
Mechanisms for Multi-Level Marketing

Yuval Emek∗ Ron Karidi† Moshe Tennenholtz‡ Aviv Zohar§

Abstract

Multi-level marketing is a marketing approach that motivates its participants to promote

a certain product among their friends. The popularity of this approach increases due to the

accessibility of modern social networks, however, it existed in one form or the other long before

the Internet age began (the infamous Pyramid scheme that dates back at least a century is

in fact a special case of multi-level marketing). This paper lays foundations for the study of

reward mechanisms in multi-level marketing within social networks. We provide a set of desired

properties for such mechanisms and show that they are uniquely satisfied by geometric reward

mechanisms. The resilience of mechanisms to false-name manipulations is also considered; while

geometric reward mechanisms fail against such manipulations, we exhibit other mechanisms

which are false-name-proof.

1 Introduction

Social networks are everywhere: our e-mail and phone address books, our family relatives, and our

business connections, all define either explicit or implicit social networks. Social networks have

existed long before the Internet, but their recent web-based form, as exhibited by companies like

Facebook, Twitter, or LinkedIn, made them more tangible. In their new manifestation, social

networks have become an attractive playground for viral marketing: the dream of any marketer

is that her products will be promoted via “word of mouth” (which relies on social networks). In

order to make that dream a reality, various forms of marketing have been advocated. The so-called

affiliate marketing, direct marketing, and multi-level marketing all refer to (overlapping) approaches

that facilitate viral marketing. In this paper, we shall adhere to the term multi-level marketing, as

it seems to be the least restrictive one.

The fundamental idea behind multi-level marketing is that Alice, who already purchased the

product, is rewarded for referrals, i.e., for purchases made by Bob as a result of Alice’s promotion.

The reward mechanism associated with multi-level marketing may take various forms. In particular,

∗ETH Zurich. yuval.emek@tik.ee.ethz.ch
†Microsoft Israel R&D Center. ronkar@microsoft.com
‡Microsoft Israel R&D Center and Technion–Israel Institute of Technology. moshet@microsoft.com
§Microsoft Research Silicon Valley, Mountain View, CA. avivz@microsoft.com

1

Alice may be rewarded for both purchases made by Bob and for Bob’s own referrals in a recursive

manner.

The potential to accumulate small rewards from each person to a sizable sum is important as

it allows advertisers to attract early adopters and trendsetters that are of great value to them.

On the downside, the possibility of gathering a large sum has also inspired more illicit versions of

multi-level marketing, namely pyramid schemes. These illegal1 mechanisms, essentially based on

the notion of indirect referrals, are not intended to promote a real product, but rather to collect

money from the social network, although sometimes a product is used in an attempt to cover the

nature of the pyramid scheme and bypass legal restrictions. In these cases, customers seldom enjoy

the actual product being promoted (when a product is being promoted), but are only participating

in the (usually false) hope of getting rewards from recruiting others.

Needless to say that selecting an appropriate reward mechanism is inherent to the design of a

successful multi-level marketing scheme. Interestingly, despite the popularity of work on informa-

tion spreading and influence in social networks (see, e.g., the survey in [11]) the study of reward

mechanism design in that context has been almost completely neglected. Such study is the main

subject of the current paper.

Consider for example the following basic coupon driven scheme. Upon purchase of the product,

Alice is given coupons that she can distribute among her friends. Then, for any purchase made by

Bob in which Alice’s coupon is used, Alice is rewarded with appropriate rebates on future purchases.

This scheme and similar ones, are easy to implement and have become quite standard in our daily

life. Note that the coupon driven scheme does not exploit indirect referrals: Alice is not rewarded

by purchases made with Bob’s coupons or with the coupons of Bob’s referrals.

Reward mechanisms that exploit indirect referrals used to be difficult to implement as they

require some central authority that keeps track of the referral structure. Information technology

has made this task much easier. Consider for example the setting in which Alice promotes a product

by publishing a link to the seller’s web-site in her blog or Facebook page. Bob can buy the product

by clicking on that link; together with the actual product, Bob receives a link to the seller’s web-site

that he can also publish in his blog or Facebook page. The seller’s web-site can easily identify Bob

as a buyer that followed Alice’s link.2 This way a complete record of direct and indirect referrals can

clearly be maintained. This ease of implementation makes reward mechanisms that take indirect

referrals into account even more appealing than they have been before.

Are indirect referrals really that important? We believe so. To demonstrate their significance,

suppose that Bob is a rock music authority and that following Alice’s promotion, he downloads

1 The current paper does not take legal issues into consideration. In particular, our analysis will not make the

distinction between legitimate multi-level marketing and pyramid schemes.
2 This can be implemented by associating Alice’s link with a unique identifier. In the current paper we abstract

away this technical issue.

2

a new rock song. If Bob recommends this song in his blog, and consequently many other users

download this song, then Alice certainly played a major role in the promotion process, even if

she only had a few direct referrals. A reward mechanism that depends only on direct referrals is

therefore bound to miss the bigger picture.

The referrals tree model. There are many possible ways to take the social network that forms

the basis of the referral process into account. In principle, one may wish to consider the times

at which promoting messages were sent from one user to another, to consider referrals that were

not followed up by a purchase of the product being promoted, or even to consider the social links

along which a referral was not made. However, all of this information may not be available to the

original seller.3 We therefore take the straightforward approach of looking only at the structure of

successful referrals. For each buyer, we mark only a single referrer for introducing the product to

her (in reality, this would typically be specified at the time of purchase). The induced structure

of referrals forms a collection of directed trees, each rooted at a node that corresponds to some

buyer that has purchased the product directly from the seller. We shall refer to this tree collection

as the referrals forest, denoted T , and to the rooted trees in T as the referrals trees. We find the

assumption that T can be maintained by the seller sufficiently weak.

It should be clarified that the referrals forest corresponds to a single multi-level marketing

campaign (typically associated with a single product). Moreover, social network users that did

not purchase the product are not represented in T even if some of their friends attempted at

promoting the product to them. For ease of presentation, we assume that T is fully known when

the rewards are to be distributed, although all the mechanisms explored in this paper are also

suited for incremental payments performed online. It will also be convenient to identify the buyers

with their corresponding nodes in T , denoting the reward of (the buyer corresponding to) node u

under the referrals forest T by RT (u).

Constraints on the reward mechanism. The reward mechanism is essentially a function that

maps the referrals forest T to the non-negative real rewards of its nodes. However, not every such

function should be considered; specifically, we impose three constraints on the reward mechanisms.

The first one is the subtree constraint : RT (u) is uniquely determined by Tu, namely, by the subtree

of T rooted at u. This is sensible, as each user u can really be credited only for bringing in users

she promoted the product to, either directly (the children of u in T) or indirectly (lower level

descendants of u). Moreover, a dependence of RT (u) on the position of u within T (rather than on

Tu only) may result in an undesirable behavior on behalf of u: in some cases u is better off delaying

the purchase of the product after receiving a referral in hope for a “better” offer, i.e., for a referral

3 In some social networks such as Facebook there is often more explicit knowledge of social connections, but

general referral systems do not necessarily have all the information about the underlying social structure and may

not be able to track messages in the network.

3

that would place u in a better position within T .

One of the consequences of the subtree constraint is that there is no point in dealing with the

referrals forest T in full, but rather focus on trees which are rooted at the nodes whose reward

we are trying to calculate. In other words, the reward mechanism is completely specified by the

function R(T) that maps the rooted tree T to the non-negative real reward of its root (which may

be an internal node within the whole referrals forest).

The second constraint that we impose on the reward mechanism is the budget constraint : the

seller is willing to spend at most a certain fraction φ ≤ 1 of her total income on rewarding her

buyers for referrals. Given that the price of the product is π, this means that the total sum of

rewards given to all nodes is at most φ · π|T |. We assume without loss of generality that π and φ

are scaled so that φ · π = 1. Thus, ∑
u∈T

R(Tu) ≤ |T | .

The third constraint is the unbounded reward constraint : there is no limit to the rewards one

can potentially receive even under the assumption that each user has a limited circle of friends

in the underlying social network (imposing a limited number of direct referrals). Formally, the

unbounded reward constraint dictates that there exists some positive integer d (a property of the

reward mechanism) such that for every real R, there exists some tree T of maximum degree d (i.e.,

every node has at most d children) such that R(T) ≥ R. In particular, this constraint implies that

the reward mechanisms we consider must take indirect referrals into account.

Our results. We begin our exploration of reward mechanisms with a well known family of mech-

anisms, namely, geometric reward mechanisms. Under these mechanisms, the contribution of a

node to the rewards of its ancestors in the referrals tree decreases exponentially (by a fixed factor)

with the distance from these ancestors. Three desired properties of geometric reward mechanisms

are listed: additivity, child-dependence, and depth-level-dependence. We show that these three

properties fully characterize the family of geometric mechanisms in the sense that any mechanism

that satisfies all three properties must be a geometric mechanism. (This may explain why pyramid

schemes typically rely on geometric reward mechanisms or some close variant of them.) We go on

to show that none of the properties is redundant: if any one of the three is left out, alternative

reward mechanisms can be found that possess the remaining three.

We then look at one more important property of reward mechanisms, namely, resilience to

false-name manipulations (a.k.a. Sybil attacks). The geometric mechanism family turns out to be

susceptible to manipulations by users that can create false identities. In fact, we show that mecha-

nisms that are resilient to false-name manipulations cannot guarantee a user some constant fraction

of the reward of even its least influential child. Moreover, it turns out that even if one replaces

the child-dependence and depth-level-dependence properties with the much weaker monotonicity

4

property, resilience to false-name manipulations is still impossible. On the positive side, we present

and analyze two reward mechanisms that maintain resilience to false-name manipulations; the two

mechanisms differ in their level of resilience and ease of implementation.

Related work. The general idea of diffusion of opinions and conventions in societies has for long

been a topic of study in the social sciences [15, 9] and got attention by game theorists (e.g., [20])

and AI researchers (e.g., [16]) among others, quite a while ago. The effects of the social structure

on emergent behavior and norms has also been studied, e.g., in [14, 17].

The more explicit algorithmic questions that arise when one considers an endeavor such as

viral marketing have been posed more recently. The original question of how to select a good set

of influential users has appeared in a seminal paper by Domingo & Richardson [8], and has later

been explored (with various related models) in a series of papers, e.g. [7] and many other following

works [10, 3, 5]. These generally assume that the spread of information in the social network

occurs through some contagion model (i.e., that a user is more likely to be “infected” with an

idea if more of her neighbors are) in which users do not explicitly exert effort. The rigorous study

of incentive design for facilitating diffusion or product adoption was typically left without proper

explicit treatment, and all works we are aware of in the context of viral marketing do not try to

influence the amount of effort exerted to spread the information further.

The issue of incentives in social networks has however received attention in other particular

contexts. For example, fair distribution of costs/gains of members in a network, using standard

power indices from cooperative game theory, such as the Shapley and Banzhaf values has been a

subject of study (see e.g., [13, 4, 2]). However, these do not provide a general rigorous study of

reward mechanisms for social distribution. Kleinberg & Raghavan [12] consider a setting that is

perhaps the most similar in spirit to our own, in which they elicit effort from agents that forward

queries in a social network. Unlike our setting, they allow each agent that receives the query and

forwards it to offer its own reward for a successful answer. The final rewards are only allocated

along the path to the agent that gave the answer as each agent along the way receives the reward for

passing the answer back along the path. A similar reward mechanism (that was more structured)

was used by the team from MIT that won the DARPA network challenge [1].

Finally, our work also deals with the issue of Sybil attacks that have appeared in many other

contexts such as reputation mechanisms [6], combinatorial auctions [18], and social choice [19].

2 Preliminaries

Unless stated otherwise, all trees addressed in this paper are assumed to be finite and directed from

the (unique) root towards the leaves. A typical tree will be denoted by T ; its root is denoted by r.

We use the standard (directed) tree notions of parent, child, leaf, descendant, and ancestor in their

5

natural sense; the parent of a (non-root) node u in T is denoted pT (u). The degree of node u ∈ T ,

denoted degT (u), is just the number of children u has in T . Given two nodes u, v ∈ T such that

u is an ancestor of v, we define the distance from u to v, denoted δT (u, v), as the number of hops

(i.e., edges) along the unique path in T leading from u to v; the distance from u to itself is defined

to be δT (u, u) = 0. If δT (u, v) = k > 0, then we refer to u as the kth ancestor of v. We denote

the subtree of T rooted at u by Tu. The height of T , denoted h(T), is defined to be the maximum

distance from r to any leaf in T ; the height of u in T , denoted hT (u), is simply h(Tu). The depth

of u in T , denoted depT (u), is the distance δT (r, u) from the root of T to u. When the tree T is

clear from the context, we may omit the subscripts and simply write p(u), deg(u), δ(u, v), h(u),

and dep(u).

A reward mechanism is a function that maps a non-negative real reward R(T) to every finite

rooted tree T . We think of T as a (subtree of a) referrals tree and of R(T) as the reward of the

root r of T . (Recall that defining the reward in that manner is made possible due to the subtree

constraint requiring that the reward of a node in the referrals forest depends only on its subtree.)

The profit of r is actually R(T)−π as r paid π ≥ 1 for purchasing the product when she joined the

referrals forest. By the budget constraint, it is assumed that
∑

u∈T R(Tu) ≤ |T |. The unbounded

reward constraint guarantees the existence of some positive integer d such that for every real R,

there exists some tree T of maximum degree d such that R(T) ≥ R. The notation RM(·) is used

when it is important to emphasize that the function R(·) is associated with the reward mechanism

M.

3 The Geometric Mechanism

In this section we focus on the following family of reward mechanisms, referred to as geometric

mechanisms. Given two constants 0 < a < 1 and b > 0 such that b + 1 ≤ 1/a, the reward from a

referral tree T under the (a, b)-geometric mechanism is defined to be

R(T) =
∑
u∈T

adep(u) · b .

The constraints on a and b ensure that the amount contributed by each node to the reward of its

ancestors will not exceed 1. This simple mechanism is very popular with pyramid schemes; as we

will show soon, this is no coincidence. Let us begin by defining and discussing three basic properties

of reward mechanisms:

Additivity (ADD): We define the operation ∪ on trees such that if T1, T2 are trees, then T1 ∪ T2 is

the tree formed by contracting (or merging) the roots of T1 and T2. ADD is then stated as follows:

R(T) + R(T ′) = R(T ∪ T ′).
This property suggests that if two disjoint trees are merged at the root, then the reward of the

root is exactly the sum of the rewards of the two original trees. Generally speaking this property

6

implies that the reward to each node can be independently attributed to the subtrees rooted at its

children.

Child Dependence (CD): The reward of the root is uniquely determined by the rewards of its

children. This property ensures that the actual computation of the rewards can be performed

locally. In fact, we shall consider a weaker condition for this property: If the root of T has a single

child u, then R(T) is uniquely determined by R(Tu). This is captured by a function χ : R≥0 → R≥0

(a property of the mechanism) so that R(T) = χ(R(Tu)).

Depth Level Dependence (DLD): R(T) is uniquely determined by the number of nodes on each

depth level in T . We denote by dk the number of nodes of T at depth level k > 0, and the infinite

vector containing these numbers for all depth levels by d = (d1, . . . , dh, 0, 0, . . .), where h is the

height of the tree. Let D be the set of all such vectors, i.e., the set of all infinite vectors over Z≥0

with a strictly positive prefix followed by a countably infinite suffix of zeros. Then DLD implies that

there exists some function f : D → R≥0 (a property of the mechanism) such that R(T) = f(d).

This property essentially means that the credit for a referral depends solely on how direct (or better

said, indirect) this referral is.

Theorem 3.1. A reward mechanism satisfies DLD, ADD, and CD if and only if it is a geometric

mechanism.

To prove the theorem, we will need the definition of the following additional property:

Summing Contributions (SC): There exists a sequence {ck}k≥1 of non-negative reals such that

R(T) =
∑
u∈T

cdep(u) =

∞∑
k=1

#nodes at depth level k · ck .

That is, SC implies that each node in the tree T contributes some independent amount to the root,

and that amount depends only on its depth. The following lemma reveals the connection between

this property and the ones we have already defined.

Lemma 3.2. A reward mechanism satisfies SC if and only if it satisfies DLD and ADD.

Proof. We start with some useful notation. Let d>k denotes the infinite vector d after the first

k elements have been removed, i.e., d>k = (dk+1, dk+2, . . .). We denote by m ◦ d the infinite

vector that starts with the element m and continues with the elements of the infinite vector d, i.e.,

m ◦ d = (m, d1, d2, . . .). Finally, we denote the all-zeros infinite vector by ~0 = (0, 0, . . .).

The direction in which SC implies DLD and ADD is trivial. We shall establish the converse direction

using an inductive argument. Specifically, we prove by induction on k that for every k ≥ 0, there

7

exist non-negative reals c1, . . . , ck and an additive function4 gk : D → R≥0 such that

R(T) =
k∑
i=1

ci · di + gk(d
>k) .

The base of the induction, for k = 0, is satisfied by setting g0(d) = f(d), where f is the function

promised by DLD. The additivity of g0 is then guaranteed by ADD.

For the inductive step, we assume that there exist some non-negative reals c1, . . . , ck−1 and an

additive function gk−1 : D → R≥0 such that

R(T) =
k−1∑
i=1

ci · di + gk−1(d>k−1) .

The assertion for k is established by setting

ck = gk−1(1 ◦~0) ; and

gk(d) = gk−1(1 ◦ d)− ck .

To verify that the function gk is indeed additive, we employ the additivity of gk−1, observing that

gk(d+ e) = gk−1(1 ◦ (d+ e))− ck
= gk−1(2 ◦ (d+ e))− gk−1(1 ◦~0)− ck
= gk−1(1 ◦ d) + gk−1(1 ◦ e)− 2 · ck
= gk(d) + gk(e) .

The proof of the inductive step can now be completed due to the inductive hypothesis since

f(d)

=
k−1∑
i=1

ci · di + gk−1(d>k−1)

=
k−1∑
i=1

ci · di + gk−1(dk ◦ d>k)

=
k−1∑
i=1

ci · di + gk−1(1 ◦ d>k) + gk−1((dk − 1) ◦~0)

=

k−1∑
i=1

ci · di + gk(d
>k) + ck + (dk − 1) · ck

=
k∑
i=1

ci · di + gk(d
>k) .

4 In this context a function g : D → R≥0 is said to be additive if g(d + d′) = g(d) + g(d′), where the summation

in d + d′ is coordinate-wise.

8

The lemma follows by taking k = h(T) as every additive function g must satisfy g(~0) = 0 (by

definition, g(~0) = g(~0 +~0) = 2 · g(~0)).

Theorem 3.1 is established by showing that the contribution values ck form a geometric pro-

gression.

Lemma 3.3. A reward mechanism satisfies SC and CD if and only if it is a geometric mechanism.

Proof. It is trivial to show that a geometric mechanism satisfies both properties, so we focus on

the converse direction. Let us restrict our attention to a specific class of trees: For n > 1 and

m > 0, we denote by T (n,m) the tree consisting of n+m nodes organized as a path of length n−1

emerging from the root with the last node in this path having m children, all of which are leaves.

Refer to Figure 1 for illustration.

Recall that SC implies the existence of constants c1, c2, . . . that determine the contribution of

nodes at each depth level to the reward of the root. We first argue that ck must be strictly positive

for every k ≥ 1. To that end, suppose that ck∗ = 0 for some k∗ ≥ 1 and consider the trees T (k∗,m)

and T (k∗,m′) for some m,m′ > 0, m 6= m′. SC implies that R(T (k∗,m)) = R(T (k∗,m′)) since

ck∗ = 0. By CD, we conclude that the same holds for T (k∗ + 1,m) and T (k∗ + 1,m′), namely,

R(T (k∗+1,m)) = R(T (k∗+1,m′)), because both the root of T (k∗+1,m) and that of T (k∗+1,m′)

have a single child whose reward is R(T (k∗,m)) = R(T (k∗,m′)). This implies that ck∗+1 must also

be 0 and by induction, that ck = 0 for every k ≥ k∗. But this contradicts the unbounded reward

constraint: if ck = 0 for every k ≥ k∗, then no tree T of maximum degree d can provide a reward

greater than 2 · dk∗ .

So, assume hereafter that ck > 0 for every k ≥ 1. In attempt to simplify the analysis, we shall

impose another assumption on the contribution values ck. Specifically, we assume that each ck is

rational, so that ck = xk/yk for some positive integers xk and yk. We later on outline how this

assumption can be lifted.

Let us compare the reward that is given to the root node in two specific T (n,m) trees (recall

that a T (n,m) tree has one node at each level 0 to n− 1, and m nodes at level n):

R(T (k − 1, xk · yk−1 + 1)) =

k−2∑
i=1

ci + (xk · yk−1 + 1) · ck−1

=
k−1∑
i=1

ci + xk−1 · xk

=

k−1∑
i=1

ci + xk−1 · yk · ck

= R(T (k, xk−1 · yk)) . (1)

Now, observe that CD implies that if R(T (n,m)) = R(T (n′,m′)), then R(T (n+1,m)) = R(T (n′+

9

Figure 1: T (n,m) for n = 4 and m = 10.

1,m′)). By applying this observation to Equation 1, we conclude that

R(T (k, xk · yk−1 + 1)) = R(T (k + 1, xk−1 · yk)) .

SC then implies that

k−1∑
i=1

ci + (xk · yk−1 + 1) · ck =
k∑
i=1

ci + (xk−1 · yk) · ck+1 ,

hence xk · yk−1 · ck = (xk−1 · yk) · ck+1. It follows that

(ck)
2 = ck−1 · ck+1 , (2)

which implies a geometric progression (ck is the geometric mean of ck−1 and ck+1).

Recall that our proof thus far only works if all ck’s are rational numbers. We can extend

the proof to irrational numbers if we add a requirement on the continuity of the function that

determines the rewards of a parent from the reward of its children. If the ck’s are not rational,

it is possible to approximate them as closely as one wishes with rational numbers xk/yk and with

the extra assumption, the derivation above results in an equation similar to Equation 2 which is

modified with terms that represent the error in the approximation of ck. As this error can be made

arbitrarily small, Equation 2 holds even for irrational values.

Another appealing property of geometric mechanisms is that the contribution of descendants

to their ancestor decreases with distance. This reflects the fact that the ancestor gets less credit

for more distant indirect referrals.

10

3.1 Property Independence

We now show that each of the three properties we used to characterize the family of geometric

mechanisms is required, i.e., if we remove one of the three properties then there exists another

mechanism (outside the geometric family) for which the remaining three hold. We briefly describe

such a mechanism in each case.

A mechanism without CD: We define the mechanism by determining the contribution of a child

at depth k to the root. The reward of the root will then be the sum of contributions of all children.

We set the contribution to be ck = 2−bk/2c · 3−dk/2e. The reward is then R(T) =
∑

u∈T cdep(u).

The mechanism described is very similar to the geometric mechanism, except that the contribu-

tion decays at a factor of 1/3 for odd levels, and 1/2 for even levels and so the reward of the parent

cannot be computed directly from that of its direct children (the parity of the level matters).

It is easy to verify that this mechanism adheres to the three constraints listed in Section 1:

It does not exceed the budget, as it always pays less than the geometric mechanism with factor

1/2; the reward of a node depends only on the subtree below it by definition; and a tree of degree

≥ 3 can obtain infinite reward. Properties ADD and DLD are clearly satisfied since the mechanism is

defined by determining the contribution values of SC.

A mechanism without DLD: We define a mechanism that is similar to the geometric mechanism,

but distinguishes between the contributions of a leaf and an internal node (nodes that have children)

in the tree. Each leaf will contribute 2−k to its kth ancestor, while each internal node will contribute

2−k−1 to its kth ancestor.

This mechanism does not satisfy DLD, as it is not enough to know the number of nodes at each

level, since their contribution depends on whether they are internal or leaf nodes (this is certain

only for nodes in the last level or for levels that contain a single node).

The mechanism satisfies the three constraints of Section 1: The rewards depend only on the

rooted subtrees; the budget is not exceeded as it always pays less than the (1/2,1)-geometric

mechanism; and it offers infinite reward to trees of degree 2 or above as it pays more than the

(1/2,1/2)-geometric mechanism.

Furthermore, the mechanism trivially satisfies ADD since merging two trees at the root maintains

the leaves and internal nodes of the original trees and hence their respective contributions. Finally,

the mechanism also satisfies CD, as the reward of each node can be computed from the rewards of

its children: If the child has no reward it must be a leaf and its contribution to the parent is 1/2.

Otherwise, it is an internal node and its contribution to the parent is 1/4 plus 1/2 of the child’s

own reward.

A mechanism without ADD: LetMg denote the (1/2, 1/2)-geometric mechanism. Given a tree T

of height h, we denote by T+ one of the trees that is obtained from T by adding a leaf to it at level

11

h+ 1. We can define a non-additive mechanism M in the following manner: RM(T) = RMg(T+).

This mechanism simply credits the tree T according to the geometric mechanism and adds a small

bonus as if the tree had one extra leaf. M is not additive since merging two trees only gives the

merged tree a bonus for a single leaf rather than two.

M satisfies the three constraints of Section 1: The reward is clearly based only on the subtree

rooted at the receiving node; the unbounded reward constraint is satisfied as the mechanism pays

slightly more than a geometric mechanism that certainly has this property; and the budget is not

exceeded, since the total payments of a (1/2, 1/2)-geometric mechanism are bounded by 1/2 · |T |,
therefore the bonus for an additional leaf at level h+ 1 does not push the total payments over the

limit.

It is also simple to verify that the mechanism satisfies DLD. To see that it also satisfies CD notice

that we can tell the height of the tree T from the reward of its root (and so the reward of the

parent can be computed from that of the child by removing the bonus of the extra leaf and using

the geometric mechanism’s CD property). Indeed, to determine the height of the tree, examine the

representation of R(T)/b in base 1/a (where a and b are the parameters of the geometric-mechanism

used to defineM). The least significant digit that is non-zero will be h+1 places after the separator,

because of the bonus of the leaf at level h+ 1.

4 Sybil Attacks

Our goal in this section is to develop reward mechanisms which are not vulnerable to forging

identities on behalf of the users. Let us begin by introducing the notions of a split and a local

split. Consider some tree T and some node v ∈ T and let u1, . . . , uk be the children of v in T .

Intuitively speaking, a split of v refers to a scenario in which v presents itself as several nodes —

a.k.a. replicas — thus modifying the (sub)tree Tv that determines its reward (possibly turning it

into several trees), while keeping Tu1 , . . . , Tuk intact. A local split refers to the special case of a

split in which u1, . . . , uk are forced to share the same parent in the resulting tree.

Formally, we say that the tree collection {T̃ 1, . . . , T̃m} can be obtained from Tv by a split of v

if

(1) for every 1 ≤ i ≤ k, there exists a single 1 ≤ j(i) ≤ m such that ui ∈ T̃ j(i); and

(2) T̃
j(i)
ui = Tui for every 1 ≤ i ≤ k.

The nodes in (
T̃ 1 ∪ · · · ∪ T̃m

)
−
(
T̃ j(1)
u1 ∪ · · · ∪ T̃

j(k)
uk

)
are referred to as the replicas of v under that split. By definition, ui must be a (direct) child of

some replica of v for every 1 ≤ i ≤ k as otherwise, at least one of the subtrees rooted at u1, . . . , uk

must have been changed, thus violating condition (2). Refer to Figure 2 for an illustration of a

split. The split is called local if u1, . . . , uk are all children of the same replica of v.

12

v

2

4

5

6

7

1

3

8

(a) Tv

1

2

3

4

6

5

7

8

(b) T̃ 1 and T̃ 2

Figure 2: The tree collection {T̃ 1, T̃ 2} can be obtained from Tv by a split of v. The white circles

depict the children of v in T (2(a)) and their positions in T̃ 1 and T̃ 2 after the split (2(b)). The

gray circles in 2(b) depict the replicas of v under that split.

The semantic of the aforementioned split is as follows. The user corresponding to v forges

some new identities that correspond to its replicas in T̃ 1, . . . , T̃m. Some of these replicas purchase

the product via referrals from pT (v) — they form the roots of the trees T̃ 1, . . . , T̃m; the rest of

the replicas purchase the product via the referrals of other replicas that already purchased it. The

referrals to u1, . . . , uk are then made from the appropriate replicas, so that eventually Tv is replaced

by the trees T̃ 1, . . . , T̃m, the roots of which are all children of pT (v).

It is assumed that ui does not distinguish between the original v and its new replicas. Therefore

the new referral (made from a replica of v rather than from v itself) looks to ui like a referral from v

and she relies on it to purchase the product just like she did with the referral from v in the original

scenario. Under local splits, this assumption is lifted as all children of v purchase the product from

the same replica that may have the identity of v herself.

What’s in it for v? Clearly, v has to invest π × #replicas in introducing the new replicas

(purchasing new copies of the product). However, she now collects the rewards from all her replicas,

which sums up to
m∑
i=1

∑
replica u of v in T̃ i

R(T̃ iu) .

Thus, the profit5 of v changes from R(Tv)−π to
∑m

i=1

∑
replica u of v in T̃ i R(T̃ iu)−π×#replicas; the

split is called profitable for v if this change is positive. This leads to the definition of the following

two properties of reward mechanisms.

Split Proof (SP): A reward mechanism satisfies SP if it does not admit a profitable split for any

node v in any tree T .

5 Here, we assume that a user has no usage in more than one copy of the product. This is a valid assumption,

e.g., in the context of information goods.

13

Local Split Proof (LSP): A reward mechanism satisfies LSP if it does not admit a profitable local

split for any node v in any tree T .

The geometric mechanisms presented in Section 3 do not satisfy SP. In fact, they do not even

satisfy LSP (see Section 4.1). A simple mechanism that do satisfy SP is the single level mechanism

defined by fixing RMsl
(T) = α · deg(r) for some constant α ≤ 1, however, this mechanism does not

adhere to the unbounded reward constraint.

In Section 4.1 we establish two negative results regarding the design of split-proof mechanisms.

On the positive side, we devise two mechanisms which are resilient to false-name manipulations.

The first one, presented in Section 4, satisfies the stronger property SP, however, it is complicated

to implement and not very appealing. The second one, presented in Section 4.3, satisfies only LSP,

but it is more natural and much easier to implement.

4.1 Negative Results

Let us now exhibit two negative results regarding the design of split-proof mechanisms. The first

result shows that the reward guaranteed to a node in a split-proof mechanism cannot be a constant

fraction of even its least influential child.

Lemma 4.1. A reward mechanism that satisfies LSP cannot guarantee a node some fraction 0 <

α ≤ 1 of the reward of its least rewarded child.

Proof. Assume by way of contradiction that such a mechanism exists and let T be a tree such that

R(T) > π/α (such a tree must exist due to the unbounded reward constraint). Let T ′ be the tree

in which the root u has a single child v such that Tv = T . Notice that T ′ can be obtained from T

by a local split of v. The benefit to v from this split is

R(T ′)− π ≥ α · R(T)− π > 0

Therefore, v gains from performing this split and the mechanism is not LSP.

Next, we show that even a family of reward mechanisms much wider than geometric mechanisms

is still not split-proof. This requires the introduction of another property which is clearly satisfied

by every geometric mechanism, yet, cannot replace any of the characterizing properties listed in

Theorem 3.1.

Monotonicity (MONO): If the tree T can be obtained from the tree T ′ by removing some leaf, then

R(T) < R(T ′).

Lemma 4.2. A reward mechanism that satisfies MONO and ADD cannot satisfy SP.

Proof. Let T p(h, d) denote a perfect tree of height h and degree d. Notice that under any mechanism

with MONO, we have R(T p(h, d)) < R(T p(h+ 1, d)).

14

Now consider the tree T ′ =
⋃d
i=1 T

p(h, d) (that is, d copies of T p(h, d) sharing the same root).

ADD implies that R(T ′) = d · R(T p(h, d)). The root of T ′ can perform a strong split and simulate

the tree T p(h + 1, d), where it takes the role of the new root and its d children. Its profit is then

increased by R(Tp(h+ 1, d))− d ·π > R(Tp(h, d))− d ·π. With the right choice of degree d, this can

be made positive by sufficiently increasing the height h (due to the unbounded reward constraint

and MONO).

4.2 A Split-Proof Mechanism

In this section we present a split-proof reward mechanism, denoted Msplit. Informally, the mecha-

nismMsplit is defined in two stages: in the first stage, we define a simple base mechanism, denoted

Mbase; Msplit is then defined with respect to the maximum profit a node can make under Mbase

from splits.

Mechanism Mbase. The base mechanismMbase is defined by setting RMbase
(T) to be the max-

imum h ∈ Z≥0 such that T exhibits as a subtree, a perfect binary tree6 B rooted at r whose height

is h. In that case we say that B realizes RMbase
(T) (see Figure 3). If there are several perfect

binary trees that can realize RMbase
(T), then it will be convenient to take the first one in a lexi-

cographic order based on a breadth-first-search traversal and consider it as the perfect binary tree

that realizes RMbase
(T).

A node u ∈ T is said to be visible in T if it belongs to the perfect binary tree that realizes

RMbase
(T); otherwise, u is said to be invisible in T . This definition is extended as follows: given

some ancestor v of u in T , u is said to be visible (respectively, invisible) to v if u is visible (resp.,

invisible) in Tv. Note that if u is invisible to v, then it is also invisible to pT (v) (assuming of course

that v 6= r). The contrary is not necessarily true: u may be visible to v but invisible to pT (v). By

definition, for every node u ∈ T and for every j ∈ Z≥1, it holds that u admits either 2j or 0 visible

depth-j descendants.

The mechanism Mbase can be redefined by setting

RMbase
(T) =

∑
visible u∈T

2−δT (u,r) .

This alternative view of mechanism Mbase calls for the definition of contributions: a node u ∈ T
contributes 2−k to the reward of its kth ancestor v, k ≥ 1, if u is visible to v; otherwise, u does not

contribute anything to the reward of v. Let CMbase
(u, v) denote the contribution of u to the reward

of v under Mbase. The reward of a node can now be calculated by summing the contributions

that its descendants make to it. This implies that Mbase satisfies the budget constraint: the total

6 A perfect binary tree is a rooted tree in which all leaves are at the same distance from the root and all non-leaves

have exactly two children.

15

Figure 3: The tree T and the perfect binary tree that realizes RMbase
(T) (nodes depicted by gray

circles).

contribution made by a node u ∈ T to all its ancestors is bounded from above by the geometric

sum
∑δ(u,r)

j=1 2−j < 1, hence, by changing the summation, we conclude that
∑

v∈T RMbase
(Tv) < |T |.

Mechanism Msplit. The mechanism Msplit is defined by setting RMsplit
(T) so that it reflects

the maximum profit that r can get underMbase from splits. More formally, let S be the collection

of all tree collections that can be obtained from T by a split of r. ThenMsplit is defined by setting

RMsplit
(T) = sup

T̃ ={T̃ 1...,T̃m}∈S


 m∑
i=1

∑
replica v of r in T̃ i

RMbase
(T̃ iv)

− π · (∣∣∣T̃ 1 ∪ · · · ∪ T̃m
∣∣∣− |T |)

 .

To avoid cumbersome notation, we shall denote ρ(T̃) ≡
∑m

i=1

∑
replica v of r in T̃ i RMbase

(T̃ iv) and⋃
T̃ ≡ T̃ 1 ∪ · · · ∪ T̃m so that RMsplit

(T) = supT̃ ∈S{ρ(T̃)− π · (|
⋃
T̃ | − |T |)}. Refer to Figure 4 for

illustration.

We first observe that RMsplit
(·) is well defined by showing that we may assume without loss

of generality that S is finite. To that end, we argue that it is sufficient to consider T̃ ∈ S such

that every replica of r in T̃ is of degree at least 2, which means that there are less than degT (r)

replicas in total, and hence there are finitely many different options for T̃ . Indeed, assume that v

is a replica of r in some tree T̃ ∈ T̃ so that deg
T̃

(v) < 2 and let T̃ ′ be the tree obtained from T̃

by removing v and turning its sole child (in case that deg
T̃

(v) = 1) into a child of p
T̃

(v) or into

the new root if v is the root of T̃ . Note that by the definition of splits, T̃ ∪ {T̃ ′} − {T̃} can also

be obtained from T by a split of r. Since deg
T̃

(v) < 2, we know that RMbase
(T̃v) = 0. Moreover,

every descendant u of v in T̃ must be invisible to the ancestors of v in T̃ (which are also replicas

of r), hence u does not contribute anything to the rewards of these ancestors under Mbase. The

argument is established by recalling that the total contribution of v to the rewards of its ancestors

in T̃ is smaller than 1 ≤ π, which means that it was not worthwhile for r to generate the replica v.

16

(a) T (b) T̃ 1

Figure 4: The tree T and a possible split of its root r (into a single tree T̃ 1). The gray circles

in 4(b) depict the replicas of r under that split. If π = 1, then this split realizes RMsplit
(T) =

2 + 3 + 4− 2 · π = 7.

We say that the tree collection T̃ ∈ S realizes RMsplit
(T) if RMsplit

(T) = ρ(T̃)−π ·(|
⋃
T̃ |−|T |).

If there are several tree collections that can realize RMsplit
(T), then it will be convenient to choose

one (arbitrarily) and consider it as the tree collection that realizes RMsplit
(T).

Excessive contributions. It is easy to see that Msplit satisfies the subtree constraint and the

unbounded reward constraint (Mbase already satisfies the unbounded reward constraint and the

rewards under Msplit dominates those of Mbase). Moreover, by definition, Msplit satisfies SP, i.e.,

a node cannot increase its profit by splitting (recall that the mechanism takes every possible split

into account). The difficult part is to show that Msplit satisfies the budget constraint, that is,∑
v∈T RMsplit

(Tv) ≤ |T |.

The first step towards fulfilling this task is to extend the notion of contribution to the reward

mechanismMsplit. Consider some node u ∈ T and some ancestor v of u. Let T̃ be the tree collection

obtained from Tv by a split of v that realizes RMsplit
(Tv) and let T̃ be the tree in T̃ that contains

u. By definition, several replicas of v in T̃ may be ancestors of u (in T̃); denote these replicas by

v1, . . . , v`. The contribution of u to v under Msplit, denoted CMsplit
(u, v), is then defined to be

CMsplit
(u, v) =

∑̀
j=1

CMbase
(u, vj) . (3)

We argue that ∑
v∈T

RMsplit
(Tv) ≤

∑
u∈T

∑
ancestors v of u

CMsplit
(u, v) . (4)

At first glance, inequality (4) may be surprising as its right hand side does not take into account

contributions made by replicas that do not exist in T . However, Msplit is defined with respect to

the profit (rather than reward) that a node can get underMbase from splits. The total contribution

of a node to all its ancestors underMbase is smaller than 1, hence each replica of node u contributes

17

less than 1 to the rewards of the other replicas of u (it does not contribute anything to any other

node in T). Inequality (4) follows since π is assumed to be larger than 1. Our goal in what follows

is to show that ∑
u∈T

∑
ancestors v of u

CMsplit
(u, v) ≤ |T | . (5)

In attempt to establish inequality (5), it may seem natural to bound the total contribution

that each node makes to its ancestors, showing that this is at most 1, as we did with Mbase.

Unfortunately, this does not work: If the contribution CMsplit
(u, v) of node u to its ancestor v

under Msplit, as defined in equation (3), is composed from Mbase-contributions to several (more

than one) replicas of v, then CMsplit
(u, v) > CMbase

(u, v). Consequently, the total contribution that

u makes to the rewards of all its ancestors under Msplit may exceed 1. This obstacle requires a

careful accounting argument that we now turn to describe.

Consider some node u ∈ T . Let Γ(u) denote the set of all ancestors v of u in T such that

CMsplit
(u, v) > 0. Assuming that Γ(u) 6= ∅, let ϕ(u) be the node v ∈ Γ(u) that maximizes δT (v, u).

Now, consider some node v ∈ Γ(u). Let T̃ be the tree collection obtained from Tv by a split

of v that realizes RMsplit
(Tv), let T̃ be the tree in T̃ that contains u, and let ṽ be the highest

ancestor of u in T̃ such that u is visible to ṽ. Note that ṽ must be a replica of v in T̃ since

v ∈ Γ(u). Moreover, δ
T̃

(ṽ, u) ≥ δT (v, u) and the contribution of u to v’s reward under Msplit

is CMsplit
(u, v) =

∑δ
T̃

(ṽ,u)

j=δT (v,u) 2−j . Thus, the parameter δ
T̃

(ṽ, u) plays an important role in the

calculation of CMsplit
(u, v) — denote it by ∆(u, v), so that CMsplit

(u, v) = 21−δT (v,u) − 2−∆(u,v).

Deficits and surpluses. Recall that CMbase
(u, v) = 2−δT (v,u) and that such a contribution would

have resulted in the desired bound of 1 on the total contribution of node u to all its ancestors.

Informally speaking, if ∆(u, v) > δT (v, u), then u exhibits a deficit. On the other hand, if ϕ(u) = v,

then u does not contribute anything to the rewards of the ancestors of v, which leaves us with a

small surplus. Our argument will rely on covering the total deficits with the total surpluses.

Formally, given some nodes u ∈ T and v ∈ Γ(u), define

deficit(u, v) = CMsplit
(u, v)− CMbase

(u, v)

= 2−δT (v,u) − 2−∆(u,v)

and

surplus(u) = 2−∆(u,ϕ(u)) .

18

Using these notions, we have ∑
v∈Γ(u)

CMsplit
(u, v)

=
∑

v∈Γ(u)

21−δT (u,v) − 2−∆(u,v)

≤
δT (ϕ(u),u)∑

k=1

2−k +
∑

v∈Γ(u)

2−δT (v,u) − 2−∆(u,v)

= 1− 2−δT (ϕ(u),u) +
∑

v∈Γ(u)

deficit(u, v)

= 1− deficit(u, ϕ(u))− surplus(u)

+
∑

v∈Γ(u)

deficit(u, v)

= 1− surplus(u) +
∑

v∈Γ(u)−{ϕ(u)}

deficit(u, v) .

We establish the fact that Msplit satisfies the budget constraint by showing that∑
u∈T

∑
v∈Γ(u)−{ϕ(u)}

deficit(u, v) ≤
∑
u∈T

surplus(u) , (6)

thus “covering” the deficits with the surpluses. This is done in the following manner.

Consider some node v ∈ T and let T̃ be the tree collection obtained from Tv by a split of v

that realizes RMsplit
(Tv); consider some tree T̃ ∈ T̃ . Fix some replica ṽ of v in T̃ and let h be the

height of the perfect binary tree that realizes RMbase
(T̃ṽ). Given some 1 ≤ ` ≤ h, let Dṽ,` be the

set of descendants u of ṽ in T̃ that satisfy: (1) ṽ is the highest ancestor of u in T̃ to which u is

visible; and (2) ∆(u, v) = δ
T̃

(ṽ, u) = `. It is interesting to point out that different nodes u in Dṽ,`

may have different values of δT (v, u), although they all have the same value of δ
T̃

(ṽ, u) = `.

A crucial observation is that for every two nodes u ∈ T and v ∈ Γ(u), there exists a unique

choice of ṽ and ` such that u ∈ Dṽ,`. Let D+
ṽ,` be the set of all nodes u ∈ Dṽ,` such that v = ϕ(u),

i.e., those nodes that do not contribute to the reward of any ancestor of v. Let D−ṽ,` = Dṽ,` −D+
ṽ,`.

Inequality (6) is established by proving the following lemma.

Lemma 4.3. The nodes in Dṽ,` satisfy
∑

u∈D−ṽ,`
deficit(u, v) ≤

∑
u∈D+

ṽ,`
surplus(u).

Proof. Denote D− = D−ṽ,` and D+ = D+
ṽ,`. Recall that v has either 2 or 0 children which are visible

to pT (v); the latter implies that D− = ∅, so assume in what follows that the former holds and let

v1, v2 be the children of v in T which are visible to pT (v). Let D−i = D− ∩ Tvi for i = 1, 2. By

definition, D− = D−1 ∪D
−
2 and D−1 ∩D

−
2 = ∅. Moreover, all nodes u in D−i have the same value

of δT (vi, u) — denote it by ki.

19

Recall that deficit(ui, v) = 2−ki−1− 2−` for every node ui ∈ D−i . Since |D−i | = 2ki , we conclude

that ∑
ui∈D−i

deficit(ui, v) = 2ki
(

2−ki−1 − 2−`
)

=
1

2
− 2ki−`

and ∑
u∈D−

deficit(u, v) = 1− 2k1−` − 2k2−` .

On the other hand, surplus(u) = 2−` for every node u ∈ D+. Since |D+| = 2` − |D−1 | − |D
−
2 | =

2` − 2k1 − 2k2 , it follows that ∑
u∈D+

surplus(u) = 2−`
(

2` − 2k1 − 2k2
)

= 1− 2k1−` − 2k2−`

which establishes the assertion.

4.3 Resilience to Local Splits

The mechanism presented in Section 4.2 is resilient to splits, but it is far from being intuitive.

Moreover, users who recruit a large number of buyers may find that they are not rewarded for

many of them (due to limited visibility). We therefore briefly describe another mechanism (in fact,

a family of mechanisms) — this time with resilience only to local splits — that is much simpler

than the one we have previously shown.

The mechanism Mlocal is similar to the geometric mechanism (with some choice of parameters

0 < a < 1 and b > 0 such that b+1 ≤ 1/a), only that here, we ignore the contributions coming from

one of the subtrees rooted at r’s children, say, the largest subtree. More formally, let v1, . . . , vk be

the children of r in T and assume without loss of generality that |Tv1 | ≥ · · · ≥ |Tvk |. Then,

RMlocal
(T) =

∑
u∈Tv2∪···∪Tvk

adepT (u) · b .

Note that a node with one child obtains no reward.

It is easy to see thatMlocal satisfies the subtree constraint and the unbounded reward constraint.

Moreover, since the rewards underMlocal are dominated by those of a geometric mechanism, it also

satisfies the budget constraint. The following lemma establishes the resilience of Mlocal to local

splits.

Theorem 4.4. The reward mechanism Mlocal satisfies LSP.

20

Proof sketch. Let r be the root of T and let v1, . . . , vk be its children. By definition, in any local

split of r, the nodes v1, . . . , vk are children of the same replica of r. A straightforward calculation

shows that r does not gain anything from replicas that do not have v1, . . . , vk as descendants, hence

it suffices to consider local splits that replace T with a tree T ′ obtained by identifying the root of

T with the (sole) leaf of some directed path P . (In that case, the replicas of r are the nodes of P .)

The design of Mlocal implies that the total reward of r from such a local split remains RMlocal
(T)

which obviously turns the split into a non-profitable move.

5 Conclusions

We have presented a theoretical framework for multi-level marketing mechanisms. Our framework

gives host to many possible reward mechanisms, with varying properties. A full characterization

of the geometric mechanism family, which is recognized in particular with Pyramid schemes, is

established. While we find that geometric mechanisms are not resilient to false-name manipulations,

we have instead shown two different mechanisms that can withstand such manipulations.

There are many open avenues for future work. First, many different characterizations can be

found for the mechanisms that we presented. It is possible to think of other intuitive properties and

attempt to substitute them for the ones we have defined. In addition, the split-proof mechanisms

that we have shown may be hard to implement (they are hard to explain to users and deny rewards

for some of the referrals that are made). It will be nice to find mechanisms that improve these

aspects as well. It will also be interesting to explore other models for marketing in the context of

social networks, including models that take the underlying structure of the network into account,

and perhaps other details such as the percentage of successful referrals and the timing of messages.

Finally, we believe that much can be learned from experimental evaluation, or even deployment of

mechanisms that we have suggested. User trials can reveal defects in these reward schemes, and

show how readily human users are willing to accept them.

References

[1] DARPA network challenge. http://balloon.media.mit.edu/mit/rules/.

[2] Thomas Ågotnes, Wiebe van der Hoek, Moshe Tennenholtz, and Michael Wooldridge. Power

in normative systems. In AAMAS, pages 145–152, 2009.

[3] David Arthur, Rajeev Motwani, Aneesh Sharma, and Ying Xu. Pricing strategies for viral

marketing on social networks. In Proceedings of the 5th International Workshop on Internet

and Network Economics, WINE ’09, pages 101–112, Berlin, Heidelberg, 2009. Springer-Verlag.

21

[4] Yoram Bachrach and Jeffrey S. Rosenschein. Computing the banzhaf power index in network

flow games. In AAMAS, 2007.

[5] Ning Chen. On the approximability of influence in social networks. SIAM J. Discret. Math.,

23:1400–1415, September 2009.

[6] Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In Proceedings of the

2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems, P2PECON ’05, pages

128–132, New York, NY, USA, 2005. ACM.

[7] Jon Kleinberg David Kempe and Eva Tardos. Maximizing the spread of influence in a social

network. In 9th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 137–146, 2003.

[8] Pedro Domingos and Matt Richardson. Mining the network value of customers. In Proceed-

ings of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’01, pages 57–66, New York, NY, USA, 2001. ACM.

[9] Mark Granovetter. Threshold models of collective behavior. American Journal of Sociology,

83:1420–1443, 1978.

[10] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strategies

over social networks. In Proceeding of the 17th international conference on World Wide Web,

WWW ’08, pages 189–198, New York, NY, USA, 2008. ACM.

[11] Jon Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. In E. Tar-

dos V. Vazirani N. Nisan, T. Roughgarden, editor, Algorithmic Game Theory. Cambridge

University Press, 2007.

[12] Jon M. Kleinberg and Prabhakar Raghavan. Query incentive networks. In FOCS, pages

132–141, 2005.

[13] Nimrod Megiddo. Computational complexity of the game theory approach to cost allocation

for a tree. Mathematics of Operations Research, 3(3):189–196, 1978.

[14] Stephen Morris. Contagion. Review of Economic Studies, 67:137–146, 2003.

[15] Thomas Schelling. Micromotives and Macrobehavior. Norton, London: Penguin, 1978.

[16] Yoav Shoham and Moshe Tennenholtz. On the emergence of social conventions: Modeling,

analysis, and simulations. Artif. Intell., 94(1-2):139–166, 1997.

[17] M. Tennenholtz. Convention Evolution in Organizations and Markets. Computational and

Mathematical Organization Thoery, 2(4):259–283, 1996.

22

[18] Taiki Todo, Atsushi Iwasaki, Makoto Yokoo, and Yuko Sakurai. Characterizing false-name-

proof allocation rules in combinatorial auctions. In Proceedings of The 8th International Con-

ference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’09, pages 265–

272, Richland, SC, 2009. International Foundation for Autonomous Agents and Multiagent

Systems.

[19] Liad Wagman and Vincent Conitzer. Optimal false-name-proof voting rules with costly voting.

In Proceedings of the 23rd national conference on Artificial intelligence - Volume 1, pages 190–

195. AAAI Press, 2008.

[20] Peyton Young. Individual Strategy and Social Structure: An Evolutionary Theory of Institu-

tions. Princeton University Press, 1998.

23

	Introduction
	Preliminaries
	The Geometric Mechanism
	Property Independence

	Sybil Attacks
	Negative Results
	A Split-Proof Mechanism
	Resilience to Local Splits

	Conclusions

