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Abstract

We present Knowledge Enhanced Multimodal
BART (KM-BART), which is a Transformer-
based sequence-to-sequence model capable
of reasoning about commonsense knowledge
from multimodal inputs of images and texts.
We adapt the generative BART architec-
ture (Lewis et al., 2020) to a multimodal model
with visual and textual inputs. We further de-
velop novel pretraining tasks to improve the
model performance on the Visual Common-
sense Generation (VCG) task. In particular,
our pretraining task of Knowledge-based Com-
monsense Generation (KCG) boosts model
performance on the VCG task by leveraging
commonsense knowledge from a large lan-
guage model pretrained on external common-
sense knowledge graphs. To the best of our
knowledge, we are the first to propose a ded-
icated task for improving model performance
on the VCG task. Experimental results show
that our model reaches state-of-the-art perfor-
mance on the VCG task (Park et al., 2020) by
applying these novel pretraining tasks.

1 Introduction

Early work on Vision-Language models has been
largely focused on pure understanding tasks (Tan
and Bansal, 2019; Lu et al., 2019). These models,
although improving model performance on under-
standing tasks such as Visual Question Answer-
ing (Antol et al., 2015), are not capable of mul-
timodal generation tasks (You et al., 2016). To
ease this problem, researchers have proposed vari-
ous models (Zhou et al., 2020; Li et al., 2020) for
generating texts based on visual inputs.

These models are mainly pretrained on general
visual and language understanding tasks such as
masked language modeling and masked region
modeling, which enable the models to build an

∗The first three authors contribute equally to this work.

alignment between visual and language features.
However, only feature alignments are inadequate
to enhance the model’s ability in conducting com-
plex multimodal commonsense reasoning, which
requires the model to understand the underlying
relations and effects between objects.

Commonsense reasoning was traditionally stud-
ied on natural language (Rajani et al., 2019; Trinh
and Le, 2018), while recent works have paid at-
tention to commonsense reasoning with joint vi-
sual and language inputs. For instance, Zellers
et al. (2019) proposes the task of Visual Common-
sense Reasoning (VCR). However, the task focuses
on understanding instead of generating as it asks
the model to answer multiple-choice questions. A
newly introduced dataset, Visual Commonsense
Generation (VCG) (Park et al., 2020), provides
a more challenging task by requiring the model
to generate commonsense inferences about what
might happen before/after, and the present intents
of characters (see Table 2 for an example). In this
work, we propose to tackle the task of VCG by
leveraging our Knowledge Enhanced Multimodal
BART (Lewis et al., 2020), which we call KM-
BART. KM-BART is a Transformer-based model
consisting of an encoder and a decoder and is pre-
trained on carefully designed tasks for VCG. Fig-
ure 1 presents our model architecture1.

Our contributions in this work are three-folded:

1. We extend the BART model to process mul-
timodal data of images and texts, and enable
multimodal reasoning by introducing task-
relevant tokens.

2. To improve the model performance on Vi-
sual Commonsense Generation (VCG), we
implicitly incorporate commonsense knowl-
edge from external knowledge graphs to our

1https://github.com/FomalhautB/
KM-BART-ACL

https://github.com/FomalhautB/KM-BART-ACL
https://github.com/FomalhautB/KM-BART-ACL
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KM-BART by designing a novel pretraining
task, which we call Knowledge-based Com-
monsense Generation (KCG).

3. Besides KCG, we further equip our KM-
BART with standard pretraining tasks in-
cluding Masked Language Modeling (MLM),
Masked Region Modeling (MRM), as well as
Attribution Prediction (AP) and Relation Pre-
diction (RP). Experimental results show that
all pretraining tasks are effective, and com-
bining these pretraining tasks enable our KM-
BART to achieve state-of-the-art performance
on the VCG task.

2 Related Work

2.1 Vision-Language Models

Visual-Language (VL) tasks such as Visual Ques-
tion Answering (VQA) (Antol et al., 2015) and
Image-Text Matching (Li et al., 2019) require the
models to process multimodal inputs and compre-
hend visual and textual information simultaneously.
Inspired by successful pretrained language models
like BERT (Devlin et al., 2019) and GPT-2 (Rad-
ford et al., 2019), numerous multimodal image-
text pretraining and representation learning mod-
els (Tan and Bansal, 2019; Lu et al., 2019; Chen
et al., 2020; Yu et al., 2020) have been proposed.
These multimodal pretrained models use Trans-
formers as backbone and are denoising autoen-
coders trained to predict the alignment of image-
text pairs and the semantics of masked words and
image regions.

The models mentioned above typically focus
more on understanding tasks. To further bridge the
gap between visual and textual clues in multimodal
data, in addition to cross-modal understanding, a
model should also acquire abilities to complete
generation tasks, for example, the image-to-text
task of Image Captioning (You et al., 2016). How-
ever, directly transferring a model pretrained on VL
understanding tasks to generation tasks is infeasi-
ble, as these models are merely Transformer-based
encoders and are thus not suitable for generation
tasks.

Zhou et al. (2020) ease this problem by using a
Transformer-based network as both an encoder and
a decoder, making the model capable of generating
texts based on visual and textual inputs. While Li
et al. (2020) propose OSCAR, which improves the
generation ability by introducing object tags as

an additional clue during pretraining. These mod-
els achieve state-of-the-art performance in down-
stream multimodal generation tasks such as Image
Captioning (You et al., 2016).

2.2 Commonsense Knowledge

Commonsense knowledge refers to the necessary
level of practical knowledge and reasoning about
everyday situations and events common among
most people (Sap et al., 2020). For example,
one should know that “water is for drinking”
and “sunshine makes people warm”. Simple as
it looks, enabling artificial intelligence to con-
duct commonsense reasoning has been difficult
for learning-based models (Gunning, 2018). Re-
searchers have resorted to knowledge graphs due
to their exact graph-structured representation of
knowledge to overcome this problem. For example,
ConceptNet (Speer et al., 2017) is a knowledge
graph with nodes representing general concepts
and edges indicating relational knowledge between
concepts. Another commonsense knowledge graph,
ATOMIC (Sap et al., 2019), extends nodes to nat-
ural language phrases, and edges to relations such
as intent, attribution, effect, etc.

Despite improvements in modeling common-
sense knowledge, graph-based methods require
heavy human engineering, making it challenging
to scale robustly. For instance, model performance
usually deteriorates dramatically when retrieved
contextual knowledge is noisy due to imperfect
knowledge matching (Lin et al., 2019). Therefore,
we implicitly leverage external knowledge using
supervision signals inferred by COMET (Bosselut
et al., 2019), which is a Transformer-based, gener-
ative model pretrained on commonsense knowl-
edge graphs including ConceptNet and Atomic.
Given a natural language phrase and a relation type,
COMET generates natural language commonsense
descriptions.

In summary, on the one hand, existing cross-
modal architectures not focusing on commonsense
interpretation as their pretraining tasks are designed
for multimodal understanding, making them unsuit-
able for the downstream VCG task. On the other
hand, Transformer-based generative models such
as COMET (Bosselut et al., 2019) cannot generate
commonsense inferences from cross-modal inputs.
Therefore, in this work, we propose KM-BART to
conduct the task of Visual Commonsense Gener-
ation (VCG). Our KM-BART is pretrained on a
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Figure 1: Model architecture. Our model is based on BART. Conditioned on prompts that indicate the task type,
such as <caption> in the figure, our model can generate texts based on visual and textual inputs from the encoder.
Our model uses different special tokens to indicate task types and inform the model of different modalities of input.

#images #sentences

Conceptual Captions (Sharma et al., 2018) 2,683,686 2,683,686

SBU (Ordonez et al., 2011) 780,750 780,750

COCO (Lin et al., 2014) 82,783 414,113

Visual Genome (Krishna et al., 2017) 86,461 4,322,358

Total 3,633,680 8,200,907

Table 1: Statistics of pretraining datasets.

dedicated pretraining task for VCG as well as other
standard pretraining tasks. Experimental results
show that our KM-BART achieves state-of-the-art
performance on the VCG task.

3 Methodology

In this section, we describe our methodology for Vi-
sual Commonsense Generation. Section 3.1 gives
our model architecture. Section 3.2 introduces our
pretraining tasks as well as our self-training based
data filtering technique.

3.1 Model Architecture

Figure 1 illustrates the architecture of our KM-
BART. The backbone of our model is BART (Lewis
et al., 2020), which is a Transformer-based
sequence-to-sequence autoencoder. We modify
the original BART to adapt the model to cross-
modality inputs of images and texts. We add spe-
cial tokens to adapt the model to different pretrain-
ing/evaluation tasks. In the following subsections.
We give the details of our visual feature extractor,
the encoder, and the decoder.

3.1.1 Visual Feature Extractor
Following previous work on Vision-Language mod-
els (Tan and Bansal, 2019; Lu et al., 2019), we
use a convolution neural network pretrained on
the COCO dataset to extract visual embeddings,
which are subsequently fed to the Transformer-
based cross-modal encoder. Specifically, we use
the pretrained Masked R-CNN (He et al., 2017)
from detectron22. For each image, the pretrained
Masked R-CNN proposes the bounding boxes for
detected objects. The area within a bounding box
is a Region of Interest (RoI). We leverage the inter-
mediate representations of the RoIs in the Masked
R-CNN to obtain fixed-size embeddings for RoIs
V = {v1, . . . , vi, . . . , vN}, where i is the index to
RoIs, and N is the number of RoIs for an image.
The visual embedding of the i-th RoI vi is vi ∈ Rd,
where d is the embedding dimension. For each of
the RoIs, the Masked R-CNN also outputs the class
distribution p(vi), which is later used for Masked
Region Modeling.

3.1.2 Cross-Modal Encoder
Following Lewis et al. (2020), the encoder of our
model is based on a multi-layer bidirectional Trans-
former. We introduce special tokens to adapt it to
our pretraining and downstream evaluation tasks.
Specifically, each example starts with a special to-
ken indicating the task type of the current example.

For our pretraining task of Knowledge-Based
Commonsense Generation (see Section 3.2.1), we
use <before>, <after>, or <intent> as the

2https://github.com/facebookresearch/
detectron2

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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starting special token. For Attribution Prediction
and Relation Prediction (Section 3.2.2), we use
<region caption>. Finally, for Masked Lan-
guage Modeling and Masked Region Modeling, we
use <caption>.

Furthermore, to inform the model of different
modalities of inputs, we add three sets of different
special tokens: For images, we use <img> and
</img> to indicate the start and the end of visual
embeddings, respectively. For texts, we introduce
different special tokens to distinguish between two
sets of textual inputs: events and captions. Events
are image descriptions which the model uses for
reasoning about future/past events or present in-
tents of characters in the commonsense generation
task, while captions are for Masked Language Mod-
eling, where linguistic information plays a more
important role. Hence, to inform the model of these
two types of textual inputs, we use <event> and
</event> for events, and <mlm> and </mlm>
for captions. In the following sections, we de-
note textual inputs of words and specical tokens by
W = {w1, .., wT }, where T is the length of textual
inputs. For a token w, its embedding is e ∈ Rd,
where d is the dimension of the embeddings.

3.1.3 Decoder
The decoder of our model is also a multi-layer
Transformer. Unlike the encoder, which is bidi-
rectional, the decoder is unidirectional as it is sup-
posed to be autoregressive when generating texts.
The decoder does not take the visual embeddings as
inputs. Instead, we use embeddings of the special
token <img feat> to replace the actual visual
embeddings. For Masked Region Modeling and
Masked Language Modeling, we use <cls> to re-
place the masked regions or words (see Figure 1).
The model should predict the masked words and
the class distribution of the masked regions during
pretraining.

3.2 Pretraining Tasks

To pretrain our model, we use four image-text
datasets: Conceptual Captions Dataset (Sharma
et al., 2018), SBU Dataset (Ordonez et al., 2011),
Microsoft COCO Dataset (Lin et al., 2014) and
Visual Genome (Krishna et al., 2017). In the re-
maining of this section, we use D to denote the
individual datasets for each of the pretraining tasks.
Statistics of the datasets are given in Table 1. The
above datasets consist of examples of parallel im-
ages and texts and are widely used in previous

work (Tan and Bansal, 2019; Lu et al., 2019; Zhou
et al., 2020; Yu et al., 2020).

3.2.1 Knowledge-Based Commonsense
Generation

The knowledge-based commonsense generation
(KCG) task aims to improve the performance of
KM-BART on the VCG task. We leverage knowl-
edge induced from COMET (Bosselut et al., 2019),
which is a large language model pretrained on ex-
ternal commonsense knowledge graphs. Given a
natural language phrase and a relation as inputs,
COMET generates natural language phrases as
commonsense descriptions. Relations of COMET
include xIntent, xWant, xNeed, xReact and
xEffect.

We only use COMET to generate new common-
sense descriptions on SBU and COCO datasets
due to limits in computational power for pretrain-
ing. For each image-text pair, we use COMET
to generate commonsense descriptions from the
text using all five relations mentioned above. To
adapt COMET generated commonsense knowl-
edge to VCG, we consider relations xIntent
and xWant from COMET as intent, xNeed as be-
fore, xReact and xEffect as after. In this way,
we generate additional commonsense knowledge
for SBU and COCO datasets. The newly gener-
ated dataset has more than 3.6 million examples
(Table 3). However, the generated commonsense
knowledge is not always reasonable as only textual
information is used while the visual information is
completely ignored. To ease this problem, we fur-
ther filter the dataset by employing a self-training
based data filtering strategy.
Self-Training Based Data Filtering Our strategy
aims to filter the generated commonsense knowl-
edge dataset so that the examples in the filtered
dataset closely resemble the examples in the VCG
dataset. To achieve this goal, we first initialize our
KM-BART with BART parameters and finetune
KM-BART on the VCG dataset for 30 epochs. The
finetuned KM-BART already has a good perfor-
mance on the VCG dataset with a CIDER score of
39.13 (see Table 4).

We then leverage this finetuned model to evalu-
ate the quality of commonsense descriptions gen-
erated by COMET. We feed the corresponding im-
ages, texts, and relations as inputs to the finetuned
KM-BART and then compute the cross-entropy
(CE) loss of COMET generated commonsense de-
scriptions. We observe that commonsense descrip-
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Event and image Task Model Generated Sentence

2 is holding an envelope without event§
give 1 some bad news

reassure 1
contemplate what 1 is saying to her

intent with event†
see what the letter said

give mail to 1
open the envelope

ground truth
receive the envelope from 1

see what’s inside the envelope

without event§
walk up to 1

have seen 1 in the distance
be interested in what 1 has to say

before with event†
pick the envelope up

call 1 to meet him
walk to 1

ground truth
receive mail

be given an envelope
bring the envelope with her

without event§
finish telling 1 she has a difficult time

ask 1 what the papers are for
let go of 1

after with event†
open the envelope

hand the envelope to 1
embrace 1

ground truth
read the contents of the envelope to 1

hand the envelope to 1
read the love letter

Table 2: An example from the VCG dataset. We use nucleus sampling with p = 0.9 during decoding. We show
the inference sentences from (1) full model§ without event descriptions but with images as inputs; (2) full model†

with event descriptions and images as inputs; (3) ground truth. Bold indicates inference sentences from our KM-
BART († and § indicate corresponding models in Table 4). Note that the bounding boxes are not given in the VCG
dataset and are predicted by a pretrained Masked R-CNN. Additional examples are available in the Supplementary
Material.

tions with a lower CE loss make more sense than
those with a higher CE loss. Notice that when
computing the CE loss of the COMET generated
commonsense descriptions, our KM-BART lever-
ages both the textual inputs and the visual inputs.
We provide examples of our data filtering strategy
in Supplementary Material.

We compute CE loss for all the commonsense
descriptions in the VCG dataset and the new dataset
generated by COMET. Figure 2 shows the distri-
butions of CE loss for the two datasets. We ob-
serve that commonsense descriptions generated by
COMET result in higher CE losses, which are ex-
pected as images are completely ignored when us-
ing COMET to generate natural language common-
sense descriptions. We only keep the examples of
which CE loss is below 3.5. Table 3 shows the
statistics of generated datasets before and after data
filtering. By filtering, we keep only 1.46 million ex-
amples, roughly accounting for 40% of the original
examples.

Finally, we leverage the newly generated com-
monsense knowledge dataset by pretraining KM-
BART on it. We expect by pretraining, the model
reaches higher performance on the VCG dataset.

#Original #Cleaned

SBU (Ordonez et al., 2011) 2,032,385 808,425

COCO (Lin et al., 2014) 1,653,075 660,020

Total 3,685,460 1,468,445

Table 3: Statistics of datasets before and after filtering.

Let S = {w1, ..., wL} be a commonsense descrip-
tion of the newly generated dataset D, the loss func-
tion for KCG is:

LKCG(θ) =

− E(W,V )∼D

L∑
l=1

log(Pθ(wl|w<l,W, V ))
(1)

where L is the length of the generated sequence, l
is the index to individual tokens in the target com-
monsense description S, V andW are visual inputs
and textual inputs, respectively. θ represents model
parameters to be optimized.

3.2.2 Attribute Prediction and Relation
Prediction

The Visual Genome dataset consists of 2.3 million
relationships and 2.8 million attributes. To utilize
these data, we use the attribute prediction (AP) and
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Figure 2: The distribution of the average cross-entropy
on 10000 samples in the VCG dataset and our enhanced
dataset. For the generated dataset, we can keep the ex-
amples of which cross entropy loss is below 3.5.

the relation prediction (RP) as pretraining tasks,
which enable the model to learn intrinsic properties
among different objects in an image.

In the AP task, we feed the output vectors of the
decoder for each image feature into an MLP clas-
sifier. In the RP task, we concatenate two output
vectors of the decoder for each image feature pair
and feed it into another MLP classifier. We use the
cross-entropy loss for both tasks.

We denote the indices for AP by 1 ≤ j ≤ A,
the indices for RP by 1 ≤ k ≤ R, where A is
the number of AP examples, and R is the number
of RP examples. We denote the label for the j-th
AP example by La(vj), and the label for the k-th
RP example as Lr(vk1 , vk2), where vk1 and vk1 are
the two RoIs of the current RP example. The loss
function for the AP task is:

LAP (θ) =

− E(W,V )∼D

A∑
j=1

log(Pθ(La(vj) |W,V ))
(2)

And the loss function for the RP task is:

LRP (θ) =

− E(W,V )∼D

R∑
k=1

log(Pθ(Lr(vk1 , vk2)) |W,V ))

(3)

3.2.3 Masked Language Modeling
Following previous works (Devlin et al., 2019; Liu
et al., 2019), we randomly mask the input textual to-
kens with a probability of 15% in the Masked Lan-
guage Modeling (MLM) task. Within this 15% of
the tokens, we use <mask> to replace the masked

token with a probability of 80%, use a random to-
ken to replace with a probability of 10%, and keep
the masked token unchanged with a probability of
10%.

We denote the mask indices by 1 ≤ m ≤ M ,
where M is the number of masked tokens. We
denote the masked token by wm, and the remain-
ing tokens that are not masked by w\m, the loss
function for MLM is defined as:

LMLM (θ) =

− E(W,V )∼D

M∑
m=1

log(Pθ(wm|w\m,W, V ))
(4)

3.2.4 Masked Region Modeling

In the Masked Region Modeling (MRM) task, we
sample image regions and mask the correspond-
ing feature vectors with a probability of 15%. The
masked vector will be replaced by a vector filled
with zeros. The model needs to predict the dis-
tribution over semantic classes for the masked re-
gions. The loss function is to minimize the KL
divergence of the output distribution and the dis-
tribution predicted by the Masked R-CNN used in
visual features extraction.

We denote the mask indices by 1 ≤ n ≤ N ,
where N is the number of masked regions. We let
p(vn) denote the class distribution of the masked
region vn detected by Masked R-CNN, qθ(vn) de-
note the class distribution output by our model, the
loss function for MRM is then:

LMRM (θ) =

E(W,V )∼D

N∑
n=1

DKL(p(vn)||qθ(vn)))
(5)

3.2.5 Combining Losses

To combine all the losses we described
above, we weight each of the losses by
WKCG,WAP ,WRP ,WMLM ,WMRM ∈ R.
The weights are chosen to roughly balance every
term during the training phase. The final loss is:

L =WKCGLKCG +WAPLAP +WRPLRP+
WMLMLMLM +WMRMLMRM

(6)



531

Pretraining Task(s) Event BLEU-2 METEOR CIDER Unique Novel

Random init

w/o pretraining Y 22.28 14.55 36.49 27.81 29.71
KCG Y 22.16 14.52 37.06 33.01 31.20
KCG (before filtering) Y 22.24 14.43 37.08 33.64 31.37
AP & RP Y 22.49 14.64 37.18 28.97 30.28
MLM & MRM Y 22.44 14.70 37.44 31.16 31.64
Full Model Y - - - - -

BART init

w/o pretraining Y 22.86 15.17 39.13 27.41 28.32
KCG Y 23.47 15.02 39.76 27.28 27.97
KCG (before filtering) Y 22.90 14.98 39.01 26.59 27.13
AP & RP Y 22.93 14.99 39.18 28.06 28.88
MLM & MRM Y 23.13 14.93 38.75 28.68 28.74
Full Model† Y 23.25 15.01 39.20 35.71 32.85

Random init

w/o pretraining N 13.54 10.14 14.87 12.19 24.22
KCG N 13.64 10.12 15.34 15.95 25.79
KCG (before filtering) N 13.67 10.13 15.22 16.47 24.97
AP & RP N 13.83 10.28 15.48 14.60 24.75
MLM & MRM N 14.36 10.73 16.72 15.86 26.12
Full Model§ N 14.49 10.86 17.37 16.89 25.69

BART init

w/o pretraining N 8.108 8.673 6.335 4.850 10.55
KCG N 13.28 10.06 14.17 13.08 25.70
KCG (before filtering) N 13.29 10.12 13.93 13.51 25.59
AP & RP N 12.17 9.503 12.49 20.98 29.01
MLM & MRM N 13.36 10.22 14.52 15.02 28.36
Full Model N - - - - -

Table 4: Results of different pretraining tasks on VCG
validation set. To speed up comparison between differ-
ent pretraining tasks, we use greedy decoding to gen-
erate one inference sentence per example. Bold: best
performance. Italic: second best performance. Event:
whether or not event descriptions are used during train-
ing and evaluation.

4 Experiments

We describe our experiments in this section. Sec-
tion 4.1 is the experimental settings of different
pretraining and initialization strategies. Section 4.2
gives the evaluation task and metrics. We show
our results in Section 4.3. In Section 4.4, we give
example inferences generated by our model. We
have the human evaluation results in Section 4.5.

4.1 Settings

In our experiments, following the base model
from Lewis et al. (2020), we fix the model architec-
ture to a 6-layer encoder and a 6-layer decoder. To
understand how each pretraining task helps model
performance on the downstream task of VCG, we
ablate on pretraining tasks. We use the following
experimental settings: (1) Without any pretraining;
(2) Only with Knowledge-based Commonsense
Generation; (3) Only with Attribute Prediction and
Relation Prediction; (4) Only with Masked Lan-
guage Modeling and Masked Region Modeling; (4)
With all the pretraining tasks combined. For only
with Knowledge-based Commonsense Generation,
we further compare the model performance before

and after data filtering (see Section 3.2.1).
For each of the above settings, we initialize the

model from random or from BART weights, respec-
tively. Besides, we are most interested in the model
performance under two settings (see the second col-
umn of Table 4): (1) Only using images as inputs;
(2) Using both images and event descriptions as
inputs. Note that when only using images as inputs
for evaluation, we also do not use textual inputs
during pretraining/finetuning.

4.2 Evaluation Task and Metrics
We evaluate our model on the recently pro-
posed Visual Commonsense Generation (VCG)
Dataset (Park et al., 2020). Given an image and a
description of the event in the image, the task aims
to predict events which might happen before/after,
and the present intents of the characters in the given
image. The dataset consists of 1174K training ex-
amples and 146K validation examples. Some exam-
ples in the dataset share the same images or events,
but with different inferences for events before/after
or intents at present. Table 2 gives an example of
the dataset. We report our model performance on
the validation set as the test set is not available yet.

Besides event descriptions, the VCG dataset also
provides Place and Person information for each im-
age. Note that although Park et al. (2020) also
leverages the Place and Person information for
training and evaluation, we argue that such infor-
mation is not generally available in normal settings,
where only images and event descriptions are given.
Hence, we do not use the Place and Person informa-
tion in our KM-BART. As an additional reference,
we nevertheless show in Table 5 the best performed
models from Park et al. (2020), which also use
Place and Person information.

We use three automatic evaluation metrics, in-
cluding BLEU-2 (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), and
CIDER (Vedantam et al., 2015). Following Park
et al. (2020), we also report Unique as the number
of inference sentences unique in generated sen-
tences divided by the total number of sentences,
and Novel as the number of generated sentences
not in the training data divided by the total number
of sentences.

4.3 Results
We first ablate on different pretraining tasks to un-
derstand the effect of each task. We then combine
all the pretraining tasks together to train our full
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Modalities Event BLEU-2 METEOR CIDER Unique Novel

Park et al. (2020)a∗
Image+Event+
Place+Person N 10.21 10.66 11.86 33.90 49.84

Park et al. (2020)b∗ Image N 6.79 7.13 5.63 26.38 46.80
Ours§ Image N 9.04 8.33 9.12 50.75 52.92

Park et al. (2020)c∗
Image+Event+
Place+Person Y 13.50 11.55 18.27 44.49 49.03

Park et al. (2020)d∗ Image+Event Y 12.52 10.73 16.49 42.83 47.40
Ours† Image+Event Y 14.21 11.19 21.23 57.64 58.22

Table 5: Results on VCG validation set with nucleus sampling. Following Park et al. (2020), we use nucleus
sampling with p = 0.9 to generate five inference sentences for each example during evaluation. ∗: we directly
use evaluations from Park et al. (2020). Bold: best performance. Italic: second best performance. Modalities:
information used during training. Event: whether or not event descriptions are used during evaluation.

model. As a last step, we pick the best performed
models to compare against previous state-of-the-art
system (Park et al., 2020).

Table 4 shows the effect of each pretraining task
to our KM-BART on the VCG dataset. We can see
that all our pretraining tasks help improve model
performance. Most importantly, we observe that
although filtering on the commonsense generation
pretraining task reduces the dataset size by more
than 60%, pretraining with KCG still reaches com-
parable or better performance than pretraining with
KCG (before filtering). This demonstrates that our
self-training based filtering technique is helpful,
as it helps the model reach similar or even better
performance with less training data. The advan-
tage is most evident when we initialize from BART
parameters and use both images and event descrip-
tions as inputs. Under this setting, pretraining with
KCG outperforms pretraining with KCG (before
filtering) in terms of all the evaluation metrics.

For using both images and event descriptions as
inputs, the model performs better when initialized
from pretrained BART parameters. As pretrained
BART can better leverage the information in the
event descriptions. Hence, to obtain our full KM-
BART model for using images and events as inputs,
we adopt the setting of initializing from BART
parameters. Experimental results show that our
full model† reaches high performance on BLEU-2,
METEOR and CIDER, and that the full model†

generates the most unique and novel inferences.
For using only images as inputs, models initial-

izing from random parameters outperforms those
initialized from BART parameters. We argue that
initializing from BART parameters results in op-
timization disadvantages where the model has to
switch from pure textual inputs to pure visual in-
puts. This observation becomes evident as the

model performs the worst when no pretraining is
used, which indicates that the model has to entirely
rely on finetuning on the VCG dataset to adapt to
visual inputs. Therefore, for using only images as
inputs, we obtain our full KM-BART model by ini-
tializing from random parameters. Our full model§

reaches best performance on BLEU-2, METEOR
and CIDER, and is the second best in terms of
Unique.

In Table 5, we compare our full model to pre-
vious state-of-the-art (Park et al., 2020).3 We ob-
serve that although our full model† taking as inputs
images and event descriptions does not use Place
and Person information, the model still outper-
forms previous state-of-the-art (Park et al. (2020)c).
For using only images as inputs, our model§ also
performs better than previous results (Park et al.
(2020)b). Furthermore, our model§ reaches compa-
rable performance to Park et al. (2020)a in terms
of BLEU-2, METEOR and CIDER, with much
higher performance on Uniqueness and Novelty,
even though our model§ uses much less information
during training compared to Park et al. (2020)a.

4.4 Case Study

In Table 2, we show example inferences and com-
pare the results of our model predictions to the
ground truths. The generated sentences from the
model without event descriptions as inputs can al-
ready capture the most important information of
commonsense. We also observe that adding event
descriptions to the inputs helps the model gener-
ate more details. We gives more examples of our
model in the Appendix.

3Note that model performance in Table 5 is not directly
comparable to that of Table 4 as we use different decoding
strategies to generate different number of inference sentences
per example in these two tables.
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Models Event Before After Intent Total

Park et al. (2020)c∗ N 38.7 31.3 30.7 33.3
Ours§ N 61.3 68.7 69.3 66.7

Park et al. (2020)c∗ Y 48.0 48.0 38.7 44.9
Ours† Y 52.0 52.0 61.3 55.1

Table 6: Human Evaluation results. We compare the
inference generated by our best model under the set-
ting of with event or without event. † and § indicate
corresponding models in Table 4. We use Park et al.
(2020)c∗ for both with event and without event as Park
et al. (2020) only release the weights of this model.

4.5 Human Evaluation

We conduct human evaluation to further understand
how humans perceive the inferences generated by
our KM-BART. We employ a comparison approach
for a better assessment between our KM-BART and
the model from Park et al. (2020). To be specific,
we randomly sample 30 examples from the VCG
validation set. For each example, we use our KM-
BART or the baseline model to generate 5 sets of
inferences, each of which consist of the task type
before, after, and intent.

We use two settings for our human evaluation:
(1) With event: event descriptions are given as in-
put during inference time; (2) Without event: event
descriptions are not given during inference time.
Under each of the settings we compare our KM-
BART model with the mode from Park et al. (2020).
We use the same 30 examples for each model under
the two settings. For each example in a task type
(before, after, or intent), we generate 5 inferences
for one model of each setting. In total, we gener-
ate 450 inferences for each model of each setting
during the human evaluation.

For the same example, we use our KM-BART
and the model from Park et al. (2020) to generate an
inference under one of the three task types, then the
workers choose the more reasonable inference from
the two generated inferences. We hire three work-
ers from Amazon Mechanical Turk4 to evaluate
each inference. We take the majority of the three
workers as the final evaluation for an inference.
Among all the inferences, we use the percentage of
one model better than another model as the score
of that model. For example, in Table 6, the score of
our model (Ours§) is 61.3 for the task type before
when event descriptions are missing. This indicates
that our model is better than the baseline model for
the task type before in 61.3% of the cases. We also

4https://www.mturk.com/

take the average over the three task types as the
final score (see Total in Table 6).

From Table 6, we can observe that our model
outperforms Park et al. (2020) under both of the
settings. To be specific, when event descriptions are
not given, among all the inferences, our model is
better than Park et al. (2020) in 66.7% of the cases.
Furthermore, our model has a lead of at least 22.6%
over Park et al. (2020) in each individual task. For
example, our model generates better inferences in
68.7% of the cases in task type after, while the
model from Park et al. (2020) is only better than
our model in 31.3% of the cases. We can obtain
similar results when looking at the task type before
and intent.

When event descriptions are given, our model is
still better than Park et al. (2020) in 55.1% of all
the cases. For each individual task, the advantage
of our model is smaller when event descriptions are
given than when event descriptions are not given,
showing that our model can better capture informa-
tion from the images.

5 Conclusion and Future Work

In this paper, we propose Knowledge Enhanced
Multimodal BART (KM-BART), which is a
Transformer-based model capable of reasoning
about and generating commonsense descriptions
from cross modality inputs of images and texts. We
propose the pretraining task of Knowledge-Based
Commonsense Generation, which improves the rea-
soning ability of KM-BART by leveraging a large
language model pretrained on external common-
sense knowledge graphs. We use the self-training
technique to filter the automatically generated com-
monsense descriptions. Experimental results on
the VCG task show that our KM-BART pretrained
on the pretraining tasks reaches state-of-the-art per-
formance. Further human evaluation demonstrates
that our KM-BART can generate commonsense
inferences of high quality.

For future work, we plan to further expand our
pretraining dataset for Knowledge-Based Common-
sense Generation by including the Conceptual Cap-
tions Dataset (Sharma et al., 2018). Furthermore,
while we argue that Place and Person information
is not generally available in practical scenarios, we
still plan to add Place and Person information to
our model in the future.

https://www.mturk.com/
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