Does Topology Control Reduce Interference?

Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger

• What is Topology Control?

C

- Context related work
- Explicit interference model
- Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case
- Conclusions

►O

Topology Control

- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)

Topology Control

- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)

• What is Topology Control?

C

- Context related work
- Explicit interference model
- Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case
- Conclusions

MobiHoc 2004

►O

- Mid-Eighties: randomly distributed nodes [Takagi & Kleinrock 1984, Hou & Li 1986]
- Second Wave: constructions from computational geometry, Delaunay Triangulation [Hu 1993], Minimum Spanning Tree [Ramanathan & Rosales-Hain INFOCOM 2000], Gabriel Graph [Rodoplu & Meng J.Sel.Ar.Com 1999]

- Cone-Based Topology Control [Wattenhofer et al. INFOCOM 2000]; explicitly prove several properties (energy spanner, sparse graph), locality
- Collecting more and more properties [Li et al. PODC 2001, Jia et al. SPAA 2003, Li et al. INFOCOM 2002] (e.g. local, planar, distance and energy spanner, constant node degree [Wang & Li DIALM-POMC 2003])

Context – Previous Work

- Mid-Eighties: randomly distributed nodes [Takagi & Kleinrock 1984, Hou & Li 1986]
- Second Wave: constructions from computational geometry, Delaunay Triangulation [Hu 1993], Minimum Spanning Tree [Ramanathan & Rosales-Hain INFOCOM 2000], Gabriel Graph [Rodoplu & Meng J.Sel.Ar.Com 1999]
- Cone-Based Topology Control [Wattenhofer et al. INFOCOM 2000]; explicitly prove several properties (energy spanner, sparse graph), locality
- Collecting more and more properties [Li et al. PODC 2001, Jia et al. SPAA 2003, Li et al. INFOCOM 2002] (e.g. local, planar, distance and energy spanner, constant node degree [Wang & Li DIALM-POMC 2003])

MobiHoc 2004

Interference issue "solved" implicitly by graph sparseness or bounded degree Explicit interference [Meyer auf der Heide et al. SPAA 2002]

- Interference between edges, time-step routing model, congestion
- Trade-offs: congestion, power consumption, dilation
- Interference model based on network traffic

0

• What is Topology Control?

C

- Context related work
- Explicit interference model
- Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case
- Conclusions

MobiHoc 2004

►O

What Is Interference?

- Model
 - Transmitting edge e = (u, v) disturbs all nodes in vicinity
 - Interference of edge e =

Nodes covered by union of the two circles with center u and v, respectively, and radius |*e*|

- Problem statement
 - We want to minimize maximum interference!
 - At the same time topology must be connected or a spanner etc.

MobiHoc 2004

does not change the results

• What is Topology Control?

C

- Context related work
- Explicit interference model
- Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case
- Conclusions

MobiHoc 2004

►O

►೧

Low node degree does not necessarily imply low interference:

Very low node degree but huge interference **►**0

... from a worst-case perspective

•0

Topology Control Algorithms Produce...

0

• All known topology control algorithms (with symmetric edges) include the nearest neighbor forest as a subgraph and produce something like this:

But Interference...

• Interference does not need to be high...

►0

• This topology has interference O(1)!!

Interference-Optimal Topology

•0

• What is Topology Control?

 \mathbf{O}

- Context related work
- Explicit interference model
- Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case
- Conclusions

►O

Algorithms – Requirement: Retain Graph Connectivity

- LIFE (Low Interference Forest Establisher)
- Attribute interference values as weights to edges
- Compute minimum spanning tree/forest (Kruskal's algorithm)

Theorem: LIFE constructs a Minimum Interference Forest

Proof:

- Algorithm computes forest
- MST also minimizes maximum interference value

Low Interference Forest Establisher (LIFE) **Input:** a set of nodes V, each $v \in V$ having attributed a maximum transmission radius r_v^{max} 1: E = all eligible edges (u, v) $(r_u^{max} > |u, v|$ and $r_v^{max} > |u, v|$) (* unprocessed edges *) 2: $E_{LIFE} = \emptyset$ 3: $G_{LIFE} = (V, E_{LIFE})$ 4: while $E \neq \emptyset$ do $e = (u, v) \in E$ with minimum coverage 5: if u, v are not connected in G_{LIFE} then 6: $E_{LIFE} = E_{LIFE} \cup \{e\}$ 7: end if 8: $E = E \setminus \{e\}$ 9: 10: end while **Output:** Graph G_{LIFE}

Algorithms – Requirement: Construct Spanner

- LISE (Low Interference Spanner Establisher)
- Add edges with increasing interference until spanner property fulfilled

Theorem: LISE constructs a Minimum Interference t-Spanner

Proof:

- Algorithm computes t-spanner
- Algorithm inserts edges with increasing coverage only "as long as necessary"

Low Interference Spanner Establisher (LISE)

- **Input:** a set of nodes V, each $v \in V$ having attributed a maximum transmission radius r_v^{max}
 - 1: E = all eligible edges (u, v) $(r_u^{max} \ge |u, v|$ and $r_v^{max} \ge |u, v|$) (* unprocessed edges *)
- 2: $E_{LISE} = \emptyset$

3:
$$G_{LISE} = (V, E_{LISE})$$

- 4: while $E \neq \emptyset$ do
- 5: $e = (u, v) \in E$ with maximum coverage
- 6: while $|p^*(u,v)$ in $G_{LISE}| > t |u,v|$ do
- 7: $f = edge \in E$ with minimum coverage
- 8: move all edges $\in E$ with coverage Cov(f) to E_{LISE}
- 9: end while
- 10: $E = E \setminus \{e\}$
- 11: end while

Output: Graph G_{LISE}

Algorithms – Requirement: Construct Spanner Locally

- LLISE
- Local algorithm: scalable
- Nodes collect (t/2)-neighborhood
- Locally compute interferenceminimal paths guaranteeing spanner property
- Only request that path to stay in the resulting topology

Theorem: LLISE constructs a Minimum Interference t-Spanner

LLISE

1: collect $(\frac{t}{2})$ -neighborhood $G_N = (V_N, E_N)$ of G = (V, E)

- 2: $E' = \emptyset$
- 3: $G' = (V_N, E')$
- 4: repeat
- 5: $f = edge \in E_N$ with minimum coverage
- 6: move all edges $\in E_N$ with coverage Cov(f) to E'
- 7: p = shortestPath(u v) in G'
- 8: **until** $|p| \leq t |u, v|$
- 9: inform all edges on p to remain in the resulting topology.

Note: $G_{LL} = (V, E_{LL})$ consists of all edges eventually informed to remain in the resulting topology.

- Explicit interference model
- Interference produced by previously proposed topologies

>0

- Properties of interference-optimal topology
- Algorithms
 - Interference-optimal connectivity-preserving topology
 - Local interference-optimal spanner topology

Does Topology Control reduce interference?

Yes, but only if...

