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Abstract. We train multi-task (variational) autoencoders on linguis-
tic tasks and analyze the learned hidden sentence representations. The
representations change significantly when translation and part-of-speech
decoders are added. The more decoders are attached, the better the
models cluster sentences according to their syntactic similarity, as the
representation space becomes less entangled. We compare standard un-
constrained autoencoders to variational autoencoders and find significant
differences. We achieve better disentanglement with the standard autoen-
coder, which goes against recent work on variational autoencoders in the
visual domain.
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1 Introduction

Learning good representations lies at the core of Deep Learning [1]. We would
like algorithms to automatically extract the most salient features instead of
having to rely on expert knowledge to manually design complex preprocessing
pipelines. If a model can learn good features, it will likely perform well in an
array of (downstream) tasks. Another important aspect is that of transfer learn-
ing, where a model is trained on multiple tasks that mutually benefit from each
other, leading to better performance in each task. A model that can learn good
representations is likely to perform better in a transfer learning setting. For more
background on what makes good representations, we refer the interested reader
to [1]. Higgins et al. [3] have shown that a simple modification to the standard
Variational autoencoder (VAE) objective enables disentanglement of indepen-
dent linear data generating factors for an artificial dataset of simple 2D shapes.
Other works have achieved similar results for the visual domain. However, the
progress for discrete sequences, such as natural language, has been much slower.
Prior work shows the efficacy of Variational autoencoders, which are generally
good at learning representations, for complex tasks such as sentiment transfer
([9]). It has also been shown that multi-task learning is beneficial in the context
of NLP [6–8]. In this paper, we focus on analyzing the learned representations
and investigate the disentanglement capabilities of (variational) autoencoders in
a Multitask setting for Natural Language Processing (NLP). A commonly used
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definition of disentanglement (e.g., [3]) is that small changes in one dimension
of the hidden representation should result in small changes in only one data
generating factor, where data generating factors could be the size of an object.
In the context of language however, it is considerably more difficult to come up
with such linear data generating factors, and thus, there are not yet any general
definitions of disentanglement. In this paper we therefore only look at one spe-
cific factor of language: syntax. We investigate the ability of autoencoder based
language models to learn disentangled representations of syntax. We define a
representation to be disentangled if the hidden representations of sentences with
different syntactic structures can be clustered with little to no overlap. To this
end we train several multi-task autoencoder models, where each decoder per-
forms a distinctive linguistic task. We compare the sentence representations our
models have learned and explore how representations of different sentences relate
to each other.

2 Models

Our models are based on the autoencoder (AE) and variational auteoncoder
(VAE) [4] frameworks. In both cases, an encoder transforms the data into a
lower dimensional representation, from which a decoder tries to replicate the in-
put. We use Long short-term memory (LSTM) neural networks for all encoders
and decoders. The VAE formulation additionally encourages the latent variables
to be distributed according to a prior (usually an isotropic Gaussian with unit
variance). This is achieved by adding a second term to the AE loss function that
minimizes the KL-divergence between the chosen prior and the true posterior.
When weighted appropriately, this constraint acts as a regularizer on the num-
ber of latent dimensions that are used by the model, which in turn promotes
disentanglement of the latent dimensions ([2, 3]). Higgins et al. formally intro-
duce this weight in the VAE loss function as β, and thus call their VAE variant
β-VAE. Apart from the standard replicating decoder (REP(R)), we attach addi-
tional decoders to perform different tasks. The multi-task models in this paper
use a subset of the following three decoders in addition to the REP decoder. The
German and French (GER(G)/FR(F)) decoders translate the input sentence to
German and French respectively. The part-of-speech (POS(P)) decoder learns to
tag words in the input sequence with part-of-speech tags, such as verb, noun, ad-
jective. To train our models on the three tasks replication, translation and POS,
we use the aligned multilingual transcripts of the European Parliament sessions
([5]). The subset of this dataset we use contains over 1.7 million sentences, 1.5
million of which were used as the training set. The remaining 0.2 million sen-
tences form the test set. Our models are trained on character-sequences.
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(a) R(EP) model with CE = 51. Some
sentence prototype representation clus-
ters are very close together or overlap-
ping.
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(b) RGP model with CE = 0. No sen-
tence representation clusters are overlap-
ping, and only type 3 and 4 are close to-
gether.

Fig. 1: Syntax clusters for the autoencoder models visualized with t-SNE.

3 Results

3.1 Syntax clustering

To compare the learned representations of different models, we examine how well
they cluster syntactically similar sentences in latent space. We define 14 sentence
prototypes (see Table 1) with different syntactic structures. N, V, A and D are
placeholders for nouns, verbs, adjectives and adverbs. Each sentence prototype
is randomly populated by common English words 100 times. These sentences are
then fed through the encoders to obtain their representation vectors, which are
then clustered by K-means with K = 14. For each resulting cluster, we count
how many sentences of each prototype it contains. The cluster is then labeled

Table 1: Sentence prototypes.
1: The N is A. 2: The N V s. 3: The N has a N. 4: The N V s a N.

5: The N V s a N. 6: No N ever V s. 7: Are N s A?

8: The N s of N D V the A N, but some N s still V their N.

9: In the N of a A N, the N will V the N of V ing the N.

10: N s V the A N of N s V ing on the N.

11: In the N of N, N s would rather V without N than V any A N s.

12: N V s in order to V on a N. 13:A N s often V like N s.

14: whitespace
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(a) R(EP) model with CE = 197. Sev-
eral sentence types are highly overlap-
ping or close together. The individual
clusters have a large diameter.
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(b) RGP model with CE = 25. The la-
tent space is much less entangled and the
clusters have smaller diameters, but sev-
eral sentence types are still overlapping
or very close together.

Fig. 2: Syntax clusters for the β-VAE models visualized with t-SNE.

with the majority prototype. The per-cluster error is defined as the number of
sentences in the cluster that are not of the majority type. The sum of errors of
all 14 clusters is the clustering error (CE), which is our quality metric for this
experiment. Since K-means clustering is nondeterministic, we run the algorithm
100 times. Table 2 shows the best-of-100 clustering errors.

Table 2: AE vs β-VAE (β=0.001)

Model R RF RGF RG RP RGP

AE 51 26 24 22 8 0
VAE 197 87 26 98 58 25

For the standard autoencoder, adding more tasks clearly helps reduce the
clustering error. The POS tagging decoder brings the highest benefit. This makes
sense, since most sentence prototypes have a unique POS tag sequence, and thus
separating the sentence prototypes in latent space will make the POS tagging
decoder’s job easier. Attaching either a German or French translation decoders
also help reduce the clustering error. Figure 1 shows the sentence representa-
tion of two different AE models, visualized using t-SNE. The RGP model is
significantly better at disentangling syntax.
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For the β-VAE, the results are much less consistent, and generally worse
than for the standard AE, even though β-VAE was shown to disentangle factors
of variation in latent space for visual tasks. Especially the high CE for the RP
model is surprising. In the experiments performed by [3], β = 4 yielded the
highest degree of disentanglement. Unfortunately, increasing the weight of the
KL-term in the VAE loss has a negative effect on reconstruction performance.
We were not able to train models with β > 0.1, which is consistent with existing
VAE implementations for sequence tasks 1. We trained multiple β-VAEs with
β ∈ [0, 0.0001, 0.001, 0.01, 0.1] and found that β = 0.001 generally performs best
in terms of reconstruction performance and clustering error. Figure 1 shows the
sentence representation of two different VAE models, visualized using t-SNE.
The latent space is clearly more entangled than for the AE based RGP model.

3.2 Interpolation and Representation Space Algebra

To further evaluate the properties of our models we traverse the latent space by
interpolating between samples from the dataset. We find that the models with
the best clustering errors produce smoother interpolations with fewer non-words
and more consistent syntactic structure. We also investigate the learned linear
relationships between latent sentence representations. To do this we compute a
new sentence representation ŝ by combining the latent representations of three
sentences as ŝ = s1−s2+s3. Intuitively, s3 should be modified with the difference-
vector of s1 and s2. For example: Cats are good pets(s1) and Dogs are good
pets(s2) should have canceled out the part about good pets and roughly point
from Dogs to Cats (s1 − s2). Adding this difference-vector to any sentence that
contains Dogs should then result in a sentence where Dogs is replaced with Cats.
We find that the models with low clustering error perform significantly better
at this task, as shown in Table 3.

Table 3: Examples of representation vector algebra for two autoencoder models.
The RGP model produces the correct result for the first two examples. Both
models manage to replace small with large in the third example, but also wrongly
change most other parts of the sentence.

s1 s2 s3 s1 - s2 + s3
RG I am one. - I am two. + You are two. = You ready no.
RGP I am one. - I am two. + You are two. = You are one.

RG A word in a phrase. - A tree in a phrase. + A tree is green. = A word is purevy?
RGP A word in a phrase. - A tree in a phrase. + A tree is green. = A word is green.

RP
A large number of
people want to work.

-
A small number of
people want to work.

+
A small sentence is
enough.

=
A large senselfeir
in or evacce.

RGP
A large number of
people want to work.

-
A small number of
people want to work.

+
A small sentence is
enough.

=
A large sector for
challenge.

1 e.g., https://github.com/tensorflow/magenta/tree/master/magenta/models/music
vae
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4 Conclusion

We trained several multi-task autoencoders on linguistic tasks and analyzed the
learned sentence representations based on a new clustering based metric using a
toy dataset. Adding linguistic tasks helps the models disentangle syntax in latent
space. We further found significant differences between standard and variational
autoencoders. We built a toy dataset based on sentence prototypes and intro-
duced the clustering error metric to evaluate the disentanglement of the learned
representations. In the future we plan to formulate more rigorous definitions of
good (e.g., disentangled) representations in the context of natural language, and
evaluate models with different degrees of disentanglement on downstream tasks
to see if there is any benefit. We will also revisit the use of recurrent neural net-
works. As recent trends show, CNNs or pure attention based models might be
better suited to model sequences. CNNs are known to be powerful feature extrac-
tors, which might be one reason for the success of unsupervised representation
learning methods for vision.
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