vi) = wit + yit. Hence, there is a bijection between the items z1, . . . , zn from
the knapsack instance and the nodes v1, . . . , vn of our graph. A small example
of this construction is depicted in Figure 4.3.

We now claim that there exists a set of items S such that ∑zi∈S yi ≥ Y and∑
zi∈S wi ≤ W if and only if there exists a set of nodes R in the node removal

problem where we remove at least W + Y many bad words from the tree while

CHAPTER 4. HIDING ADVERSARIAL CONTENT 36

preserving
∑

v∈R g(v)∑
v∈R b(v) ≤ t.

Let S be such a set that has value Y ′ ≥ Y . We claim that if we remove
R := S ∪ {v0} from the tree, then we have

∑
v∈R g(v)∑
v∈R b(v) ≤ t and we remove at least

W +Y many bad words. Since ∑vi∈R b(vi) = W +Y ′ ≥W +Y by construction,
we now look at the ratio. We obtain∑

vi∈R g(vi)∑
vi∈R b(vi)

=
∑
vi∈R (wit+ yit)

W +∑
vi∈R\{v0} yi

≤ Wt+ Y ′t

W + Y ′
= t,

which establishes the claim.
Let R be the set, which, if removed, removes W + Y ′ ≥ W + Y many bad

words from G. It is easy to see that v0 must be part of any optimal solution.
We know that ∑vi∈R b(vi) ≥W + Y and we know∑

vi∈R g(vi)∑
vi∈R b(vi)

=
∑
vi∈R (wit+ yit)

W +∑
vi∈R\{v0} yi

=
∑
vi∈R wit+ Y ′t

W + Y ′
≤ t

i.e.,∑vi∈R\{v0} yi = Y ′. From
∑

vi∈R
wit+Y ′t

W+Y ′ ≤ t we can deduce that t∑vi∈R wi ≤
tW and thus those items fit in the knapsack.

This establishes the claim.

Hence, the problem is NP-hard. Even though there exists a factor 2 approx-
imation and even FPTAS for the knapsack problem [113], we chose not to use
either of these algorithms. We do so for two reasons. None of these algorithms
takes the tree structure of the web page into account. Furthermore, even the
simple ones require the nodes to be sorted according to their ratio of good to
bad words. This takes O (n logn) time. Hence, we opt for a simpler algorithm
that runs in linear time (in the number of nodes) and exploits the tree structure
to ensure a smooth surfing experience.

4.5 Concept

Since the initial problem is NP-hard, we decided to use a heuristic to select
which nodes to remove. This heuristic is based on the following assumptions:

• A node v′ that is close to a node v that contains bad words has a higher
chance of revealing unwanted content than nodes further away (close in
the number of hops in the tree).

• Every node v that contains bad words must be removed.

The reason for the first assumption is based on the fact that these nodes are
also close on the web page as it is shown to the user. Hence, the content of
these nodes tends to be closely related and thus node v′ should be considered

CHAPTER 4. HIDING ADVERSARIAL CONTENT 37

1,2

7,1 11,02,3

3,1 4,1 5,0 6,1 8,0 9,1 10,0

cut 1 cut 2 cut 3 cut 4

Figure 4.4: An example showing the number of children that contain bad words c(v)
for each node in addition to its Id (notation: Id,c(v)).

for removal. The second assumption ensures that we remove every user defined
keyword. Our algorithm traverses the graph three times; each time starting from
the root.

The values β(v) and γ(v) at every node v are not known to us in the begin-
ning and stored these during the first traversal of the tree. During the second
traversal, we consider each node v with β(v) > 0 and its children. The bad
words must originate from either the node v itself or one of its descendants.
Since every child v′ of v has a value β(v′), we know which children contribute to
β(v). Furthermore, the number of children that contribute to β(v) are a lower
bound on the number of cuts that we need to perform if we do not remove v.
We denote this value with c(v). An example of this is shown in Figure 4.4.

Armed with this information, we traverse the tree again – starting from the
root. At every node v we consider the ratio r(v) = c(v)

γ(v) , i.e., the minimal number
of cuts we have to perform if we do not remove v divided by the number of good
words in v and all its descendants. As soon as the ratio of a node v exceeds a
predefined threshold T , we remove it (and thereby all its children) from the tree.
To understand the intuition behind this, let us first consider c(v) = 1. The ratio
is high once there are not many good words left. For larger values of c(v), we
implicitly assume that the good words are spread out over its children. Thus, in
order to avoid too many cuts, we increase the chance to remove node v – keeping
in mind that it is better to err on this side.

4.6 Evaluation

As a proof of concept, we implemented a Firefox extension that uses our filtering
mechanism. The extension was developed and tested with Firefox versions 34.0
to 36.01. In the following, we discuss the performance evaluation based on the
Firefox extension. Our extension filtering terms in on a web page can be seen
in Figure 4.5. On this page, we have defined ”algorithm“ as a spoiler term.
Our extension correctly removes every occurrence of this term including the
immediate surroundings of those occurrences. Thus, if a paper was published
at ”Symp. on Discrete Algorithms“, then the whole entry – independent of the

CHAPTER 4. HIDING ADVERSARIAL CONTENT 38

title of the paper – is removed.

Figure 4.5: Our filter applied to http://people.mpi-inf.mpg.de/˜mhoefer/ using
”algorithm“ as a spoiler term. It removes three sections on the upper part of the web
page.

Website Section Keyword # Nodes (bad / all)

20min.ch

International IS- 188 / 1753
Finance Bank 388 / 2333

Switzerland Ecopop 121 / 2135
Sport Sieg 200 / 2529

blick.ch

International IS- 62 / 1203
Economy Bank 50 / 1159
Politics Ecopop 90 / 801
Sport Sieg 58 / 1909

nzz.ch

International IS- 186 / 4565
Finance Bank 530 / 4125

Switzerland Ecopop 67 / 2904
Sport Sieg 215 / 1913

Table 4.6: News sites including sections, keywords, and page size in number of nodes
used for evaluation.

Our test set contains three different news sites as shown in Table 4.6 for which
we downloaded the overview page of the sections International, Sports, Econ-
omy/Finance and Switzerland/Politics. For each section we defined a keyword
that matches part of the content to filter with.

This set up provides us with twelve different pages to process and allows
us to explore the trade-off by filtering too much or too little by varying the
threshold T . All sites are tested against all spoiler terms which means that we
also test sites that do not contain any content that matches the spoiler term. We
downloaded the sites on 5th of November 2014 and manually annotated the parts

http://people.mpi-inf.mpg.de/~mhoefer/

CHAPTER 4. HIDING ADVERSARIAL CONTENT 39

of the web pages that contain spoilers before the experiments were performed.
Note that our approach is also able to remove pictures using the alt attribute.

Depending on the user preference, the threshold T can be set in the prefer-
ences of our extension. Decreasing the value of T will lead to lower false nega-
tive rates and hence minimize the probability of spoilers being shown. However,
smaller values of T also lead to higher false positive rates which means that the
likelihood of unrelated content being filtered grows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
sit

iv
e

R
at

e

ROC Curve
Random Guessing

Figure 4.7: ROC curve plot for varying values of T

Figure 4.7 shows the performance trade-off for varying values for T . An ideal
system would reach the top left corner and maximize the true positive rate while
maintaining low false positive rates. The figure shows, for example, that our
system can reach a true positive rate of more than 90% with reasonable false
positive rates of less than 15%. The ideal value for T can vary for different web
pages because of the different structures in the DOM Tree. However, our test
set indicates that a global threshold still delivers good results.

4.7 Conclusion

We have looked at personalized web filtering in this chapter. Since calculating
an exact solution is intractable, we resort to using a heuristic. It allows us to
remove most of the undesired content in practice. Since we exploit the DOM
tree of a web page, we are even able to remove this content while preserving the
overall layout of the web page. Thus, we allow the user to surf the web safely

CHAPTER 4. HIDING ADVERSARIAL CONTENT 40

and nearly undisturbed without the fear of seeing the score of her favorite sport
team or the latest plot twist from her favorite TV series – even when faced with
adversarial input.

5
Clairvoyant Mechanisms

5.1 Introduction

We now analyze adversarial input in a market setting, more concretely in an
online auction. We decouple the two issues of such an auction – always needing
to have a solution and not knowing the future.

Traditional auctions have a rich theory but only make sense in the presence
of at least two bidders. In reality, however, many auctions have a rather low
demand, and bidders do not compete concurrently. Instead, bidders appear
online, one after the other.

A familiar example is booking a seat in an airplane. Prices for a flight
fluctuate over time, a known pattern is that seats become more expensive as a
flight fills up, because the airline starts to learn that there is demand for the
flight. Selling seats in an airplane is not a traditional auction since customers
are not bidding against each other. Rather, potential customers check the price
well in advance of a flight. If the price is right, they book a seat, sealing the deal
with the airline. Airlines generally try to marginally overbook flights, i.e., they
sell more tickets than available, assuming that not all customers will actually
show up at the gate. Sometimes there are more customers than seats, and
the airline must get some customers off the plane. This is usually achieved by
having them fly later and giving them cash as compensation. We believe that
such compensations are easily covered by the high premium of late customers.1

In this chapter we analyze these online auctions. Our bidders come in an
online fashion and name their price for a good. The seller can choose to sell the

1In reality, airlines do not implement online auctions in the clean form described in this
chapter. Airlines do not seem to maximize their profits with this mechanism, probably for
psychological reasons. As such, on web pages, flights still can be sold out, instead of just asking
for a higher and higher premium for an unexpectedly popular flight.

41

CHAPTER 5. CLAIRVOYANT MECHANISMS 42

good for that price, or not sell the good (and hope for a better bid to come in
later). Bidder and seller also establish a compensation, in case the good is sold to
the customer but the deal is later canceled (in the case of a better bidder showing
up, worth paying the compensation). These online auctions need two ingredients:
First, a good with a price that may fluctuate over time. Second, customers which
want to receive the good (or a reservation for the good) quickly. In particular,
the time between the arrivals of two customers should generally be larger than
the time a customer is willing to wait for the outcome of her bid. In this case
online auctions seem to be a better suitable model than traditional auctions. We
believe that such online auctions happen often in practice. Booking flights is the
running example in this chapter, but there are plenty of other examples. Selling
ad slots on web pages is a popular one. Since the number of page views is not
known beforehand, some sold slots might not be served and thus those slots need
to be bought back. More examples are real estate sales, selling network services
with quality of service guarantees, or concert tickets.

A simple example will show that online auctions become academically inter-
esting only if reasonable compensations are present: Let us assume that a first
customer offers a low price but a prohibitively high compensation. If the seller
accepts the deal, a next customer offering a much higher price will show up.
But the good cannot be sold to the second bidder due to the high compensation
of the first bidder. On the other hand, if the seller does not accept the offer
from the first bidder, no other customer will show up. No matter how the seller
decides regarding the first customer, the mistake could be devastating.

The starting point for our analysis is what we call the clairvoyant model, a
hybrid online/offline model. In the clairvoyant model, a sequence of all potential
customers (their bids and compensations) is known in advance to the seller, but
the seller does not know when the sequence stops, i.e., who the last customer
of the sequence is. No matter who the last customer is, the seller wants to do
a good job, i.e., the seller wants to sell the good to a customer with a high
bid and keep compensations that accumulated so far low. It turns out that
the clairvoyant model is a stepping stone for a deeper understanding of online
auctions, sitting nicely between the pure online and offline models. It introduces
a novel technique for analyzing online auctions from a theoretical point of view.

Our contributions are as follows: After we have introduced the clairvoyant
model, we present an optimal mechanism for it in the case of a single good. The
result of that mechanism is a factor ∆ worse than an offline mechanism (that
knows when the sequence stops, and can simply sell the good to the customer
with the highest bid, without having to pay any compensations). In other words,
the parameter ∆ tells us how nasty the compensations are. It directly tells us the
difficulty of an input sequence. If compensations are minimal (just return the
money to canceled customers), then we have by definition ∆ = 1. We also show
an optimal clairvoyant mechanism if there are multiple goods to be sold. If the
number of goods is unbounded, however, we prove that the clairvoyant model
becomes NP-hard. Based on the results in the clairvoyant model, we study the
pure online problem (where the sequence is unknown to the mechanism) in a
deterministic setting. If ∆ is known, we show that there is a tight gap of Θ(∆5)

CHAPTER 5. CLAIRVOYANT MECHANISMS 43

between the online and the offline model.

5.2 Related Work

There has been a lot of research of traditional (“offline”) auctions, inspired by
the seminal papers of Vickrey, Clarke, and Groves (“VCG”) [36, 60, 114]. They
introduce the notion of truthfulness, which means that no bidder has an advan-
tage if she is not telling the truth about her valuation. There is a large amount
of work on traditional auctions, for an overview see, e.g., Nisan, Roughgarden,
Tardos, and Vazirani [99].

Due to the sheer amount of work about auctions, we will only touch the sur-
face in this section and thus we restrict ourselves to mentioning general areas.
In the single-unit case, where only a single good is sold, it is easy to calculate
the allocation and the price since the highest bidder simply gets the good for the
second highest price. This quickly becomes more complicated for so-called com-
binatorial auctions [38,97], where bidders are interested in specific combinatorial
subsets of goods. In some settings, the so-called single minded cases, a bidder
only has a positive utility if she is allocated all the goods she desires [14,89]. Even
though it is still possible to assign the prices and allocate the goods according
to a VCG auction, this is no longer computationally feasible [70, 109, 111, 119].
Thus, several approximations exists [5, 81, 82]. Some mechanisms work without
money to facilitate trade. Those include mechanisms for political decisions, or-
gan donations, and many more [33,40,98,107]. A detailed overview on auctions
can be found in the book by Nisan, Roughgarden, Tardos, and Vazirani [99].

Online mechanisms have been introduced in [53, 84]. In those online mech-
anisms, the bidders have an arrival and departure time and a valuation for the
good. It is assumed that the good expires after a certain period of time, and
that a replacement becomes available. In this setting, it was shown that an
auction similar to VCG style second price auction is still a viable allocation
strategy. The initial motivation behind these kind of online auctions is the WiFi
at Starbucks [53]. Customers arrive and then depart some time later with each
customer having a valuation for the WiFi. Many papers on online mechanisms
mainly focus on truthfulness or other incentive compatible solution concepts,
e.g., [64, 85,102,103]. An overview of online auctions can be found in [99].

Somewhat related to our online auctions are not even auctions, but the sec-
retary problem [90]. In the classic setting one employer interviews n secretaries,
with the goal to hire the best secretary. The employer has to decide right after
an interview whether to hire or discard a secretary. Unlike our model, previous
decisions cannot be recalled. If secretaries are interviewed in random order, it
has been shown that the optimal strategy is to first interview n/e secretaries,
and then simply hire the first secretary that is better than all previously inter-
viewed secretaries [90]. It has also been shown that if the input is adversarial (as
in our work), the situation is hopeless; the best strategy is to just hire a random
secretary, without any interview process [56]. This setting has been adapted to
the online auctions in [65]. Instead of secretaries, there are buyers and instead of
a job there is a single indivisible good. They present a mechanism that is, if the

CHAPTER 5. CLAIRVOYANT MECHANISMS 44

buyers appear in random order – as in the original problem – e+o(1)-competitive
for efficiency and e2 +o(1) competitive for revenue. Since we have the possibility
to cancel previous decisions with financial compensations, our model allows more
freedom.

The work closest to ours considers online auctions with buyback, introduced
independently by Babaioff et al. and Constantin et al. [13, 37]. Both limit the
preemption price (paid to reacquire the good) to a constant fraction of the val-
uation v of a bidder and this fraction is independent of the individual bidder.
Lower and upper bounds for deterministic and randomized algorithms depend-
ing on the fraction of the preemption price are presented in their work. Our
work allows arbitrary values for the preemption price (that can depend on the
specific customer) and we analyze how to deal with this very heterogeneous set
of customers. This kind of auction is not truthful since a buyer can overstate
her preemption price and thus gain if her good is bought back [37]. In [8] the
goods cannot be allocated to any subset of bidders, but bidders form a matroid,
This is extended to an intersection of matroids in [7], while still limiting the
buyback factor. The concept of buyback has also been applied to the knapsack
problem [13, 67, 76] where the goods appear in an online fashion and can be
removed later on from the knapsack. Buyback is also used in scheduling with
eviction [54].

Online algorithms often face two different types of problems: First, they do
not know the future, and second, they have to deal with past mistakes. Hartline
and Sharp [68, 69] formalized the two types of problems. When problems are
analyzed in this framework, they are called incremental problems. This approach
has been applied to various problems, e.g., to maximum flow, online median,
facility location, and clustering [34,42,93,104]. Our setting is different as we can
potentially fix past mistakes with compensations. Nevertheless, our clairvoyant
analysis is a relative of incremental problems.

5.3 Model

We consider an online auction. There are r indivisible and identical goods. Each
bidder bi is willing to buy exactly one good, and has a valuation vi for being
allocated a good. The bidders arrive one after another; whether to allocate a
good to a bidder must be decided immediately. Bidders that are not allocated a
good cannot be recalled, but bidders that are allocated a good can be recalled.
A recalled bidder bi is willing to return her good if she receives adequate com-
pensation. We call the value preemption price, which is paid if the good is bought
back. The preemption price of bidder bi is denoted by πi. In summary, bidder
bi is fully specified by bi = (vi, πi). Neither vi nor πi are bounded, any value
in R+ is allowed. We assume that the input sequence of bidders b1, . . . , bn is
created in advance by an adversary who knows the mechanism that is used to
allocate the goods. As described above, if the good of a bidder bi is bought
back, the mechanism has to pay the preemption price. For now, we assume that
the mechanism retains the initial valuation vi of the bidder. We denote this the
retaining model. In this model we assume that vi ≤ πi for every bidder bi. We

CHAPTER 5. CLAIRVOYANT MECHANISMS 45

will show later that this is not necessary and in fact use the model when the
value is not retained, which is called the non-retaining model.

Let us concentrate on the case of a single good (r = 1); we will adapt the
definitions for multiple goods in Section 5.5. Let offline(`) denote the highest
valuation of the first ` bidders, i.e., offline(`) = max1≤i≤` vi. Since the offline
mechanism knows the whole input sequence and when it stops, it can sell the
good just to one single bidder, the bidder with the highest valuation.

As discussed in the introduction (and formally proved in Section 5.4.2), the
online mechanism cannot be competitive with the offline model. Essentially,
an online mechanism has to deal with two different issues: First, it does not
know the future, and second, it needs to offer a solution at all times. We will
now introduce the clairvoyant model, a model between pure online and offline.
The clairvoyant model knows the whole sequence b1, . . . , bn of future potential
bidders, but does not know when the sequence stops, i.e., who the last bidder of
the sequence is. Because of this, a clairvoyant mechanism must offer a solution
at all times.

Both pure online and clairvoyant mechanisms may need to accept more than
one bidder (and hence buy the good back). Let S be the set of all bidders that
have been accepted during the course of a mechanism and let [`] denote the set
of the first ` bidders, i.e., {b1, . . . , b`}. We define gain(S, `) = ∑

bi∈S∩[`](vi−πi)+
maxbi∈S∩[`] πi. It is the sum of valuations of bidders in S up to bidder b`, minus
the preemption prices for the bidders whose good were bought back.

Since the mechanism does not know when the input sequence stops and it
thus can stop anytime, we evaluate any mechanism in its worst round. Specifi-
cally, given S, the gain competitiveness is defined to be max1≤`≤n

offline(`)
gain(S,`) . If we

now minimize this over all sets S of accepted bidders, we get the optimal gain
competitiveness

∆ = min
S

max
1≤`≤n

offline(`)
gain(S, `) .

This can be interpreted as the difficulty of the input sequence. In other words,
our mechanisms are evaluated in their worst round, i.e., the round in which it has
the highest competitive ratio compared to the offline mechanism. This forces our
mechanisms into accepting bidders early, and possibly repeatedly, thus paying
preemption prices repeatedly. The task is to design mechanisms that choose a set
S and thereby allocate the goods to the bidders minimizing gain competitiveness.

We will clarify the terms defined above by presenting a simple example. Let
the input sequence be (1, 2), (4, 100), (50, 60). An offline mechanism will accept
b3 = (50, 60) since this is the bidder with the highest valuation. A clairvoyant
mechanism must always accept the first bidder since it could also be the last
one. Assume that it also accepts the third bidder. We now calculate the gain
competitiveness for this set as

max
{offline(1)

v1
= 1

1 ,
offline(2)

v1
= 4

1 ,
offline(3)

v1 + v3 − π1
= 50

1 + 50− 2

}
= 4.

Note that this is also optimal since accepting bidder b2 prevents the mechanism
from choosing b3, hence ∆ = 4. This gives us a theoretical insight on the input
sequence. No online mechanism could have done better.

CHAPTER 5. CLAIRVOYANT MECHANISMS 46

As explained, the clairvoyant model sits between offline and online models.
It turns out that it is comparable to both models, even though the models are
not comparable to each other.

5.4 Auctioning Off a Single Good

We start our analysis by considering the special case of just a single good being
sold, i.e., r = 1.

5.4.1 Clairvoyant Mechanism

We now present a mechanism that optimally solves the clairvoyant model, giving
us insights into what is possible for an online mechanism.

Theorem 5.1. There exists a clairvoyant mechanism that calculates the set of
bidders that should be accepted to solve the online auction for one good opti-
mally, i.e., it calculates ∆. If the inputs are integers, its runtime is polynomial;
otherwise it is a FPTAS.

Proof. We show this via constructive proof. We present an algorithm that de-
termines ∆ for an arbitrary input sequence. The algorithm consists of two parts.
Let δ ∈ R+ be any fixed value. We first check whether there is a set S of bidders
such that ∆ ≤ δ, or equivalently, δ · gain(S, k) ≥ offline(k) for all k. Afterwards,
we perform a binary search to find the optimal value for δ.

We use a dynamic programming approach to calculate the set S of bidders.
After bidder bi has been processed, we want to find a set S of bidders for which
gain(S, i) has always been at least (1/δ) times the offline solution. We call such
a set a surviving set up to bidder bi.

Given a set S of bidders, we define

net(S) =
∑
bi∈S

(vi − πi).

Let m(i) = maxS{net(S) | δ · gain(S, k) ≥ offline(k) for 1 ≤ k ≤ i} be the
maximum net value achieved by a surviving strategy up to bidder bi. Let
m(0) = 0. We compute m(i) using the following recurrence relation: m(i) =
maxj∈Qi(m(j−1)+vj−πj), where Qi = {j ∈ [1, i] | δ·(m(j−1)+vj) ≥ offline(i)}.
That is, the optimal strategy up to bidder bi is composed of the optimal strategy
up to bidder bj−1 and then buying back of the good from the latest bidder in
this strategy and allocating the good to bidder bj . The set Qi is used to filter
out the strategies that do not survive from bidder bj to bidder bi. If there exists
i such that Qi is an empty set, then there is no solution, because it implies
that there are no surviving strategies. Thus, there is no set S that maintains
δ-competitiveness.

We now proceed to show by induction that the recurrence correctly computes
m(i). First, by the definition of the recurrence, we must have m(1) = v1 − π1.
This corresponds to the fact that we must take the first bidder in any case.
Otherwise, the competitiveness is infinity.

CHAPTER 5. CLAIRVOYANT MECHANISMS 47

Our induction hypothesis is that m(j) is correctly computed for 1 ≤ j < i.
We will first show that there exists a set S of bidders such that δ · gain(S, k) ≥
offline(k) for 1 ≤ k ≤ i and m(i) = net(S). Let j = arg maxj′∈Qi(m(j′ − 1) +
vj′−πj′). By the definition of m(j−1) and the induction hypothesis, there exists
S′ such that δ · gain(S′, k) ≥ offline(k) for 1 ≤ k ≤ j− 1 and m(j− 1) = net(S′).
Let S = S′∪{j}. We now have net(S) = m(j−1)+vj−πj = m(i). Furthermore,
for any j ≤ k ≤ i, δ · gain(S, k) = δ · (m(j − 1) + vj) ≥ offline(i) ≥ offline(k).
While for any 1 ≤ k < j, we have δ · gain(S, k) = δ · gain(S′, k) ≥ offline(k).

Moreover, we show that S is the set of bidders with maximum net value under
the condition that δ · gain(S, k) ≥ offline(k) for 1 ≤ k ≤ i. Suppose instead that
S∗ is a set of bidders with the maximum net value and δ ·gain(S∗, k) ≥ offline(k)
for 1 ≤ k ≤ i, we will show that net(S) = net(S∗). Let j∗ = maxbk∈S∗ k.

First we show that j∗ ∈ Qi. By the definition of S∗, for all 1 ≤ k ≤ j∗ − 1,
we have

δ · gain(S∗ \ {j∗}, k) = δ · gain(S∗, k) ≥ offline(k).

Thus, S∗ \ {j∗} is a valid set until j∗ − 1. By the optimality of m(j∗ − 1), we
have m(j∗ − 1) ≥ net(S∗ \ {j∗}). Thus,

δ · (m(j∗ − 1) + vj∗) ≥ δ · (net(S∗ \ {j∗}) + vj∗) = δ · gain(S∗, i) ≥ offline(i)

and so j∗ ∈ Qi. Therefore,

net(S∗) ≤ m(j∗ − 1) + vj∗ − πj∗ by the optimality of m(j∗ − 1)
≤ m(j − 1) + vj − πj

j∗ ∈ Qi and j = arg maxj′∈Qim(j′ − 1) + vj′ − πj′
= net(S).

Since S∗ is an optimal choice, we have net(S) = net(S∗). A surviving strategy
can now be constructed by repeatedly taking

i′ = arg max
i′∈Qi

(m(i′ − 1) + vi′ − πi′)

then setting i = i′ and initializing i = n.
It remains to explain how the binary search is performed. Note that ∆ is

bounded from below by 1 and from above by offline(n). Each iteration of the
binary search reduces the range by half, thus after O(log(offline(n)/ε)) iterations
of the binary search, we have reduced the range to (1 + ε), which implies ∆ is
approximated up to a (1 + ε) factor.

In the case where all the input values are integers, there will be at most
O(offline(n)2) potential candidates for ∆, since it must be in the form of i/j
where i, j ∈ [1, offline(n)]. Therefore, O(log offline(n)) iterations will be sufficient
to perform binary search on the potential candidates for ∆.

5.4.2 About ∆ and the Input Sequence

We now formalize and extend the impossibility result from the introduction.

CHAPTER 5. CLAIRVOYANT MECHANISMS 48

Lemma 5.2. (1) The value of ∆ depends on the input sequence and is un-
bounded.

(2) The gain competitiveness of the pure online mechanism is unbounded and
independent of ∆.

(3) No randomized pure online mechanism can achieve bounded gain competi-
tiveness if the number r of items is in o (n), i.e., r ∈ o (n).

Proof. (1) The main idea is that any decision made by a mechanism can turn
out to be the wrong one. Let the input be b1 = (v1, π1) = (1, 1), b2 =
(v2, π2) = (x, x2), b3 = (v3, π3) = (x2 − ε, x2) with ε > 0. Any mechanism
must accept the first bidder to avoid having unbounded competitiveness. If
the clairvoyant mechanism accepts the second bidder, then the third bidder
also appears. In this case, the gain competitiveness is approximately x. If
the second bidder is not accepted, the third bidder does not appear. Thus,
the clairvoyant mechanism has a gain competitiveness of approximately x
and x can be arbitrarily large.

(2) This proof follows the same structure. No matter which decision an online
mechanism makes, the input sequence will be such that it is the wrong one.
Let the first bidder b1 have (v1 = 1, π1 = 1), the second one b2 = (x, y),
and the third bidder b3 = (z, z). We will set z a such that the pure online
mechanism is always wrong. If the pure online mechanism does not accept
the second bidder, the second bidder will be the one with the highest
valuation and thus the gain competitiveness of the online mechanism will
be x and does not depend on ∆ (which is roughly 1 if the clairvoyant
mechanism accepts the first and second bidder). If the online mechanism
does accept the bidder, we set z � x, but z < y. Thus, in this case the pure
online mechanism has a gain competitiveness of z

x , whereas the clairvoyant
mechanism has x (if it accepts the first and third bidder). Since z can be
arbitrarily large, the claim follows.

(3) Let f (·) denote an arbitrary, strictly monotonically increasing function.
Every bidder bi has a preemption price of πi =∞.
We first consider r = 1. Every bidder bi has vi = f (i) (e.g., vi = 2i)
up to and including bidder bj that has a probability of at most 1

n for
being allocated the good. Such a bidder bj exists since a single indivisible
good cannot be allocated with a constant probability to n bidders and
buying back the good is made impossible by πi = ∞. If vi = 2i, then
this mechanism is at least a factor of two worse. If f(·) is the Ackermann
function (or an even faster growing function), then the competitive factor
becomes potentially infinitely large.
For r ∈ o (n) we can use the same argument as above, since there must be
a bidder who is not allocated the good with probability at most r

n = o(1).

CHAPTER 5. CLAIRVOYANT MECHANISMS 49

5.4.3 Bounded Preemption Prices

The impossibility results from the introduction and the previous section exploited
that the preemption price could be arbitrarily large. In this section we restrict
the previously arbitrarily large preemption prices to be at most ρ times as large
as the valuation, i.e., ρ ≥ πi

vi
for all 1 ≤ i ≤ n. Intuitively, this can either be seen

as a simple, reasonable constraint for the customers. If someone values a seat
on an airplane with some value v, then losing this seat should not be arbitrarily
larger than v. One could also interpret this that every customer also has to buy
an insurance whose compensation depends on the premium. If she loses her seat,
then the insurance will pay her the preemption price. The price of the insurance
is closely related to the preemption price. Hence, the value the seller has from
selling a seat increases because of the high insurance fee. This interpretation
also guarantees us that there is at most a factor of ρ between vi and πi for every
bidder bi. The following results resemble closely those in [13, 37]. The factor ρ
allows us to design a mechanism that is 4ρ gain competitive. It accepts a bidder
if her valuation is at least by a factor 2 larger than the preemption price of the
bidder that is currently allocated the good.

We do a constructive proof by presenting a mechanism that achieves 4ρ gain
competitiveness. It is shown in Algorithm 5.4.

Theorem 5.3. There exists a mechanism that has 4ρ factor gain competitive-
ness.

Algorithm 5.4 Constant Factor Mechanism (CFM)
π∗ ← 0
while there is a new bidder bi do

if vi ≥ 2π∗ then
buy good back and give it to bidder bi
π∗ ← πi

end if
end while

Proof. Let b = (v∗, π∗) be the last accepted bidder. Our induction hypothesis
is that the gain is at least a v∗

2 and that v∗ is always larger than the sum of
preemption prices. The induction base i = 1 holds vacuously.

Let us now consider i→ i+ 1: We make a simple case distinction: If bidder
bi+1 is not allocated a good, then we know that vi+1 < 2π∗ ≤ 2ρv∗. We can
combine this with the induction hypothesis, which states that at the current gain
is at least v∗

2 to obtain that the gain competitiveness is 2ρv∗
v∗
2

= 4ρ. Since we do
not accept a bidder, our induction hypothesis continues to hold. If bidder bi+1
is allocated a good, then we know that vi+1 ≥ 2π∗. Our previous observation
states that v∗ is larger than the sum of preemption prices thus far. Combining
these two observations establishes the induction hypothesis. Note that we have
a gain competitiveness of at least 2.

Combining the two cases yields a gain competitiveness of 4ρ.

CHAPTER 5. CLAIRVOYANT MECHANISMS 50

Corollary 5.5. If ρ ≥ πi
vi

for every bidder bi, then ∆ ≤ 4ρ.

5.4.4 Online Mechanism with ∆
This raises the question whether restricting the preemption price is the only way
to go. We already know that ∆ contains valuable information about the input
sequence. But does it contain all the necessary information for an online mecha-
nism to be competitive? We now provide the mechanisms with this information
and denote them ∆-online mechanisms. These more powerful online mechanisms
can achieve a O(∆5) factor approximation. Note that this information is not as
strong as knowing that the preemption price of every bidder is at most a factor
of ρ larger. The clairvoyant mechanism might accept someone whose preemption
price is much larger than her valuation.

We briefly describe the mechanism that is O(∆5) competitive. Simply put,
this mechanism accepts bidders with a sufficiently small preemption price (and a
high enough valuation to pay back the last bidder). Furthermore, it also accepts
bidders that have such a high valuation that the clairvoyant mechanism also has
to accept her.

We denote the current bidder with b = (v, π) and the last accepted bidder
b∗ = (v∗, π∗). The online mechanism accepts the first bidder for sure, so initially
b∗ = (v1, π1). After the first bidder, the current bidder b is accepted for two
different reasons: We call bidders good if π ≤ 2∆2v; if a bidder is not good, she
is bad. The mechanism will accept a good bidder if her valuation v > 2π∗. We
call bidders crucial if v > 2∆v∗∗, where v∗∗ ≥ v∗ is the largest valuation seen so
far. The mechanism will accept a crucial bidder if v > π∗/(1 − 1

∆2) holds. The
pseudocode is shown in Algorithm 5.6.

Algorithm 5.6 A ∆-online mechanism
accept the first bidder and set (v∗, π∗) = (v1, π1)
v∗∗ = v1
while there is a new bidder bi do

if πi ≤ 2∆2vi and vi > 2π∗ then
buy good back and give it to bidder bi
π∗ ← πi
v∗ ← vi

else if vi ≥ 2∆v∗∗ and vi > π∗/(1− 1
∆2) then

buy good back and give it to bidder bi
π∗ ← πi
v∗ ← vi

end ifv∗∗ = max{v∗∗, vi}
end while

Theorem 5.7. Given the value of ∆, there exists a mechanism that has gain
competitiveness O(∆5) compared to the offline solution.

Proof. Note that the clairvoyant mechanism will accept every crucial bidder. Let
b̄1 = (v̄1, π̄1), b̄2 = (v̄2, π̄2), . . . be the subsequence of bidders who are crucial, and

CHAPTER 5. CLAIRVOYANT MECHANISMS 51

let b̄0 = b1 be the very first bidder, who will also be accepted by the clairvoyant
mechanism. We will prove the theorem by induction over the crucial bidders.
Our induction hypothesis is that before b̄i came, the gain competitiveness of
the mechanism is at most 8∆5. We then prove that before b̄i+1 came, the gain
competitiveness remains 8∆5. Before we can continue our proof, we need two
helper lemmas.

Lemma 5.8. If the clairvoyant mechanism accepts a bad bidder b̂ = (v̂, π̂), then
the next bidder it will accept must be the first crucial bidder that comes afterward.

Proof. Let b̄ = (v̄, π̄) be the next bidder clairvoyant mechanism accepts after
b̂ = (v̂, π̂), and v∗∗ be the maximum valuation of all bidders before b̄. Then
we must have v̄ > π̂ > 2∆2v̂. Note that v∗∗ ≤ ∆v̂, since otherwise the gain
competitiveness of the clairvoyant mechanism will be larger than ∆. Thus,
we have v̄ > 2∆v∗∗ and therefore b̄ must be a crucial bidder. As clairvoyant
mechanism needs to accept all crucial bidders, b̄ must be the first crucial bidder
after (v̂, π̂).

Lemma 5.9. If b∗ is bad, then the next bidder our mechanism accepts must be
the first crucial bidder b̄ = (v̄, π̄) that comes afterward. Furthermore, the gain
after accepting b̄ is at least 1

∆2 v̄.

Proof. Let b̄ be the next crucial bidder after b∗. If b∗ is bad, then b∗ must be
crucial since our mechanism only accepts bad bidders that are crucial. So the
clairvoyant mechanism will also accept b∗ since it accepts every crucial bidder.
By Lemma 5.8, the next bidder after b∗ the clairvoyant mechanism will accept
is b̄. So v̄ − π∗ ≥ 1

∆ v̄, since otherwise the gain of clairvoyant mechanism will
be less than 1

∆ v̄. This implies that v̄ ≥ π∗ + 1
∆ v̄ > π∗ + 1

∆2 v̄ and therefore v̄ >
π∗/(1− 1

∆2). Thus, our mechanism will also accept b̄. Let v∗∗ be the maximum
valuation before b̄, then v∗∗ ≤ ∆v∗. So between b∗ and b̄, our mechanism will
not accept any bidder.

By our assumption, b∗ is the last bidder that our mechanism accepts before
b̄i. Thus, if b∗ is bad, then b̄i must be the first crucial bidder after b∗, and our
mechanism will accept b̄i. The gain after accepting b̄i is at least 1

∆2 v̄i, and the
gain competitiveness is at most ∆2.

If our mechanism does not accept b̄i, then v̄i < π∗ + 1
∆2 v̄i. Moreover, by

Lemma 5.9, if our mechanism does not accept b̄i, then b∗ is good, and thus
v̄i < π∗+ 1

∆2 v̄i ≤ 2∆2v∗+ 1
∆2 v̄i. Thus, we have v̄i− 1

∆2 v̄i < 2∆2v∗ or equivalently
v̄i < 2∆2v∗/(1 − 1

∆2) ≤ 3∆2v∗ (w.l.o.g. assuming ∆ > 2, otherwise we can
achieve constant factor competitiveness by treating ∆ as two in the mechanism).
This implies that the current gain competitiveness is at most 6∆2 using that b∗
is a good bidder.

Based on the above analysis and a simple induction we conclude that if our
mechanism accepts a bad bidder b∗ = (v∗, π∗), the gain is at least 1

∆2 v
∗ at this

moment. It is also easy to see, if b∗ is good, then the gain is at least v∗/2
(analogue to the proof of Theorem 5.3).

CHAPTER 5. CLAIRVOYANT MECHANISMS 52

We now combine the previous observations. Let c = {b̄i, c1, c2, · · · ct} be the
sequence of bidders that arrive between b̄i and b̄i+1 (excluding b̄i+1). Let b′ =
(v′, π′) be the last bidder the clairvoyant mechanism accepts. If the clairvoyant
mechanism only accepts good bidders in c, then the gain competitiveness between
our online mechanism and the clairvoyant mechanism is at most 4∆4, because
v′ ≤ 2π∗ ≤ 4∆2v∗ holds at all time (otherwise, our online mechanism will accept
(v′, π′)) and the gain of our online mechanism is at least v∗/∆2, which implies
the gain competitiveness is at most 4∆4.

Thus, we only need to consider the case when clairvoyant mechanism accepts
at least one bad bidder in c (possibly b̄i). By the above analysis, we know
that if the clairvoyant mechanism accepts some bad bidder ĉ = (v̂, π̂), then the
next bidder it accepts is b̄i+1. Furthermore, v∗∗ ≤ ∆v̂, where v∗∗ is maximum
valuation before b̄i+1.

Before accepting ĉ = (v̂, π̂) the clairvoyant mechanism only accepts good
bidders. Now suppose we are at the time right before ĉ comes. Suppose, at this
time, our online mechanism accepts b∗ = (v∗, π∗) and clairvoyant mechanism
accepts (v′, π′). We first consider the case when b∗ is good. Then we have
v′ ≤ 2π∗ ≤ 4∆2v∗. Let m be the maximum valuation before ĉ. We have
m ≤ ∆v′, and b̂v ≤ 2∆m (otherwise b̄i+1 = ĉ). Remember that v∗∗ is the
maximum valuation before b̄i+1. Hence, v∗∗ ≤ ∆v̂ ≤ 2∆2m ≤ 2∆3v′ ≤ 8∆5v∗.

We now conclude this proof with a simple case distinction. If b∗ = (v∗, π∗)
is good, then the gain competitiveness of our mechanism will never be worse
than 8∆5 after it accepts b∗ = (v∗, π∗), as the gain is at least v∗/2. Moreover,
before b̂ (with v̂) came, both our mechanism and clairvoyant mechanism only
accept good bidders, so the gain competitiveness of our mechanism is at most
8∆5 before this time. So the gain competitiveness of our mechanism is at most
8∆5 before b̄i+1 comes.

On the other hand, if b∗ = (v∗, π∗) is bad, which implies that ĉ = b∗ = b̄i, and
that the clairvoyant mechanism does not accept any bidder before b̄i+1. This
implies that v∗∗ ≤ ∆v∗, and the gain competitiveness of our mechanism in this
period is at most ∆3, since the gain is at least 1

∆2 v
∗.

The bound from Theorem 5.7 is tight. We proceed by showing the matching
lower bound for any deterministic mechanism.

Theorem 5.11. Any deterministic ∆-online mechanism has gain competitive-
ness of Ω(∆5) compared to the offline solution.

Proof. For any d > 0, we will present a sequence of bidders, for which the gain
competitiveness between the offline mechanism and the clairvoyant mechanism
is at most 2d, but for any online mechanism, the gain competitiveness is at least
4d5. Given ∆, we can set d = ∆/2. Thus, any online mechanism is at least
Ω(∆5) worse than the offline mechanism. The input sequence is depicted in
Figure 5.10.

The input sequence starts with bidder b1 with (v1, π1) = (1, 1), then the
adversary inserts a sequence of bidders bi+1 = (vi+1, πi+1), for i = 1, 2 . . . with

(vi+1, πi+1) = (2di, di+2).

CHAPTER 5. CLAIRVOYANT MECHANISMS 53

(a) The bidders bj−1 and bj+1 are ac-
cepted by the clairvoyant mechanism.
The bidders bj and bj+1 are accepted
by the online mechanism resulting in
negative gain.

(b) The bidders bj−1 and bj+1 are ac-
cepted by the clairvoyant mechanism.
The bidders bj and bj+2 are accepted
by the online mechanism. Thus, a bid-
der bj+3 = (vjd999, vjd

1337) would in-
evitably lead to a gain competitiveness
of ω(∆5).

(c) The bidders bj−1, bj+1, and bj+2 are
accepted by the clairvoyant mechanism.
The bidders bj and bj+3 are accepted
by the online mechanism. Thus, a bid-
der bj+4 = (vjd1336, vjd

2000) would in-
evitably lead to a gain competitiveness
of ω(∆5).

(d) The bidders bj−1, bj+1, and bj+3 are
accepted by the clairvoyant mechanism.
The bidders bj and bj+4 are accepted
by the online mechanism. Thus, a bid-
der bj+5 = (vjd1999, vjd

2000) would in-
evitably lead to a gain competitiveness
of ω(∆5).

Figure 5.10: The bidders accepted by the clairvoyant mechanism are marked with
(thinly) dashed lines. The online mechanism accepts by definition bj . If the online
mechanism accepts the bottom left bidder, the bidder on the bottom right appears;
resulting in a ω(∆5) gain competitiveness.

CHAPTER 5. CLAIRVOYANT MECHANISMS 54

Let bj be the first bidder in this sequence that the online mechanism accepts.
Notice that the online mechanism has to accept one, since otherwise the gain
competitiveness is infinity. The clairvoyant mechanism accepts bidder bj−1, but
not bj . The adversary then sets

(vj+1, πj+1) = ((d2/2)vj , d2vj),

so that the online mechanism cannot accept this bidder because the new gain
would be at most vjd2/2− vjd2/2− π1 < 0. The clairvoyant mechanism accepts
bidder bj+1 to maintain gain competitiveness O(∆).

The next bidder bj+2 that comes has

(vj+2, πj+2) = (d3vj , d
1000vj),

so the online mechanism cannot accept this bidder either, since otherwise the
adversary can make the next bidder have a valuation of d999vj , which makes the
gain competitiveness much larger than 4d5. The clairvoyant mechanism does not
accept bidder bj+2 and still maintains gain competitiveness O(∆).

Bidder bj+3 is then

(vj+3, πj+3) = (2d4vj , d
1337vj).

For the same reason, the online mechanism cannot accept this one. The clair-
voyant mechanism accepts bidder bj+3 to maintain gain competitiveness O(∆).
If the online mechanism accepts this bidder, then the clairvoyant mechanism
accepts bidder bj+2, but not bidder bj+3 (see Figure 5.10).

Bidder bj+4 is
(vj+4, πj+4) = (4d5vj , d

2000vj),
and again the online mechanism cannot accept this one. The clairvoyant mech-
anism does not accepts bidder bj+4 and still maintains gain competitiveness
O(∆).

At this point, the online mechanism accepted (vj , πj), and the gain compet-
itiveness is Ω(∆5). Thus, the claim follows.

5.5 Auctions with Several Goods

In this section we consider auctions with r goods. The offline mechanism chooses
the best r bidders and never has to pay a preemption price. We let offline(`)
denote the sum of the valuations of the best r bidders before bidder b`. Similar
to the single good case, we can denote our strategy by a subset of bidders to
whom we will allocate the goods (at least once). The observation is that given
the subset S of bidders, the optimal strategy is as follows: First allocate the
goods to the first r bidders in S. We ignore the bidders not in S when they
arrive. When a new bidder in S arrives, we buy back the good from the bidder
who has the smallest preemption price and reallocate it to the new bidder. It is
not hard to see that such a greedy strategy must be optimal under the condition
that each bidder in S is allocated a good at some point. Given S, let gain(S, `)
denote the gain achieved by this strategy after bidder b` has been processed.
The gain competitiveness is defined analogously to the term in Section 5.3.

CHAPTER 5. CLAIRVOYANT MECHANISMS 55

5.5.1 An Algorithm for Computing ∆ with Several Goods

In this section we study computing ∆, the optimal gain competitiveness, which
is defined similar to the single good case to be minS max` offline(`)

gain(S,`) .
We show that calculating ∆ for the clairvoyant mechanism in the multiple

goods problem is NP-hard by a reduction from the partition problem, which
is known to be NP-hard [55]. Note that we can get a brute force algorithm
that runs in Õ(n · 2n) time by simply testing all possible subsets S, the set of
customers to whom we will allocate our goods to at least once, and then use
the optimal strategy described at the beginning of this section. We can use a
heap to store the bidders that occupy the goods, so that in each step the bidder
having the minimum preemption price can be found in O(log r) time. There
are O(2n) subsets and for each O(n log r) time is required to compute the gain
competitiveness. The total time is therefore Õ(n · 2n). On the other hand, we
show that a polynomial time algorithm is obtainable if r is a constant. We now
provide a dynamic programming algorithm that computes ∆ in Õ(nr+1) time.

We present a dynamic programming algorithm for deciding if ∆ ≤ δ or not
in O(nr+1) time in the clairvoyant model with several goods.

Theorem 5.12. Checking whether there is a solution with gain competitiveness
of δ in an online auction is r goods can be computed in O(nr+1).

Proof. For 0 ≤ i ≤ n and R ⊆ [1, . . . , n] is a set of size at most r. Let v(i, R)
denote the maximum possible gain obtained after bidder bi has arrived and the
R is the set of bidders currently occupying the goods. Initially, we set v(0, ∅) = 0
and all other entries to be −∞. For each state (i, R), define its successor state
φ(i, R) = (i+ 1, R′), where

R′ =
{
R \ {arg minj∈R πj} ∪ {i+ 1} if |R| = r

R ∪ {i+ 1} if |R| < r

Then we let

v(i+ 1, R) = max

max(i,R′)∈φ−1(i+1,R),|R′|=|R| v(i, R′) + vi+1 −minj∈R′ πj
v(i, R \ {i+ 1}) + vi+1

v(i, R)

φ(i, R) is the state where the bidder with the minimum preemption price in
R is replaced by bidder bi+1. In the first line of the recurrence, we enumerate all
possible predecessors of the state (i+1, R) and try to replace the bidder with the
minimum preemption price of it by bidder bi+1. The second line covers the case
obtained by adding bidder bi+1 to R \ {i+ 1} without replacements. The third
line indicates that we do not (re)allocate a good to bidder bi+1. This covers all
possible cases for a potential optimal strategy up to bidder bi+1, since such a
strategy either excludes bidder bi+1 or is an optimal strategy up to bi, and then
the good allocated to the bidder with the smallest preemption price is reallocated
to bidder bi+1. After the updating, we check if δ · v(i+ 1, R) ≥ offline(i+ 1). If

CHAPTER 5. CLAIRVOYANT MECHANISMS 56

Figure 5.14: The sequence of bidders. The bidders in the S-block represent the initial
input from the partition problem. The bidders br+2 and b2r+5 both have prohibitively
high preemption prices. The S-block consists of r bidders and the two D-block of r+ 2
bidders each.

not, we set v(i+ 1, R) = −∞ to indicate that the gain competitiveness is larger
than δ.

In the end, if there exists R such that v(n,R) is not −∞, then it means
there exists a solution such that the gain competitiveness is at most δ. The
total number of entries is O(n · nr) and each entry has a constant number of
successor. Thus, the algorithm runs in O(nr+1) time. Similar to the single good
case (Theorem 5.1), to get an (1 + ε) approximation of the difficulty ∆, the
number of iterations of the binary search on δ is at most O(log offline(n)/ε). In
the special case when all input values are integers, O(log offline(n)) iterations
will be sufficient.

5.5.2 NP-hardness of Calculating the Difficulty ∆
We now show that the problem is NP-hard if r is unbounded. To facilitate
the proof, we briefly show the equivalence of the retaining model and the non-
retaining model.

Theorem 5.13. We can take an input sequence from non-retaining model and
transform into an equivalent input in the retaining model such that the gain for
any mechanism remains unchanged in every round.

Proof. Consider the input sequence b1, . . . , bn. We now turn every bidder bi =
(vi, πi) into a new bidder b′i = (vi, πi + vi).

Let S be the set of accepted bidders from any mechanism M. We show
the gain competitiveness is identical via induction over bidders. For b1 it holds
vacuously.

Thus, let us consider the inductive step from i − 1 → i: Because of the
induction hypothesis it holds vacuously that for every bidder bi /∈ S, the gain
remains identical. Thus, let bi ∈ S and let bj be the bidder who was allocated
the good before. Let g denote the gain before bi was allocated the good. In the
non-retaining model the new gain is g+ vi− vj −πj and the retaining model the
gain is g + vi − (πj + vj). Thus, the claim holds.

Thus, we can use the two models interchangeably. In the following, it is more
convenient to use the non-retaining model.

Theorem 5.15. Checking whether there is a solution with gain competitiveness
of δ in an online auction is NP-hard.

CHAPTER 5. CLAIRVOYANT MECHANISMS 57

Proof. In the partition problem, the input is a multiset S = {s1, . . . , sr} of
positive integers. The task is to decide whether it is possible to partition the set
into two sets S1 and S2 such that the sum of the numbers in S1 equals to that of
S2. Let N = ∑r

i=1 si, the problem is equivalent to deciding whether there exists
a subset of S that sums up to N/2. We reduce an instance of the problem to an
instance of deciding whether ∆ ≤ δ in an online auction of r + 2 goods, where
δ = 1 + 1

2r .
We do so in two steps. First, we provide any mechanism with the option to

choose any of r bidders. Now, if the sum of valuations s of the bidders chosen
by the mechanism is smaller than N/2, then the mechanism is forced to accept
a bidder with infinite preemption price. We link preemption price of the first set
of bidders with their valuation such that the combined preemption price of the
selected bidders is s · k for some k. Afterwards, we present r + 2 bidders that
must be accepted by any mechanism. The linkage of the preemption price of the
first set of bidders with their valuation allows us to ensure that the valuation
before was not larger than N/2. Otherwise the sum of preemption prices would
be so high that we can force the mechanism to accept a bidder with infinite
preemption price. The sequence of bidders is depicted in Figure 5.14. We now
present the details.

Consider the first bidder b1 = (v1, π1). We set π1 = v1 + N = (2r + 1)N
such that buying back the good from this bidder yields negative gain (for the
first r + 2 bidders). We set v1 such that N+v1

v1
= δ = 1 + 1

2r holds, i.e., v1 =
N
δ−1 = 2rN . This allows the mechanism to pick any subset from the following
r bidders without violating the gain competitiveness. These r bidders, denoted
the S block, can be described as follows: vi+1 = si and πi+1 = si · k with k being
chosen such that buying back a good from any bidder from this block is not
possible, e.g., k = π1 = (2r + 1)N . Now, bidder br+2 = (vr+2,∞) arrives. Her
preemption price is chosen such that accepting her will be “fatal”. We now show
that if the mechanism has accepted bidders such that s < N/2, it is forced to
accept this one. The number of goods is chosen such that the offline(r + 2) is
simply the sum of the first r + 2 bidders. The mechanism has a gain of s + v1.
Thus, we want vr+2+N+v1

N/2+v1 = δ = 1 + 1
2r . Simple math yields

vr+2 = δ ·(N/2+v1)−(N+v1) = (1+ 1
2r) ·(N/2+2rN)−(N+2rN) = N

2 + N

4r .

Now, if s < N/2, then it is clear that bidder br+2 needs to be accepted.
The next r + 2 bidders are part of a so called dominant block D1. They

are bidders whose valuation T is so high that any mechanism has to accept all
of them in order to be able to maintain the gain competitiveness. To facilitate
notation, we use v(D1) as a short hand form for v(D1) = ∑2r+4

i=r+3 vi = (r + 2)T ,
i.e., the sum of all bidders in the dominant set D1. At this point, we have
offline(2r + 4) = v(D1) and even though the mechanism has the same set of
bidders, it has to pay the preemption prices. Thus, the gain competitiveness is
now

v(D1)
v(D1)− s · k − π1

= (r + 2)T
(r + 2)T − (s+ 1)(2r + 1)N ≤ δ.

CHAPTER 5. CLAIRVOYANT MECHANISMS 58

Straightforward math yields that this holds for any T ≥ (s+1)(2r+1)N
r+2
2r

.
We now present another “fatal” bidder, b2r+5 = (v2r+5,∞) with an even

higher valuation than the bidders from D1. We want to force the algorithm to
accept this bidder if s > N/2. Thus,

v(D1)− T + v2r+5
v(D1)−N/2 · k − π1

= δ,

i.e.,

v2r+5 = δ · (v(D1)−N/2 · k − π1)− (v(D1)− T)

= (1 + 1
2r) · ((r + 2)T − (N/2 + 1) · (2r + 1)N)− ((r + 2)T − T).

It follows that if s > N/2, then the bidder needs to be accepted in order
to maintain δ gain competitiveness. To ensure that this would result in a gain
competitiveness larger than δ, we need another dominant block – D2. Thus,
the last r + 2 bidders have again a very high valuation (much higher than the
previous dominant block and v2r+5) and every mechanism that wants to be δ
gain competitive needs to accept every bidder from this block. Thus, only when
s is equal to N/2 does the mechanism have a gain competitiveness of δ.

For completeness’ sake, we now argue why while accepting the bidders from a
dominant block, the gain competitiveness does not exceed δ. Let offlineold denote
the value of the offline solution before block Di, and gainold, the gain before block
Di. Consider the bidder from each solution whose good is now allocated to a
bidder from the dominant set. Let bi be such a bidder in the offline solution and
bj be such a bidder in the set of currently accepted bidders from the mechanism.
Thus, the absolute change in gain for the offline solution is T − vi and for the
mechanism it is T−vj−πj . We can combine this to offlineold +T−vi

gainold +T−vj−πj . By choosing
T sufficiently large, the gain competitiveness remains below δ.

5.6 Conclusion

We have introduced the clairvoyant model, a hybrid between an online and an
offline model. In it a mechanism knows the input sequence – similar to an offline
mechanism. But, it always has to have a good solution in case the sequence
ends – similar to an online mechanism. By separating these two issues an online
mechanism faces, we made an analysis possible.

We have proved that an optimal clairvoyant mechanism exists and that we
can compute the sequence of bidders that should be accepted in polynomial time.
This mechanism is a factor of ∆ worse than the offline solution; a factor that
depends on the input sequence. There exists a mechanism that is equipped with
this information that is O(∆5) competitive to the offline solution; without it any
pure online mechanism has an arbitrarily large competitive factor. Thus, using
this small piece of information allows us to deal with adversarial input in such
an online auction.

6
Automatable Jobs and
Automatable Tasks

6.1 Introduction

In our final chapter, we analyze the job market. Computerization is considered
to be one of the biggest socio-economic challenges. What is the foundation of
the recent worries about many jobs being affected by automation [24,25,50,52]?

Why did the last few years see dramatic technological progress regarding self-
driving cars [61], board games [112], automatic language translation [9], or face
recognition [86]? One reason is big data. While “intelligent algorithms” in the
past were restricted to learning from data sets with a few thousand examples, we
now have exabytes of data. Learning becomes even more powerful if you com-
bine big data with a highly parallel hardware, stirred by the success of graphics
processing units (GPUs). However, both of these technological advancements
needed to be harvested, and they are with the advent of so-called deep learning
algorithms, which have blown the competition away, starting with voice recog-
nition [43]. As a consumer, you can already witness some of these advancements
on your smartphone, and many more will happen soon. We believe that these
advancements will revolutionize white collar work and (with a little help from
sensors and robotics) also blue collar work. In contrast to previous waves of
innovation, this time new emerging jobs might not be able to compensate for
the jobs that are endangered by the new technology.

In their seminal paper, Frey and Osborne [52] quantitatively study job au-
tomation, predicting that 47% of US employment is at risk of automation. In
order to calculate this number, Frey and Osborne labeled 70 of the 702 jobs

59

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 60

from the O*NET OnLine job database1 manually as either “automatable” or
“not automatable”. Then, for the remainder of the jobs in the O*NET database,
they computed the automation probability as a function of the distance to the
labeled jobs.

But the results of Frey and Osborne are opaque, one either believes their
“magic” computerization percentages, or one has doubts. We want anybody to
be able to easily understand and argue about our results, by incorporating the
unique tasks of each job. This additional depth will help laymen as well as job
experts to argue about potential flaws in our methodology.

If we know that a job is 100% automatable, we also know that every task of
that job must be completely automatable. But what if a job is 87% automatable?
Is every task 87% automatable? Or are 87% of the tasks completely automatable,
and 13% not at all? We want to forecast which tasks of a job are safe and which
tasks are automatable.

In order to calculate the automation probability for a task, we first need to
determine its share of a job (Section 6.4). Based on this, we are able to assign
each task a probability to be automated such that the weighted average of the
probabilities is equal to the probability of the corresponding job (Section 6.6.1).
During our evaluation (Section 6.6.2), we discover a few suspicious results in the
probabilities by Frey and Osborne, e.g., a surprisingly high automation proba-
bility of 96% for the job compensation and benefits managers. We conclude our
paper by analyzing the correlation between various properties of a job and its
probability to be automated (Section 6.7). We show for example that there is a
strong negative correlation between the level of education required for a job and
its probability to be automated.

Our complete results can be found at http://jobs-study.ethz.ch.

6.2 Related Work

The current effects of automation have been studied intensively in economics.
Most studies agree that some routine tasks have already fallen victim to au-
tomation [10, 12, 59]. A task is routine if “it can be accomplished by machines
following explicit programmed rules” [12]. With computers being able to do rou-
tine tasks, the demand for human labor performing these tasks has decreased.
But on the other hand, the demand for college educated labor has increased over
the last decades [19, 115, 116]. The effect is more pronounced in industries that
are computer-intensive [11]. As a consequence of this, the employment share of
the highest skill quartile has increased. In addition to more people being em-
ployed in the highest skill quartile, the real wage for this quartile has increased
faster than the average real wage. Service occupations, which are non-routine,
but also not well paid, have also seen an increase in employment share and in real
hourly wage. Thus, both, employment share and real wage, are U-shaped with

1O*NET is an application that was created for the general public to provide broad access
to the O*NET database of occupational information. The site is maintained by the National
Center for O*NET Development, on behalf of the U.S. Department of Labor, Employment and
Training Administration (USDOL/ETA); see https://www.onetonline.org/

http://jobs-study.ethz.ch

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 61

respect to the skill level [10]. This employment pattern is a phenomenon that is
called polarization. This is not unique to the US, but can also be observed, e.g.,
in the UK [59]. These papers make important observations about the effects that
automation already has. Until now, routine tasks are the ones most affected, but
more and more tasks can nowadays be performed by a computer. We focus on
the future and try to predict which tasks will be automated next.

John Keynes predicted already in 1933 that there will be widespread tech-
nological unemployment “due to the means of economising the use of labour
outrunning the pace at which we can find new uses for labour” [78]. Automation
might be the technology, where this becomes true [24, 25, 50, 52]. “Automa-
tion of knowledge work”, “Advanced robotics”, and “Autonomous and near-
autonomous vehicles” are considered to be 3 out of 12 potentially economically
disruptive technologies [92]. Computer labor and human labor may no longer be
complements, but competitors. Automation might be the cause for the current
stagnation [24]. There might be too much technological progress, which causes
high unemployment. A trend that could be going on for years, but was hidden
by the housing boom [32].

The seminal paper by Frey and Osborne is the first to make quantitative
claims about the future of jobs [52]. Together with 70 machine learning experts,
Frey and Osborne first manually labeled 70 out of 702 jobs from the O*NET
database as either “automatable” or “non automatable”. This labeling was, as
the authors admit, a subjective assignment based on “eye balling” the job de-
scriptions from O*NET. Labels were only assigned to jobs where the whole job
was considered to be (non) automatable, and to jobs where the participants of
the workshop were most confident. To calculate the probability for non-labeled
jobs, Frey and Osborne used a probabilistic classification algorithm. They chose
9 properties from O*NET as features for their classifier, namely “Finger Dexter-
ity”, “Manual Dexterity”, “Cramped Work Space, Awkward Positions”, “Origi-
nality”, “Fine Arts”, “Social Perceptiveness”, “Negotiation”, “Persuasion”, and
“Assisting and Caring for Others”.

The results from Frey and Osborne for the US job market were adopted to
other countries, e.g., Finland, Norway, and Germany [18,101]. This was done by
matching each job from O*NET to the locally used standardized name. Due to
differences in the economies, a different percentage of people will be affected by
this change, e.g., only one third in Finland and Norway are at risk compared to
47% in the US.

6.3 Model

We are given a set of jobs J = {j1, . . . , jn}. Each job ji consists of a set of
tasks Ti = {t1i , . . . , tmi }, where every task belongs to exactly one job. We call
two tasks tki and tk

′
i′ related if and only if these tasks are similar according to

O*NET. Two jobs with related tasks are also called related. An example with 3
jobs is depicted in Figure 6.1.

O*NET provides us for each task tki with the information how often it is
performed. This information was gathered by asking job incumbents and occu-

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 62

Figure 6.1: This figure shows a small example consisting of three jobs represented by
circles. The share of each task of a job is shown by its sector. Two tasks are connected
by a line if and only if they are related, i.e., similar according to O*NET. Task t11 from
job j1 and task t12 from job j2 are related as indicated by the line connecting them. Note
that this relationship is not transitive. Thus, tasks t11 and t13 do not need to be related.

pational experts. The options are “yearly or less”, “more than yearly”, “more
than monthly”, “more than weekly”, “daily”, “several times daily”, and “hourly
or more”. O*NET provides a percentage for each of the 7 options. We de-
note these frequencies of task tki with f1(tki), . . . , f7(tki). Since these values are
percentages, for every task tki they sum up to 100%, i.e., ∑7

`=1 f`(tki) = 1.
Each job ji has a given probability p(ji) to be automated. We want to use

p(ji) to calculate a probability to be automated for each task of this job.

6.4 From Task Frequencies to Task Shares

We use the frequencies with which a task is performed to assign each task tki its
share s(tki). For every task tki , the share denotes how much time is spent doing
this task, such that ∑tki ∈Ti

s(tki) = 1. The frequency values from O*NET do not
fulfill this property; their values are very consistent for one job, but they can
vary a lot between different jobs and might even seem to contradict each other.
An extreme example can be seen in Figure 6.2. The seven frequency options
provided by O*NET are on the x-axis and on the y-axis is the corresponding
value of each option.

To make use of the high consistency within a job, we decided that the share
of a task is a weighted average of its frequencies, i.e., s(tki) := ∑7

`=1 x
`
if`(tki).

We want to calculate the job specific coefficients x`i . Let us illustrate these
coefficients with a simple example. If x7

i = 0.1, then a task tki that is done
exclusively “hourly or more” (i.e., f7(tki) = 1) makes up 10% of job ji.

We want these coefficients to satisfy a few assumptions. If O*NET states that
a task is done “hourly or more”, then the share of this task should be higher
than the share of a task that is done “several times daily”. This translates to

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 63

x`i ≤ x
`+1
i ∀` ∈ {1, . . . , 6} and 0 ≤ x1

i .

(a) Electro-Mechanical Technicians (b) Environmental Engineering Technicians

Figure 6.2: The number of tasks and the frequencies assigned to them can differ
significantly even for related jobs.

These constraints neither use that jobs are related nor do they define the
coefficients uniquely. Both issues are solved if we require the coefficients x`i and
x`i′ for two related jobs ji and ji′ to be similar. The intuition behind this is that
the frequencies of O*NET for related jobs are not independent of each other
either, but rather should be similar as well. Occupational experts who have
rated the frequency of a task of a job, are likely to have rated the frequencies of
related jobs.

The coefficients cannot be identical without violating the other constraints.
Jobs have a different number of tasks and the frequencies are task specific.
The example in Figure 6.2 highlights this. It is therefore easy to see that we
cannot have the same coefficients for two related jobs and fulfill the equality∑
tki ∈Ti

s(tki) = 1 for both jobs simply because the number of tasks can differ a
lot.

Thus, we allow a bit of slack in the coefficients of related jobs. We use the
variable x`i,i′ to express the difference between the coefficients x`i and x`i′ for two
related jobs ji, ji′ . Formally, we define it as x`i,i′ := max{x`i − x`i′ , x`i′ − x`i}. This
yields the following linear program, which minimizes the overall slack:

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 64

minimize ∑
x`i,i′

s.t.
x`i,i′ ≥ x`i − x`i′ ∀`

∀ji, ji′ ∈ J that are related
x`i,i′ ≥ x`i′ − x`i ∀`

∀ji, ji′ ∈ J that are related∑
tki ∈Ti

7∑
`=1

x`if`(tki) ≤ 1 + ε ∀ji ∈ J

∑
tki ∈Ti

7∑
`=1

x`if`(tki) ≥ 1− ε ∀ji ∈ J

x1
i ≥ 0 ∀ji ∈ J
x`i ≥ x`−1

i ∀ji ∈ J ` ∈ {2, . . . , 7}

We set ε to 0.01. The resulting LP has 169,372 variables in its objective function.
Since there are 735 jobs,2 this means that a job is related to approximately 32.9
other jobs on average. The value of the objective function is 24.6, i.e., for two
related jobs the coefficients differ only by 0.000145 on average. For comparison,
the average value of a coefficient is 0.060. Our complete results can be found
online at http://jobs-study.ethz.ch.

6.5 From Jobs to Tasks

Knowing the shares of the tasks enables us to set up a linear program that
calculates for each task the probability to be automated. We want that the
weighted average of the automation probabilities p(tki) of the tasks of a job
ji can explain the automation probability p(ji) of the job, i.e., ∑tki ∈Ti

p
(
tki

)
·

s
(
tki

)
≈ p (ji). Furthermore, we want to assign related tasks similar automation

probabilities. To do this, we define a variable tk,k
′

i,i′ for each pair of related tasks
tki and tk

′
i′ . It denotes the probability difference that we assign to the two tasks.

Formally, it is defined as tk,k
′

i,i′ := max{p(tki)− p(tk
′
i′), p(tki)− p(tk

′
i′)}. We want to

minimize the sum of these variables, i.e., the sum of the probability difference of
all related tasks.

Combining these requirements with necessary conditions to have meaningful
probabilities, i.e., 0 ≤ p(tki) ≤ 1, yields the following linear program:

2We consider slightly more jobs than Frey and Osborne, since we use the finest granularity
available from O*NET.

http://jobs-study.ethz.ch

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 65

minimize ∑
tk,k

′

i,i′

s.t.
p(tki)− p(tk

′
i′) ≤ tk,k

′

i,i′ ∀tki , tk
′
i′ that are related

p(tk′i′)− p(tki) ≤ tk,k
′

i,i′ ∀tki , tk
′
i′ that are related∑

k

p(tki) · s
(
tki

)
≤ p(ji) (1 + ε) ∀ji ∈ J∑

k

p(tki) · s
(
tki

)
≥ p(ji) (1− ε) ∀ji ∈ J

p(tki) ≥ 0 ∀ji ∈ J, tki ∈ Ti
p(tki) ≤ 1 ∀ji ∈ J, tki ∈ Ti
tk,k

′

i,i′ ≥ 0 ∀tk,k
′

i,i′

tk,k
′

i,i′ ≤ 1 ∀tk,k
′

i,i′

We set ε to 0.01.

6.6 Linear Program Results

We now analyze the results of the linear program as described above. Later on,
we will look at a small refinement to automatically detect inconsistencies in our
results.

6.6.1 Task Probabilities

Figure 6.3: A histogram of the probability with which two related tasks differ.

The linear program as described in Section 6.5 has 105,748 variables in its
objective function and it has a minimal value of 9,846. This means that two
related tasks differ, on average, with regard to their probability by 9.3%. The
complete results can be found online at http://jobs-study.ethz.ch. The

http://jobs-study.ethz.ch

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 66

Task Description p Share
Write decisions on cases. 1 5.1

Instruct juries on applicable laws, direct juries to deduce the facts from the
evidence presented, and hear their verdicts.

1 3.4

Monitor proceedings to ensure that all applicable rules and procedures are
followed.

1 8.0

Advise attorneys, juries, litigants, and court personnel regarding conduct,
issues, and proceedings.

1 6.2

Interpret and enforce rules of procedure or establish new rules in situations
where there are no procedures already established by law.

1 5.4

Conduct preliminary hearings to decide issues such as whether there is
reasonable and probable cause to hold defendants in felony cases.

1 3.9

Rule on admissibility of evidence and methods of conducting testimony. 0.94 5.3
Preside over hearings and listen to allegations made by plaintiffs to

determine whether the evidence supports the charges.
0.46 5.9

Perform wedding ceremonies. 0.39 2.7
Read documents on pleadings and motions to ascertain facts and issues. 0 10.1

Research legal issues and write opinions on the issues. 0 6.5
Settle disputes between opposing attorneys. 0 4.6

Participate in judicial tribunals to help resolve disputes. 0 6.6
Rule on custody and access disputes, and enforce court orders regarding

custody and support of children.
0 6.3

Sentence defendants in criminal cases, on conviction by jury, according to
applicable government statutes.

0 4.0

Grant divorces and divide assets between spouses. 0 4.7
Award compensation for damages to litigants in civil cases in relation to

findings by juries or by the court.
0 3.8

Supervise other judges, court officers, and the court’s administrative staff. 0 8.5

Table 6.4: The automation probability and the share of each task of Judges, Magistrate
Judges, and Magistrates”. The automation probability of this job is 40%.

histogram of the probability difference between two related tasks is shown in
Figure 6.3. A majority of related tasks is assigned a similar probability. A small
fraction of related tasks is assigned diametrically opposed probabilities, which
seems startling. It can be reconciled by considering that neither the classification
by Frey and Osborne nor the classification of tasks being related by O*NET are
perfect.

One example that highlights this are the two jobs computer programmer
and software developers, applications. These two jobs have many related tasks,
but the probabilities of these jobs differ a lot (4% for software developers, ap-
plications, 48% for computer programmers). Hence, the diametrically opposed
probabilities are necessary to meet the constraints of the linear program.

In the following, we present a few selected jobs to illustrate our results. The
first example is chemists. This job has an automation probability of 10% accord-
ing to Frey and Osborne. Only one task has, according to our linear program,
a high probability of being automated: “Induce changes in composition of sub-
stances by introducing heat, light, energy, or chemical catalysts for quantitative
or qualitative analysis.” Other simple mechanical tasks have been assigned low
automation probabilities. We will revisit this job in Section 6.6.2.

Next up: judges. Their automation probability is 40%. The tasks, their
probabilities, and their shares are shown in Table 6.4. The tasks that can be
automated can be grouped in two sets: preliminary hearings which includes
making first assessments, and ensuring that the procedures in court are followed.

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 67

The tasks that involve sentencing (or the preparation thereof) have been assigned
low automation probabilities.

Figure 6.5: A histogram of the probabilities that tasks can be automated. Nearly all
tasks are assigned either 0 or 1. This simplifies arguing whether our classification is
correct.

Figure 6.5 shows the histogram of the probabilities from our linear program.
The probabilities for most tasks are either very high or very low and only a
few tasks have a probability in-between. This desired side effect of our linear
program helps us to achieve our goal of allowing job experts (and laymen) to
argue about the validity of our results. We invite the reader to have a look at
other jobs at http://jobs-study.ethz.ch.

6.6.2 Inconsistency Detection

To evaluate our approach and check for inconsistencies, we use a variant of cross-
validation. For every job ji, we create a linear program without job ji. This
yields a probability pi(·) for every task but the tasks from ji. Afterward, we
calculate the new probability p′(ji) that job ji can be automated. We do this
by setting the probability p′(tki) of each task tki to the average of all tasks that
are related to it. We denote the set of related tasks by N(tki). Formally, we set
p′(tki) := 1

|N(tki)|
∑
tk
′
i′ ∈N(tki) pi(t

k′
i′).

We first compare p′(tki) with p(tki). The difference between these two proba-
bilities should be small for the majority of the tasks. This is indeed what can be
seen in Figure 6.6. The histogram of p′(tki) − p(tki) shows that nearly all tasks
have similar probabilities in both approaches. The average absolute difference
is less than 20%. The distribution is centered around 0. Its mean is less than
0.05%.

By combining the new probability of each task with its share, we can calculate
the new probability of job ji by using a weighted average. This allows us to
compare p′(ji) with p(ji).

We have plotted this difference, i.e., p(ji)− p′(ji), in Figure 6.7. We can see
that the difference is centered around 0%; with the average absolute difference
being less than 20%. For more than half of the jobs our probability differs by

http://jobs-study.ethz.ch

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 68

Figure 6.6: A histogram of p(tki) − p′(tki) for all tasks. This plot shows that most
tasks have a similar probability in both approaches. The values are sharply distributed
around 0.

less than 20% from Frey and Osborne [52]. Most interesting are the jobs whose
probability differs significantly. We now have a look at a few of them.

There are jobs where our probability is more than 80% smaller than the
one by Frey and Osborne. One job is compensation and benefits managers. We
assigned it a probability p′(j) to be automated of 9.1%; compared to p(j) = 96%
by Frey and Osborne. We do not claim to know the true value, but we can look
at the job and compare it to the probabilities of jobs we consider similar. Notice
that this is conceptually similar to what our linear program does and thus might
be biased. The tasks of this job are shown in Table 6.8. If we manually compare
them to related tasks, we conclude that they do not seem to be automatable
in the next few decades. We do favor our result over the result of Frey and
Osborne.

Figure 6.7: A histogram of the difference between the probability by Frey and Osborne
with our probability. The distribution is centered around 0 and a majority of the jobs
differs by less than 20%.

There is only one job that we assign a much higher probability than Frey and

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 69

Task Description p p′

Advise management on such matters as equal employment opportunity,
sexual harassment and discrimination.

1 0.15

Study legislation, arbitration decisions, and collective bargaining contracts
to assess industry trends.

1 0

Fulfill all reporting requirements of all relevant government rules and
regulations, including the Employee Retirement Income Security Act

(ERISA).

1 0.20

Investigate and report on industrial accidents for insurance carriers. 1 0.12
Represent organization at personnel-related hearings and investigations. 1 0

Analyze compensation policies, government regulations, and prevailing wage
rates to develop competitive compensation plan.

1 0.5

Mediate between benefits providers and employees, such as by assisting in
handling employees’ benefits-related questions or taking suggestions.

1 0.42

Prepare detailed job descriptions and classification systems and define job
levels and families, in partnership with other managers.

1 0

Prepare personnel forecasts to project employment needs. 1 0
Direct preparation and distribution of written and verbal information to

inform employees of benefits, compensation, and personnel policies.
1 0

Manage the design and development of tools to assist employees in benefits
selection, and to guide managers through compensation decisions.

1 0

Design, evaluate and modify benefits policies to ensure that programs are
current, competitive and in compliance with legal requirements.

1 0

Administer, direct, and review employee benefit programs, including the
integration of benefit programs following mergers and acquisitions.

1 0

Prepare budgets for personnel operations. 1 0.03
Maintain records and compile statistical reports concerning personnel-related
data such as hires, transfers, performance appraisals, and absenteeism rates.

1 0

Contract with vendors to provide employee services, such as food services,
transportation, or relocation service.

1 0.38

Identify and implement benefits to increase the quality of life for employees,
by working with brokers and researching benefits issues.

1 0

Plan, direct, supervise, and coordinate work activities of subordinates and
staff relating to employment, compensation, labor relations, and employee

relations.

1 0

Negotiate bargaining agreements. 1 0.67
Plan and conduct new employee orientations to foster positive attitude

toward organizational objectives.
1 0

Conduct exit interviews to identify reasons for employee termination. 1 0
Develop methods to improve employment policies, processes, and practices,

and recommend changes to management.
0.51 0

Formulate policies, procedures and programs for recruitment, testing,
placement, classification, orientation, benefits and compensation, and labor

and industrial relations.

0.23 0.01

Table 6.8: The tasks and their corresponding probability that they will be automated
for Compensation and Benefits Managers according to our original linear program and
the cross-validation.

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 70

Task Description p p′

Induce changes in composition of substances by introducing heat, light,
energy, or chemical catalysts for quantitative or qualitative analysis.

0.68 0.82

Analyze organic or inorganic compounds to determine chemical or physical
properties, composition, structure, relationships, or reactions, using

chromatography, spectroscopy, or spectrophotometry techniques.

0.18 0.82

Maintain laboratory instruments to ensure proper working order and
troubleshoot malfunctions when needed.

0.16 0.78

Conduct quality control tests. 0.07 0.54
Write technical papers or reports or prepare standards and specifications for

processes, facilities, products, or tests.
0.03 0.03

Study effects of various methods of processing, preserving, or packaging on
composition or properties of foods.

0 0.20

Prepare test solutions, compounds, or reagents for laboratory personnel to
conduct tests.

0 0.63

Purchase laboratory supplies, such as chemicals, when supplies are low or
near their expiration date.

0 1

Evaluate laboratory safety procedures to ensure compliance with standards
or to make improvements as needed.

0 0

Direct, coordinate, or advise personnel in test procedures for analyzing
components or physical properties of materials.

0 0.01

Develop, improve, or customize products, equipment, formulas, processes, or
analytical methods.

0 0

Confer with scientists or engineers to conduct analyses of research projects,
interpret test results, or develop nonstandard tests.

0 0.02

Table 6.9: The automation probability and the share of each task of a chemist.

Osborne. The job First-Line supervisors of production and operating workers has
been assigned a 83% automation probability by us and only 1.6% by Frey and
Osborne. A close inspection of the tasks makes us believe that the true value
is between these extremes. Quite a few of the tasks are clearly automatable,
e.g., “Keep records of employees’ attendance and hours worked.” and “Observe
work and monitor gauges, dials, and other indicators to ensure that operators
conform to production or processing standards.” Others, e.g., “Read and analyze
charts, work orders, production schedules, and other records and reports to
determine production requirements and to evaluate current production estimates
and outputs.” seem difficult to automate. The complete results for this can job
be found at http://jobs-study.ethz.ch.

We continue by comparing the previous results with the approach described
in this section. To do this, we return to the jobs that we have looked at pre-
viously. First off is the job chemists. As shown in Table 6.9, the automation
probability of most tasks has increased. Consequently, the automation probabil-
ity of this job has increased from 10% to 42%. Due to the large difference, this
job should be analyzed in-depth by job experts.

The changes in the automation probability of the tasks of judges are much
smaller. Most tasks have a similar automation probability as before and the
overall probability of this job has changed marginally, i.e., increased only from
40% to 50%. Therefore, we are confident that the classification by Frey and
Osborne is correct.

We conclude that our approach can also be used to detect inconsistencies in
the results of Frey and Osborne. We can then manually inspect the automation
probabilities of the tasks of such an outlier to determine the truth. We think our

http://jobs-study.ethz.ch

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 71

results allow us to fine tune the results from Frey and Osborne, but not replace
it, as we need their results to bootstrap our linear program.

6.7 Further Analysis

In addition to inspecting every task of every job, we consider a broader picture.
We do this by looking at general properties of a job that correlate with the
probability that it can be automated.

6.7.1 Tasks

Figure 6.10: Our results show almost no correlation between the share of a task and
its probability that it will be automated.

We first analyze the share of a task. The higher the share, the more often a
task is performed. Hence, from a machine learning perspective this means that
much more training data is available. This might lead to the conclusion that
such a task is easier to automate. To disprove this claim, we plotted the share of
a task over the probability that a task can be automated according to our linear
program. The resulting graph is shown in Figure 6.10. Every dot represents one
task, with its share on the x-axis and its probability on the y-axis. We see that
there is barely any correlation between these two. We conclude that tasks that
are done more frequently are not more likely to be automated.

6.7.2 Jobs

We continue our analysis by looking at the correlation between the properties
that a job has, e.g., what kind of degree is necessary to do a job, and the prob-
ability that this job can be automated. Correlation does not imply causation,
but nevertheless, these results reveal some interesting nuggets.

O*NET provides the level that the ability “deductive reasoning” is used in a
job. The level ranges from 1 to 7, where for example level 2 means “knowing that
a stalled car can coast downhill” and level 5 “deciding what factors to consider
in selecting stocks”. For every job, we have one value between 1 and 7. The

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 72

(a) Deductive Reasoning (b) Originality

Figure 6.11: The probability that a job can be automated over the level of the abilities
“deductive reasoning” and “originality” used in this job. These levels are defined by
O*NET and for each they provide an anchor point. Level 2 of “deductive reasoning”
means “knowing that a stalled car can coast downhill” and level 5 “deciding what factors
to consider in selecting stocks”. Level 2 of “originality” means “using a credit card to
open a locked door” and level 6 “inventing a new type of man-made fiber”. Every point
represents one job. A higher level of either of these two abilities correlates, as expected,
with a lower probability to be automated.

Figure 6.12: The probability that a job can be automated over the level of the current
“Degree of Automation”. This level ranges from 1 (Not at all automated) to 5 (Com-
pletely automated). The rather small correlation of 0.23 implies that different jobs will
soon be affected.

resulting graph can be seen in Figure 6.11. Every job is represented by one dot;
its x-coordinate being its level and the y-coordinate its probability. We can see
that jobs that require a high level of deductive reasoning tend to have a lower
probability of being automated. A similar result can be seen for “originality”
(see Figure 6.11). Level 2 of “originality” means “using a credit card to open a
locked door” and level 6 means “inventing a new type of man-made fiber”. This
confirms our expectation that these abilities will remain difficult for a computer.

O*NET even has an explicit value for the current level of the “degree of
automation” for each job. This level ranges from 1 (not at all automated) to 5
(completely automated). As depicted in Figure 6.12, the already existing level
of automation barely correlates with the probability that this job will be auto-
mated. This indicates that not only jobs that are already affected by automation
are in danger, but also a whole new set of jobs. This is aligned with the recent
worries about many new jobs soon being affected by computerization.

CHAPTER 6. AUTOMATABLE JOBS AND AUTOMATABLE TASKS 73

(a) On the Job Training (b) Required Level of Education

Figure 6.13: The probability that a job can be automated over the amount of “On the
Job Training” (ranging from 1 (none or short demonstration) to 9 (over 10 years) and
the “Required of Level of Education” (ranging from 1 (less than a high school diploma)
to 12 (post-doctoral training)).

We conclude this section by looking at the effect that the level of required
education for a job has on the probability to be automated. Jobs that require
only very little education (level 1, i.e., less than a high school diploma) tend
to have a higher probability than jobs that require an associate degree (level
5) which in turn have a higher probability than jobs that require post-doctoral
training (level 12). Most jobs that require little education are in danger. It is
noteworthy that the effect of training before the job is much stronger than the
effect of on the job training. Jobs that require more on the job training only
have a marginally smaller probability to be automated. Both plots are shown in
Figure 6.13.

6.8 Conclusion

We believe that automation will cause a massive change in the job market and is
one of the main challenges for society. In our opinion, the seminal work of Frey
and Osborne did an excellent job of getting the discussion going. In this paper we
dug a bit deeper, by looking not only at jobs – but at the tasks that make up a job.
We hope that opening the Frey/Osborne black box will help the discussion. The
professionals that are actually doing a job are the main experts to decide what
parts of their job can or cannot be computerized. The Frey/Osborne work only
tells these experts that their job is 87% automatable, but what does it actually
mean? With our work, job experts can look inside the box, and understand
which tasks of their job are at risk. Our hope is that the job experts have a
discussion which results are believable and which are not, and why. To facilitate
this discussion, we have created a web page (http://jobs-study.ethz.ch) that
allows users to comment upon our results.

http://jobs-study.ethz.ch

7
Conclusion

We have analyzed several problems. We proved that these problems are difficult
if we allow adversarial input. Following the main thread of this thesis, we looked
for shortcuts and tricks to deal with these problems.

Many heuristics exist that exploit that most users do not access their flash
memory in a worst case manner. We show that if they did, then space overhead σ
and write overhead ω would always have to obey σω ≥ 1. Our cycling algorithm
performs well in case of adversarial access patterns and guarantees σω ≤ 1.

We proved that finding the best friends is essentially hopeless; no local algo-
rithm can be as good as a global one and there is not even a best local algorithm.
We provided some hope by proving that one can execute several algorithms in
parallel and be at least half as good as the best of these algorithms. A more
positive result was shown for personalized web filtering. Even though the origi-
nal problem is NP-hard, our heuristic performs very well; showing us that real
world input may not be adversarial.

We also analyzed two types of markets. The first type of market is an online
auction, where bidders have a valuation and a preemption price. Using our
clairvoyant model, we were able to analyze this type of online auction. We have
proved that an optimal and polynomial time algorithm exists to compute the
difficulty ∆ of the input. Last, but not least, we refined the results by Frey and
Osborne by analyzing data from the O*NET database to predict which tasks of
a job are susceptible to computerization.

Despite all the shortcuts we have presented for various problems, we want to
point out that this is not always the way to go. Even if a simplified version of
a song sounds nearly as good as the original, there is a difference. A few people
will notice this and will greatly appreciate the time and effort that was spent
practicing. Furthermore, the experiences had and skills gained while never giving
up and continuing to work on a problem can be their own reward. A reward that

74

CHAPTER 7. CONCLUSION 75

cannot be acquired without putting in the work. The side effects of the 10,000
hours of practice – incidentally also the number of hours I spent on my PhD –
can be much more valuable than the initial goal.

Bibliography

[1] Abraham, D., Levavi, A., Manlove, D., O’Malley, G.: The stable room-
mates problem with globally-ranked pairs. In: WINE. Volume 4858 of
Lecture Notes in Computer Science., Springer (December 2007) 431–444

[2] Agarwal, R., Marrow, M.: A closed-form expression for write amplification
in NAND Flash. In: GLOBECOM Workshops. (2010) 1846–1850

[3] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M.,
Panigrahy, R.: Design Tradeoffs for SSD Performance. In: USENIX An-
nual Technical Conference on Annual Technical Conference. ATC (2008)
57–70

[4] Ajtai, M., Aspnes, J., Dwork, C., Waarts, O.: A theory of competitive
analysis for distributed algorithms. In: FOCS, IEEE (1994) 401–411

[5] Andelman, N., Azar, Y., Sorani, M.: Truthful Approximation Mechanisms
for Scheduling Selfish Related Machines. Theor. Comp. Sys. 40(4) (June
2007) 423–436

[6] Arcaute, E., Vassilvitskii, S.: Social Networks and Stable Matchings in
the Job Market. In: WINE. (2009) 220–231

[7] Ashwinkumar, B.V.: Buyback Problem - Approximate Matroid Intersec-
tion with Cancellation Costs. In: ICALP. (2011) 379–390

[8] Ashwinkumar, B.V., Kleinberg, R.: Randomized Online Algorithms for
the Buyback Problem. In: WINE. (2009) 529–536

[9] Auli, M., Galley, M., Quirk, C., Zweig, G.: Joint language and translation
modeling with recurrent neural networks. In: EMNLP. Volume 3. (2013)
0

[10] Autor, D.H., Dorn, D.: The growth of low skill service jobs and the
polarization of the us labor market. Technical report, National Bureau of
Economic Research (2009)

[11] Autor, D.H., Katz, L.F., Krueger, A.B.: Computing inequality: have
computers changed the labor market? Technical report, National Bureau
of Economic Research (1997)

76

BIBLIOGRAPHY 77

[12] Autor, D.H., Levy, F., Murnane, R.J.: The skill content of recent tech-
nological change: An empirical exploration. Technical report, National
Bureau of Economic Research (2001)

[13] Babaioff, M., Hartline, J.D., Kleinberg, R.: Selling ad campaigns: online
algorithms with cancellations. In: EC. (2009) 61–70

[14] Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value
domains. In: AAAI. Volume 20. (2005) 241

[15] Belleflamme, P., Bloch, F.: Market Sharing Agreements and Collusive
Networks. International Economic Review 45(2) (2004) 387–411

[16] Ben-Aroya, A., Toledo, S.: Competitive Analysis of Flash Memory Algo-
rithms. ACM Trans. Algorithms 7(2) (March 2011) 23:1–23:37

[17] Bissig, P., Brandes, P., Wattenhofer, R., Willi, R.: Spoilers Ahead - Per-
sonalized Web Filtering. In: 4th International Workshop on Web Person-
alization, Recommender Systems and Social Media (WPRSM), Singapore.
(December 2015)

[18] Bonin, H., Gregory, T., Zierahn, U.: Übertragung der Studie von Frey/Os-
borne (2013) auf Deutschland. Technical report, ZEW Kurzexpertise
(2015)

[19] Bound, J., Johnson, G.E.: Changes in the structure of wages during
the 1980’s: An evaluation of alternative explanations. Technical report,
National Bureau of Economic Research (1989)

[20] Boyd-Graber, J., Glasgow, K., Zajac, J.S.: Spoiler alert: Machine learning
approaches to detect social media posts with revelatory information. In:
Proceedings of the 76th ASIS&T Annual Meeting: Beyond the Cloud: Re-
thinking Information Boundaries. ASIST, Silver Springs, MD, USA, Amer-
ican Society for Information Science (2013)

[21] Brandes, P., Huang, Z., Su, H.H., Wattenhofer, R.: Clairvoyant Mech-
anisms for Online Auctions. In: 22nd Annual International Computing
and Combinatorics Conference (COCOON), Ho Chi Minh City, Vietnam.
(August 2016)

[22] Brandes, P., Wattenhofer, R.: On Finding Better Friends in Social Net-
works. In: 14th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), Toronto, Canada. (October 2012)

[23] Brandes, P., Wattenhofer, R.: Space and Write Overhead are Inversely
Proportional in Flash Memory. In: 8th ACM International Systems and
Storage Conference (SYSTOR), Haifa, Israel. (May 2015)

[24] Brynjolfsson, E., McAfee, A.: Race against the machine: How the digital
revolution is accelerating innovation, driving productivity, and irreversibly
transforming employment and the economy. Brynjolfsson and McAfee
(2012)

BIBLIOGRAPHY 78

[25] Brynjolfsson, E., McAfee, A.: The second machine age: work, progress,
and prosperity in a time of brilliant technologies. WW Norton & Company
(2014)

[26] Calvó-Armengol, A., Jackson, M.O.: Networks in labor markets: Wage
and employment dynamics and inequality. Journal of Economic Theory
132(1) (2007) 27–46

[27] Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: A fast filter for
the large-scale detection of malicious web pages. In: Proceedings of the
20th International Conference on World Wide Web. WWW ’11, New York,
NY, USA, ACM (2011) 197–206

[28] Chang, L.P.: On Efficient Wear Leveling for Large-scale Flash-memory
Storage Systems. In: Proceedings of the ACM Symposium on Applied
Computing. SAC (2007) 1126–1130

[29] Chang, L.P., Chou, T.Y., Huang, L.C.: An Adaptive, Low-cost Wear-
leveling Algorithm for Multichannel Solid-state Disks. ACM Trans. Embed.
Comput. Syst. 13(3) (December 2013) 55:1–55:26

[30] Chang, L.P., Du, C.D.: Design and Implementation of an Efficient Wear-
leveling Algorithm for Solid-state-disk Microcontrollers. ACM Trans. Des.
Autom. Electron. Syst. 15(1) (December 2009) 6:1–6:36

[31] Chang, L.P., Huang, L.C.: A Low-cost Wear-leveling Algorithm for Block-
mapping Solid-state Disks. In: Proceedings of the SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems.
LCTES (2011) 31–40

[32] Charles, K.K., Hurst, E., Notowidigdo, M.J.: Manufacturing decline, hous-
ing booms, and non-employment. Technical report, National Bureau of
Economic Research (2013)

[33] Ching, S.: Strategy-proofness and ”median voters”. International Journal
of Game Theory 26(4) (1997) 473–490

[34] Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Incremental medians
via online bidding. Algorithmica 50(4) (2008) 455–478

[35] Chung, T.S., Park, D.J., Park, S., Lee, D.H., Lee, S.W., Song, H.J.: Sys-
tem Software for Flash Memory: A Survey. In: Proceedings of the Interna-
tional Conference on Embedded and Ubiquitous Computing. EUC (2006)
394–404

[36] Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1)
(1971) 17–33

[37] Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mech-
anism for ad slot reservations with cancellations. In: SODA. (2009) 1265–
1274

BIBLIOGRAPHY 79

[38] Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. (2006)

[39] Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Fast and pre-
cise in-browser javascript malware detection. In: Proceedings of the 20th
USENIX Conference on Security. SEC, Berkeley, CA, USA, USENIX As-
sociation (2011) 3–3

[40] D. Gale, Shapley, L.: College Admission and the Stability of Marriage.
American Mathematical Monthly 69(1) (1962) 9–15

[41] Danchev, D.: South korea to block port 25 as anti-spam countermeasure.
In: http://www.zdnet.com/article/ south-korea-to-block-port-25-as-anti-
spam-countermeasure/. (November 2011)

[42] Dasgupta, S., Long, P.M.: Performance Guarantees for Hierarchical Clus-
tering. J. Comput. Syst. Sci. 70(4) (June 2005) 555–569

[43] Deng, L., Yu, D., Hinton, G.: Deep learning for speech recognition and
related applications. In: NIPS Workshop. (2009)

[44] Desnoyers, P.: Analytic Models of SSD Write Performance. Trans. Storage
10(2) (March 2014) 8:1–8:25

[45] Diamantoudi, E., Miyagawa, E., Xue, L.: Random paths to stability in the
roommate problem. Games and Economic Behavior 48(1) (2004) 18–28

[46] Dietrich, C., Rossow, C.: Empirical research of ip blacklists. In Pohlmann,
N., Reimer, H., Schneider, W., eds.: ISSE 2008 Securing Electronic Busi-
ness Processes. Vieweg+Teubner (2009) 163–171

[47] Dunbar, R.: How Many Friends Does One Person Need?: Dunbar’s Num-
ber and Other Evolutionary Quirks. Harvard University Press (2010)

[48] Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching
markets. Theoretical Economics 1(2) (2006) 233–273

[49] Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost Stable
Matchings by Truncating the Gale-Shapley Algorithm. Algorithmica 58(1)
(2010) 102–118

[50] Ford, M.: Rise of the Robots: Technology and the Threat of a Jobless
Future. Basic Books (2015)

[51] Frankie, T., Hughes, G., Kreutz-Delgado, K.: A Mathematical Model of
the Trim Command in NAND-flash SSDs. In: Proceedings of the 50th
Annual Southeast Regional Conference. ACM-SE (2012) 59–64

[52] Frey, C.B., Osborne, M.A.: The future of employment: How susceptible
are jobs to computerisation? (2013)

[53] Friedman, E.J., Parkes, D.C.: Pricing WiFi at Starbucks: Issues in Online
Mechanism Design. In: EC. (2003) 240–241

BIBLIOGRAPHY 80

[54] Fung, S.P.Y.: Online Scheduling of Unit Length Jobs with Commitment
and Penalties. In: TCS. (2014) 54–65

[55] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA (1990)

[56] Gilbert, J., Mosteller, F.: Recognizing the Maximum of a Sequence. Jour-
nal of the American Statistical Association 61(313) (1966) pp. 35–73

[57] Gladwell, M.: Outliers: The Story of Success. Little, Brown (2008)

[58] Golbeck, J.: The twitter mute button: A web filtering challenge. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI, New York, NY, USA, ACM (2012) 2755–2758

[59] Goos, M., Manning, A.: Lousy and lovely jobs: The rising polarization
of work in britain. The review of economics and statistics 89(1) (2007)
118–133

[60] Groves, T.: Incentives in teams. Econometrica: Journal of the Econometric
Society (1973) 617–631

[61] Guizzo, E.: How google’s self-driving car works. IEEE Spectrum Online,
October 18 (2011)

[62] Guo, S., Ramakrishnan, N.: Finding the storyteller: Automatic spoiler
tagging using linguistic cues. In Huang, C.R., Jurafsky, D., eds.: COLING,
Tsinghua University Press (2010) 412–420

[63] Gusfield, D., Irving, R.W.: The Stable marriage problem - structure and
algorithms. Foundations of computing series. MIT Press (1989)

[64] Hajiaghayi, M.T.: Online Auctions with Re-usable Goods. In: EC. (2005)
165–174

[65] Hajiaghayi, M.T., Kleinberg, R.D., Parkes, D.C.: Adaptive limited-supply
online auctions. In: EC. (2004) 71–80

[66] Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S.,
Morita, Y., Scott, S.: Approximability results for stable marriage problems
with ties. Theoretical Computer Science 306(1-3) (2003) 431–447

[67] Han, X., Kawase, Y., Makino, K.: Online Knapsack Problem with Removal
Cost. In: COCOON. (2012) 61–73

[68] Hartline, J., Sharp, A.: An Incremental Model for Combinatorial Maxi-
mization Problems. In: WEA. (2006) 36–48

[69] Hartline, J., Sharp, A.: Incremental flow. Networks 50(1) (2007) 77–85

BIBLIOGRAPHY 81

[70] Hastad, J.: Clique is Hard to Approximate Within n1−ε. In: Proceedings of
the 37th Annual Symposium on Foundations of Computer Science. FOCS,
Washington, DC, USA, IEEE Computer Society (1996) 627–

[71] Hoefer, M.: Local Matching Dynamics in Social Networks. Automata
Languages and Programming (2011) 113–124

[72] Hoefer, M., Wagner, L.: Locally stable marriage with strict preferences.
In: Automata, Languages, and Programming. Springer (2013) 620–631

[73] Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write Ampli-
fication Analysis in Flash-based Solid State Drives. In: Proceedings of of
SYSTOR: The Israeli Experimental Systems Conference. SYSTOR (2009)
10:1–10:9

[74] Iwama, K., Miyazaki, S., Manlove, D., Morita, Y.: Stable Marriage with
Incomplete Lists and Ties. In: Proceedings of the 26th International Collo-
quium on Automata, Languages and Programming. ICALP, London, UK,
Springer-Verlag (1999) 443–452

[75] Jackson, M.O. In: A Survey of Models of Network Formation: Stability
and Efficiency. Cambridge University Press (2005) 1–62

[76] Kawase, Y., Han, X., Makino, K.: Unit Cost Buyback Problem. In:
ISAAC. (2013) 435–445

[77] Kelso, A.S., Crawford, V.P.: Job Matching, Coalition Formation, and
Gross Substitutes. Econometrica 50(6) (1982) 1483–1504

[78] Keynes, J.M.: Economic possibilities for our grandchildren (1930). Essays
in persuasion (1933) 358–73

[79] Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted
bipartite matching and stable marriages. Theoretical Computer Science
127 (May 1994) 255–267

[80] Kim, Y., Tauras, B., Gupta, A., Mihai, D., Urgaonkar, N.B.: FlashSim:
A Simulator for NAND Flash-based Solid-State Drives (2009)

[81] Kothari, A., Parkes, D.C., Suri, S.: Approximately-strategyproof and
tractable multiunit auctions. Decision Support Systems 39(1) (2005) 105–
121

[82] Kovács, A.: Fast Monotone 3-Approximation Algorithm for Scheduling
Related Machines. In: ESA 2005. Volume 3669 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg (2005) 616–627

[83] Kranton, R.E., Minehart, D.F.: A theory of buyer-seller networks. Amer-
ican Economic Review 91(3) (2001) 485–508

[84] Lavi, R., Nisan, N.: Competitive Analysis of Incentive Compatible On-line
Auctions. In: EC. (2000) 233–241

BIBLIOGRAPHY 82

[85] Lavi, R., Nisan, N.: Online Ascending Auctions for Gradually Expiring
Items. In: SODA. (2005) 1146–1155

[86] Le, Q.V.: Building high-level features using large scale unsupervised learn-
ing. In: ICASSP, IEEE (2013) 8595–8598

[87] Lee, J., Byun, E., Park, H., Choi, J., Lee, D., Noh, S.H.: CPS-SIM:
Configurable and Accurate Clock Precision Solid State Drive Simulator.
In: Proceedings of the ACM Symposium on Applied Computing. SAC ’09
(2009) 318–325

[88] Lee, S.W., Park, D.J., Chung, T.S., Lee, D.H., Park, S., Song, H.J.: A
Log Buffer-based Flash Translation Layer Using Fully-associative Sector
Translation. ACM Trans. Embed. Comput. Syst. 6(3) (July 2007)

[89] Lehmann, D., Oćallaghan, L., Shoham, Y.: Truth revelation in approx-
imately efficient combinatorial auctions. Journal of the ACM (JACM)
49(5) (2002) 577–602

[90] Lindley, D.V.: Dynamic Programming and Decision Theory. j-APPL-
STAT 10(1) (1961) 39–51

[91] Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard
variants of stable marriage. Theoretical Computer Science 276(1-2) (2002)
261–279

[92] Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A.: Dis-
ruptive technologies: Advances that will transform life, business, and the
global economy. Volume 12. McKinsey Global Institute New York (2013)

[93] Mettu, R.R., Plaxton, C.G.: The Online Median Problem. In: FOCS.
(2000) 339–348

[94] Micron: Wear-Leveling Techniques in NAND Flash Devices (2008)

[95] Micron: NAND Flash 101: An Introduction to NAND FLash and How to
Design It In to Your Next Product (2010)

[96] Micron: Wear-Leveling in Micron NAND Flash Memory (2011)

[97] Milgrom, P.: Putting auction theory to work. Cambridge University Press
(2004)

[98] Moulin, H.: On strategy-proofness and single peakedness. Public Choice
35(4) (1980) 437–455

[99] Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA (2007)

[100] Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web
pages through content analysis. In: Proceedings of the 15th International
Conference on World Wide Web. WWW, New York, NY, USA, ACM
(2006) 83–92

BIBLIOGRAPHY 83

[101] Pajarinen, M., Ekeland, A.: Computerization and the Future of Jobs in
Norway. (2015)

[102] Parkes, D.C., Singh, S.P.: An MDP-Based Approach to Online Mechanism
Design. In: NIPS. (2003)

[103] Parkes, D.C., Singh, S.P., Yanovsky, D.: Approximately Efficient Online
Mechanism Design. In: NIPS. (2004)

[104] Plaxton, C.G.: Approximation Algorithms for Hierarchical Location Prob-
lems. In: STOC. (2003) 40–49

[105] Pomeranz, H.: A simple dns-based approach for blocking web advertising.
(August 2013)

[106] Qureshi, M.K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L.,
Abali, B.: Enhancing Lifetime and Security of PCM-based Main Memory
with Start-gap Wear Leveling. In: Proceedings of theAnnual IEEE/ACM
International Symposium on Microarchitecture. MICRO 42 (2009) 14–23

[107] Roth, A.E., Sonmez, T., Unver, M.U.: Pairwise Kidney Exchange. Work-
ing Paper 10698, National Bureau of Economic Research (August 2004)

[108] Roth, A.E., Sotomayor, M.: Two-sided matching. Handbook of Game
Theory vol 1 78(2) (1990) 75–95

[109] Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally Manageable
Combinatorial Auctions (1998)

[110] Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach
to filtering junk e-mail (1998)

[111] Sandholm, T.: Algorithm for optimal winner determination in combina-
torial auctions. Artificial Intelligence 135(1) (2002) 1–54

[112] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mas-
tering the game of go with deep neural networks and tree search. Nature
529 (2016) 484–503

[113] Vazirani, V.V.: Approximation Algorithms. Springer (2004)

[114] Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Ten-
ders. The Journal of Finance 16(1) (1961) 8–37

[115] Wood, A.: North-south trade, employment and inequality. New York
(1994)

[116] Wood, A.: Globalisation and the rise in labour market inequalities. The
economic journal 108(450) (1998) 1463–1482

BIBLIOGRAPHY

[117] Woodhouse, D.: JFFS : The Journalling Flash File System (2001)

[118] Xiang, L., Kurkoski, B.M.: An Improved Analytical Expression for Write
Amplification in NAND Flash. CoRR (2011)

[119] Zuckerman, D.: Linear Degree Extractors and the Inapproximability of
Max Clique and Chromatic Number. Theory of Computing 3(6) (2007)
103–128

Curriculum Vitae

01 Aug 1986 Born in Peine, Germany

2006 – 2009 Studies for BSc in Computer Science,
University of Paderborn, Germany

2009 – 2011 Studies for MSc in Computer Science,
University of Paderborn, Germany

2011 – 2016
PhD student, research and teaching assistant,
Distributed Computing Group, Prof. Dr. Roger Wattenhofer,
ETH Zurich, Switzerland

	Introduction
	Collaborations and Contributions

	Space and Write Overhead
	Introduction
	Related Work
	Model
	Cycling Algorithm
	Lower Bound
	Different Access Pattern
	Conclusion

	Finding Friends
	Introduction
	Model
	On Welfare
	Conclusion

	Hiding Adversarial Content
	Introduction
	Related Work
	Model
	NP-hardness
	Concept
	Evaluation
	Conclusion

	Clairvoyant Mechanisms
	Introduction
	Related Work
	Model
	Auctioning Off a Single Good
	Auctions with Several Goods
	Conclusion

	Automatable Jobs and Automatable Tasks
	Introduction
	Related Work
	Model
	From Task Frequencies to Task Shares
	From Jobs to Tasks
	Linear Program Results
	Further Analysis
	Conclusion

	Conclusion

