
Convex Consensus with Asynchronous Fallback

Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann

ETH Zürich
{aconstantine, ghinead, wattenhofer, wfloris}@ethz.ch

Abstract

Convex Consensus (CC) allows a set of parties to agree on a value v inside the
convex hull of their inputs with respect to a predefined abstract convexity notion,
even in the presence of byzantine parties. In this work, we focus on achieving CC
in the best-of-both-worlds paradigm, i.e., simultaneously tolerating at most ts cor-
ruptions if communication is synchronous, and at most ta ≤ ts corruptions if it is
asynchronous. Our protocol is randomized, which is a requirement under asynchrony,
and we prove that it achieves optimal resilience. In the process, we introduce commu-
nication primitives tailored to the network-agnostic model. These are a deterministic
primitive allowing parties to obtain intersecting views (Gather), and a randomized
primitive leading to identical views (Agreement on a Core-Set). Our primitives pro-
vide stronger guarantees than previous counterparts, making them of independent
interest.

Keywords: convex consensus, network-agnostic protocols, agreement on a core-set.

Acknowledgements: We thank Julian Loss and the anonymous reviewers for their useful
suggestions.

1 Introduction

Arranging a meeting place for a group of n people in a city is a common problem, as
determining a location that is convenient and accessible for everyone can be challenging.
While locations can be determined by their geographic coordinates, we need to prevent
agreement on the coordinates of a restricted area, e.g., some private property. Hence, it
may be more realistic to represent the city as a graph, with streets modeled as edges and
intersections as vertices. Participants are initially in different locations (i.e., vertices),
and they want to agree on a vertex for the meeting point using pair-wise communication
channels. Finding such a meeting point, while also considering that some of the partic-
ipants may choose not to follow the protocol, describes the Convex Consensus problem
(CC).

The CC problem serves as a unifying framework for various agreement problems that
deal with different input spaces. Such input spaces may be continuous, such as RD, or dis-
crete, such as graphs and even lattices. Essentially, CC assumes a publicly available input
space V (this could be the set of locations) equipped with a convexity notion C (roughly
meant to formalize which meeting points are convenient with respect to the participants’
inputs). For example, in the case of RD, the standard “straight-line” convexity notion
can be considered. In contrast, convexity notions for graphs may be defined in various
ways: for example, geodesic convexity, defined over shortest paths between vertices, or

1

monophonic convexity, defined over minimal/chordless paths. For a given convexity no-
tion, CC is concerned with enabling parties to agree on a value in the convex hull of their
inputs. This should be achieved even if up to t of the parties are corrupted (byzantine)
and may exhibit malicious behavior.

A natural question to ask is “For which values of t can CC be achieved?”. Prior work
provides an almost complete answer for the synchronous model, i.e., where the parties’
clocks are synchronized and messages get delivered within a known amount of time ∆. In
this model, the solvability of CC depends on the structure of the input space: concretely,
on the space’s Helly number ω (e.g., D + 1 for RD with straight-line convexity). CC can
be solved in the synchronous model if t < n/ω, and this condition is also necessary for
convex geometries (a restricted class of convexity spaces) and for RD with straight-line
convexity [37,41].

One may argue that the synchronous model’s assumptions are too strong: in practice,
the maximum delay ∆ will often be violated during times of increased network load or
outages. A well-established alternative is the asynchronous model. This only assumes
that parties’ messages get delivered eventually, leading to protocols that are highly ro-
bust to adverse network conditions. The solvability of CC in this model has only been
partly characterized so far: for convex geometries and RD with straight-line convexity, the
condition t < n/(ω+1) is necessary [37,41]. This is, however, only known to be sufficient
in the asynchronous model for a relaxed version of CC which allows parties to agree up
to some error (Approximate Agreement, AA), and only on particular input spaces. We
highlight that the asynchronous model comes with an intrinsic limitation: even if the
condition t < n/(ω + 1) were to be proven sufficient for achieving asynchronous CC in
all convexity spaces, there is a gap between this threshold and the t < n/ω threshold
sufficing for synchronous networks. That is, an asynchronous CC protocol (which would
have to be randomized, due to [21]) would achieve its guarantees regardless of the network
conditions, but at the expense of tolerating a lower number of corruptions in comparison
to synchronous alternatives.

This is where a third model steps in: the network-agnostic model, introduced by Blum,
Katz, and Loss [9], which aims to combine the advantages of both established models.
This model has gained significant popularity in recent years, and has covered problems
such as Byzantine Agreement [9, 15], AA on real and multidimensional values [23, 24],
State-Machine Replication [10] and Multi-Party Computation [6,11,15]. Concretely, given
two thresholds ta ≤ ts, a network-agnostic protocol should tolerate ts corruptions if the
network is synchronous and ta if it is asynchronous, without knowing which of the two
happens to be the case. We add that such a network-agnostic protocol with ta = 0 still
provides superior guarantees in comparison to a synchronous counterpart: it maintains
its properties even if the synchrony assumptions fail provided that no party is corrupted.

Our work will primarily investigate the necessary and sufficient conditions for achiev-
ing CC for arbitrary convexity spaces in the network-agnostic model. We provide a com-
plete characterization, showing that the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta) is
necessary and sufficient in any convexity space with ω > 1. This condition, illustrated in
Figure 1, allows for a trade-off between the two expected optimal resilience bounds of the
pure models (which we additionally prove to be tight leading up to our main result). We
add that ω = 1 refers to convexity spaces where some v ∈ V is contained in all non-empty
convex sets, allowing for trivial protocols (parties may simply output v).

2

0 20 40 60 80 100
0

20

40

60

80

100

Synchronous threshold ts

A
sy
n
ch
ro
n
o
u
s
th
re
sh
ol
d
t a

n = ω · ta + ts
n = 2 · ts + ta

(a) ω = 2

0 20 40 60 80 100
0

20

40

60

80

100

Synchronous threshold ts

A
sy
n
ch
ro
n
ou

s
th
re
sh
ol
d
t a

n = ω · ta + ts
n = 2 · ts + ta

(b) ω = 3

Figure 1: Our results on the feasibility of achieving CC resilient against ts corruptions if
the network is synchronous and ta ≤ ts corruptions if it is asynchronous. For a fixed
value of n = 100, the two plots depict in green the set of pairs (ts, ta) for which a

protocol exists as percentages of n: the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta).
The two black lines correspond to the point-wise optimal resilience thresholds n > ω · ts
and n > (ω + 1) · ta required in the synchronous and asynchronous models respectively.
The condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta) can be understood as n > 2 · ts + ta
for ω = 2 and n > max(ω · ts, ω · ta + ts) for ω ≥ 3. The two cases are depicted above for

ω = 2 and ω = 3.

1.1 Our contributions

Impossibility results. We first prove that the condition n > max(ω · ts, ω · ta+ ts, 2 · ts+ ta)
is necessary. We additionally generalize the aforementioned lower bounds from convex
geometries and RD to all convexity spaces, so that t < n/ω is required for the synchronous
case and t < n/(ω + 1) for the asynchronous one. For these proofs, we define adversarial
families, which will allow us to derive general scenario-based arguments [36].

Feasibility results. Afterwards, we show that the condition n > max(ω ·ts, ω ·ta+ts, 2 ·ts+
ta) is also sufficient: we give a protocol achieving CC when this condition holds. Together
with our impossibility results, this completes the landscape of feasibility for the purely
synchronous, purely asynchronous, and network-agnostic models. Our protocol assumes
cryptographic setup, namely digital signatures. Note that this is necessary to tolerate
ts < n/ω corruptions in the synchronous model for ω = 2, a fact which can be easily
inferred from various impossibility results (e.g., [27]). When ω ≥ 3, however, signatures
are no longer required (since ts < n/3 holds in that case), and we will briefly explain how
they can be removed. We also note that our protocol is randomized (which is needed
[21]), but randomization is restricted to Byzantine Agreement subprotocols [15]. The
use of signatures is similarly constrained to Reliable Broadcast and Byzantine Agreement
subprotocols [15,34].

Network-agnostic communication primitives. The core of our CC protocol is a novel
network-agnostic implementation of Agreement on a Core-Set (ACS) [8], which may be
of independent interest. In essence, ACS allows parties to distribute their inputs and
obtain identical views. Our ACS protocol provides stronger guarantees than previous
network-agnostic variants [4,10,11]. These stronger guarantees will be crucial for achieving
CC: when the network is synchronous, we enable the parties to obtain a common view
that includes all the honest parties’ inputs. Obtaining these properties for ACS when

3

n > 2 · ts + ta requires us to diverge from the outline of previous ACS constructions and
to instead provide a novel implementation relying on Gather (GTHR) [2, 13], a second
primitive that we adapt to the network-agnostic model. Roughly, GTHR enables parties
to obtain intersecting views.

Prior works corrections. We need to note that our findings seemingly contradict an im-
possibility result of [37] for general convexity spaces, which depends on the Carathéodory
number of the convexity space and not on its Helly number (in general, there is no re-
lationship between the two). Upon closer inspection, we exhibit an error in the proof of
[37], meaning that the correct bound is in terms of ω, and not the Carathéodory number.

As a secondary contribution, we identify a core issue in the asynchronous AA pro-
tocol for chordal graphs with monophonic convexity of [37]. We describe this issue in
detail in Section 6, and we provide an alternative solution in the network-agnostic model.
The alternative protocol is obtained by adapting the AA protocol on cycle-free (chordal)
semilattices (i.e., a particular case of chordal graphs) of the same paper [37], while incor-
porating insights from the protocol of [5] achieving wait-free AA on chordal graphs. Our
AA protocol relies on our GTHR variant and provides network-agnostic resilience guaran-
tees, provided that n > ω · ts + ta where ω denotes the size of the largest clique in the
input graph (which is the Helly number in this case [19,25]).

1.2 Related work

CC and AA in the pure synchronous and pure asynchronous models. To the best of
our knowledge, the problem of agreeing on a value in the honest inputs’ convex hull
was introduced for AA on R [17] (where ω = 2). When considering this problem in the
synchronous model, t < n/3 is tight when no cryptographic setup is allowed [17], and
t < n/2 = n/ω is tight with cryptographic setup [23,29]. In the asynchronous model, the
optimal resilience threshold for AA is t < n/3 and was proven in [1]. The more general
setting of RD with straight-line convexity (where ω = D + 1) was first considered in
[31,41] (see also the journal version [32]). Here, the bound t < n/(D+2) is necessary and
sufficient for asynchronous AA. Along with the multidimensional variant of AA, Vaidya
and Garg [41] have introduced the CC problem on RD and showed that the condition
t < n/(D + 1) is tight for achieving CC in the synchronous model. Tseng and Vaidya
[40] later presented an asynchronous variant of CC resilient against crash failures with
incorrect inputs, also on RD, where parties agree on a polytope in the convex hull of the
honest parties’ inputs as opposed to a single value.

We also note the works of [22, 36], which focus of achieving agreement on an honest
input. This is a particular case of CC on a space with universe V where a subset’s convex
hull is the subset itself. Their necessary and sufficient conditions match the more general
variants, as the Helly number of this convexity space is ω =

∣∣V ∣∣: t < n/
∣∣V ∣∣ in the

synchronous model [36], and t < n/(
∣∣V ∣∣+ 1) in the asynchronous one [22].

Nowak and Rybicki [37] generalized the problems of CC and AA to abstract convexity
spaces. We partially answers an open question raised in [37] on whether there exists an
input convexity space for which the optimal resilience threshold for AA depends on the
Carathéodory number and not on the Helly number. Our tight conditions for CC imply
that, at least for randomized protocols, the asynchronous resilience threshold is actually
independent of the Carathéodory number and only depends on the Helly number instead.
In addition, we identify a core issue in the deterministic algorithm of [37] for asynchronous
AA on chordal graphs. A related line of work considers graph AA in the wait-free model

4

(where t < n of the parties involved may crash) and its variants, primarily focusing on
characterizing the families of graphs on which wait-free AA can be achieved [3,5,14,28,30].

CC and AA in the network-agnostic model. The problem of AA on real values has also been
considered in the network-agnostic model in [23], where the condition n > 2·ts+ta has been
proven necessary and sufficient. For the RD variant of AA, the condition n > (D+1)·ts+ta
has been proven to be sufficient [24], but whether this condition is also necessary is still
an open problem. Our work will build upon and extend some of the techniques of [23,24].
Concretely, our Gather protocol is obtained by making an adjustment to the network-
agnostic Overlap All-to-All Broadcast primitive of [23, 24], while incorporating insights
from asynchronous Gather protocols [2, 13]. In addition, we rely on similar insights on
deriving safe areas in the honest parties’ convex hulls to [24], and also of prior works in
the asynchronous model such as [1, 31, 37, 41]. Previously known techniques and insights
will be noted precisely in the following sections. As a summary, our paper will diverge
from [23, 24] since: (i) we do not assume a particular input space: we consider abstract
convexity spaces, and this requires us to provide generalized variants of lower bounds
and safe area calculations; (ii) we focus on CC as opposed to AA, and achieving exact
agreement requires us to design a stronger communication primitive: ACS. We also need
to note that our feasibility result defines the first protocol in the network-agnostic model
achieving an optimal resilience trade-off with a non-linear boundary (see Figure 1b). This
gives a hint (but not yet an answer) on the question regarding necessary conditions in
multidimensional AA left open in [24].

ACS in the network-agnostic model. As previously mentioned, the term ACS has been
present in network-agnostic literature, as a building block for State-Machine Replication
[4,10] and Multi-Party Computation [11]. We highlight an important distinction between
prior constructions and ours. First, prior ACS variants would only provide as output a set
of values, while our construction provides a common view defined as a set of value-party
pairs. Second, when running in the synchronous model, the ACS protocols of [4,10,11] only
need to ensure that pre-agreement is maintained: if all honest parties hold input v, the
output set is {v}. For our CC protocol, the following properties will be crucial: (i) parties
agree on the output set if the network is synchronous and ts of the parties are corrupted
(even without pre-agreement); (ii) roughly, each value’s multiplicity is reflected in the
output set (hence why the output set consists of value-party pairs); and, most importantly,
(iii) if the network is synchronous, all honest values are guaranteed to be included (with
multiplicities) in the parties’ common view. Our ACS implementation will hence focus
on this stronger definition, requiring us to diverge from the outline of previous ACS
constructions for n > 2 · ts + ta.

The concurrent work of [26], addressing Atomic Broadcast, also proposes a network-
agnostic ACS implementation. While their protocol also relies on Gather and appears to
achieve agreement regardless of the type of network, our ACS protocol is strictly stronger,
as the protocol proposed by [26] provides the parties with a single value as output, and
this value may be proposed by a corrupted party. This would prevent CC, but is sufficient
for achieving Atomic Broadcast as in [26], since parties’ values are justified.

While our ACS definition is stronger than previous network-agnostic variants, the
protocol of [4] remains the state-of-art in terms of efficiency. The ACS protocol of [4]
achieves an expected communication complexity of O(n2 · ℓ+ n3 · κ) bits, where κ is the
security parameter, and parties’ inputs are represented as ℓ-bit strings (assuming thresh-
old signatures). Even with threshold signatures, our protocol would incur an expected
communication complexity of O(n3 · ℓ + n4 · κ), where ℓ denotes the universe elements’

5

size in bits.

2 Preliminaries

In the following, given a non-negative integer k, write [k] for the set {1, 2, . . . , k}.

Model. Consider n parties denoted by P1, P2, . . . , Pn running a protocol in a fully-
connected network, where links model authenticated channels. A synchronous network
ensures that the parties’ clocks are perfectly synchronized and that each message is de-
livered within a publicly known amount of time ∆. If any of these two guarantees fails,
then the network is asynchronous. We assume that the parties are not aware a priori of
the type of network the protocol is running in. In addition, we assume an adaptive ad-
versary that may corrupt at most ts parties if the network is synchronous, and at most ta
parties if the network is asynchronous. Corrupted parties permanently become byzantine,
meaning that they can deviate arbitrarily, even maliciously, from the protocol. Moreover,
the adversary may control the message delivery schedule, subject to the conditions of
the network type. We will make use of a public key infrastructure (PKI), and a secure
signature scheme. For simplicity, we assume that the signatures are perfectly unforgeable.

Abstract convexity spaces. Given a nonempty set V, also called the universe, an abstract
convexity space on V is a family C of subsets of V such that ∅, V ∈ C and C is closed
under arbitrary intersections: whenever A,B ∈ C, it also holds that A ∩ B ∈ C (and the
infinite analogue). Sets in C are regarded as convex sets. For instance, when V = RD,
one possible C consists of all sets satisfying the condition that the straight-line segment
joining any two points in the set is also included in the set. Note that this yields the
standard convexity notion on RD. However, this is not the only way to define a convexity
space on RD that is consistent with the definition’s requirements; e.g., take C to be the
family of “box” subsets of RD; i.e., subsets of the form I1 × . . .× ID, where (Ii)i∈[D] are
closed intervals of the real line.

A central notion is that of convex hulls. In particular, the convex hull of any (not
necessarily convex) set S ⊆ V is the intersection ⟨S⟩ of all convex sets C ∈ C contain-
ing S, which is indeed convex by closure under intersections. In RD under straight-line
convexity, hulls correspond to the usual notion of Euclidean convex hulls, while under
“box”-convexity they correspond to so-called “bounding boxes”; i.e., take the box span-
ning the region between the infimum and the supremum along each axis. Note that
the convex hull operator is idempotent, also called a closure operator, i.e., ⟨⟨S⟩⟩ = ⟨S⟩.
Moreover, note that a set is convex if and only if S = ⟨S⟩.

One relevant notion for our work will be that of extreme points. Namely, given a
non-necessarily convex set S ⊆ V, the set ex (S) = {s ∈ S | ⟨S \ s⟩ ⊊ ⟨S⟩} is the set of
points in S any of whose removal would “shrink” the convex hull. Set S is called free if
⟨S⟩ = ex (S). Note that free sets are necessarily convex, as ⟨S⟩ = ex (S) ⊆ S ⊆ ⟨S⟩, from
which ⟨S⟩ = S. Equivalently, S is free if and only if S is convex and S = ex (S).

An abstract convexity space C on universe V is a convex geometry if it additionally
satisfies that, for all convex sets C ⊊ V , there exists v ∈ V \ C such that C ∪ {v} is
convex. This is a non-trivial requirement; e.g., RD with straight-line convexity or box
convexity is not a convex geometry. An example of a convex geometry is a chordal graph
endowed with monophonic convexity. These notions are further discussed in Section 6,
and we provide a detailed discussion in Appendix A.

The Helly Number ω of a Convexity Space. The following seminal result in convexity
theory concerns RD with straight-line convexity.

6

Theorem 1 (Helly’s Theorem). Consider a finite collection of convex sets in RD with
straight-line convexity. If every D + 1 of them intersect, then all of them intersect.

Helly’s Theorem implies that, for instance, any finite collection of disks in R2 with
triple-wise non-empty intersections has a non-empty intersection. Notice that the same
would not hold if D + 1 was replaced by D; e.g., one can draw three disks in R2 that
pair-wise intersect but have no point common to all three. One might now wonder: “What
about box convexity?” In that case, D+1 can be replaced by 2. For instance, this means
that any finite collection of rectangles in R2 where any two intersect has a non-empty
intersection, in contrast to disks. This number, which is D+1 for straight-line convexity
and 2 for box convexity is known as the Helly number ω of the convexity space.

More generally, the Helly number ω of a convexity space C is the smallest number h
such that any finite collection of convex sets out of which any h intersect has a non-empty
intersection. It is useful to think in terms of the contrapositive: any finite collection of
convex sets that do not intersect has a subcollection consisting of (at most) h sets that do
not intersect. As a result, ω is equivalently the size of the largest collection of convex sets
with an empty intersection such that any of its proper subcollections have a non-empty
intersection. Notationally, say that an m-Helly family for C is a collection of m convex
sets C1, C2, . . . , Cm ∈ C such that their intersection is the empty set, but the intersection
of any m − 1 of them is non-empty; i.e., ∩m

j=1Cj = ∅ and ∩j ̸=iCj ̸= ∅ for any i ∈ [m].
The Helly number ω of C is then the largest number h such that there exists an h-Helly
family for C. We will mostly work with this latter definition of the Helly number. Note
that for some spaces, there will exist arbitrarily large Helly families, in which case the
Helly number is undefined.1

Convex agreement problems. A convex agreement problem is defined for a convexity space
C over a universe V ; e.g., RD with straight-line convexity, or a graph G = (V,E) with
monophonic convexity. Each party P starts with an input vPin ∈ V and should produce
an output vPout. Ideally, all outputs should match, and this common output should be in
the convex hull of the inputs. However, one has to consider the presence of byzantine
parties. Hence, an agreement problem is defined by a collection of properties taking this
into account: a validity condition, an agreement condition, and a termination condition.
Write Vin and Vout for the set of inputs vPin and respectively outputs vPout of the honest
parties P . A convex agreement problem has the following validity condition:

Convex Validity: Vout ⊆ ⟨Vin⟩ (honest outputs are in the convex hull of honest inputs).

For the agreement condition, there are multiple natural options to choose from, such
as:

Exact Agreement: |Vout| = 1 (honest parties obtain the same output).

Given a metric dist on the universe V, one can alternatively define:

Distance-d Agreement: maxp,q∈Vout dist(p, q) ≤ d (no two honest parties obtain outputs
more than distance d away from each other).

Finally, let us discuss the termination requirements of the protocol. There are two
flavors, one for deterministic protocols, and one for randomized protocols, listed below:

Termination: all honest parties obtain outputs.

1We do not concern ourselves with this case in the statement of our main results, but note that our
reasoning often still applies when ω is undefined, for instance when deriving impossibility results. For the
rest of this work, we assume that the spaces we consider have a well-defined Helly number ω.

7

Probabilistic Termination: the probability that some honest party has not obtained output
after T time units tends to 0 as T → ∞.

Our work is concerned with two problems, CC and AA, defined below:

Definition 2 (Convex Consensus). A protocol Π is a (ts, ta)-secure CC protocol if it achieves
Probabilistic Termination, Convex Validity and Exact Agreement when up to ts parties
are corrupted if it runs in a synchronous network, and when up to ta parties are corrupted
if running in an asynchronous network.

Definition 3 (Approximate Agreement). A protocol Π is a (ts, ta)-secure AA protocol if
it achieves Termination, Convex Validity and, for every predefined d > 0,2 Distance-d
Agreement when up to ts parties are corrupted if it runs in a synchronous network, and
when up to ta parties are corrupted if running in an asynchronous network.

3 Resilience Lower Bounds Using the Helly Number

In this section, we establish necessary conditions for achieving CC in the network-agnostic
model. Concretely, we show that each of the following conditions is needed: n > ω · ts,
n > 2 · ts + ta, and n > ω · ta + ts. Section 4 will show that these conditions are also
sufficient.

We begin by showing that the conditions n > ω · t and n > (ω + 1) · t are necessary
in the synchronous and resp. asynchronous model, where ω is the Helly number of the
convexity space. These already imply that n > ω · ts and n > (ω + 1) · ta are required in
the in the network-agnostic model. Afterward, we move towards conditions that are only
required in the network-agnostic model. We note that a previously-known resilience bound
[37, Theorem 13] given in terms of the Carathéodory number of the space is incompatible
with our results: in general, there is no relation between the Carathéodory number and
the Helly number. This bound turns out to be incorrect (detailed discussion in Appendix
B.2).

Before formally showing our lower bounds, we introduce the notion of adversarial fam-
ilies, which will enable us to give general scenario-based arguments [36]. Roughly, these
are families of pairwise-disjoint sets such that if the honest parties start with inputs from
these sets, then Convex Validity forces them to output values from these sets, breaking
Exact Agreement. The formal definition follows; see Figure 2 for an example.

Definition 4. Consider a convexity space C with Helly number ω defined on a universe V.
Consider a family A = {A1, . . . , Am} consisting of m non-empty pairwise-disjoint convex
sets Ai ∈ C and write A = ∪A. Then, A is m-adversarial if Ai = ∩ℓ ̸=i⟨A \Aℓ⟩ for all
i ∈ [m].3

Note that the pairwise-disjoint condition is equivalent to ∩m
ℓ=1⟨A \Aℓ⟩ = ∅.4 We add

that, in the example of Figure 2, sets Ai are singletons, but requiring this would strictly
decrease the power of adversarial sets in general. The following technical lemma, and the
two following it, will be the main tools used to get impossibility results. The techniques
used in its proof, supplied in Appendix B.1, are similar in spirit to the proofs for RD in
[32].

2d ≥ 1 for standard graph distance, as there d < 1 is equivalent to d = 0.
3This definition requires m > 1 to avoid taking the intersection of an empty collection of sets. However,

for m = 1 all our results will hold if we assume that A = {A} is 1-adversarial for any convex set A ̸= ∅.
We will not discuss this technicality further and henceforth assume that m ≥ 1 is well-defined.

4To see this, note that for i ̸= j we have Ai ∩Aj = (∩ℓ̸=i⟨A \Aℓ⟩) ∩ (∩ℓ ̸=j⟨A \Aℓ⟩) = ∩m
ℓ=1⟨A \Aℓ⟩.

8

e0 e1

e2 e2

e1e0

e2

e1e0 e0 e1

e2

Figure 2: Consider R2 with straight-line convexity and the vectors e0, e1, e2 =
(0, 0), (1, 0), (0, 1), illustrated in the first figure. Define Ai = {ei} for i = 0, 1, 2 to be
singleton sets for the previous (and hence convex sets). Then, A = {A0, A1, A2} is a 3-
adversarial family. To see why, first note that by definition A = {e0, e1, e2}. By symmetry,
it suffices to check the condition for i = 0; i.e., to show that A0 = ⟨A \A1⟩ ∩ ⟨A \A2⟩.
Simplifying, this amounts to A0 = ⟨{e0, e2}⟩ ∩ ⟨{e0, e1}⟩. The second figure illustrates
⟨{e0, e2}⟩, the third illustrates ⟨{e0, e1}⟩, and the forth ⟨{e0, e2}⟩ ∩ ⟨{e0, e1}⟩, which is
precisely A0, as required. The illustrations come from [24].

Lemma 5. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. As-
sume n ≥ m and that, moreover, n ≤ m·t if the network is synchronous and n ≤ (m+1)·t
if the network is asynchronous. Then, any (deterministic or randomized) n-party protocol
satisfying Convex Validity and (Probabilistic) Termination has a terminating execution
where there are honest parties P1, . . . , Pm such that the output viout of party Pi satisfies
viout ∈ Ai.

The following two technical lemmas give similar guarantees, but in the network-
agnostic model. The proof of the first is similar to that for R in [23], while that of
the second is an extension of the asynchronous part of Lemma 5. The proofs are included
in Appendix B.1.

Lemma 6. Assume a convexity space C admitting a 2-adversarial family A = {A1, A2}.
Assume 2 ≤ n ≤ 2·ts+ta. Let Π denote an arbitrary (deterministic or randomized) proto-
col achieving Convex Validity and (Probabilistic) Termination for at most ts corruptions
when the network is synchronous and at most ta corruptions when it is asynchronous.
Then, Π has a terminating execution where the outputs v1out and v2out of two honest parties
satisfy v1out ∈ A1 and v2out ∈ A2.

Lemma 7. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. As-
sume that m ≤ n ≤ m · ta + ts. Then, any (deterministic or randomized) n-party protocol
satisfying Convex Validity and (Probabilistic) Termination for at most ts corruptions when
the network is synchronous and at most ta corruptions when the network is asynchronous
has a terminating execution where there are honest parties P1, . . . , Pm such that the output
viout of party Pi satisfies viout ∈ Ai.

We now show a relationship between adversarial families and Helly families.

Lemma 8. Consider a convexity space C, then an m-adversarial family exists if and only if
an m-Helly family exists. Hence, the size of the largest adversarial family for a convexity
space equals its Helly number ω.

Proof. First, consider an adversarial family A = {A1, . . . , Am} for C and as usual write
A = ∪A. The family of sets ⟨A \Ai⟩i∈[m] do not intersect, but any m − 1 of them do,
since for any i we assumed that Ai = ∩ℓ̸=i⟨A \Aℓ⟩ is non-empty, so it is an m-Helly
family. Conversely, consider an m-Helly family; i.e., convex sets C1, . . . , Cm ∈ C that

9

do not intersect, but any m − 1 of them do. Define the family of non-empty convex
sets A = {A1, . . . , Am} where Ai = ∩ℓ ̸=iCℓ. Notice that for i ̸= j we have Ai ∩ Aj =
∩ℓ∈[m]Cℓ = ∅, so the sets are pairwise disjoint. To show that A is an m-adversarial
family, it remains to show that for all i it holds that Ai = ∩ℓ ̸=i⟨A \Aℓ⟩. To see this,
note that A \ Aℓ = ∪{A1, . . . , Aℓ−1, Aℓ+1, . . . , Am} and that Aℓ′ ⊆ Cℓ for all ℓ′ ̸= ℓ, so
A \ Aℓ ⊆ Cℓ. Since Cℓ is convex, this means that ⟨A \Aℓ⟩ ⊆ ⟨Cℓ⟩ = Cℓ. As a result,
∩ℓ̸=i⟨A \Aℓ⟩ ⊆ ∩ℓ̸=iCℓ = Ai. To also show that Ai ⊆ ∩ℓ̸=i⟨A \Aℓ⟩ just notice that
Ai ⊆ A \Aℓ ⊆ ⟨A \Aℓ⟩ for all ℓ ̸= i.

Note that a more restrictive definition of adversarial families where all the sets are
singletons would not suffice to prove the previous, as in some spaces no singletons are
convex.

To access the full power of Lemmas 5 and 7, which require n to be at least the size of
the adversarial family, we would like that adversarial families of a certain size imply the
existence of adversarial families of all smaller sizes. We show this in the following lemma.

Lemma 9. Given a convexity space, if there exists an m-Helly family, then there exist m′-
Helly families for any 1 ≤ m′ < m. The same holds if “Helly” is replaced by “adversarial.”

Proof. It suffices to consider m′ = m−1. If C1, . . . , Cm is an m-Helly family, one can check
that C1, . . . , Cm−2, (Cm−1∩Cm) is an (m−1)-Helly family. For the latter, apply Lemma 8.

We now leverage Lemmas 5, 8 and 9 to get the following result, generalizing those in
[37] by removing the strong requirement of a convex geometry.

Theorem 10. Consider a convexity space C with Helly number ω. Assume n ≤ ω · t if
the network is synchronous and n ≤ (ω + 1) · t if the network is asynchronous. Then,
there is no (deterministic or randomized) n-party protocol satisfying Convex Validity and
(Probabilistic) Termination such that the set of outputs of the honest parties is guaranteed
to have size at most min(n, ω)− 1.

Proof. Write m = min(n, ω). By Lemma 8, there is an ω-adversarial family for C. Since
m ≤ ω, using Lemma 9, let A = {A1, . . . , Am} be an m-adversarial family for C. Consider
a protocol Π satisfying Convex Validity and Termination. By Lemma 5, there is a termi-
nating execution of Π where the set of honest outputs contains {a1, . . . , am} where ai ∈ Ai.
As sets in A are pairwise disjoint, this set has cardinality m, implying the conclusion.

By leveraging Lemmas 6, 7, 8 and 9, we similarly get the following result. The proof is
included in Appendix B.1. There, we also show that adversarial families are useful more
generally by swiftly recovering previously-known lower bounds for AA in RD.

Theorem 11. Consider a convexity space C with Helly number ω ≥ 2. Assume 2 ≤ n ≤
2 · ts + ta or 2 ≤ n ≤ ω · ta + ts. Then, no (deterministic or randomized) n-party protocol
satisfying Convex Validity, (Probabilistic) Termination, and Exact Agreement can simul-
taneously tolerate at most ts corruptions when the network is synchronous and at most ta
corruptions when the network is asynchronous.

4 Achieving Optimal-Resilience Convex Consensus

We now describe a construction achieving CC in the network-agnostic model that matches
our previous resilience lower bounds. Concretely, we focus on proving the following the-
orem.

10

Theorem 12. If ta ≤ ts and n > max(ω · ts, 2 · ts + ta, ω · ta + ts), there is a protocol
achieving (ts, ta)-secure CC assuming PKI. The protocol has expected round complexity
O(1). If ℓ denotes the universe elements’ size in bits and κ is the security parameter, its
expected communication complexity is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are
available, the expected communication complexity reduces to O(n3 · ℓ+ n3 · κ) bits.

To set up the intuition for our construction, we recall the outline of the synchronous
protocol for RD with straight-line convexity of [41]. The synchronous model offers power-
ful communication primitives (i.e., Synchronous Broadcast [18]), enabling the parties to
distribute their inputs and obtain an identical view of the inputs. This view consists of
a set of value-sender pairs, out of which n − ts correspond to honest parties. Then, the
parties derive a safe area inside the honest inputs’ convex hull by intersecting the convex
hulls of all subsets of n − ts values received, as defined below. We extend the convex
hull operator to value-sender sets straightforwardly: ignore party identities and take the
convex hull of the values.

Definition 13 (Safe Area). Let M denote a set of value-sender pairs. For a given k,
safek(M) :=

⋂
M∈restrictk(M)⟨M⟩, where restrictk(M) := {M ⊆ M :

∣∣M ∣∣ = ∣∣M∣∣− k}.

Specifically, if parties received the (same) set M of n− ts+ k value-sender pairs, they
compute their safe area as safek(M). We will later show (in a more general form) that,
since n > ω · ts, the safe area obtained is non-empty. Therefore, any value in the common
safe area is valid. Hence, parties may output any such value chosen by some deterministic
criterion.

Technical assumptions. Implementing such a protocol requires mild assumptions about
C: it should be possible to (i) store elements from V and to send them in messages;
(ii) compute and intersect convex hulls; (iii) deterministically select a point from the safe
area. Only to express communication complexity bounds, we will also need that |V | ≤ 2ℓ

for some ℓ.

Identical views in asynchrony. Building towards our solution achieving network-agnostic
guarantees, we first identify the challenges posed by translating the outline above to the
purely asynchronous model (where ts = ta and n > (ω + 1) · ta). Given a primitive
that provides the parties with an identical view of n − ta value-sender pairs, CC can be
achieved in a similar manner: out of the set M of n − ta pairs agreed upon, at most ta
are corrupted. Then, honest parties derive the safe area safeta(M) inside their inputs’
convex hull, and afterwards take a deterministic decision to obtain the same output.

Achieving the required identical view deterministically is impossible in the asyn-
chronous model [21], but randomization allows for a simple solution by employing a
primitive introduced in [7]. This primitive archives Agreement on a Core-Set (ACS) when
up to ta < n/3 of the parties involved are corrupted, which suffices for our case of ω ≥ 2.
Roughly speaking, an ACS protocol assumes that each party holds a value meant to be
distributed, and enables the parties to obtain the same set M of n − ta value-sender
pairs. By utilizing the (randomized) ACS protocol presented in [8, Section 4], we achieve
asynchronous CC with optimal resilience, in constant expected number of rounds, proving
the lower bound n > (ω + 1) · ta to be tight.

Exploiting the advantages of synchrony. While the standard definition of ACS provides
identical views when the network is asynchronous, the synchronous model still has a
crucial advantage that needs to be used to achieve higher resilience. Namely, the key
insight on why CC can be achieved up to ts < n/ω corruptions in the synchronous model,

11

while ta < n/(ω + 1) is necessary in the asynchronous one, is that the former ensures all
honest values are delivered. In contrast, in the asynchronous setting, ta corrupted parties
may replace ta honest parties: the honest parties’ messages get delayed for sufficiently
long, while the ta corrupted parties follow the protocol correctly, but with inputs of their
choice. To match the condition n > max(ω ·ts, 2 ·ts+ta, ω ·ta+ts) in the network-agnostic
model, we hence need an additional property in a synchronous network: all honest values
must be included in the output set. Consequently, we propose the following enriched
definition:

Definition 14 (Agreement on a Core-Set). Let Π be a protocol where every party P holds
an input vP and outputs a set of value-sender pairs MP . We consider the following
properties:
Validity: Let P and P ′ be two honest parties. If (v′, P ′) ∈ MP , then v′ = vP ′.
Consistency: If P and P ′ are honest, (v, P ′′) ∈ MP and (v′, P ′′) ∈ MP ′, then v = v′.5

T -Output Size: If an honest party P outputs MP , then
∣∣MP

∣∣ ≥ n− T .
Honest Core: If an honest party P outputs MP , then (vP ′ , P ′) ∈ MP for every honest
P ′.

Then, we say that Π is a (ts, ta)-secure ACS protocol if it achieves the following:
• Validity, Consistency, Exact Agreement, Honest Core, Probabilistic Termination
when running in a synchronous network where at most ts parties are corrupted;

• Validity, Consistency, Exact Agreement, ts-Output Size,6 Probabilistic Termination
when running in an asynchronous network where at most ta parties are corrupted.

Section 5 describes a protocol ΠACS realizing the theorem below (given PKI). We will
also describe a protocol for ta ≤ ts < n/3 without PKI, which is suitable for the case
ω ≥ 3.

Theorem 15. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure ACS protocol ΠACS

(assuming PKI). The protocol has expected round complexity O(1). If ℓ denotes the uni-
verse elements’ size in bits and κ is the security parameter, its expected communication
complexity is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are available, the expected
communication complexity reduces to bits.

If parties distribute their values via ΠACS, they agree on a set M of n − ts + k
value-sender pairs. If the network is asynchronous, at most ta of these values are cor-
rupted. In contrast, if the network is synchronous, at most k of these values are corrupted
due to Honest Core. To cover both cases, parties locally compute their safe areas as
S := safemax(k,ta)(M) and deterministically decide on an output vout ∈ S. Note that, by
definition, S is indeed inside the honest inputs’ convex hull. In addition, since the input
space has Helly number ω and n > max(ω · ts, ω · ta + ts), the safe area can be shown
to be non-empty, so such vout can be chosen. The proof of this result, stated below, is
contained in Appendix D.

Lemma 16. Assume n > max(ω ·ts, ω ·ta+ts), and that M is a set of n−ts+k value-party
pairs, where 0 ≤ k ≤ ts. Then, safemax(k,ta)(M) ̸= ∅.

We may now conclude the section by providing the formal code of our CC protocol.

5Note that this implies that each party appears at most once as a sender in MP .
6This is intentional: we do not require the stronger property of ta-Output Size.

12

Protocol ΠCC

Code for party P with input vin

1: Join ΠACS with input vin. Upon obtaining output M:
2: k :=

∣∣M∣∣− (n− ts); S := safemax(k,ta)(M).
3: Choose vout ∈ S according to a public, predetermined, deterministic rule.
4: Output vout.

Proof of Theorem 12. ΠACS provides the parties with the same set M of n− ts+k value-
sender pairs, with 0 ≤ k ≤ ts. M contains at most max(k, ta) values from byzantine
parties: in a synchronous network, this holds due to ΠACS’s Honest Core property. Hence,
there is a subset MH ⊆ M of size

∣∣M∣∣ − max(k, ta) only containing honest inputs. By
definition, MH ∈ restrictmax(k,ta)(M), so S ⊆ ⟨MH⟩, i.e., honest parties obtain a safe area
S that is included in their inputs’ convex hull. Lemma 16 ensures that S is non-empty,
and therefore honest parties agree on the same value vout in the honest inputs’ convex
hull. Consequently, ΠCC is (ts, ta)-secure CC protocol.

5 Agreement on a Core-Set

In this section, we describe the protocol realizing Theorem 15. We first focus on the
easier case ta ≤ ts < n/3: we begin by describing the asynchronous protocol of [8]
(as presented in [33]), which fulfills all properties outlined in Definition 14, except for
Honest Core in a synchronous network. We adapt this protocol to satisfy Honest Core
as well, obtaining (ts, ta)-secure ACS when ta ≤ ts < n/3. Note that our CC lower
bound of n > max(ω · ts, 2 · ts + ta, ω · ta + ts) implies ta ≤ ts < n/3 for ω ≥ 3, so the
adapted protocol suffices if the latter is true. For ω = 2, however, the adapted protocol
is insufficient. Consequently, we then move on to the case n > 2 · ts + ta, for which we
present a novel construction.

We will utilize Reliable Broadcast (rBC) and Byzantine Agreement (BA) as building
blocks. We include their definitions in the network-agnostic model below.

Definition 17 (Reliable Broadcast). Let Π denote a protocol where a designated party S
(the sender) holds a value vS, and every party P may output a value vP . Consider the
following properties:
Validity: If S is honest, and an honest party outputs vP , then vP = vS.
Consistency: If P and P ′ are honest and output vP and resp. vP ′, then vP = vP ′.
Honest Termination: If S is honest, all honest parties obtain outputs.
Conditional Termination: If an honest party P outputs, all honest parties obtain outputs.

We say that Π is a (ts, ta)-secure rBC protocol if it achieves Validity, Consistency,
Honest Termination, and Conditional Termination up to ts corruptions if it runs in a
synchronous network, and up to ta corruptions if it runs in an asynchronous network.

Definition 18 (Byzantine Agreement). Let Π be a protocol where every party P holds a bit
as input and may output a bit, and consider the following property:
Weak Validity: If all honest parties hold input b, no honest party outputs b′ ̸= b.

Then, Π is a (ts, ta)-secure BA protocol if it achieves Weak Validity, Exact Agreement,
and Probabilistic Termination up to ts corruptions if it runs in a synchronous network,
and up to ta corruptions if it runs in an asynchronous network.

13

The asynchronous ACS protocol of [8]. We describe the protocol of [8], following the
variant presented in [33]. We denote this protocol by ΠaACS. We highlight once again
that ΠaACS is designed for the purely asynchronous model: it assumes a single threshold
t < n/3 and seeks properties that hold under asynchrony with at most t corrupted parties.
To use this protocol in the hybrid model with ta ≤ ts < n/3, one can set t := ts. When
this is done, ΠaACS achieves all properties of being a (ts, ta)-secure ACS protocol as per
Definition 14 (in fact, even (ts, ts)-secure), with the exception of Honest Core under
synchrony.

In ΠaACS, every party first distributes its input value via rBC. Concretely, this is
done using Bracha’s protocol [12], denoted by ΠarBC, which achieves (t, t)-secure rBC for
t < n/3. Due to asynchronous communication, ΠarBC only guarantees that parties receive
a value if the sender is honest. As a result, at least n− t values eventually get delivered
to all parties, but these values might still be received at vastly different times, leading to
inconsistent views if parties were to output the first n− t values they received.

Then, to decide on a common output set, the parties will use BA to agree on which
values they received and should be included in the output set. We utilize the protocol
ΠaBA of Mostefaoui et al. [35], which achieves (t, t)-secure BA when t < n/3. There will
be n parallel invocations of ΠaBA — one for each party. When a party P receives a
value v from P ′ via ΠarBC, it joins the ΠaBA invocation corresponding to P ′ with input
1. Semantically, if the ΠaBA invocation of a party P ′ returns output 1, then the value
distributed by P ′ via ΠarBC should be included in the output set. Note that, when this
happens, the Weak Validity property of ΠaBA ensures that at least one honest party P
has joined the ΠaBA invocation for party P ′ with input 1. That is, P has received a value
v from P ′, and ΠarBC’s Conditional Termination ensures that all honest parties eventually
receive the same value v from P ′. In simple terms, the value of P ′ is worth waiting for,
and parties wait until they receive it before completing the protocol.

Eventually, at least n−t invocations result in output 1 (suppose not, then, since at least
n−t honest values are eventually delivered to all honest parties, the honest parties will all
join at least n− t invocations of ΠaBA with input 1, guaranteeing that those invocations
terminate with output 1). To complete the protocol, we still need that all ΠaBA invocations
complete. Then, whenever some party P observes n−t invocations completing with output
1, it should join all remaining invocations with input 0. Hence, once all honest parties join
all ΠaBA invocations, all invocations are guaranteed to terminate. Upon observing that all
ΠaBA invocations have terminated, each party P outputs the set of (at least n− t) value-
sender pairs corresponding to the ΠaBA invocations that returned output 1 (after waiting
to receive any outstanding values through ΠarBC). This way, the protocol ensures that
all honest parties obtain an identical view, achieving all properties required by Definition
14 for asynchronous networks. Note that the Validity property follows immediately from
the guarantees of ΠarBC.

Adjustments for the network-agnostic model. We now return to the network-agnostic
model and adapt ΠaACS to achieve our ACS definition for the parameter range ta ≤ ts <
n/3. As previously established, ΠaACS already satisfies all properties required to be a
(ts, ta)-secure ACS protocol by setting t := ts, except for Honest Core in a synchronous
network.

To see why the Honest Core property does not hold, consider a scenario where the
network is synchronous, and the ts corrupted parties follow the protocol correctly with
inputs of their choice. All messages are delivered immediately, except for the messages
sent by ts of the honest parties: these are delivered exactly after ∆ time. The remaining
honest parties complete the protocol before time ∆, and the values of ts honest parties are

14

missing from the output set. To prevent this, we impose a waiting time to ensure that,
if the network is synchronous, all honest parties’ messages are received. Running ΠarBC

in the synchronous model guarantees additional properties, established in [24]: when an
honest party sends a value via ΠarBC, all parties receive this output within carBC ·∆ time,
where carBC := 3. Then, to achieve Honest Core, we impose a waiting period of at least
carBC ·∆ time before allowing the parties to participate in ΠaBA invocations with input 0.
This way, if the network is synchronous, all honest parties join every honest party’s ΠaBA

invocation with input 1, and these invocations return 1. Hence, all honest parties’ values
are included in the output set.

We include below the adapted ΠaACS, which achieves (ts, ta)-secure ACS for ta ≤ ts <
n/3. In fact, it achieves (ts, ts)-secure ACS: it is an asynchronous protocol with an added
waiting period to ensure the Honest Core property under synchrony. The protocol incurs
expected constant round complexity, and expected communication complexity O(n3 · ℓ),
where ℓ denotes the universe elements’ size. For the formal analysis, see Appendix C.2.

Adapted protocol ΠaACS [8, 33]

Code for party P with input v (ΠarBC and ΠaBA invocations use t := ts)

1: τstart := τnow
2: Send v to every party via ΠarBC.
3: When receiving a value v from P ′ via ΠarBC:
4: If τnow ≤ τstart + carBC ·∆ or less than n− ts invocations of ΠarBC returned 1:
5: Join the invocation of ΠaBA for P ′ with input 1.
6: When τnow > τstart + carBC ·∆ and at least n− ts of the ΠaBA invocations returned 1:
7: Join the remaining ΠaBA invocations with input 0.
8: When all ΠaBA invocations have terminated:
9: P := parties whose corresponding ΠaBA invocations have terminated with output 1.

10: When all invocations of ΠarBC having senders in P have terminated:
11: M := the set of pairs (v′, P ′), where P ′ ∈ P and v′ is the value P ′ sent via ΠarBC.
12: Output M.

Achieving ACS when n > 2 · ts + ta. Finally, we describe our solution for the general
case. We utilize building blocks designed specifically for this setting: the (ts, ta)-secure
rBC protocol ΠrBC of Momose and Ren [34], and the (ts, ta)-secure BA protocol ΠBA of
Deligios, Hirt and Liu-Zhang [15, Corollary 2]. We add that these protocols assume and
need PKI.

While the ta ≤ ts < n/3 setting enabled a solution based on tweaks to previously
known protocols, the n > 2 · ts + ta case introduces different challenges. In particular,
one detail we omitted when presenting ΠaACS concerns protocol composability. Namely,
Definition 18 of BA protocols assumes that honest parties join the protocol simultaneously
in a synchronous network. In the outline of [8] and in ΠaACS, this is, in fact, not the case.
However, when ts = ta, this assumption is not strictly required because the asynchronous
guarantees step in whenever honest parties are unable to join simultaneously. In contrast,
when ts > ta, (ts, ta)-secure BA does not have to provide any guarantees in a synchronous
network with ts corruptions if honest parties are unable to join simultaneously. This is
especially problematic when ts ≥ n/3 because (ts, ts)-secure BA protocols do not exist.
The Conditional Termination property of ΠrBC is too weak to ensure that honest parties
are ready to join the BA invocations simultaneously when the network is synchronous —
a challenge that we need to overcome.

Our goal is then to allow the parties to join each invocation of ΠBA at the same
time when the network is synchronous — this refers both to invocations where parties

15

join with input 1, and to invocations where parties join with input 0. We will do so by
enabling the parties to decide their input bit for each invocation of ΠBA independently
of the other invocations’ outcomes. On top of this property, we still need to guarantee
ts-Output Size when the network is asynchronous, which amounts to ensuring that at
least n− ts invocations of ΠBA return 1. Moreover, when the network is synchronous, the
ΠBA invocations of honest parties have to output 1 to ensure the Honest Core property.

To enable the honest parties to safely decide each input bit for the ΠBA invocations
independently, realizing the previous desiderata, we introduce a network-agnostic version
of a primitive known as Gather (GTHR) [2,13]. This is a slightly weaker, but deterministic
variant of ACS: GTHR relaxes Exact Agreement by only requiring that honest parties’
output sets have at least n − ts values in common. Our definition of GTHR, provided
below, additionally requires the previous Honest Core property to hold under synchrony.
Moreover, we require that honest parties obtain outputs simultaneously if the network is
synchronous.

Definition 19 (Gather). Let Π be a protocol where every party P holds an input vP and may
output a set of value-sender pairs MP . We consider the following properties, additionally
to those in Definition 14.
T -Common Core: If all honest parties obtain outputs, then

∣∣⋂
P honestMP

∣∣ ≥ n− T .
Simultaneous Termination: The honest parties obtain outputs simultaneously.

Then, we say that Π is a (ts, ta)-secure GTHR protocol if it achieves:
• Validity, Consistency, Honest Core and Simultaneous Termination when running
in a synchronous setting where at most ts of the parties involved are corrupted;

• Validity, Consistency, ts-Common Core and Termination when running in an asyn-
chronous setting where at most ta of the parties involved are corrupted.

In Appendix C.3, we provide a construction achieving our GTHR definition, as stated
below. This is obtained by adding one step to the network-agnostic Overlap All-to-All
Broadcast protocol of [23], while using insights from asynchronous variants of GTHR [2].

Theorem 20. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure GTHR protocol ΠGTHR

(assuming PKI). The protocol has round complexity O(1). If ℓ denotes the universe ele-
ments’ size in bits and κ is the security parameter, it achieves a communication complexity
of O(n3 · ℓ+ n4 · κ) bits (can be reduced to O(n3 · ℓ+ n3 · κ) with threshold signatures).

Then, our ACS protocol proceeds as follows: the parties distribute their inputs using
the ΠGTHR protocol realizing Theorem 20. When obtaining outputs MGTHR (potentially
different for different parties), each party P joins the n invocations of ΠBA. P inputs 1 in
the invocation for P ′ if MGTHR contains some value from P ′ and 0 otherwise. Note that,
if the network is synchronous, ΠGTHR provides Simultaneous Termination, hence honest
parties join ΠBA simultaneously, and therefore the guarantees of ΠBA now hold. Since
the value-sender pairs MGTHR obtained by the honest parties intersect in n − ts pairs,
at least n − ts of the ΠBA invocations result in output 1. In addition, if the network
is synchronous, ΠGTHR’s Honest Core ensures that every invocation corresponding to an
honest party returns 1.

An important and subtle caveat in the above is that obtaining output 1 in the ΠBA

invocation for P ′ does not mean that all honest parties have received a value from P ′

via ΠGTHR. Although ΠBA ensures that at least one honest party P has received a value
from P ′ via ΠGTHR, this may not be the case for all honest parties. To address this, we
state an additional property provided by our implementation of ΠGTHR: if parties wait for
sufficiently long even after obtaining outputs via ΠGTHR, they will (consistently) receive

16

the missing values as well. This is because, internally to ΠGTHR, parties distribute their
inputs via ΠrBC.

Observation 21. Let P and P ′ denote two honest parties, and let M and M′ denote their
internal message sets in ΠGTHR. If (v, P ′′) ∈ M, then, eventually, (v, P ′′) ∈ M′ as well.

We may now present our ACS protocol. We defer the analysis to Appendix C.4.

Protocol ΠACS

Code for party P with input v

1: Join ΠGTHR with input v. When receiving output MGTHR from ΠGTHR:
2: For each party P ′:
3: bP ′ := 1 if (v′, P ′) ∈ MGTHR for some v′ and 0 otherwise.
4: Join the ΠBA invocation for P ′ with input bP ′ .
5: When receiving v′ from P ′ via ΠrBC [initiated in ΠGTHR], add (v′, P ′) to MGTHR.
6: When obtaining outputs in all invocations of ΠBA:
7: P := the set of parties whose ΠBA invocations returned output 1.
8: When (v′, P ′) ∈ MGTHR for every P ′ ∈ P:
9: Output M := the set of pairs (v′, P ′) ∈ MGTHR with P ′ ∈ P.

6 Approximate Agreement on Chordal Graphs

We investigate the previously known deterministic protocol that efficiently achieves chordal
graph AA with monophonic path convexity [37, Section 4.2], finding that it is sadly in-
correct. Before diving into the algorithm itself and presenting our solution tailored to
the network-agnostic setting, we establish a few preliminaries, which we keep minimal for
understanding this section, deferring further details and intuition to Appendix A.

Monophonic convexity. We first describe the convexity space we are concerned with.
Unless stated otherwise, all graphs considered are finite, undirected, connected and simple.
Given a graph G = (V,E), a subset C ⊆ V is monophonically convex if, for any two
vertices u, v ∈ C, and any induced path P from u to v in G, all vertices in P are in C.
Induced paths (also called chordless paths) are paths with no short-circuit edges. Note
that these are not necessarily shortest paths. Convex hulls are then defined as usual:
the intersection of all convex sets containing the set. Unless stated otherwise, in this
section, by “convex” we mean “monophonically convex.” For this convexity notion, the
Helly number ω equals the size of the largest clique in G [19, 25]. We also point out the
following correspondence between cliques and free sets, proven in Appendix A, which will
be crucial for designing our AA protocol.

Lemma 22. Let G = (V,E) be a graph and S ⊆ V be a subset of its vertices. Then, under
monophonic convexity, S is a free set if and only if S induces a clique in G.

Chordal graphs. A graph G = (V,E) is chordal if it has no induced cycle of length greater
than three. A vertex v ∈ V is simplicial if its neighbors in G form a clique. Chordal
graphs admit many equivalent definitions; most notably, they are the graphs that have a
simplicial vertex whose removal yields another chordal graph. Reasoning inductively, they
are hence also the graphs admitting a perfect elimination order, which is a total order ≻
on V such that every v ∈ V is simplicial in the subgraph induced by {u ∈ V | u ⪰ v}.
One should read u ≻ v as “u is eliminated after v.”

17

(a) Chordal graph G. (b) Possible clique tree for G. (c) Resulting expanded clique tree.

Figure 3: Chordal graph on which protocol ΠIncorrectChordal fails.

The AA protocol of [37]. The protocol of [37, Section 4.2] focuses strictly on the asyn-
chronous setting, hence, when describing it, for brevity we assume a single number t = ta.
Roughly speaking, the protocol proceeds in iterations. In each iteration, parties distribute
their values via a weaker variant of GTHR, say Π. Instead of ensuring t-Common Core,
Π ensures that the honest parties’ output sets have pair-wise intersections of size n − t.
Parties then compute safe areas and select some new value from their safe area as their
new value. In order to ensure fast convergence, these new values are to be chosen care-
fully. This is done by relying on a special kind of tree decomposition admitted by chordal
graphs, namely clique trees, to be introduced below. In particular, in tandem with the
main algorithm, parties additionally run a tree AA protocol on the tree decomposition of
the graph, using it to guide the main algorithm. Hence, at each step, each party computes
both a “normal” and a “tree” safe area. It is then proven that each vertex in the tree safe
area corresponds to at least one vertex in the graph safe area. Then, if the new value is to
be taken from the center of the tree safe area, convergence can be ensured by an argument
showing that the diameter of the tree safe area is roughly halved at each iteration. As we
will show, it might actually be that no vertices in the center of the tree safe area appear
in the graph safe area, preventing the algorithm from proceeding further. We now make
the previous more exact by introducing the algorithm of [37, Section 4.2]. To do so, we
first need to introduce clique trees.

Chordal graphs can be equivalently characterized as graphs admitting a clique tree. A
clique tree T = (V (T), E(T)) for a graph G = (V (G), E(G)) is a tree whose vertices are
subsets of V ; i.e. V (T) ⊆ 2V (G). Every vertex of T has to induce a clique in G. Moreover,
the following requirements have to be satisfied: (i) for all v ∈ V (G) there is b ∈ V (T)
such that v ∈ b; (ii) for all (u, v) ∈ E(G) there is b ∈ V (T) such that {u, v} ⊆ b and (iii) if
a, b ∈ V (T) and v ∈ a∩ b, then v ∈ c for all c ∈ V (T) residing on the unique a− b path in
T. Usually, one also requires that the cliques induced by vertices of T are maximal cliques.
Note that, unlike general graphs, chordal graphs have a number of maximal cliques that
is at most linear in the number of vertices in G, so they admit a clique tree with at most
this many vertices. To illustrate, consider the chordal graph G in Figure 3a. The four
maximal cliques are circled with dashed lines of different colors. One of the clique trees of
G is given in Figure 3b. Namely, this is a four-node star graph with the center in {1, 2, 3}
and leaves {2, 6}, {2, 3, 4} and {3, 5}, in order from top to bottom.

Fix an arbitrary clique tree T of the input graphG. The algorithm will operate on what
the authors call the “expanded clique tree”: take T and subdivide each edge (a, b) ∈ E(T)
to get two edges a− x and x− b, where x = a ∩ b. Note that the expanded clique tree is
also a clique tree for G, although the newly added vertices might no longer correspond
to maximal cliques. This construction is exemplified for the clique tree in Figure 3b and
Figure 3c.

18

We are now ready to give the protocol ΠIncorrectChordal from [37, Section 4.2], presented
below. Note that it is only concerned with the asynchronous case, so only a single bound
t = ts = ta is used here instead of separate bounds ts and ta.Moreover, since the algorithm
requires convex hulls both in graph G and in tree T, for S ⊆ V (G) we write ⟨S⟩G for the
hull of S in G, and for S ⊆ V (T) we write ⟨S⟩T for the hull of S in T. We define safeGk
and safeTk analogously. We note that now the values in the pairs of the message sets M
are pairs of vertices (v, b). We expand the definition of ⟨M⟩ to such pairs: safeGk refers to
the values v in these pairs, while safeTk to the values b.

Protocol ΠIncorrectChordal

Code for party P with input v0 ∈ V (G)

1: Select b0 ∈ V (T) arbitrarily such that v0 ∈ b0.
2: for it = 1 . . .max it := ⌈log2 diam(T)⌉+ 2 do
3: Join Π with input (vit−1, bit−1). Upon obtaining output M in Π:
4: ST := safeTt (M); bit = center(S); SG := safeGt (M). Select vit ∈ SG∩bit arbitrarily.
5: end for
6: Output vmax it and terminate.

We next show an example where ΠIncorrectChordal does not execute correctly. In par-
ticular, it will be that for some honest party SG ∩ bit = ∅, implying that the party can
not proceed further. To construct this, consider the graph G in Figure 3a and assume
that its chosen clique tree is the one in Figure 3b. The expanded clique tree is then the
one in Figure 3c. We assume t = 3 and that there are n = 13 > ω · t = 4 · t = 12
parties. In our scenario, the t = 3 corrupted parties crash before taking part in the
protocol. The other ten (honest) parties have inputs as follows: three parties have input
5, three parties have input 6, and four parties have input 4. For our input values 4, 5, 6,
there are unique nodes in the clique tree containing them. In particular, parties hold-
ing 4 will set b0 := {2, 3, 4} at the beginning of the protocol. Likewise, parties holding
5 will set b0 = {3, 5} and parties holding 6 will set b0 = {2, 6}. Now, consider what
subsequently happens in the protocol during the first iteration for an arbitrary party
P holding input 4. Because the byzantine parties have crashed, the set of messages M
received by P is uniquely determined. In particular, in terms of the (v, b) payloads,
M contains four pairs (4, {2, 3, 4}), three pairs (5, {3, 5}), and three pairs (6, {2, 6}). We
then obtain ST = ⟨{{3, 5}, {2, 3, 4}}⟩T ∩⟨{{2, 6}, {2, 3, 4}}⟩T = {{1, 2, 3}, {2, 3}, {2, 3, 4}}.
Hence, center(ST) = {2, 3}, so party P sets bit := {2, 3}. Similarly, let us compute
SG = ⟨{5, 4}⟩G ∩ ⟨{6, 4}⟩G = {5, 3, 4} ∩ {6, 2, 4} = {4}. Therefore, party P cannot se-
lect vit ∈ SG ∩ bit = {4} ∩ {2, 3} = ∅.

It is now instructive to also identify the error in the original proof that SG ∩ bit ̸= ∅,
namely [37, Lemma 11 in the full version [38]]. The core of the proof hinges on an
argument showing that there is some vertex u ∈ bit that is, roughly speaking, covered by
many paths between the parties’ values vit−1. More precisely, there are at least t+1 pairs
of parties from which P has received values in iteration it, such that the two values vit−1

in each pair have an induced path in G between them that passes through u. The proof
of this fact is correct [37, Lemma 10 in the full version [38]]. However, it is then claimed
that, because there are at most t corrupted parties, for at least one such pair of parties
at least one of them is not corrupted. This is false in general: consider for simplicity
t = 10 and parties P1, . . . , P10. There are

(
10
2

)
= 45 ≥ t + 1 = 11 pairs of parties, yet

10 corruptions are enough to corrupt both parties in each pair. For this fact to be true,
one would need to replace t+ 1 by

(
t
2

)
+ 1, for which the lemma seems unlikely to hold.

19

Additionally, towards the end of the proof, two induced (or even shortest) paths in G, say
one from say a to b, and one from b to c are implicitly claimed to yield an induced path
from a to c that passes through b, which is not the case in general, e.g., in our graph G
no induced path from 5 to 6 passes through 4.

A hybrid AA protocol. We now describe an AA protocol for chordal graphs. We note
that [37] (Section 3) additionally includes an (asynchronous) AA protocol template that
is parameterized by a function ϕ, meant to be instantiated depending on the convexity
space. Our protocol matches this template but is tailored to the network-agnostic model.

Our protocol does not directly rely on the clique tree decomposition. This simplifies
notation when it comes to convex hulls, as all convex hulls are now on G. Following the
general outline of AA protocols [1, 17, 37], our protocol proceeds in iterations. In every
iteration, parties distribute their current values, and based on the values received obtain a
new value for the next iteration, while ensuring that the new values “get closer” and stay
within the convex hull of honest inputs. More concretely, once P obtains a set of n−ts+k
value-sender pairs M, it computes its safe area as S := safemax(k,ta)(M), as described
for our CC protocol. To ensure that S is non-empty and included in the convex hull of
the values proposed by honest parties, the underlying communication primitive needs to
ensure that the sets M are large enough, and contain sufficient honest values. Then,
once the safe area is obtained, P may compute its new value. For this computation,
we use a variant of the update rule of [5] (Section 7.2), which in their case facilitates
AA on chordal graphs in the wait-free model: since G is chordal, assume ≻ is a perfect
elimination order over the vertices of G. Namely, for u, v ∈ V write u ≻ v if u comes after
v in the elimination order. Then, given a set of vertices S ⊆ V, write max≻ S, or simply
maxS, for the vertex in S that comes last in the elimination order, and define minS
similarly. If S induces a clique in G, party P will pick maxS as its new value. Otherwise,
P will pick its new value as an arbitrary vertex in S that is not an extreme point (which
is indeed possible by Lemma 22). We will show that this update rule guarantees that
agreement within distance d = 1 is achieved after a sufficient number of iterations, under
the assumption that the safe areas obtained by all honest parties intersect. To fulfill this
assumption, we make use of the protocol ΠGTHR of Theorem 20. This is shown with the
help of the lemma below, which is proven in Appendix D.

Lemma 23. Let (Mi)
K
i=1 be sets of value-party pairs such that ki :=

∣∣Mi

∣∣− (n− ts) ≥ 0.

If
∣∣⋃K

i=1Mi

∣∣ ≤ n and
∣∣⋂K

i=1Mi

∣∣ ≥ n− ts hold, then
⋂K

i=1 safemax(ki,ta)(Mi) ̸= ∅.

We present our protocol ΠChordal and its guarantees below. Although our protocol
ΠChordal utilizes techniques from [5, 37], the proof of Theorem 24 requires additional in-
sights. Note that even though our protocol uses a similar value computation rule to
that of [5], the protocol of [5] is designed in the wait-free atomic snapshot model. This
model ensures the strong property that, for any two parties, one’s view is a subset of
the other. Moreover, it is only concerned with crashes as opposed to byzantine failures,
which drops the need of computing safe areas altogether. Hence, in the message-passing
model with byzantine failures, proving correctness requires arguments relying on weaker
properties in comparison to [5]. In addition, arguments for asynchronous AA protocols do
not directly apply to the network-agnostic setting: the safe areas defined in the network-
agnostic model lose a natural monotonicity property (namely, it is no longer the case that
the more values you receive, the larger your safe area is). Due to this missing property,
showing that the honest parties’ safe areas intersect and hence their values get closer in
each iteration relies on more elaborate arguments. For the formal proof, see Appendix E.

20

Protocol ΠChordal

Code for party P with input v0 ∈ V

1: for it = 1 . . .max it := |V | − 1 do
2: Join ΠGTHR with input vit−1.
3: Upon obtaining output M in ΠGTHR:
4: k :=

∣∣M∣∣− (n− ts); S := safemax(k,ta)(M).
5: If S = ex (S), vit := maxS // S induces a clique in G.
6: Otherwise, select vit ∈ S \ ex (S) arbitrarily.
7: end for
8: Output vmax it and terminate.

Theorem 24. Consider a chordal graph G with maximum clique size ω. Given n, ts, ta such
that ts ≥ ta and n > ω · ts+ ta, ΠChordal is a (ts, ta)-secure deterministic protocol achieving
Monophonic Convex Validity, Termination and Agreement within Graph Distance 1.

7 Conclusions

We investigated the necessary and sufficient conditions for achieving CC in the network-
agnostic model, providing a necessary and sufficient condition for solvability. We have
seen that, for any convexity space with Helly number ω, achieving CC, or, more precisely,
Convex Hull Validity, (Probabilistic) Termination and Agreement on at most min(n, ω)−1
values requires n > ω · t in synchronous networks and n > (ω + 1) · t in asynchronous
networks. In the network-agnostic model, we have shown that n > max(ω · ts, ω · ta +
ts, 2 · ts + ta) is necessary and sufficient for achieving CC. To this end, we provided a
(ts, ta)-secure CC protocol ΠCC by making use of randomization, which can be seen to
be necessary due to the FLP result [21], and assuming PKI only for the particular case
ω = 2 (where cryptographic setup is needed when ts ≥ n/3 [27]).

In the process, we proposed two communication primitives for the network-agnostic
model, which may be of independent interest. These are variants of ACS and GTHR, which
allow each party to distribute its input so that parties obtain consistent views on the
original inputs. These stronger properties enabled us to ensure the synchronous resilience
guarantees of CC in the network-agnostic model. With its stronger guarantees, our ACS
protocol can simplify future works on network-agnostic secure Multi-Party Computation,
where ACS protocols are often employed during the input-sharing part of the protocol
(for instance, [11] uses a less general form of ACS).

21

References

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous
approximate agreement. In Teruo Higashino, editor, Principles of Distributed Sys-
tems, pages 229–239, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and
Alin Tomescu. Reaching consensus for asynchronous distributed key generation. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
PODC’21, page 363–373, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467914.

[3] Manuel Alcántara, Armando Castañeda, David Flores-Peñaloza, and Sergio Ra-
jsbaum. The topology of look-compute-move robot wait-free algorithms with
hard termination. Distributed Computing, 32(3):235–255, 2019. doi:10.1007/

s00446-018-0345-3.

[4] Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. State ma-
chine replication under changing network conditions. In Advances in Cryptol-
ogy – ASIACRYPT 2022: 28th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part I, page 681–710, Berlin, Heidelberg, 2023. Springer-Verlag.
doi:10.1007/978-3-031-22963-3_23.

[5] Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement
on graphs. In Tomasz Jurdziński and Stefan Schmid, editors, Structural Information
and Communication Complexity, pages 87–105, Cham, 2021. Springer International
Publishing. doi:10.1007/978-3-030-79527-6_6.

[6] Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-secure
synchronous mpc with asynchronous fallback guarantees. In Proceedings of the 2022
ACM Symposium on Principles of Distributed Computing, PODC’22, page 92–102,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/

3519270.3538417.

[7] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure compu-
tation. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, page 52–61, New York, NY, USA, 1993. Association for Com-
puting Machinery. doi:10.1145/167088.167109.

[8] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’94, page 183–192,
New York, NY, USA, 1994. Association for Computing Machinery. doi:10.1145/

197917.198088.

[9] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal
asynchronous fallback guarantees. In Theory of Cryptography, volume 11891 of Lec-
ture Notes in Computer Science, pages 131–150, Cham, 2019. Springer International
Publishing. doi:10.1007/978-3-030-36030-6_6.

[10] Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast
protocol for arbitrary network conditions. In Mehdi Tibouchi and Huaxiong Wang,

22

https://doi.org/10.1145/3465084.3467914
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1007/978-3-031-22963-3_23
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1145/3519270.3538417
https://doi.org/10.1145/3519270.3538417
https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/197917.198088
https://doi.org/10.1145/197917.198088
https://doi.org/10.1007/978-3-030-36030-6_6

editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages 547–572. Springer,
Heidelberg, December 2021. doi:10.1007/978-3-030-92075-3_19.

[11] Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan:
Fully secure synchronous mpc with asynchronous fallback. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages
707–731, Cham, 2020. Springer International Publishing.

[12] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and
Computation, 75(2):130–143, 1987.

[13] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, page 42–51, New York, NY, USA, 1993. Association for
Computing Machinery. doi:10.1145/167088.167105.

[14] Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering
on graphs for wait-free robots. Journal of the Brazilian Computer Society, 24(1):1,
Jan 2018. doi:10.1186/s13173-017-0065-8.

[15] Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine
agreement and multi-party computation with asynchronous fallback. In Kobbi Nissim
and Brent Waters, editors, Theory of Cryptography, pages 623–653, Cham, 2021.
Springer International Publishing.

[16] Gabriel Andrew Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, 25:71–76, 1961.

[17] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.
Weihl. Reaching approximate agreement in the presence of faults. J. ACM,
33(3):499–516, May 1986. doi:10.1145/5925.5931.

[18] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[19] Pierre Duchet. Convex sets in graphs, ii. minimal path convexity. Jour-
nal of Combinatorial Theory, Series B, 44(3):307–316, 1988. URL: https:

//www.sciencedirect.com/science/article/pii/0095895688900391, doi:10.

1016/0095-8956(88)90039-1.

[20] Martin Farber and Robert E. Jamison. Convexity in graphs and hypergraphs. SIAM
Journal on Algebraic Discrete Methods, 7(3):433–444, 1986. doi:10.1137/0607049.

[21] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[22] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and
differential consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd
ACM PODC, pages 211–220. ACM, July 2003. doi:10.1145/872035.872066.

[23] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous
approximate agreement with asynchronous fallback. In Proceedings of the 2022
ACM Symposium on Principles of Distributed Computing, PODC’22, page 70–80,

23

https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1145/167088.167105
https://doi.org/10.1186/s13173-017-0065-8
https://doi.org/10.1145/5925.5931
https://www.sciencedirect.com/science/article/pii/0095895688900391
https://www.sciencedirect.com/science/article/pii/0095895688900391
https://doi.org/10.1016/0095-8956(88)90039-1
https://doi.org/10.1016/0095-8956(88)90039-1
https://doi.org/10.1137/0607049
https://doi.org/10.1145/872035.872066

New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/

3519270.3538442.

[24] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Multidimensional
approximate agreement with asynchronous fallback. In Proceedings of the 35th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’23, page
141–151, New York, NY, USA, 2023. Association for Computing Machinery. doi:

10.1145/3558481.3591105.

[25] Robert E. Jamison and Richard Nowakowski. A helly theorem for convexity in graphs.
Discrete Mathematics, 51(1):35–39, 1984. URL: https://www.sciencedirect.com/
science/article/pii/0012365X84900219, doi:10.1016/0012-365X(84)90021-9.

[26] Simon Holmgaard Kamp and Jesper Buus Nielsen. Byzantine agreement decomposed:
Honest majority asynchronous atomic broadcast from reliable broadcast. Cryptol-
ogy ePrint Archive, Paper 2023/1738, 2023. https://eprint.iacr.org/2023/1738.
URL: https://eprint.iacr.org/2023/1738.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382–401,
1982.

[28] Jérémy Ledent. Brief announcement: Variants of approximate agreement on graphs
and simplicial complexes. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, PODC’21, page 427–430, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3465084.3467946.

[29] Christoph Lenzen and Julian Loss. Optimal clock synchronization with signatures. In
Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing,
PODC’22, page 440–449, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3519270.3538444.

[30] Shihao Liu. The Impossibility of Approximate Agreement on a Larger Class of
Graphs. In Eshcar Hillel, Roberto Palmieri, and Etienne Rivière, editors, 26th
International Conference on Principles of Distributed Systems (OPODIS 2022),
volume 253 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1–22:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/
LIPIcs.OPODIS.2022.22, doi:10.4230/LIPIcs.OPODIS.2022.22.

[31] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement
in byzantine asynchronous systems. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 391–400. ACM Press, June 2013. doi:
10.1145/2488608.2488657.

[32] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K Garg. Multidi-
mensional agreement in byzantine systems. Distributed Computing, 28(6):423–441,
2015.

[33] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of BFT protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 31–42. ACM
Press, October 2016. doi:10.1145/2976749.2978399.

24

https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3558481.3591105
https://doi.org/10.1145/3558481.3591105
https://www.sciencedirect.com/science/article/pii/0012365X84900219
https://www.sciencedirect.com/science/article/pii/0012365X84900219
https://doi.org/10.1016/0012-365X(84)90021-9
https://eprint.iacr.org/2023/1738
https://eprint.iacr.org/2023/1738
https://doi.org/10.1145/3465084.3467946
https://doi.org/10.1145/3519270.3538444
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.22
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.22
https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.1145/2976749.2978399

[34] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’21, page 1686–1699, New York, NY, USA, 2021. Association for Com-
puting Machinery. doi:10.1145/3460120.3484554.

[35] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-free asyn-
chronous byzantine consensus with t < n/3 and o(n2) messages. In Proceed-
ings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC
’14, page 2–9, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2611462.2611468.

[36] Gil Neiger. Distributed consensus revisited. Information Processing Letters,
49(4):195–201, 1994. URL: https://www.sciencedirect.com/science/article/
pii/0020019094900116, doi:10.1016/0020-0190(94)90011-6.

[37] Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs.
In Jukka Suomela, editor, 33rd International Symposium on Distributed Comput-
ing (DISC 2019), volume 146 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 29:1–29:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/

2019/11336, doi:10.4230/LIPIcs.DISC.2019.29.

[38] Thomas Nowak and Joel Rybicki. Byzantine approximate agreement on graphs, 2019.
arXiv:1908.02743.

[39] Gerard Sierksma. Caratheodory and helly-numbers of convex-product-structures.
Pacific Journal of Mathematics, 61:275–282, 1975.

[40] Lewis Tseng and Nitin H. Vaidya. Asynchronous convex hull consensus in the pres-
ence of crash faults. In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM
PODC, pages 396–405. ACM, July 2014. doi:10.1145/2611462.2611470.

[41] Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in complete graphs.
In Panagiota Fatourou and Gadi Taubenfeld, editors, 32nd ACM PODC, pages 65–
73. ACM, July 2013. doi:10.1145/2484239.2484256.

25

https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/2611462.2611468
https://www.sciencedirect.com/science/article/pii/0020019094900116
https://www.sciencedirect.com/science/article/pii/0020019094900116
https://doi.org/10.1016/0020-0190(94)90011-6
http://drops.dagstuhl.de/opus/volltexte/2019/11336
http://drops.dagstuhl.de/opus/volltexte/2019/11336
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://arxiv.org/abs/1908.02743
https://doi.org/10.1145/2611462.2611470
https://doi.org/10.1145/2484239.2484256

Appendix

A Preliminaries: Additional Details

A.1 Graph Convexity Spaces

Unless stated otherwise, all graphs considered in this paper are finite, undirected, con-
nected and simple. Given a graph G = (V,E), one can define various convexity spaces on
V. Similarly to RD, one would want the convex hull of a set of nodes to represent a set of
“good” gathering points. Two prominent examples that have been extensively considered
in the literature are the so-called geodesic and monophonic convexities. We begin with
geodesic convexity: a subset C ⊆ V is geodesically convex if, for any two vertices u, v ∈ C,
and any shortest path P from u to v in G, all vertices in P are in C. This can be thought of
as a discrete version of the standard straight-line convexity notion for RD. Note, however,
that unlike in RD, the shortest path might not be unique. Monophonic convexity on G is
defined analogously, relaxing the paths considered from shortest paths to induced paths
(also called chordless paths); i.e., paths with no short-circuit edges. In both cases, convex
hulls are defined as before, as the intersection of all convex sets containing the set.

A tempting alternative definition of the convex hull, motivated by the slogan “a good
gathering point” would just take all vertices that lie on some shortest/induced path be-
tween two vertices in the set. This is, however, a distinct notion. For geodesic convexity,
consider for instance the graph G1 in Figure 4a, where all nodes except 7 lie on a shortest
path between 1 and 4. However, the set of all nodes excluding 7 is not convex, as 7 is
on a shortest path between 3 and 6, so the convex hull actually consists of all nodes.
Hence, arranging a meeting point that lies on some shortest path between two parties
can not be modelled through convexity alone. Figure 4b gives an example for mono-
phonic convexity where 5 does not lie on any induced path between 1 and 4, but it is
in the hull ⟨{1, 4}⟩. Write F (S) for the set of all nodes lying on some shortest/induced
path between nodes in S, then, the convex hull ⟨S⟩ is the least fixed point of F con-
taining S. Operationally, this means that ⟨S⟩ can be computed by starting with S and
repeatedly performing S := F (S) until equality is reached; i.e., take the nodes lying on
some shortest/induced path and add them to the set, repeating until the set no longer
changes. E.g., in Figure 4c, for both convexity notions the set S = {1, 4} would evolve as
follows: {1, 4} → {1, . . . , 4} → {1, . . . , 6} → {1, . . . , 7} = ⟨{1, 4}⟩.

(a) Graph G1. (b) Graph G2. (c) Graph G3.

Figure 4: Illustration of geodesic (G) and monophonic (M) convex hulls. In G1, ⟨{1, 3}⟩ =
{1, 2, 3} for G and {1, . . . , 7} for M. In all three graphs, ⟨{1, 4}⟩ consists of all vertices for
both G and M, despite not all nodes always lying on a shortest/induced path between 1
and 4.

An important observation is that free sets correspond to cliques for our two graph

26

convexity notions. This is stated and proven in the following lemma. Note that this
trivially implies Lemma 22.

Lemma 25. Let G = (V,E) be a graph and S ⊆ V be a subset of its vertices. Then, under
both geodesic and monophonic convexity, S is a free set if and only if S induces a clique
in G.

Proof. First, note that for all S inducing a clique, S = ⟨S⟩, as all vertices in S are linked
by edges. Moreover, if S induces a clique, then S = ex (S) because for any s ∈ S it holds
that S \ {s} induces a clique and hence s /∈ S \ {s} = ⟨S \ {s}⟩. This proves the “if”
direction. For the “only if” direction, assume S does not induce a clique and let a, b ∈ S
be two vertices not joined by an edge. Consider a shortest/induced path P from a to b
in G. Since a and b are not adjacent, P consists of at least three nodes, so take v /∈ {a, b}
to be on path P. By definition, this means that v ∈ ⟨S⟩ Moreover, v ∈ ⟨S \ {v}⟩ because
of path P, from which v /∈ ex (S). Therefore, v ∈ ⟨S⟩ \ ex (S), so by definition S is not
free.

A.2 Chordal Graphs and Convex Geometries

A graph G = (V,E) is chordal if it has no induced cycle of length greater than three.
A vertex v ∈ V is simplicial if its neighbors in G form a clique. Chordal graphs admit
many equivalent definitions, most notably they are the graphs that have a simplicial vertex
whose removal yields another chordal graph. They are also the graphs that admit a perfect
elimination order, which is a total order ≻ on V such that any v ∈ V is simplicial in the
subgraph induced by {u ∈ V | u ⪰ v}. One should read u ≻ v as “u is eliminated after
v.” A graph G is distance-hereditary if distances in any connected induced subgraph are
the same as in the original graph. Equivalently, G is distance-hereditary if every induced
path is a shortest path. A graph is Ptolemaic if it is chordal and distance-hereditary.

An abstract convexity space C on universe V is a convex geometry if it additionally
satisfies that, for all convex sets C ⊊ V , there exists v ∈ V \C such that C∪{v} is convex.
Note that this is a non-trivial requirement; e.g., RD with neither straight-line convexity
nor box convexity is a convex geometry. However, two notable examples arise when we
consider graphs endowed with geodesic or monophonic path convexity. Namely, as shown
in [20], the monophonic convexity of a graph G is a convex geometry if and only if G is
chordal and the geodesic convexity of G is a convex geometry if and only if G is Ptolemaic.
Notice that all graphs for which geodesic convexity is a convex geometry are Ptolemaic,
and hence distance-hereditary, meaning that the two convexity notions coincide on such
graphs. As a result, our results for chordal graphs will target monophonic convexity.

B Resilience Lower Bounds

B.1 Impossibility Results Using Adversarial Families

Lemma 5. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. As-
sume n ≥ m and that, moreover, n ≤ m·t if the network is synchronous and n ≤ (m+1)·t
if the network is asynchronous. Then, any (deterministic or randomized) n-party protocol
satisfying Convex Validity and (Probabilistic) Termination has a terminating execution
where there are honest parties P1, . . . , Pm such that the output viout of party Pi satisfies
viout ∈ Ai.

27

Proof. First, consider the synchronous case. Write A = ∪A and consider a protocol
Π satisfying Convex Validity and Termination. Partition the n parties into m groups
G1, G2, . . . , Gm such that 1 ≤ |Gi| ≤ t for all i and consider an instance of Π where each
party in Gi has as input some arbitrary value ai ∈ Ai. Consider m + 1 scenarios. In
scenario s ∈ [m], the adversary corrupts precisely the parties in Gs, while in scenario
m + 1, the adversary corrupts no parties. In all scenarios, the adversary ensures no
corrupted parties ever deviate from the protocol and does not manipulate the scheduler.
By construction, observe that any execution of the protocol that is consistent with any of
the scenarios is consistent with all scenarios. Since Π satisfies Termination, consider an
arbitrary execution E of the protocol consistent with scenariom+1. Note that this implies
that all parties obtain outputs and that execution E is consistent with the other scenarios
as well. For execution E, consider an arbitrary i and a party P ∈ Gi whose output is
vPout. We will show that vPout ∈ Ai. Assume otherwise, then, since Ai = ∩ℓ̸=i⟨A \Aℓ⟩, there
exists k ̸= i such that vPout /∈ ⟨A \Ak⟩. In scenario k the set of corrupted parties is Gk, so
the convex hull of the honest inputs is a subset of ⟨A \Ak⟩. In this scenario party P is
not corrupted and has output vPout /∈ ⟨A \Ak⟩, contradicting Convex Validity. Therefore,
we get that vPout ∈ Ai as claimed, and hence the conclusion.

For the asynchronous case, the proof is similar in spirit. This time, partition the
n parties into m + 1 groups G1, G2, . . . , Gm+1 such that 1 ≤ |Gi| ≤ t for i ∈ [m] and
0 ≤ |Gm+1| ≤ t. Consider an instance of Π where each party inGi has input some arbitrary
value ai ∈ Ai, except parties in Gm+1, which can have arbitrary inputs. Consider again
m + 1 scenarios. In scenario s ∈ [m + 1], the adversary corrupts precisely the parties in
Gs. For s = m + 1, the adversary makes the corrupted parties crash immediately and
does not manipulate the scheduler. For s ∈ [m], the adversary ensures no corrupted party
deviates from the protocol, but this time delays messages sent from parties in Gm+1 until
all other parties have obtained outputs. Note that this could lead to messages getting
delayed indefinitely if some honest party does not obtain output (e.g., if the protocol is
randomized), which would not be within the power of the adversary, but this will not
be the case for the executions we consider. Because Π satisfies Termination, consider an
arbitrary execution E of the protocol consistent with scenario m+ 1 in which all honest
parties obtain outputs. Note that any such execution is also consistent with the other
scenarios. The rest of the proof is analogous, showing with the same argument that for
execution E we have that vPout ∈ Ai for any P ∈ Gi, where i ∈ [m].

Lemma 6. Assume a convexity space C admitting a 2-adversarial family A = {A1, A2}.
Assume 2 ≤ n ≤ 2·ts+ta. Let Π denote an arbitrary (deterministic or randomized) proto-
col achieving Convex Validity and (Probabilistic) Termination for at most ts corruptions
when the network is synchronous and at most ta corruptions when it is asynchronous.
Then, Π has a terminating execution where the outputs v1out and v2out of two honest parties
satisfy v1out ∈ A1 and v2out ∈ A2.

Proof. Write A =
⋃
A. We partition the n parties into three groups G1, G2 and Ga, such

that 1 ≤ |G1|, |G2| ≤ ts and 0 ≤ |Ga| ≤ ta. For 1 ≤ i ≤ 2, assume that each party in Gi

has as input some arbitrary value ai ∈ Ai. We consider three scenarios.
In the first scenario, we assume that the network is synchronous, hence at most ts

parties may be corrupted. The adversary therefore corrupts the parties in G2, causing
them to not send any messages. The parties in G1 and Ga are honest and hold as input
some arbitrary value a1 ∈ A1. Then, Convex Validity ensures that, in any terminating
execution consistent with the scenario, parties in G1 obtain outputs in A1.

Similarly, in the second scenario, we assume that the network is synchronous, but this

28

time the adversary corrupts the parties in G1, causing them to not send any messages.
The parties in G2 and Ga are honest and hold as input some arbitrary value a2 ∈ A2.
Then, Convex Validity ensures that, in any terminating execution consistent with the
scenario, parties in G2 obtain outputs in A2.

In the third scenario, we assume that the network is asynchronous, hence at most ta
parties may be corrupted. The adversary therefore corrupts the parties in Ga. Intuitively,
the adversary will make use of the parties in Ga and of the message delivery scheduler
to cause honest parties’ views to be indistinguishable from their views in the previous
two scenarios. We assume that the honest parties’ clocks are still synchronized; however,
the adversarial scheduler will block the communication between the two groups of honest
parties G1 and G2. The messages sent within G1∪Ga or within G2∪Ga will be delivered
with delay at most ∆, as if the network were synchronous. Then, we make a virtual
copy of each party in Ga, obtaining two virtual sets of corrupted parties: G1

a and G2
a.

The virtual copies in G1
a run Π correctly with the same inputs a1 ∈ A1 as in the first

scenario towards the parties in G1. Similarly, the virtual copies in G2
a run Π correctly

with the same inputs a2 ∈ A2 as in the second scenario towards the parties in G2. This
ensures that parties in G1 and G2 have the same view as in the first and second scenario
respectively. Since Π achieves Termination, there is a terminating execution consistent
with this scenario, hence also consistent with the first two scenarios. Then, as argued
previously, in any such execution, parties G1 and G2 obtain outputs v1out ∈ A1 and resp.
v2out ∈ A2, completing the proof.

Lemma 7. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. As-
sume that m ≤ n ≤ m · ta + ts. Then, any (deterministic or randomized) n-party protocol
satisfying Convex Validity and (Probabilistic) Termination for at most ts corruptions when
the network is synchronous and at most ta corruptions when the network is asynchronous
has a terminating execution where there are honest parties P1, . . . , Pm such that the output
viout of party Pi satisfies viout ∈ Ai.

Proof. Consider a protocol Π satisfying Convex Validity and Termination. Partition the
n parties into m+ 1 groups G1, G2, . . . , Gm+1 such that 1 ≤ |Gi| ≤ ta for all 1 ≤ i ≤ m,
and 0 ≤

∣∣Gm+1

∣∣ ≤ ts. The rest of the proof is identical to the proof for the asynchronous
setting in Lemma 5.

Theorem 11. Consider a convexity space C with Helly number ω ≥ 2. Assume 2 ≤ n ≤
2 · ts + ta or 2 ≤ n ≤ ω · ta + ts. Then, no (deterministic or randomized) n-party protocol
satisfying Convex Validity, (Probabilistic) Termination, and Exact Agreement can simul-
taneously tolerate at most ts corruptions when the network is synchronous and at most ta
corruptions when the network is asynchronous.

Proof. For the case 2 ≤ n ≤ 2 · ts + ta, by Lemma 8, there is an ω-adversarial family
for C. Since 2 ≤ ω, using Lemma 9, let A = {A1, A2} be a 2-adversarial family for C.
Consider a protocol Π satisfying Convex Validity and Termination. By Lemma 6, there
is a terminating execution of Π where the set of honest outputs contains {a1, a2} where
a1 ∈ A1 and a2 ∈ A2. Since A1 and A2 are disjoint, a1 ̸= a2, from which the conclusion
follows.

For the case 2 ≤ n ≤ ω · ta + ts, write m = min(n, ω). Similarly, by Lemma 8, there
is an ω-adversarial family for C. Since m ≤ ω, using Lemma 9, let A = {A1, . . . , Am}
be an m-adversarial family for C. Consider a protocol Π satisfying Convex Validity and
Termination. By Lemma 7, there is a terminating execution of Π where the set of honest

29

outputs contains {a1, . . . , am} where ai ∈ Ai. As sets in A are pairwise disjoint, this set
has cardinality m, implying the conclusion.

We add that adversarial families can also be used to recover more (known) impossibil-
ity results. For instance, we give a short proof below of the classic AA lower bounds in RD

with straight-line convexity [31,32,41]. Similarly, one can also recover the requirement of
n > 2 · ts + ta for R in the network-agnostic model [23].

Theorem 26. Consider RD with straight-line convexity and let d > 0 be arbitrary. Assume
n ≤ (D + 1) · t if the network is synchronous and n ≤ (D + 2) · t if the network is
asynchronous. Then, there is no (deterministic or randomized) n-party protocol satisfying
Convex Validity and Termination such that no two honest outputs are more than Euclidean
distance d apart.

Proof. It suffices to consider the case n ≥ D + 1, as otherwise the inputs would be
contained in an (n−1)-dimensional subspace of RD, which is equivalent to assuming they
are points in Rn−1, so the result could then be invoked for Rn−1 with n ≥ (n − 1) + 1.
Consider the origin point 0 of RD, as well as the unit vectors e1, . . . , eD, and define the
family of disjoint convex sets A = {A0, . . . , AD}, where A0 = {0} and Ai = {(2d)ei} for
i ∈ [D]. One can check that A is a (D + 1)-adversarial family because the intersection
of any D faces of a D-simplex is the point common to all of them. Hence, by Lemma 5
any protocol Π satisfying Convex Validity and Termination has a terminating execution
where {0, (2d)e1, . . . , (2d)eD} is a subset of the honest outputs. The distance between 0
and (2d)e1 is 2d > d, implying the conclusion.

B.2 Comparison with [37, Theorems 17 and 13]

In this section, we compare our impossibility results with the related [37, Theorems 17
and 13]. We find that our results generalize the aforementioned, with the exception of
the first part of [37, Theorems 13], to which our findings are orthogonal. However, we
exhibit an error in the proof of this part, rendering the result false in general.

Theorem 27 ([37, Theorem 17]). Let C be a convex geometry with Helly number ω. If the
network is synchronous and n ≤ ω · t, then no n-party protocol satisfies Convex Validity,
Termination and Exact Agreement.

Contrasting this with Theorem 10, for the synchronous case our results generalize the
previous by removing the strong requirement on C to be a convex geometry and by adding
the fact that even agreement on at most min(n, ω) − 1 values is not possible. Next, for
use in the following, call a (not necessarily convex) subset I ⊆ V irredundant if there is
a point p ∈ ⟨I⟩ such that the hull of no proper subset of I contains p. The Carathéodory
number c of C is then the size of the largest such irredundant set I.

Theorem 28 ([37, Theorem 13]). Let C be a convexity space with Helly number ω and
Carathéodory number c. Assume the network is asynchronous and consider a protocol
satisfying Convex Validity and Termination, then:

1. If n ≤ (c + 1) · t there is an execution where the honest outputs do not form a free
set in C.

2. If n ≤ (ω + 1) · t and C is a convex geometry there is an execution where the set of
honest outputs either has size at least ω or is not a free set in C.

30

Contrasting with Theorem 10, for the asynchronous case our results generalize Part 2
of the above by once again removing the requirement on C to be a convex geometry and
also by no longer requiring the clause “or is not a free set in C.” Our result also replaces
ω by min(n, ω), which we believe is also implicitly meant in the original result, as when
n < ω the condition becomes vacuous, and a protocol where parties just output their own
inputs satisfies Convex Validity and Termination in some convex geometries.

Part 1 of Theorem 28, on the other hand, is orthogonal to our results. In our attempt
to use adversarial families to potentially also recover Part 1, we have discovered an error
in the proof of this part, making the result false in general. Namely, the proof of Part 1
hinges on the following technical lemma:

Lemma 29 ([37, Lemma 15 of the full version [38]]). Let C be a convexity space and A be
an irredundant set such that |A| > 1. Then for any a ∈ A and y ∈ ⟨A⟩ \ A there exists
b ∈ A \ {a} such that y /∈ ⟨A \ {b}⟩.

Note that we have added the condition “A is irredundant” missing from the original
statement.7 The error in the proof is towards the end where, using the original notation,
it is stated that y /∈ ∂A = ⟨A⟩ \ B ⊆ ⟨A⟩ \ A implies that y /∈ ⟨A⟩ \ A, contradicting
the hypothesis. However, in general, if some sets satisfy S1 ⊆ S2 and y /∈ S1 it does not
follow that y /∈ S2. We next construct a convexity space where the lemma in fact fails for
all irredundant sets A and all a ∈ A. First, introduce some auxiliary notation: given two
convexity spaces C1 and C2 defined on universes V1 and V2 respectively, define C1 ⊕ C2 to
be the convexity space on universe V1 × V2 such that C1 ⊕ C2 = {C1 × C2 | C1 ∈ C1, C2 ∈
C2}. For the construction, start with an arbitrary convexity space C on universe V and
consider the convexity space C′ = C ⊕ {∅, {0, 1}}. To build intuition for C′, notice that
⟨{(v, i)}⟩ = {(v, 0), (v, 1)} for any v ∈ V and i ∈ {0, 1}. Assume A is an irredundant set
for C′. Note that for no v ∈ V does A contain both points (v, 0) and (v, 1), as otherwise
it would be that ⟨A⟩ = ⟨A \ {(v, 1)}⟩, so A would not be irredundant. Consider any
a = (v, i) ∈ A and take y = (v, 1 − i) ∈ ⟨A⟩ \ A, then for any b ∈ A \ {a} it holds that
a ∈ A\{b}, from which ⟨{a}⟩ = {(v, 0), (v, 1)} ⊆ ⟨A \ {b}⟩, so y ∈ ⟨A \ {b}⟩, contradicting
the statement of the lemma. Hence, we have constructed a space for which the lemma
fails for any irredundant set A and any a ∈ A, indicating that any correct weakening of
the lemma might sadly not be of much use in its current form.

We conclude by constructing a space whose Carathéodory number c is much larger
than its Helly number ω, showing that our possibility results are not consistent with
Part 2 of Theorem 28. To do so, we will use the fact [39, Theorems 2.1 and 3.2] that
given convexity spaces C1 and C2 with Helly numbers ω1, ω2 and Carathéodory numbers
c1, c2 the space C1 ⊕ C2 has Helly number ω = max{ω1, ω2} and Carathéodory number c
satisfying c1+c2−2 ≤ c ≤ c1+c2. Consider the space C = R2 with straight-line convexity,
whose Helly and Carathéodory numbers are both 3. Then, the space Ck =

⊕k
ℓ=1 C has

Helly number ωk = 3 and Carathéodory number ck ≥ 3k−2(k−1) = k+2. For this space,
our possibility results imply that, when the network is asynchronous, convex consensus
be solved assuming n > 4 · t, while Part 1 of Theorem 28 would imply that it can not be
solved for n ≤ (k + 3) · t, which are incompatible statements for k large enough.

The keen-eyed reader might note that [37, 38] require the universe to be finite, which
is not the case for our counterexample. To also construct a counterexample with a finite

7The proof of the lemma notes that if A is not irredundant the claim becomes vacuous, however, one
can actually consider R2 with straight-line convexity, A = {(±1,±1)} and y = (0.5, 0.5), in which case
y ∈ ⟨A \ {a}⟩ for any a ∈ A. This issue is however only minor since the lemma is only invoked in the proof
of the subsequent [37, Lemma 16 of the full version [38]], where A is assumed to be irredundant.

31

universe, we will use the same technique, replacing R2 with straight-line convexity by
a finite convexity space X . The requirements for our technique to apply are mild since
increasing k keeps the Helly number constant while strictly increasing the lower bound on
the Carathéodory number, provided the Carathéodory number of X is at least 3. Hence,
for k sufficiently large, the Carathéodory number of Ck =

⊕k
ℓ=1 C =

⊕k
ℓ=1X will exceed

its Helly number.8 It remains to construct a finite X with Carathéodory number at least 3.
This is not at all difficult: let the universe be four points A,B,C,D ∈ R2 such that A,B,C
form an equilateral triangle and D is the center of the triangle, and the convexity notion
be inherited from R2 with straight-line convexity; i.e., ⟨{A,B,C}⟩ = {A,B,C,D}. This
space has a Carathéodory number of at least 3 because the set {A,B,C} is irredundant
(in fact exactly 3 because {A,B,C,D} is not irredundant).

C Communication Primitives

In this section, we include the formal definitions of the communication primitives used in
our algorithms, along with formal proofs.

C.1 Reliable Broadcast

It will be useful to consider the rBC definition of [24], which makes the termination time
explicit.

Definition 30 (Reliable Broadcast with explicit termination time). Let Π be a protocol
where a designated party S (the sender) holds a value vS, and every party P may output
a value vP . Consider the following properties:
Validity: If S is honest, and an honest party outputs vP , then vP = vS.
Consistency: If P and P ′ are honest and output vP and resp. vP ′, then vP = vP ′.
c-Honest Termination: If S is honest, parties obtain outputs eventually. In addition, if
the network is synchronous and the parties start executing the protocol at the same time
τ , every honest party obtains output by time τ + c ·∆.
c′-Conditional Termination: If an honest party P obtains output at time τ , then all
honest parties obtain outputs eventually. In addition, if the network is synchronous and
the honest parties start executing the protocol at the same time, then all honest parties
obtain output by time τ + c′ ·∆.

We say that Π is a (ts, ta, c, c
′)-secure Reliable Broadcast protocol if it achieves Validity,

Consistency, c-Honest Termination, and c′-Conditional Termination even when ts of the
parties involved are corrupted if it runs in a synchronous network, and when up to ta
corruptions if it runs in an asynchronous network.

Our protocols will make use of two rBC protocols. The first one is Bracha’s protocol
[12], which does not assume PKI. The theorem below follows from the analysis of [24].

Theorem 31 (Bracha [12]). If n > 3t. there is a (t, t, crBC, c
′
rBC)-secure rBC protocol ΠarBC,

where crBC := 3 and c′rBC := 2. ΠarBC achieves round complexity O(1). If ℓ denotes the
universe elements’ size in bits, it achieves a communication complexity of O(n2 · ℓ) bits.

The second protocol is that of Momose and Ren [34]. The theorem below follows from
the analysis of [23].

8Note that for finite X the Helly number is always well-defined.

32

Theorem 32 (Momose and Ren [34]). Assume that n > 2 · ts + ta and ts ≥ ta. Then,
there is an n-party protocol achieving (ts, ta, crBC, c

′
rBC)-secure rBC (assuming PKI), where

crBC := 3 and c′rBC := 1. The protocol has round complexity O(1). If ℓ denotes the uni-
verse elements’ size in bits and κ is the security parameter, it achieves a communication
complexity of O(n2 · ℓ+ n3 · κ) bits. If, in addition, threshold signatures are available, the
communication complexity reduces to O(n2 · ℓ+ n2 · κ).

C.2 Analysis of ΠaACS

In this section, we analyze the (adapted) protocol ΠaACS described in Section 5 and show
that it achieves (ts, ta)-secure ACS when ts, ta < n/3. We prove the theorem below.

Theorem 33. There is a (ts, ta)-secure ACS protocol for ts, ta < n/3.

We separate the proof into the analysis of ΠaACS in the synchronous setting only, and
then in the asynchronous setting only.

Lemma 34. When running in a synchronous network where at most ts of the parties
involved are corrupted, ΠaACS achieves Validity, Exact Agreement, ts-Output Size, Prob-
abilistic Termination, and Honest Core.

Proof. First, Validity follows immediately from the properties of ΠarBC. In addition, the
values are received consistently.

Since the network is synchronous, at least the n − ts honest invocations of ΠarBC

terminate by time τstart+ carBC ·∆. Hence, by time τstart+ carBC ·∆, every honest party
joins (at least) the n− ts invocations of ΠaBA corresponding to honest parties with input
1.

ΠaBA’s Weak Validity then ensures that at least the n− ts invocations corresponding
to honest parties result in output 1. In addition, if the ΠaBA invocation for some party
P results in output 1, then at least one honest party has joined this invocation with
input 1, and therefore has received a value from P via ΠarBC. Then, c′arBC-Conditional
Termination ensures that all honest parties receive this value.

Hence, ΠaBA has allowed the honest parties to agree on a set of at least n− ts parties
P. This set contains all the honest parties, and each honest party eventually receives
the values sent by all parties in P. Hence, all parties output the same set M of at least
n − ts values. Therefore, Exact Agreement, ts-Output Size, Probabilistic Termination,
and Honest Core hold.

Lemma 35. When running in an asynchronous network where at most ta of the parties
involved are corrupted, ΠACS achieves Validity, Exact Agreement, ts-Output Size, and
Probabilistic Termination.

Proof. Similarly to the proof for the synchronous case, Validity follows immediately from
ΠarBC’s Validity property. In addition, the values received are consistent.

We first show that at least n− ts invocations of ΠaBA terminate with output 1. Note
that no honest party joins ΠaBA with input 0 until n − ts of the ΠaBA invocations have
terminated with output 1. Assuming that this is never the case, we note that carBC-Honest
Termination ensures that at least the ΠarBC invocations of honest senders terminate, and
honest parties may join the ΠaBA invocations corresponding to honest senders with input
1. Therefore, eventually, n− ts of the ΠBA invocations indeed return 1.

If the ΠaBA invocation corresponding to some party P returns 1, Weak Validity ensures
that at least one honest party has joined this invocation with input 1, and therefore has

33

received a value from P via ΠarBC. Then, ΠarBC’s Consistency and c′arBC-Conditional
Termination properties ensure that all parties eventually receive the same value from P .

Hence, ΠaBA allows the parties to agree on a set P of at least n−ts parties. Eventually,
the parties receive the same values sent by the parties in set P, and may therefore ter-
minate. It follows that Exact Agreement, ts-Output Size, and Probabilistic Termination
hold.

C.3 Gather

In the following, we describe our protocol ΠGTHR realizing Theorem 20, restated below.

Theorem 20. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure GTHR protocol ΠGTHR

(assuming PKI). The protocol has round complexity O(1). If ℓ denotes the universe ele-
ments’ size in bits and κ is the security parameter, it achieves a communication complexity
of O(n3 · ℓ+ n4 · κ) bits (can be reduced to O(n3 · ℓ+ n3 · κ) with threshold signatures).

ΠGTHR follows the outline of the Overlap All-to-All Broadcast protocol of [23], and of
the initialization subroutine used in the AA protocol of [24, Section 5]. That is, it heavily
relies on the witness technique [1].

Our protocol ΠGTHR will make use of an underlying rBC protocol ΠrBC. When in-
stantiated with the protocol of Theorem 32, this will lead exactly to the construction
proving Theorem 20. Making use of the rBC protocol of Theorem 31 instead will lead
to a (ts, ta)-secure GTHR protocol in the ts, ta ≤ n/3 setting that does not assume any
cryptographic setup.

Theorem 36. If ta ≤ ts < n/3, there is a (ts, ta)-secure GTHR protocol ΠGTHR with no
trusted setup.

As mentioned in Section 5, our protocol ΠGTHR adds one more step to the Overlap
All-to-All Broadcast (oBC) protocol of [23], which we denote by ΠoBC. We need to high-
light the difference between the definition of (ts, ta)-secure oBC presented in [23] and our
definition of (ts, ta)-secure GTHR: oBC does not require ts-Common Core. Instead, the
oBC definition of [23] requires the weaker property ts-Overlap:

T -Overlap: If two honest parties P and P ′ terminate, then
∣∣MP ∩MP ′

∣∣ ≥ n− T .

Until we reach the additional step, the protocols ΠoBC and ΠGTHR are identical. ΠoBC

(and hence also ΠGTHR) heavily relies on the witness technique [1]. That is, in both
protocols, parties send their values via ΠrBC. Then, they report to each other which values
they received. When the values reported by a party P match the values received by a
party P ′ via ΠrBC, P

′ marks P as a witness. In ΠoBC, parties are ready to terminate when
(i) sufficient time has passed for honest values to be received via ΠrBC in a synchronous
network, ensuring Honest Core; (ii) parties have gathered sufficient witnesses to ensure
that every two honest parties P and P ′ have a common witness P ⋆. This way, P and P ′

have received the same set of (n− ts) values reported by P ⋆, and therefore the ts-Overlap
property holds. To achieve the superior guarantee ts-Common Core required by GTHR,
we will need a stronger termination condition as well.

Common steps of ΠoBC and ΠGTHR. We now describe the common steps of ΠoBC and
ΠGTHR more precisely. Parties distribute their inputs via ΠrBC. When a party receives
a value v from P via ΠrBC, it adds (v, P) to a set of value-party (or value-sender) pairs
M. Additionally, it adds P to a set W0, representing level-zero witnesses. When at
least crBC ·∆ time has passed (meaning that, if the network is synchronous, every honest

34

input was received), and when
∣∣M∣∣ ≥ n− ts (since at most ts parties are corrupted), the

parties reliably broadcast their set of level-zero witnesses W0. Even after broadcasting
W0, parties may continue gathering level-zero witnesses. Then, if a party P receives a set
of level-zero witnesses W ′

0 from P ′ such that all values sent by parties in W ′
0 were also

received by P (W ′
0 ⊆ W0), P marks P ′ as a level-one witness by adding it to its set W1.

Once each honest party gathers n− ts level-one witnesses, we have the guarantee that
every pair of honest parties has a level-one witness in common. This means that every
pair of honest parties has received n − ts common values via ΠrBC. This is the point
where ΠoBC allows the parties to output the set of value-sender pairs obtained so far and
terminate, as (ts, ta)-secure oBC is achieved.

Additional step in ΠGTHR. In contrast, to achieve the stronger property ts-Common
Core, our GTHR protocol continues: following the insights from the asynchronous GTHR
protocol of [2], we obtain that, when n− ts honest parties hold sets W1 of size n− ts, then
ts + 1 honest parties have a common level-one honest witness P ⋆. This will then enable
us to achieve the ts-Common Core property. Concretely, when party P gathers n − ts
level-one witnesses, it sends its set W1 to all the parties. P may continue marking parties
as level-one witnesses even after sending its set W1. When receiving a set W ′

1 from some
party P ′ such that W ′

1 ⊆ W1, P marks P ′ as a level-two witness by adding it to its set
W2. Once P collects n − ts level-two witnesses, it may output its set M. This ensures
that P has marked at least one of the parties that have reported sets W1 containing P ⋆

– and therefore P has marked P ⋆ as a level-one witness as well. Hence, P has received
the set W ⋆

0 sent by P ⋆, and therefore all the values sent by the parties in W ⋆
0 have been

included in P ’s set M. This argument applies to every honest party, which ensures that
the ts-Common Core property holds.

We include the formal code of ΠGTHR below.

Protocol ΠGTHR

Code for party P with input v

1: τstart := τnow; M := ∅; W0,W1,W2 := ∅.
2: Send v to every party via ΠrBC.
3: Whenever receiving a value v′ from P ′ via ΠrBC, add (v′, P ′) to M and P ′ to W0.
4: If τnow ≥ τstart + crBC ·∆ and

∣∣W0

∣∣ ≥ n− ts:
5: Send W0 to all parties via ΠrBC.
6: Whenever receiving W ′

0 from P ′ via ΠrBC such that
∣∣W ′

0

∣∣ ≥ n− ts:
7: When W ′

0 ⊆ W0, add P ′ to W1.
8: When τnow ≥ τstart + 2crBC ·∆ and

∣∣W1

∣∣ ≥ n− ts:
9: Send W1 to all parties.

10: Whenever receiving W ′
1 from P ′ such that

∣∣W ′
1

∣∣ ≥ n− ts:
11: When W ′

1 ⊆ W1, add P ′ to W2.
12: When τnow ≥ τstart + (2crBC + c′rBC) ·∆ and

∣∣W2

∣∣ ≥ n− ts:
13: Output M.

We now proceed to analyze ΠGTHR, first assuming that the network is synchronous,
and then that the network is asynchronous. Theorem 20 follows immediately from Lemma
40 and Lemma 45, included below.

Analysis in a synchronous network. In the following, we assume that the network is
synchronous, all parties join the protocol at the same time τstart, and at most ts of the
parties involved are corrupted.

35

Lemma 37. Let P be an honest party. By time τstart+crBC·∆, P holds a set W0 containing
all n− ts honest parties.

Proof. Follows from ΠrBC’s crBC-Honest Termination: all honest parties send their input
value at time τstart, and these values are received by time τstart + crBC · ∆. Hence, P
adds at least the n− ts honest parties to its set W0 by time τstart + crBC ·∆.

Lemma 38. Let P and P ′ denote two honest parties. By time τstart + 2crBC · ∆, P has
added P ′ to its set W1.

Proof. According to Lemma 37, at time τstart + crBC · ∆, P ′ has sent its set W ′
0 to all

parties via ΠrBC. Hence, P receives W ′
0 by time τstart + 2crBC · ∆ due to Validity and

crBC-Honest Termination.
The set W ′

0 set contains at least n− ts parties from whom P ′ has received values via
ΠrBC by time τstart + crBC ·∆. Then, the Consistency and c′rBC-Conditional Termination
properties ensure that P has received these values as well by time τstart+(crBC+c′rBC)·∆ ≤
τstart + 2crBC · ∆ (since c′rBC ≤ crBC). This implies that, when P receives the set W ′

0

from P ′, the condition W ′
0 ⊆ W0 holds. Therefore, P adds P ′ to its set W1 at time

τstart + 2crBC ·∆.

Lemma 39. Let P and P ′ denote two honest parties. By time τstart + (2crBC + c′rBC) ·∆,
P has added P ′ to its set W2.

Proof. Lemma 38 ensures that, at time τstart + 2crBC · ∆, P ′ holds a set W ′
1 of size at

least n− ts, and therefore sends it to all the parties. These messages are received within
one communication round, and, since c′rBC ≥ 1, it follows that P has received this set at
time τstart + (2crBC + 1) ·∆ ≤ τstart + (2crBC + c′rBC) ·∆.

Note that, if P ′ has added a party P ′′ in its set W ′
1 by time τstart+2crBC ·∆, P receives

all the necessary messages to add P ′′ to its set W1 as well. Moreover, these messages
are received within c′rBC · ∆ additional time, due to c′rBC-Conditional Termination and
Consistency. Therefore, by time τstart + (2crBC + c′rBC) ·∆, W ′

1 ⊆ W1 holds and hence P
adds P ′ to W2.

Lemma 40. ΠGTHR satisfies Simultaneous Termination, Honest Core, Validity, and Con-
sistency when running in a synchronous network where at most ts of the parties involved
are corrupted.

Proof. Validity and Consistency follow immediately from the properties of ΠrBC. Then,
the Honest Core property follows from Lemma 37. Finally, Lemma 39 ensures that all
honest parties output at time (2crBC + c′rBC) · ∆, hence Simultaneous Termination also
holds.

Asynchronous Network. In the following, we assume that the network is asynchronous,
and at most ta of the parties involved are corrupted.

Lemma 41. For every honest party P , it eventually holds that
∣∣W1

∣∣ ≥ n− ts.

Proof. We first note that
∣∣W0

∣∣ ≥ n− ts eventually holds: this follows from ΠrBC’s Valid-
ity and crBC-Honest Termination properties, which ensures that every honest value gets
delivered.

Hence, every honest party eventually sends W0 to via ΠrBC. These sets are also
eventually delivered. Then, ΠrBC ensures that every value included by an honest party

36

in its set M is also received by all other parties due to Consistency and c′rBC-Conditional
Termination, and therefore at least n − ts parties are marked as level one witnesses
eventually.

Lemma 42. For every honest party P , it eventually holds that
∣∣W2

∣∣ ≥ n− ts.

Proof. According to Lemma 41, every honest party eventually sends its set W1 via ΠrBC.
Then, these sets are eventually received by Validity and crBC-Honest Termination. In
addition, if P ′′ ∈ W1 for some honest party P ′, then eventually every honest party receives
the same set W ′′

0 that P ′ has received from P ′′ due to ΠrBC’s Consistency and c′rBC-
Conditional Termination, and therefore may add P ′′ to their sets W1. Hence, every
honest party may add P ′ to its set W2. Therefore, eventually

∣∣W2

∣∣ ≥ n − ts for every
honest party.

Lemma 43. Assume every honest party has sent its set W1. Then, there is an honest party
P ⋆ that belongs to ts + 1 sets W1 sent by the honest parties.

Proof. In the following, we use the term reported to refer to parties included in the sets
W1 sent by the honest parties. Hence, we say that P was reported by an honest party
P ′ if P is in the set W1 sent by P ′. If P is an honest party, then this is an honest report.
(Note that if P was added to the set W1 after P ′ sent its set, then P was not reported
by P ′.)

We then analyze the total number of honest reports, and we prove the result with
the help of an averaging argument. Since each of the n− ta honest parties reports n− ts
parties, we have (n− ta) · (n− ts− ta) honest reports. This implies that there is an honest
party P ⋆ reported by least (n − ta) · (n − ts − ta)/(n − ta) = n − ts − ta honest parties.
Then, since n − ts − ta > ts, P

⋆ was reported by at least ts + 1 honest parties, which
concludes the proof.

Lemma 44. Assume
∣∣W2

∣∣ ≥ n − ts holds for all honest parties. Then, there is common
subset of n− ts value-sender pairs in their sets M.

Proof. Lemma 43 ensures that there is an honest party P ⋆ included in the sets W1 sent
by at least ts + 1 honest parties. Since parties wait until

∣∣W2

∣∣ ≥ n − ts holds, they add
at least one of these ts + 1 parties to their sets W2, and therefore wait until they add P ⋆

to their set W1. That is, they are forced to wait until the set W ⋆
0 sent by P ⋆ is received,

and W ⋆
0 ⊆ W0 holds. This will eventually be the case, due to ΠrBC’s properties. Then,

the value-sender pairs corresponding to the at least n− ts parties in W ⋆
0 are included in

each of the honest parties’ output sets M.

Lemma 45. ΠGTHR satisfies Termination, ts-Common Core, Validity, and Consistency
when running in an asynchronous network where at most ta of the parties involved are
corrupted.

Proof. Validity and Consistency follow immediately from the properties of ΠrBC. Then,
Lemma 42 ensures Termination, and, together with Lemma 44, ensures ts-Common Core.

37

C.4 Analysis of ΠACS

We include the proof of Theorem 15, restated below.

Theorem 15. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure ACS protocol ΠACS

(assuming PKI). The protocol has expected round complexity O(1). If ℓ denotes the uni-
verse elements’ size in bits and κ is the security parameter, its expected communication
complexity is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are available, the expected
communication complexity reduces to bits.

Proof. In the following, we show that ΠACS achieves (ts, ta)-secure ACS when n > 2·ts+ta.
First, the Validity and Consistency properties follow immediately from the Validity

and Consistency properties of ΠrBC and ΠGTHR. Next, ΠGTHR ensures that all honest par-
ties obtain sets MGTHR that intersect in at least n− ts values. In addition, if the network
is synchronous, these sets contain all honest values, and are obtained simultaneously.

Therefore, if the network is synchronous, all parties join the ΠBA invocations simul-
taneously, hence all properties that ΠBA ensures when running in a synchronous network
hold. It follows that all ΠBA invocations corresponding to honest parties result in output
1, and hence all honest values are included in the output sets M, ensuring the Honest
Core property. Moreover, parties agree on the same bit for every corrupted party. If the
output bit for some corrupted party is 1, then at least one honest party has included
this corrupted party’s value in its set MGTHR. By Observation 21, eventually, all honest
parties receive this value as well. Therefore, all honest parties output the same set M,
hence Exact Agreement and Probabilistic Termination hold.

If the network is asynchronous, since ΠGTHR achieves Termination, all honest parties
eventually join all ΠBA invocations and hence agree on a bit for each party. ΠGTHR’s
ts-Common Core property ensures that there exist at least n − ts invocations of ΠBA

in which all honest parties input 1, and therefore output 1 in these invocations. For
each invocation returning 1, the Weak Validity property ensures that at least one honest
party P has input 1, meaning that P has received the corresponding value via ΠGTHR.
Observation 21 then ensures that all parties eventually receive this value, and therefore
all honest parties output the same set M of at least n−ts value-sender pairs, hence Exact
Agreement, ts-Output Size and Probabilistic Termination hold.

D Properties of The Safe Area

In this section, we prove a few useful properties of the honest parties’ safe areas. In some
of our proofs, we make use the following version of the Pigeonhole principle.

Lemma 46 (Pigeonhole Principle). Let S be a finite set and consider m subsets S1, . . . , Sm

of S. If
∑m

i=1

∣∣Si

∣∣ > (m− 1) ·
∣∣S∣∣, then ⋂

i∈[m] Si ̸= ∅.

Proof. For each s ∈ S, write Xs = {i ∈ [m] : s ∈ Si}. Observe that
∑

s∈S
∣∣Xs

∣∣ =∑m
i=1

∣∣Si

∣∣ > (m−1) ·
∣∣S∣∣. If ∣∣Xs

∣∣ ≤ m−1 holds for all s ∈ S, then
∑

s∈S
∣∣Xs

∣∣ ≤ (m−1) ·
∣∣S∣∣

would hold, which we know is not the case. Hence, for some s ∈ S we have
∣∣Xs

∣∣ = m,
from which s ∈

⋂
i∈[m] Si.

We first prove the central lemma for the analysis of our CC protocol, ensuring honest
parties compute non-empty safe areas. For this, n > max(ω · ts, ω · ts + ta) is assumed,
where recall that ta ≤ ts and ω is the Helly number of the convexity space.

38

Lemma 16. Assume n > max(ω ·ts, ω ·ta+ts), and that M is a set of n−ts+k value-party
pairs, where 0 ≤ k ≤ ts. Then, safemax(k,ta)(M) ̸= ∅.

Proof. For brevity, write t′ = max(k, ta). Recall that safet′(M) :=
⋂

M∈restrictt′ (M)⟨M⟩,
where restrictt′(M) := {M ⊆ M :

∣∣M ∣∣ = ∣∣M∣∣ − t′}. To show that an intersection of
convex sets is non-empty, it suffices to show that any ω of them intersect (by the definition
of ω). Consider ω sets M1, . . . ,Mω ∈ restrictt′(M). We show that ∩ω

i=1Mi ̸= ∅ using
Lemma 46, from which the required ∩ω

i=1⟨Mi⟩ ≠ ∅ naturally follows. To apply the lemma,
we need that

∑ω
i=1

∣∣Mi

∣∣ > (ω − 1) ·
∣∣M∣∣. Since ∑ω

i=1

∣∣Mi

∣∣ = ω(
∣∣M∣∣− t′), this amounts to

showing that ω(
∣∣M∣∣ − t′) > (ω − 1) ·

∣∣M∣∣ ⇐⇒
∣∣M∣∣ > ω · t′ ⇐⇒ n − ts + k > ω · t′.

Distinguish two cases:
• If k ≥ ta, the latter becomes n − ts + k > ωk ⇐⇒ n − ts > (ω − 1) · k, which is

true since k ≤ ts and n > ω · ts.
• Otherwise, k < ta, and the latter becomes n − ts + k > ω · ta, which is true since

k ≥ 0 and n > ω · ta + ts.

The rest of the section builds towards proving Lemma 23, which is the central result
ensuring the correctness of our AA protocol for chordal graphs. From this point on, our
results make the stronger assumption n > ω ·ts+ta. This will often not be stated explicitly
in the statements of the lemmas to avoid unnecessary repetition.

Lemma 47. Let M1,M2 denote two sets of value-sender pairs such that
∣∣M1 ∪M2

∣∣ ≤ n,
and

∣∣M1 ∩ M2

∣∣ ≥ n − ts. Assume that k1 =
∣∣M1

∣∣ − (n − ts) ≥ ta, and define k∪ =∣∣M1 ∪M2

∣∣− (n− ts). Then, safek1(M1) ⊇ safek∪(M1 ∪M2) ̸= ∅.

Proof. Note that ta ≤ k∪ ≤ ts. Lemma 16 then immediately implies that safek∪(M1 ∪
M2) ̸= ∅. Moreover, restrictk1(M1) = {M ⊆ M1 :

∣∣M ∣∣ = n − ts} ⊆ {M ⊆ M1 ∪M2 :∣∣M ∣∣ = n− ts} = restrictk∪(M1 ∪M2). Hence, safek1(M1) ⊇ safek∪(M1 ∪M2).

The following is a useful monotonicity property of safe areas.

Lemma 48. Let m be a value-party pair and M a set of value-party pairs. Then, for any
t we have safet(M) ⊆ safet−1(M) and safet(M) ⊆ safet(M∪ {m}).

Proof. We reason equationally:

safet(M) =
⋂

M∈restrictt(M)

⟨M⟩ ⊆
⋂

M∈restrictt(M)

 ⋂
m′∈M\M

⟨M ∪ {m′}⟩

=

⋂
M∈restrictt−1(M)

⟨M⟩ = safet−1(M)

safet(M∪ {m}) = safet−1(M) ∩

 ⋂
M∈restrictt(M)

⟨M ∪ {m}⟩

⊇ safet(M) ∩

 ⋂
M∈restrictt(M)

⟨M⟩

 = safet(M)

Lemma 49. Let M1,M2 be two sets of value-party pairs such that
∣∣M1 ∪ M2

∣∣ ≤ n,
and

∣∣M1 ∩ M2

∣∣ ≥ n − ts. Assume that
∣∣M1

∣∣ − (n − ts) ≤ ta. Then, safeta(M1) ⊇
safeta(M1 ∩M2) ̸= ∅.

39

Proof. Since n−ts ≤
∣∣M1∩M2

∣∣ ≤ ∣∣M1

∣∣ ≤ n−ts+ta, Lemma 16 implies that safeta(M1∩
M2) ̸= ∅. Moreover, Lemma 48 implies that safeta(M1 ∩M2) ⊆ safeta(M1).

Lemma 50. Let M1,M2 be two sets of value-party pairs such that
∣∣M1 ∪M2

∣∣ ≤ n, and∣∣M1 ∩M2

∣∣ ≥ n − ts. Assume that
∣∣M1

∣∣ − (n − ts) ≤ ta and
∣∣M2

∣∣ − (n − ts) > ta, and
define k∪ =

∣∣M1 ∪M2

∣∣− (n− ts). Then, safeta(M1) ∩ safek∪(M1 ∪M2) ̸= ∅.

Proof. In order to prove this result, it will be useful for us to unroll the definition of the
safe areas. The statement becomes the following:⋂

M∈restrictta (M1)

⟨M⟩ ∩
⋂

M∈restrictk∪ (M1∪M2)

⟨M⟩ ≠ ∅.

It suffices to prove that any ω terms of this intersection have a non-empty intersection.
That is, for any a, b ≥ 0 with a+b = ω, every a elements X1, X2, . . . , Xa of restrictta(M1)
and b elements Y1, Y2, . . . Yb of restrictk∪(M1 ∪M2) have a non-empty intersection, im-
plying the same holds about their convex hulls.

Note that the edge-cases (a, b) ∈ {(0, ω), (ω, 0)} can be proven analogously to Lemma
16, which shows that safe areas are non-empty.

From this point on, we may assume that a, b ≥ 1. For this case, we will show a slightly
stronger claim:

⋂a
i=1Xi ∩

⋂b
i=1(Yi ∩M1) ̸= ∅. This way, to apply Lemma 46 it suffices

to show that
∑a

i=1

∣∣Xi

∣∣+∑b
i=1

∣∣Yi ∩M1

∣∣ > (ω − 1) ·
∣∣M1

∣∣.
We first provide lower bounds for the sizes of sets Xi and Yi ∩M1: each set Xi has

size
∣∣M1

∣∣− ta and each set Yi∩M1 has size at least
∣∣M1

∣∣− ts = (n− ts)−(ts−k1), where
k1 =

∣∣M1

∣∣− (n− ts). The latter is non-trivial to see: note that Yi∩M1 = Yi \ (M2 \M1),
from which

∣∣Yi∩M1

∣∣ ≥ ∣∣Yi∣∣− ∣∣M2 \M1

∣∣ = (n−ts)−
∣∣M2 \M1

∣∣. Moreover,
∣∣M2 \M1

∣∣ ≤∣∣M1 ∪M2

∣∣− ∣∣M1

∣∣ ≤ n− (n− ts + k1) = ts − k1.
Since ta ≤ ts, we obtain that

∣∣M1

∣∣ − ts ≤
∣∣M1

∣∣ − ta. Hence, a · (
∣∣M1

∣∣ − ta) + b ·
(
∣∣M1

∣∣− ts) ≥ (
∣∣M1

∣∣− ta) + (ω − 1) · (
∣∣M1

∣∣− ts). We want to show that (
∣∣M1

∣∣− ta) +
(ω− 1) · (

∣∣M1

∣∣− ts) > (ω− 1) ·
∣∣M1

∣∣, which is the same as
∣∣M1

∣∣ > ta + (ω− 1) · ts. This
holds because

∣∣M1

∣∣ ≥ n− ts and n > ω · ts + ta.
Hence, Lemma 46 applies, so any ω of the relevant sets intersect, so their convex hulls

also intersect. Then, by the definition of the Helly number ω all relevant sets intersect,
proving our claim.

Lemma 23. Let (Mi)
K
i=1 be sets of value-party pairs such that ki :=

∣∣Mi

∣∣− (n− ts) ≥ 0.

If
∣∣⋃K

i=1Mi

∣∣ ≤ n and
∣∣⋂K

i=1Mi

∣∣ ≥ n− ts hold, then
⋂K

i=1 safemax(ki,ta)(Mi) ̸= ∅.

Proof. First, note that, for every 1 ≤ i ≤ K it holds that 0 ≤ ki ≤ ts.
Write M∪ :=

⋃K
i=1Mi, and M∩ :=

⋂K
i=1Mi and moreover define k∪ := M∪−(n−ts)

and k∩ := M∩ − (n − ts). Note that, according to Lemma 16, the safe areas of these
two sets, namely S∪ := safemax(k∪,ta)(M∪) and S∩ = safemax(k∩,ta)(M∩) are non-empty.
Then, Lemma 49 ensures that S∩ ̸= ∅ is included in the safe area of each set Mi with
ki ≤ ta. If there is no set Mi with ki > ta, our statement is proven. Similarly, Lemma
47 ensures that S∪ ̸= ∅ is included in the safe area of every set Mi with ki > ta. Hence,
there is no Mi with ki ≤ ta, our statement is proven.

If there is at least a set Mi with ki ≤ ta and a set Mj with kj > ta, it follows that
that k∩ ≤ ta, while ta < k∪ ≤ ts. Applying Lemma 50, we obtain that ∃v ∈ S∩ ∩ S∪.
Then, since S∩ is included in the safe area of Mi with ki ≤ ta, and S∪ is included in the
safe area of any Mj with kj > ta, v belongs to all honest safe areas, which concludes the
proof.

40

E Approximate Agreement on Chordal Graphs

In this section, we provide the formal proof of Theorem 24, restated below.

Theorem 24. Consider a chordal graph G with maximum clique size ω. Given n, ts, ta such
that ts ≥ ta and n > ω · ts+ ta, ΠChordal is a (ts, ta)-secure deterministic protocol achieving
Monophonic Convex Validity, Termination and Agreement within Graph Distance 1.

We first establish that, when the network is synchronous, since ΠGTHR ensures Simul-
taneous Termination, its strong synchronous guarantees hold in every iteration. Then,
regardless of whether the network is synchronous or asynchronous, the Termination prop-
erty of ΠChordal is trivially achieved. In the following, we discuss Convex Validity and
Agreement.

We use H0 to denote the convex hull of the honest inputs, and Hit to denote the
convex hull of the honest vertices vit obtained in iteration it ≥ 1. First, the Convex
Validity condition is guaranteed, as a direct consequence of Lemma 16 along with the
properties of ΠGTHR.

Agreement within Graph Distance 1 will follow from Lemma 51, stated below, which
shows that Hit is a strict subset of Hit−1 unless Hit−1 already induces a clique, meaning
that Agreement within Graph Distance 1 has already been achieved. This way, within∣∣V ∣∣ iterations, our protocol ΠChordal achieves Agreement within Graph Distance 1, and
therefore achieves (ts, ta)-secure AA when the condition n > ω · ts + ta is satisfied.

Lemma 51. Assume 1 ≤ it ≤ max it and that Hit−1 does not form a clique in G. Then,
Hit ⊊ Hit−1.

The proof of Lemma 51 will make use of a few helper lemmas, stated below.

Lemma 52 (Dirac’1961, [16]). Every chordal graph has a simplicial vertex. Every chordal
graph that is not a clique has two non-adjacent simplicial vertices.

Lemma 53. Let G be a chordal graph and A be a convex set of vertices in G. Let a ∈ A
be a simplicial vertex in the subgraph of G induced by A. Then, a ∈ ex (A).

Proof. Assume for a contradiction a ∈ ⟨A \ {a}⟩. Since in general A\{a} ⊆ ⟨A \ {a}⟩, this
means that ⟨A \ {a}⟩ = A. Hence, considering the computation of ⟨A \ {a}⟩ by iterating
the “take all nodes on induced paths” operator in Section A.1, there is an induced path
P between two vertices b, c ∈ A \ {a} that passes through a. Because A is convex, all
vertices in P are included in A. Because a is neither the beginning nor the end of P, it
follows that a has two neighbors in A\{a} that are on P. However, since a is simplicial in
A, those two neighbors are joined by an edge, contradicting the fact that P is an induced
path.

Lemma 54. Let A and B be convex sets such that A ⊆ B, and consider a ∈ A. If a /∈ ex (A),
then a /∈ ex (B). More succinctly, A \ ex (A) ⊆ A \ ex (B).

Proof. Write ⟨B \ {a}⟩ = ⟨(B \A) ∪ (A \ {a})⟩= ⟨(B \A) ∪ ⟨(A \ {a})⟩⟩ = ⟨(B \A) ∪A⟩ =
⟨B⟩, where we have used the standard property that ⟨X ∪ Y ⟩ = ⟨X ∪ ⟨Y ⟩⟩.

We may now provide the proof of Lemma 51.

Proof of Lemma 51. Write s = minHit−1. Note that s is simplicial in Hit−1 by definition
of ordering ≻, and hence it is also extreme by Lemma 53. Let P be the set of honest
parties. Denote by SP

it the safe area computed by honest party P in iteration it. Note

41

that, by Lemma 16, SP
it ⊆ Hit−1. The properties of ΠGTHR enable us to apply Lemma 23

and therefore obtain that the intersection of the honest parties’ safe areas is non-empty,
so consider an arbitrary y ∈ ∩P∈PS

P
it . We now distinguish two cases:

1. If y ̸= s, consider some honest party P ∈ P with computed safe area SP
it . We will

show that vPit ̸= s. Since s is extreme, this implies that s ∈ Hit−1\Hit, and hence the
conclusion. Consider two cases, corresponding to the two cases in the algorithm:

(a) If SP
it = ex (SP

it), then party P sets vPit = maxSP
it . However, as y ∈ SP

it and
y ≻ s it follows that vPit ≻ s, so vPit ̸= s, as claimed.

(b) If SP
it ̸= ex (SP

it), then party P picks vPit ∈ SP
it \ ex (SP

it) arbitrarily. Since SP
it ⊆

Hit−1, by Lemma 54, it follows that vPit ∈ SP
it \ ex (Hit−1). As s ∈ ex (Hit−1),

this means that vPit ̸= s, as claimed.

2. If y = s, then, since Hit−1 does not induce a clique, by Lemma 52, the subgraph
induced by Hit−1 in G has two simplicial vertices a, b ∈ Hit−1 which are not joined
by an edge. For the proof, we will need two such vertices where one of them is s.
Recall that s is known to be simplicial. If s /∈ {a, b} and the graph has both edges
s − a and s − b, then that would contradict the fact that s is simplicial. Hence,
without loss of generality, assume that s and a are distinct simplicial vertices with
no edge between them in the graph. We will now show that for any honest party
P ∈ P it holds that vPit ̸= a. If a /∈ SP

it , then this is clear, so assume a ∈ SP
it .

As a result, we know that {s, a} ⊆ SP
it . Since the edge s − a does not exist in G

and its endpoints are contained in SP
it , it follows that S

P
it does not induce a clique,

meaning by Lemma 25 that SP
it is not free, so SP

it ̸= ex (SP
it). As a result, party P

picks vPit ∈ SP
it \ ex (SP

it) arbitrarily. Since S
P
it ⊆ Hit−1, by Lemma 54, it follows that

vPit ∈ SP
it \ex (Hit−1). Since a is a simplicial vertex in the subgraph induced by Hit−1,

it follows by Lemma 53 that a ∈ ex (Hit−1), so vPit ̸= a, as claimed. To conclude,
a ∈ Hit−1 \Hit, from which the conclusion follows.

42

	Introduction
	Our contributions
	Related work

	Preliminaries
	Resilience Lower Bounds Using the Helly Number
	Achieving Optimal-Resilience Convex Consensus
	Agreement on a Core-Set
	Approximate Agreement on Chordal Graphs
	Conclusions
	Preliminaries: Additional Details
	Graph Convexity Spaces
	Chordal Graphs and Convex Geometries

	Resilience Lower Bounds
	Impossibility Results Using Adversarial Families
	Comparison with [Theorems 17 and 13]DISC:NoRy19

	Communication Primitives
	Reliable Broadcast
	Analysis of aACS
	Gather
	Analysis of ACS

	Properties of The Safe Area
	Approximate Agreement on Chordal Graphs

