
Gradient Clock Synchronization in Dynamic Networks

Fabian Kuhn
Computer Science and

Artificial Intelligence Lab
MIT

Cambridge, MA 02139, USA
fkuhn@csail.mit.edu

Thomas Locher
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland
lochert@tik.ee.ethz.ch

Rotem Oshman
Computer Science and

Artificial Intelligence Lab
MIT

Cambridge, MA 02139, USA
rotem@csail.mit.edu

ABSTRACT
Over the last years, large-scale decentralized computer networks
such as peer-to-peer and mobile ad hoc networks have become in-
creasingly prevalent. The topologies of many of these networks are
often highly dynamic. This is especially true for ad hoc networks
formed by mobile wireless devices.

In this paper, we study the fundamental problem of clock syn-
chronization in dynamic networks. We show that there is an in-
herent trade-off between the skewS guaranteed along sufficiently
old links and the time needed to guarantee a small skew along new
links. For any sufficiently large initial skew on a new link, there
are executions in which the time required to reduce the skew on the
link to O(S) is at leastΩ(n/S).

We show that this bound is tight for moderately small values of
S . Assuming a fixed set ofn nodes and an arbitrary pattern of edge
insertions and removals, a weak dynamic connectivity requirement
suffices to prove the following results. We present an algorithm
that always maintains a skew ofO(n) between any two nodes in
the network. For a parameterS = Ω(

√
ρn), whereρ is the max-

imum hardware clock drift, it is further guaranteed that if acom-
munication link between two nodesu, v persists in the network for
Θ(n/S) time, the clock skew betweenu andv is reduced to no
more thanO(S).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete struc-
tures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems

General Terms
Algorithms, Theory

Keywords
clock synchronization, distributed algorithms, dynamic networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09,August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

1. INTRODUCTION
Establishing coordination between participants is at the core of

many algorithmic challenges in distributed computing. A funda-
mental coordination task, and a basic prerequisite for manyappli-
cations, is achieving a common notion of time. Typically every
node in the network has access to a local hardware clock, but the
hardware clocks of different nodes run at slightly different rates,
and the rates can change over time. In addition, although a bound
on the message delays in the network may be known, specific mes-
sage delays are unpredictable. As a consequence it is generally not
possible for any node in the network to get an accurate estimate of
the clock values of neighboring nodes.

Operating under these uncertainties, a distributed clock synchro-
nization algorithm computes logical clocks at every node, with the
goal of synchronizing these clocks as tightly as possible. Tradition-
ally, distributed clock synchronization algorithms triedto minimize
the maximal difference between any two logical clocks in thenet-
work. We call this quantity theglobal skewof a clock synchroniza-
tion algorithm. It is well-known that no algorithm can guarantee
a global skew better thanΩ(D), whereD is the diameter of the
network [3].

In many cases it is more important to tightly synchronize the
logical clocks of nearby nodes in the network than it is to mini-
mize the global skew. For example, to run a time division multi-
ple access (TDMA) protocol for coordinating access to the shared
communication medium in a wireless network, one only needs to
synchronize the clocks of nodes that interfere with each other when
transmitting. The problem of achieving synchronization that de-
pends on the distance between the two nodes is calledgradient
clock synchronization. It was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a clock skew of
Ω(log D/ log log D) cannot be prevented even between immedi-
ate neighbors in the network [8]. The maximal difference between
the two logical clocks of adjacent nodes in the network is called
the local skewof a clock synchronization algorithm; for static net-
works, Lenzen et. al. have recently proven an asymptotically tight
bound ofΘ(log D) for the best possible local skew an algorithm
can achieve [12, 13]. For other related work on clock synchroniza-
tion, see Section 6.

Most existing work on clock synchronization considers static
networks. However, many modern networks are inherently dy-
namic. Typically formed by autonomous agents without central
control, nodes can join and leave the network in an arbitrarypat-
tern. In ad hoc networks where often the devices are even assumed
to be mobile, the resulting network topology can be highly dynamic
even if the set of participating nodes remains stable. Coordination
in dynamic networks is challenging, and due to the increasing sig-
nificance of such networks, it is also particularly important.

In this paper we study the gradient clock synchronization prob-
lem in dynamic networks. Because the distance between nodesin
the network can change over time, the problem becomes signifi-
cantly harder in a dynamic setting. Consequently, unlike the static
case, the requirements we make on the skew between the logical
clocks of different nodes can also change over time. Every new
edge that is formed induces a new and stronger constraint on the
skew between its endpoints; the algorithm must adapt by reducing
the skew on the edge until the new constraint is satisfied. Hence, we
distinguish between two requirements: astable local skewbound
applies, conceptually, to edges that exist for a long time. This is
analogous to the local skew guaranteed by gradient clock synchro-
nization algorithms for static networks. In practice, we impose a
weakerdynamic local skewbound on all the edges, including new
ones. The dynamic local skew bound is a function of how long
the edge has existed: the bound starts out weak and grows stronger
with time, until in the limit it converges to the stable localskew
bound.

The following intuitive example shows that in general, the clock
skew on a new edge cannot be reduced too quickly without violat-
ing the stable local skew bound on edges that were formed a long
time before. Letu and v be two nodes at distancek from each
other. As no algorithm can prevent a skew ofΩ(k) between nodes
at distancek, a newly formed edge between nodesu andv can carry
Ω(k) local skew. To reduce the skew on the new edge, whichever
node is behind must increase its logical clock by a large amount.
However, a sudden increase inu or v’s clocks will create a large
skew along the edges of the old path that connects them. Specifi-
cally, if the algorithm guarantees a stable local skew ofS , neitheru
norv can instantaneously increase their logical clocks to more than
S ahead of their next neighbor along the old path. In turn, when
this neighbor realizes it must increase its clock, it cannotincrease
it to more thanS ahead ofits next neighbor, and so on. It takes
Ω(k/S) time until the skew can be reduced, as information about
the new edge can take time to propagate through the path.

Somewhat surprisingly, the example above is not the worst one
possible: adjusting the local skew on a newly formed edge canre-
quire even more thanΩ(k/S) time, wherek is the previous dis-
tance between the endpoints of the new edge. We show that (al-
most) independent of the initial skew on a new edge, the time re-
quired to reduce the initial skew toS is at leastΩ(n/S) wheren is
the number of nodes in the system. This is shown in Section 3.

In Section 4 we show that this lower bound is asymptotically
tight for moderately small values ofS by extending a simple gra-
dient clock synchronization algorithm described in [14] tothe dy-
namic case. In a static setting, the algorithm of [14] guarantees a
local skew ofO(

√
ρD) whereρ is the maximum hardware clock

drift. When modeling a dynamic network, we assume that the set
of nodes remains fixed, but edges can appear and disappear in a
completely arbitrary pattern. If a weak connectivity requirement
is satisfied, the algorithm guarantees a global skew ofO(n) at all
times. Further, for a parameterS ≥ √ρn and a sufficiently large
constantλ, the algorithm guarantees a local skew of at mostS on all
edges that are present for at leastλ ·n/S time. It will be interesting
to see whether techniques used in the recent strong static gradient
clock synchronization algorithms in [12, 13] can be adaptedto the
dynamic setting, in order to obtain similar results for smaller values
of S . A first step in this direction was recently made in [10], where
we extended the algorithm from [13] to handle links with different
bounds on message delay [6].

The full version of this paper can be found on the authors’ web-
pages, and includes the full proofs of Theorem 3.2 and the claims
in Section 5.

2. PRELIMINARIES

2.1 Notation
Given an undirected static graphG = (V, E), we denote byP

the set of all (undirected) paths inG. For convenience in notation
we regard each pathP ∈ P as a set of edgesP ⊆ E. We use
P(u, v) to denote all paths between two nodesu, v ∈ V . The
distance between two nodesu andv is defined by

dist(u, v) := min
P∈P(u,v)

|P |.

The definitions above are used only in the context of a static
graph. (We use static graphs in the proof of the lower bound in
Section 3). In this work we are often concerned with dynamic
graphs, which do not have a static set of edges. We useV (2) :=
{{u, v} | u, v ∈ V } to denote the set of allpotentialedges over a
static setV of nodes.

2.2 Network Model
We model a dynamic network over a static setV of nodes us-

ing Timed I/O Automata (TIOA) [9]. Each node in the network
is modelled as a TIOA, and the environment is also modelled as
a TIOA. The dynamic behavior of the network is modelled using
events of the formadd({u, v}) andremove({u, v}) for u, v ∈ V ,
which correspond to the formation and failure (respectively) of a
link betweenu andv. It is assumed that no edge is both added and
removed at the same time.

The history of link formations and failures in a particular execu-
tion α, together with an initial set of edgesEα

0 , induces adynamic
graph G = (V, Eα), whereEα : R

+ → V (2) is a function that
maps a timet ≥ 0 to the set of edges (links) that exist inα at time
t. We defineEα(t) to be the set of edges that are added no later
than timet, and not removed between the last time they are added
and timet (inclusive). This includes edges that appear inEα

0 and
are not removed by timet. We say that an edgee exists throughout
the interval[t1, t2] in α if e ∈ Eα(t1) ande is not removed at any
time during the interval[t1, t2].

A static executionis one in which no edges are added or re-
moved. Formally,α is a static execution if for allt1, t2 ∈ R

+

we haveEα(t1) = Eα(t2).
We consider a very general model, in which edges can be in-

serted or removed arbitrarily, subject only to the following connec-
tivity constraint.

DEFINITION 2.1 (T -INTERVAL CONNECTIVITY). We say that
a dynamic graphG = (V, Eα) is T -interval connectedif for all
t ≥ 0, the static subgraphG[t,t+T] = (V, Eα|[t,t+T]) is con-
nected, whereEα|[t,t+T] is the set of all edges that exist through-
out the interval[t, t + T].

In the sequel we omit the superscriptα when it is clear from the
context.

We assume that nodes do not necessarily find out immediately
about edge insertions and removals1. Instead, we assume that there
is a parameterD, such that if an edge appears or disappears at
time t in an execution, and the change is not reversed by time
t + D, the endpoints of the edge find out no later than timet +
D. Transient link formations or failures, which do not persist for
D time, may or may not be detected by the nodes affected. We
model the discovery by nodeu of a link formation or failureX ∈
{add({u, v}), remove({u, v}) | v ∈ V } by an eventdiscover(X)

1Otherwise reference-broadcast-style synchronization would be
possible using these events [6].

that occurs at nodeu. (A discover(X) event is always preceded by
eventX itself.)

We also assume reliable FIFO message delivery, with message
delays bounded byT . This is modelled using events of the form
send(u, v, m) andreceive(u, v, m) that occur at nodeu. If nodeu
sends a message to nodev at timet, the environment guarantees the
following. If edge{u, v} exists throughout the interval[t, t + T],
then nodev is guaranteed to receive the message no later than time
t + T . If edge{u, v} exists at timet but is removed at some point
in the interval[t, t+T], there are two possible outcomes: either the
message is delivered before the edge is removed, or the message is
not delivered and nodeu discovers the edge removal no later than
time t + D. Finally, if edge{u, v} does not exist at timet, the
message is not delivered, and nodeu discovers that the edge does
not exist no later than timet + D. These definitions correspond to
an abstract version of MAC layer acknowledgements.

In the sequel we assume thatD > T , that is, nodes do not nec-
essarily find out about changes to the network withinT time units.
This is a reasonable assumption because even if nodes transmit very
frequently, as much asT time may pass without any message being
received on a link, and during this time link formations and failures
cannot be detected.

2.3 The Clock Synchronization Problem
In the clock synchronization problem, each nodeu ∈ V has

access to a continuoushardware clockHu(t), which may progress
at a different rate than real time. The hardware clocks suffer from
bounded driftρ: although they progress at a variable rate, their rate
is always between1− ρ and1 + ρ the rate of real time, so that for
any nodeu and timest1 < t2 we have

(1− ρ)(t2 − t1) ≤ Hu(t2)−Hu(t1) ≤ (1 + ρ)(t2 − t1).

For simplicity we assume that at the beginning of any execution the
hardware clock values are all0.

The goal of a dynamic clock synchronization algorithm (DCSA)
is to output alogical clockLu(t) such that the logical clocks of dif-
ferent nodes are close to each other. In particular we consider two
requirements. First, aglobal skew constraintbounds the difference
between the logical clocks of any two nodes in the network at all
times in the execution. Second, adynamic local skew constraint
bounds the skew between two neighbors as a function of how long
the link between them has existed. These requirements are formally
defined as follows.

DEFINITION 2.2 (GLOBAL SKEW). A DCSA guarantees a
global skew ofḠ(n) if in any execution of the algorithm in a net-
work ofn nodes, for any two nodesu, v and timet ≥ 0 we have

Lu(t)− Lv(t) ≤ Ḡ(n).

DEFINITION 2.3 (SKEW FUNCTION). A functions : N×R
+×

R
+ → R

+ (whereR
+ are the nonnegative reals) is said to be a

skew functionif the following conditions hold.

1. The functions(n, I, t) is non-decreasing inI and non-in-
creasing int; and

2. For all n ∈ N, I ∈ R
+, the limit limt→∞ s(n, I, t) is de-

fined and finite; and

3. For all I1, I2 ∈ R
+ we have

lim
t→∞

s(n, I1, t) = lim
t→∞

s(n, I2, t).

DEFINITION 2.4 (DYNAMIC LOCAL SKEW). A DCSA guar-
antees adynamic local skewof s : N × R

+ × R
+ → R

+, where
s is a skew function, if in every execution of the algorithm in anet-
work overn nodes, for any edgee = {u, v} and timest1 ≤ t2, if
edgee exists throughout the interval[t1, t2] in the execution, then
we have

|Lu(t2)− Lv(t2)| ≤ s(n, |Lu(t1)− Lv(t1)| , t2 − t1).

DEFINITION 2.5 (STABILIZING DCSA). A DCSAA is said
to bestabilizingif there is a skew functions such thatA guarantees
a dynamic local skew ofs. In this case we say thatA guarantees a
stable local skewof s̄(n) = limt→∞ s(n, I, t) for someI ∈ R

+.

Finally, logical clocks have to be strictly increasing and are thus
not allowed to temporarily stop. In particular, we require the rate
of each logical clock to be at least half the rate of real time;that is,
for any nodeu and timest1 ≤ t2 we require

Lu(t2)− Lu(t1) ≥ 1

2
(t2 − t1).

3. LOWER BOUND
We begin our analysis of dynamic clock synchronization algo-

rithms with a lower bound on the time needed to adjust the local
skew on a newly formed edge. Specifically, we show that for every
sufficiently large initial skewI , the time needed to reduce the skew
by a factor ofΘ(n/Ḡ(n)) is Ω(n/s̄(n)). Thus, there is an inherent
tradeoff between the stable skew guaranteed by the algorithm and
the time the algorithm requires to reduce the skew on new edges.

The main idea in the proof of the lower bound is to show that
because of the local skew guarantee, even nodes that are distant
from a new edge may prevent the skew on it from being reduced.
To do this we choose two nodes that are far from the new edge
and create a large skew between them, while using large message
delays to prevent them from hearing about the new edge.

The skew is created using shifting (see, e.g., [16]). A standard
shifting argument shows that because of the uncertainty regarding
message delays, nodes cannot tell the difference between anexecu-
tion in which the skew is large, and an execution in which it isnot.
Consequently the nodes cannot avoid having a large skew between
them. In the resulting execution, the message delays on somelinks
are zero, and in the standard construction it is not possibleto con-
trol which links these will be.

In our proof we require large message delays along certain spe-
cific links. A straightforward modification of the argument from
[1] and [8] allows us to create large skews while maintaininga pre-
defined pattern of message delays.

More formally, given a static networkG = (V, E), adelay pat-
tern for G is a pairM = (EC, P), whereEC ⊆ E is a set of
constrained linksandP : EC → [0, T] assigns a message delay to
each constrained link. We define theM -flexible distancebetween
two nodesu, v ∈ V by

distM (u, v) = min
P∈P(u,v)

∣

∣

∣
P \EC

∣

∣

∣
.

LEMMA 3.1 (MASKING LEMMA). LetG = (V, E) be a static
network, and letM = (EC, P) be a delay pattern forG. For any
timet > T · distM (u, v)(1 + 1/ρ), there is a static executionα in
which

|Lu(t)− Lv(t)| ≥ 1

4
T distM (u, v),

and furthermore, inα the delays on every linke ∈ EC are in the
range[P (e)/(1 + ρ), P (e)].

The formal statement of the lower bound is as follows.

THEOREM 3.2. LetA be a stabilizing DCSA that guarantees a
global skew ofḠ(n) and a dynamic local skew ofs with a stable
local skew of̄s(n) = o(n). Then there exist constantsλ, ζ ≥ 0
such that for all sufficiently largen andI we have

s(n, I, λ · n

s̄(n)
) ≥ ζ

n

Ḡ(n)
· I.

PROOFSKETCH. Consider a network comprising two parallel
chains,A andB, joined at both endsw0, wn (see Fig. 1(a)). The
length of each chain isn/2. The two chains exist throughout the
construction; new edges are eventually added along theB-chain,
but no edges are ever removed.

We wait until the algorithm has stabilized, choosing a sufficiently
large timeTs such thats(n, 0, Ts) ≤ ξ · s̄(n) whereξ ∈ (1, 2] is a
constant. Then we select two sufficiently large timesT1, T2 ≥ Ts,
such thatT2 − T1 = λ(n/s̄(n)) for some constantλ. Our goal is
to add new edges at timeT1, each with a skew of at mostI (see
Fig. 1(b)), and cause at least one new edge to still have a skewof
Ω(I · n/Ḡ(n)) at timeT2. This last part is achieved by (a) adding
only O(Ḡ(n)/I) new edges at timeT1, and (b) creating a skew of
Ω(n) betweenw0 andwn at timeT2. The averageskew on the
new edges must then beΩ(I · n/Ḡ(n)), which implies that at least
one new edge has a skew ofΩ(I · n/Ḡ(n)).

First we show how to createΩ(n) skew betweenw0 andwn at
timeT2. Note that, because of the new edges, the distance between
w0 andwn at timeT2 is reduced toO(Ḡ(n)/I). Standard shift-
ing arguments create a skew proportional to the distance, which is
not enough in our case, and hence we use a more roundabout way.
Informally, we want to show thatw0 andwn cannot react quickly
enough to the new edges, or they would violate the local skew guar-
antee along theA-chain.

We choose two nodesu, v on theA-chain such thatdist(w0, u) =
dist(wn, v) = k, wherek = Θ(n/s̄(n)), anddist(u, v) = Ω(n).
Nodesu andv are “shielded” from events on theB-chain by large
message delays (see Fig. 1(a)). We first consider an execution α
in which the network is static and no new edges are added at time
T1. Using Lemma 3.1, we create a skew ofΩ(n) betweenu andv
at timeT2 in α, while keeping delays of at leastT /(1 + ρ) on all
links betweenw0 andu and betweenwn andv.

Nodesu, v act as a barrier betweenw0 andwn: the local skew
guarantee implies that the clocks ofw0 andwn cannot be more than
k ·ξs̄(n) = Θ(n) removed from the clocks ofu andv respectively.
Hence, whenever the skew betweenu andv is Ω(n), the skew be-
tweenw0 andwn is alsoΩ (n). (See Fig. 1(d), and note that the
figure depicts the best-case scenario for the algorithm; it could be,
for example, that the skew betweenw0 andwn is actually greater
than the skew betweenu andv).

Finally, we create a new executionβ, which is identical toα
until timeT1. At time T1 we add new edges as shown in Fig. 1(b).
Recall that at timeT1 the skew on each edge of theB-chain is at
mostξ ·s̄(n). Thus, we can find a set of edges as shown in Fig. 1(b),
such that (a) each edge carries a skew in the range[I − ξ · s̄(n), I],
and (b) the skews sum up to at most the skew betweenw0 andwn,
which is bounded bȳG(n). WhenI ≥ 2ξ · s̄(n), the number of
edges required is at most2Ḡ(n)/I .

By time T2 in β, the skew on each new edge must be reduced
to at mosts(n, I, T2 − T1) = s(n, I, λ(n/s̄(n))), and conse-
quently the total skew between nodesw0 andwn cannot exceed
(2Ḡ(n)/I) · s(n, I, λ(n/s̄(n))) (see Fig. 1(c)). However, in ad-
dition to this upper bound on the skew, we can also show that the
skew betweenw0 andwn at timeT2 in β is at leastΩ(n): nodes

u andv cannot distinguish betweenα andβ until time T2, since
they are shielded from theB-chain byk = Θ(n/s̄(n)) edges with
large message delays. At timeT2 in β, nodesu, v have the same
skew ofΩ(n) that they have inα, and as argued above, this implies
that w0 andwn also haveΩ(n) skew between them. Combining
the upper and lower bounds on the skew betweenw0 andwn, we
see thats(n, I, λ(n/s̄(n))) must be at leastΩ(I · (n/Ḡ(n))). This
concludes the proof.

w0 wn

k edges u
b

k edgesv

skew =Ω(n)

Chain A

Chain B

Message delays∈ [T /(1 + ρ),T]

(a) Executionα at timeT2.

w0 wn

u
b
v

Chain A

Chain B

Skew on each new edge∈ [1
2
I, I]

(b) Executionβ at timeT1 (new edges shown as dashed lines)

w0 wn

k edges u
b

k edgesv

skew =Ω(n)

Chain A

Chain B

Skew on each new edge≤ s
(

n, I, λ n

s

)

(c) Executionβ at timeT2

Ω(n)

Lu(T1)

Lv(T1)

|
|

Lw0
(T1)

Lwn
(T1)

≤ k · s̄(n) = O(n)

≤ k · s̄(n) = O(n)

Ω(n)

(d) The logical clocks ofw0, u, v, wn at timeT2 in executions
α andβ (assumingLu(T1) ≤ Lv(T1))

Figure 1: Illustrations for the proof of Theorem 3.2

Theorem 3.2 makes no assumptions on the global skewḠ(n).
However, most static clock synchronization algorithms in the liter-
ature guarantee a global skew ofO(D) in networks of diameterD.
Moreover, all gradient clock synchronization algorithms of which
we are awarerely on having a global skew ofO(D) in order to
prove their gradient property [12, 13, 14].

In dynamic graphs the diameter is undefined, and the natural
extention is to require a global skew of̄G(n) = O(n). This is
achieved by the algorithm presented in Section 4, and here, too,
the global skew bound is used to prove the local skew guarantee.
It therefore seems most interesting to consider algorithmsthat pro-
vide a global skew guarantee ofO(n). For such algorithms, The-
orem 3.2 shows that it takesΘ(n/s̄(n)) time to reduce the initial
skew on a new edge by aconstantfraction.

COROLLARY 3.3. LetA be a stabilizing DCSA that guarantees
a global skew of̄G(n) = O(n) and a dynamic local skew ofs with
a stable local skew of̄s(n) = o(n). Then there exist constants
λ, ζ ≥ 0 such that for all sufficiently largen andI we have

s(n, I, λ · n

s̄(n)
) ≥ ζ · I.

4. A DYNAMIC CLOCK
SYNCHRONIZATION ALGORITHM

Next we present a simple DCSA that achieves the tradeoff demon-
strated in the previous section.

The algorithm is based on nodes sending each other periodic up-
dates containing their own logical clock value and their estimate for
the maximal logical clock in the network. Updates are sent toall
neighbors every∆H subjective time units; that is, if nodeu sends
an update to all its neighbors at real timet, the next time it will
send an update is real timet′ such thatHu(t′) = Hu(t) + ∆H .
Since the hardware clock ofu progresses at a rate of at least1− ρ,
updates are sent at least once every∆H

1−ρ
real time units.

Define

∆T := T +
∆H

1− ρ
, ∆T ′ := (1 + ρ) ∆T .

Since every node sends messages to all its neighbors at leastonce
every ∆H

1−ρ
time units, and messages take at mostT time units to ar-

rive, ∆T is the longest amount of real time that may pass between
the receipt of two messages along an edge, provided the edge ex-
ists throughout the interval. Since nodes do not have accessto real
time, they use∆T ′ to conservatively estimate the time they have
to wait between receiving two messages from a neighbor. If∆T ′

subjective time has passed and a message was not received, the link
to that neighbor must have failed.

The algorithm we present here is event-based: nodes react to
messages they receive, and todiscover(X) events, whereX ∈
{add({u, v}), remove({u, v}) | v ∈ V }. In addition, each node
can schedule delayed events by invokingset_timer(∆t, timer-ID).
If set_timer(∆t, timer-ID) is called byu at real timet, then at real
time t′ such thatHu(t′) = Hu(t) + ∆t, analarm(timer-ID) event
is triggered at nodeu. A delayed event can be cancelled by calling
cancel(timer-ID).

The algorithm uses two types of timers: thetick timer is set to
go off every subjective∆H time, and alost(v) timer is set to go
off ∆T ′ subjective time units after a message fromv is received.

Throughout the run of the algorithm each nodeu maintains two
setsΓu, Υu of nodes, withΓu ⊆ Υu. The nodes inΥu can be
thought of as “tentative neighbors” ofu: a nodev is added to
Υu when adiscover(add({u, v})) event occurs atu, and removed
when adiscover(remove({u, v})) event occurs. The criterion for

membership inΓu is more restrictive: the setΓu contains those
nodes ofΥu that u has heard from at most∆T ′ subjective time
units ago. If∆T ′ subjective time units pass andu does not receive
a message fromv, it removesv from Γu (but not fromΥu). The
nodes inΓu are the only ones used to determine nodeu’s logical
clock value, since they are the ones for whichu has an accurate
estimate. However,u sends (or tries to send) periodic updates to all
nodes inΥu.

In addition toΓu andΥu, nodeu maintains the following local
variables.

Lu Nodeu’s logical clock.

Lmax
u Nodeu’s estimate for the maximum logical

clock in the network.

Lv
u for v ∈ Γu Nodeu’s estimate for the current value of

nodev’s logical clock.

Cv
u for v ∈ Γu The value of nodeu’s hardware clock when

v was last added toΓu.

The local variables are modified upon processing the various
events as shown in Algorithm 2. Between events, the variables
Lu, Lmax

u andLv
u for all v ∈ Γu are increased at the rate ofu’s

hardware clock.
Nodeu uses a non-increasing functionB : R

+ → R
+ to deter-

mine how much perceived skew it is willing to tolerate on eachedge
{u, v}wherev ∈ Γu. The parameter to the function is(Hu − Cv

u),
the subjective amount of time that has passed sinceu discovered the
edge. The amount of perceived skew nodes are willing to tolerate
starts out very large, and decreases linearly until it reaches a “target
skew” ofB0 (a parameter). Specifically, the functionB is given by

B(∆t) := max

{

B0, 5Ḡ(n) + (1 + ρ)τ + B0 − B0

(1 + ρ)τ
∆t

}

,

where

τ :=
1 + ρ

1− ρ
∆T + T +D,

and whereḠ(n) is the bound on the global skew derived in Theo-
rem 5.5 (Section 5.1). Informally, the purpose ofB is to have nodes
wait Θ(Ḡ(n)/B0) time units before they start adjusting the skew
on new edges (this is formally stated in Section 5.2, Lemma 5.6).
SinceB0 is approximately the local skew of the algorithm and we
will show thatḠ(n) = O(n), this waiting period matches the lower
bound of Section 3. For correctness we require

B0 ≥ 2(1 + ρ)τ. (1)

The logical clock of each node is adjusted after every event.In
each adjustment, nodeu increasesLu to the largest value that it
can, subject to the following constraints: (1)Lu is never decreased,
(2) Lu cannot exceedLmax

u , and (3) for allv ∈ Γu, the perceived
skew on edge{u, v} cannot exceed the value ofB for that edge;
that is, for allv ∈ Γu we requireLu − Lv

u ≤ B (Hu −Cv
u). If

the constraints cannot be met (e.g., ifu has a neighbor that is very
far behind), nodeu cannot make a discrete increase to its logical
clock. However, the logical clock continues to increase at the rate
of u’s hardware clock. The update rule is given by

Procedure AdjustClock

Lu ← max

{

Lu, min

{

Lmax
u , min

v∈Γu

{Lv
u + B(Hu − Cv

u)}
}}

Algorithm 2: Responses to events that occur at nodeu

when discover(add({u, v})) occurs atu1

send(u, v, 〈Lu, Lmax
u 〉)2

Υu ← Υu ∪ {v}3

AdjustClock()4

end5

when discover(remove({u, v})) occurs atu6

Γu ← Γu \ {v}7

Υu ← Υu \ {v}8

AdjustClock()9

end10

when alarm(lost(v)) occurs atu11

Γu ← Γu \ {v}12

AdjustClock()13

end14

when receive(u, v, 〈Lv, Lmax
v 〉) occurs atu15

cancel(lost(v))16

if v 6∈ Γu then17

Γu ← Γu ∪ {v}18

Cv
u ← Hu19

Lv
u ← Lv20

Lmax
u ← max {Lmax

u , Lmax
v }21

AdjustClock()22

set_timer(∆T ′, lost(v))23

end24

when alarm(tick) occurs atu25

forall v ∈ Υu do26

send(u, v, 〈Lu, Lmax
u 〉)27

AdjustClock()28

set_timer(∆H, tick)29

end30

For simplicity, we assume that all nodes know (upper bounds
on) the maximum hardware clock driftρ, the propagation delay
T , as well as the boundD on the time between topology changes
and the nodes discovering these changes. Depending on how edge
insertions and deletions are discovered,D typically is a function of
ρ, T , as well as the parameter∆H . Throughout the remainder of
the paper, we assume thatD > max{T , ∆H/(1 − ρ)}. We also
assume that all nodes known, the number of nodes participating
in the system. With these assumptions, each nodeu knows enough
to compute the value ofBv

u for everyv ∈ Γu. In particular, all
nodes can compute the bound̄G(n) on the global skew. Note that
the same asymptotic results can be achieved if all nodes known
up to a constant factor. This would allow to generalize the setting
and also adapt to nodes joining and leaving the system as longasn
only changes at a constant rate.

5. ANALYSIS OF THE ALGORITHM
To analyze the algorithm it is important to understand what con-

ditions prevent nodes from making discrete changes to theirlogical
clocks. The following definitions and lemmas characterize these
conditions and describe basic properties of the algorithm.
Let

Bv
u(t) := B(Hu(t)− Cv

u(t))

be the amount of perceived skew nodeu is willing to tolerate on
the edge{u, v} at real timet.

DEFINITION 5.1 (BLOCKED NODES). We say that a nodeu
is blocked by nodev at timet if Lmax

u (t) > Lu(t) andv ∈ Γu(t)

andLu(t)− Lv
u(t) > Bv

u(t). In this case we also say that nodev
blocks nodeu at timet and that nodeu is blocked at timet.

It is easy to see that being blocked prevents nodeu from increasing
its logical clock in procedureAdjustClock(). The next lemma
shows that being blocked is theonly reason that can prevent a node
from increasing its logical clock to its max estimate.

LEMMA 5.1. If Lmax
u (t) > Lu(t), then nodeu is blocked at

timet.

Each nodeu decides whether or not to increase its clock based
on its estimates of its neighbors’ clocks, aiming to keep theskew on
each edge{u, v} no greater thanBv

u. Since the estimateLv
u may

be larger than the real value ofv’s clock, nodeu may overshoot the
mark. The following lemmas relate nodeu’s estimates to the real
clock values of its neighbors, and show thatu’s perceived skew is
not too far off the mark when it decides to make a jump.

LEMMA 5.2 (ESTIMATE QUALITY). For all v ∈ Γu(t) we
haveLv

u(t) ≥ Lv(t− τ).

LEMMA 5.3 (REAL VS. DESIRED SKEW). If nodeu makes a
discrete change to its logical clock at timet, then immediately fol-
lowing the jump, for allv ∈ Γu(t) we haveLu(t) − Lv(t) ≤
Bv

u(t) + 2ρ · τ .

5.1 Global Skew
The basic strategy to bound the global skew of our dynamic clock

synchronization algorithm is the same as the one used in a static
network (see [14]). We first show that for any two nodesu andv,
the estimatesLmax

u (t) andLmax
v (t) of the maximum clock value in

the system are not too far apart. Second, we show that if the global
skew exceeds a certain value at timet, the nodev with the smallest
logical clock valueLv(t) cannot be blocked at timet. By Lemma
5.1, we then haveLv(t) = Lmax

v (t), and thus the bound on the
maximal difference between two estimatesLmax

u (t) andLmax
v (t)

also yields a bound on the global skew. We define

Lmax(t) := max
v∈V

Lmax
v (t).

PROPERTY1 (RATE OF Lmax). The value ofLmax increases
at a rate of at most1 + ρ. That is, for allt2 ≥ t1 ≥ 0 we have

Lmax(t2)− Lmax(t1) ≤ (1 + ρ)(t2 − t1)

The error in the estimatesLmax
u (t) can be bounded by applying

an interval connectivity assumption (Definition 2.1). Thisis stated
by the following lemma.

LEMMA 5.4 (MAX PROPAGATIONLEMMA). If the dynamic
graphG is (T +D)-interval connected, then for allt ≥ 0 and all
u ∈ V it holds that

Lmax(t)− Lmax
u (t) ≤ ((1 + ρ) · T + 2ρ · D) · (n− 1).

PROOF. All hardware clocks and max estimates are initialized
to 0 at time 0, and henceLmax(0) − Lmax

u (0) = 0. The max
clockLmax increases at a rate of no more than1 + ρ, and the max
estimateLmax

u (t) of any nodeu increases at a rate of at least1−ρ.
Consequently, the differenceLmax(t)−Lmax

u (t) grows at a rate of
no more than(1+ρ)−(1−ρ) = 2ρ, and becauseρ < 1, the claim
holds at least until time

t =
(1 + ρ)T + 2ρ · D

2ρ
· (n− 1) > (T +D) · (n− 1).

Thus, it is sufficient to consider timest such thatt > (T + D) ·
(n− 1).

For i ∈ {1, . . . , n}, define

ti := t− (n− i)(T +D),

and

Vi := {v ∈ V | Lmax
v (ti) ≥ Lmax(t1) + (i− 1)(1− ρ)D} .

Intuitively, Vi is the set of nodes that have a good max estimate at
time ti. We prove by induction oni that for alli ∈ {1, . . . , n} we
have|Vi| ≥ i.

By definition, V1 = {v ∈ V | Lmax
v (t1) ≥ Lmax(t1)}. There

exists some nodev such thatLmax
v (t1) = Lmax(t1), and conse-

quently we get|V1| ≥ 1. For the induction step, suppose that
|Vi−1| ≥ i− 1. By definition, for allv ∈ Vi−1 we have

Lmax
v (ti−1) ≥ Lmax(t1) + (i− 2)(1− ρ)D. (2)

The max estimate of each node increases at least at the rate ofits
hardware clock. Consequently, from (2), for allv ∈ Vi−1,

Lmax
v (ti) ≥ Lmax

v (ti−1) + (ti − ti−1)(1− ρ)

≥ Lmax(t1) + (i− 2)(1− ρ)D + (ti − ti−1)(1− ρ)

≥ Lmax(t1) + (i− 1)(1− ρ)D,

and henceVi−1 ⊆ Vi.
If V \ Vi−1 = ∅, then|Vi| ≥ |Vi−1| = n and we are done. Oth-

erwise, by(T +D)-interval connectivity ofG, there exists an edge
e = {v, w}, wherev ∈ Vi−1 andw ∈ V \ Vi−1, such thate ex-
ists throughout the interval[ti−1, ti]. There are timestsnd ≥ ti−1

andtrcv ≤ ti such that nodev sends nodew a message containing
Lmax

v (tsnd) at timetsnd, and nodew receives the message at time
trcv and updates its max estimate. Thus we have

Lmax
w (ti) ≥ Lmax

w (trcv) + (1− ρ)(ti − trcv)

≥ Lmax
v (tsnd) + (1− ρ)(ti − trcv)

≥ Lmax
v (ti−1) + (1− ρ)(ti − trcv + tsnd − ti−1)

≥ Lmax
v (ti−1) + (1− ρ)(ti − ti−1 − T)

= Lmax
v (ti−1) + (1− ρ)D (From (2))

≥ Lmax(t1) + (i− 1)(1− ρ)D.

It follows thatw ∈ Vi. Sincew 6∈ Vi−1 andVi−1 ∪ {w} ⊆ Vi we
have|Vi| ≥ |Vi−1|+ 1 ≥ i. This concludes the induction.

The claim we proved implies thatVn = V ; that is, for allv ∈ V ,
at timetn = t we have

Lmax
v (t) ≥ Lmax(t1) + (n− 1)(1− ρ)D. (3)

From Property 1,

Lmax(t) ≤ Lmax(t1) + (1 + ρ)(t− t1)

= Lmax(t1) + (1 + ρ)(n− 1)(T +D), (4)

and combining (3) and (4) yields

Lmax(t)− Lmax
v (t) ≤ (n− 1) ((1 + ρ)T + 2ρ · D) .

Using the approach sketched above, Lemma 5.4 allows us to
prove the following theorem, which bounds the global skew ofour
algorithm.

THEOREM 5.5 (GLOBAL SKEW). The algorithm guarantees
a global skew of

Ḡ(n) := ((1 + ρ) · T + 2ρ · D) · (n− 1).

PROOF. We show the stronger statement that at all timest,

∀v ∈ V : Lmax(t)− Lv(t) ≤ Ḡ(n),

and the claim then follows from the definition ofLmax and because
for all u ∈ V and timest ≥ 0 we haveLmax

u (t) ≥ Lu(t).
For the sake of contradiction, assume that this is not the case.

Then there is some timet, nodev ∈ V andε > 0 such that

Lmax(t)− Lv(t) ≥ Ḡ(n) + ε. (5)

Let t̄ be the infimum of times when (5) holds for some node
v. By Lemma 5.4, we haveLmax(t̄) − Lmax

v (t̄) ≤ Ḡ(n), and thus
Lv(t̄) < Lmax

v (t̄). Hence, Lemma 5.1 shows that nodev is blocked
at time t̄. By Definition 5.1, there is a nodeu ∈ Γv(t̄) such that
Lv(t̄) − Lu

v (t̄) > Bu
v (t̄) ≥ B0. From Lemma 5.2, it therefore

holds thatLu(t̄ − τ) < Lv(t̄) − B0, and by Property 1 we have
Lmax(t̄− τ) ≥ Lmax(t̄)− (1 + ρ)τ . We therefore obtain

Lmax(t̄− τ)− Lu(t̄− τ) > Lmax(t̄)− Lv(t̄)− (1 + ρ)τ + B0.

Because we assume thatB0 ≥ (1 + ρ)τ , this is a contradiction to
the assumption that̄t is the infimum of times when (5) is satisfied
for the first time for some nodev.

5.2 Local Skew
The local skew guarantee of the algorithm hinges on the fact that

the constraint imposed by a newly formed edge is so weak thatno
edge can violate it: for a long time after edge{u, v} is detected,
the value ofBv

u stays greater than the global skew̄G(n). Since
no edge carries a skew that is greater thanḠ(n), the requirement
is trivially satisfied. In fact, only afterΩ

(

Ḡ(n)/B0

)

time can a
node be blocked by a new neighbor, and this is formalized by the
following lemma.

LEMMA 5.6. If nodev blocks nodeu at timet, thenv ∈ Γu(t′)
for all t′ ∈ [t−W, t], whereW (standing for “wait”) is given by

W :=

(

4
Ḡ(n)

B0
+ 1

)

τ.

Informally, the interval[t −W, t] corresponds to the time required
according to Theorem 3.2 for information about the new edge to
spread throughout the network.

Recall that nodeu communicates frequently with nodes inΓu, so
intuitively, any node inΓu should have fairly up-to-date informa-
tion about nodeu. In particular, Lemma 5.6 implies that ifv blocks
u, thenv has had accurate information aboutu for a long time prior
to t. This observation will allow us to argue that whenv blocksu,
it is “aware” for a long time that it lags far behind; thus, node v
must itself be blocked, or else it would have caught up with node
v. Note, however, that the neighbor relation in our algorithmis not
symmetric: it is possible thatu 6∈ Γv(t) even whenv blocksu at
time t. This can happen if the edge{u, v} was recently removed,
and the removal was discovered only byv. Therefore, instead of
arguing aboutLu

v (t), which is undefined ifu 6∈ Γv(t), we show
thatLmax

v (t) reflects a recent value ofLmax
u , asu wasrecentlyin

Γv. SinceLmax
u ≥ Lu, this is sufficient for nodev to see that it has

fallen behind.

LEMMA 5.7 (“EDGE REVERSAL”). If nodev blocks nodeu
at timet, then for allt′ ∈ [t−W +∆T , t−T] we haveLmax

v (t′) ≥
Lmax

u (t′ − τ).

We are now ready to prove the local skew guarantee.

THEOREM 5.8. For any two nodesu, v and timet such that
v ∈ Γu(t),

Lu(t)− Lv(t) ≤ Bv
u(t−W) + 2ρW

= Bv
u(t−W) + 2ρτ

(

4
Ḡ(n)

B0
+ 1

)

.

PROOFSKETCH. Suppose by way of contradiction that at time
t there are two nodesu, v ∈ V such thatv ∈ Γu but

Lu(t)− Lv(t) > Bv
u(t−W) + 2ρW.

There are two parts to the proof. First, we show that since theskew
betweenu andv is very large,u has been blocked for a long time,
and its logical clock has not increased by much. More formally,
sinceBv

u is non-increasing, for allt′ ∈ [t−W, t] we have

Bv
u(t′) ≤ Bv

u(t−W). (6)

From Lemma 5.3 and Lemma 5.6, at any timet′ ∈ [t−W, t] node
u’s logical clock cannot jump to a value that exceedsLv(t′) +
Bv

u(t′) + 2ρτ ≤ Lv(t′) + Bv
u(t−W) + 2ρτ . Thus, whenever the

skew betweenu andv exceedsBv
u(t−W)+2ρτ , nodeu’s logical

clock increases at the rate ofu’s hardware clock, which is at most
1 + ρ. In addition, nodev’s logical clock always increases at a rate
of at least1−ρ. Together we have that whenever the skew between
u andv exceedsBv

u(t−W) + 2ρτ it increases at a rate of at most
(1 + ρ)− (1− ρ) = 2ρ.

At time t the skew betweenu andv exceedsBv
u(t−W)+2ρW .

By the argument above, the difference2ρW−2ρτ was built up at a
rate of at most2ρ. It follows that throughout the interval[t−W +
τ, t], nodeu’s logical clock increases at the rate of its hardware
clock, and for allt′ ∈ [t−W + τ, t] we have

Lu(t)− Lu(t′) ≤ (1 + ρ)(t− t′). (7)

In the second part of the proof we argue that nodev would not
have fallen so far behind nodeu unless it was itself blocked until
very recently by some other nodeu2, which is far behindv. And
why doesu2 lag behindv? Why, it mustalso have been blocked
recently. In this way we construct a chainu0, u1, . . . of nodes,
whereu0 = u, u1 = v, and each nodeui is blocked byui+1 at
time ti := t − iτ . We are able to extend the chain up to length
` + 1, where

` := bW − τ

2τ
c. (8)

Sinceui+1 blocksui at timeti, by definition we haveLui
(ti) −

L
ui+1
ui

(ti) > B
ui+1
ui

(ti) ≥ B0, and Lemma 5.2 allows us to trans-
late this into

Lui
(ti)− Lui+1

(ti+1) > B0.

Summing the inequalities for all0 ≤ i ≤ ` + 1 we get

Lu(t)− Lu`+1
(t`+1) > (` + 1)B0. (9)

Note that by definition of̀ we have(` + 1)B0 > Ḡ(n); however,
this is not quite a contradiction to the global skew, because(9) re-
lates the clocks ofu andu`+1 at different times. Now the first part
of the proof comes into play: we use (7) to obtain

Lu(t)−Lu(t`+1) ≤ (1+ ρ)(t− t`+1) = (1 + ρ)(`+ 1)τ, (10)

which we combine with (9), yielding

Lu(t`+1)− Lu`+1
(t`+1) > (` + 1)(B0 − (1 + ρ)τ)

(1)
≥ 1

2
(` + 1)B0

≥ 1

2

(

W − τ

2τ

)

·B0

= Ḡ(n).

This is the contradiction we sought.
Next we describe in more detail how the chainu0, . . . , u`+1 is

constructed inductively. At each step we maintain the following
three properties:

(1) If i 6= 0 thenLu(t)− Lui
(ti) > i ·B0,

(2) For allt′ ∈ [t2`−i+1, ti] we haveLmax
ui

(t′) ≥ Lu(t′− iτ), and

(3) If i ≤ ` then nodeui is blocked at timeti.

The first property is the one we are really interested in, and the other
two are necessary for the induction to go through. Specifically,
property (2) is used to show thatui is blocked: by showing thatui

is “aware” of a recent value ofu’s logical clock we can show that
Lmax

ui
(ti) > Lui

(ti), and then we apply Lemma 5.1 to show that
ui is blocked. This fact is then used to extend the chain further.

The base isu0 = u, which clearly satisfies all three properties.
For the induction step, suppose thatui satisfies the properties, and
let ui+1 be a node that blocksui at timeti. By definition,

Lui
(ti)− L

ui+1
ui

(ti) > B
ui+1
ui

(ti) ≥ B0,

and using Lemma 5.2 we obtain

Lui
(ti)− Lui+1

(ti+1) > B0.

If i = 0 this is exactly property (1), and ifi > 0 we can use the
induction hypothesis to obtain property (1).

To show thatui+1 satisfies property (2), lett′ ∈ [t2`−i, ti+1].
Simple math shows thatt′ ∈ [ti −W + ∆T , ti − T], so we can
use Lemma 5.6 to obtain

Lmax
ui+1

(t′) ≥ Lmax
ui

(t′ − τ).

Now we use the induction hypothesis, applied to nodeui at time
t′ − τ , to get

Lmax
ui+1

(t′) ≥ Lu(t′ − τ − iτ) = Lu(t′ − (i + 1)τ),

as desired.
Finally we use properties (1) and (2) to show that nodeui+1 is

blocked at timeti+1 (property (3)) ifi ≤ `. By Lemma 5.1, it is
sufficient to establish thatLmax

ui+1
(ti+1) > Lui+1

(ti+1). Property
(1) shows that

Lui+1
(ti+1) < Lu(t)− (i + 1)B0,

and property (2) shows that

Lmax
ui+1

(ti+1) ≥ Lu(ti+1 − (i + 1)τ) = Lu(t2i+2).

To relate the two bounds we use (7), which gives us

Lu(t2i+2) ≥ Lu(t)− 2(1 + ρ)(i + 1)B0

(1)
≥ Lu(t)− (i + 1)B0.

This concludes the induction.

Theorem 5.8 describes the local skew guarantee from a point
of view that is subjective to nodeu: the statement of the theorem
assumes thatv ∈ Γu, and the value ofBv

u depends on the local
variablesCv

u and Hu. In particular,Hu may progress at a rate
slower than real time, andv may not be inΓu when the edge{u, v}
is formed (although it is added quickly). The following corollary
states the “objective” local skew guarantee of the algorithm.

COROLLARY 5.9. The algorithm guarantees a dynamic local
skew of

s(n, I, ∆t) = B ((1− ρ)(∆t−W − τ)) + 2ρW

= Θ

(

max

{

B0, n− B0

1 + ρ
·∆t

}

+
ρn

B0

)

,

regardless of the initial skewI on the edge.

COROLLARY 5.10. If the parameterB0 is chosen asB0 ≥
λ
√

ρn for a constantλ > 0, the stable local skew of the algorithm
is O(B0). Further, the time to reach this stable skew on a new edge
is O(n/B0). Hence, for this choice ofB0, the trade-off achieved
by the algorithm asymptotically matches the trade-off given by the
lower bound in Theorem 3.2.

6. RELATED WORK
Being a fundamental problem in distributed computing, it isnot

surprising that there is a rich literature on clock synchronization
algorithms and lower bounds. Until recently, the work on clock
synchronization focused on global synchronization, i.e.,on min-
imizing the maximal clock difference between any two nodes in
the system. Essentially all lower bounds on distributed clock syn-
chronization use theshifting technique introduced in [15], which
exploits uncertainty resulting from unknown message delays, the
scalingtechnique from [5], which uses uncertainty that arises as a
consequence of different clock rates, or a combination of the two
techniques. Using the shifting technique, it is shown in [3]that
even if clocks experience no drift, a clock skew ofD/2 can not be
avoided in a network of diameterD. In light of this result, the algo-
rithm described in [20], which guarantees a global skew ofO(D),
is asymptotically optimal. In [1], Attiya et. al. show that no two
nodes can avoid a skew that is equal to the cumulative uncertainty
on the minimum-uncertainty path between them. We generalize
this result slightly in Section 3 (Lemma 3.1), and use it to prove
our lower bound.

A number of related algorithms and lower bounds for varying
models and with different properties have been described (see e.g.
[1, 2, 7, 18, 19]). All algorithms described in these papers do not
guarantees a skew between neighboring nodes that is better than
O(D). Recognizing this limitation of existing algorithms, Fan and
Lynch introduce the gradient clock synchronization problem in [8],
and show that on a path of lengthD, no clock synchronization algo-
rithm can avoid incurring a skew ofΩ(log D/ log log D) between
adjacent nodes. This lower bound has recently been improvedto
Ω(log D) in [13].

The first algorithm to guarantee a non-trivial local skew wasde-
scribed by Locher and Wattenhofer in [14]. The algorithm in [14]
guarantees a local skew ofO(

√
ρD) between any two neighbors

in a network of diameterD, whereρ denotes the maximal hard-
ware clock drift. The algorithm of [14] forms the basis for the dy-
namic gradient clock synchronization algorithm describedin this
paper. For static networks, Lenzen et. al. recently improved the up-
per bound toO(log D) in [12, 13]. This is asymptotically optimal
in light of the lower bound from [13]. All non-trivial gradient clock
synchronization algorithms of which we are aware [12, 13, 14] also

guarantee a global skew ofO(D). (Note that the lower bounds of
[8, 13] make no assumptions about the global skew.)

Most closely related to the dynamic clock synchronization prob-
lem considered in this work are algorithms that cope with faulty
nodes (e.g. [4, 5, 11, 17]). This line of research goes far beyond
studying crash failures and message omissions, and describes al-
gorithms that can cope with Byzantine faults, a topic that isout of
the scope of the present paper. However, none of these paperscon-
sider a truly dynamic setting; in particular, the results rely on the
fact that a considerable part of the network remains non-faulty and
stable. Additionally, the algorithms and lower bounds described
in these papers focus solely on global synchronization, anddo not
guarantee a local skew that is smaller than the global skew. To
the best of our knowledge, the present paper is the first to look at
gradient clock synchronization in dynamic networks.

7. CONCLUSION
We have established fundamental trade-offs for gradient clock

synchronization algorithms in dynamic networks. First, the time to
adjust the skew on a newly formed edge is inversely proportional
to the skew one is willing to tolerate on well-established edges.
Hence, having a stronger skew requirement in stable conditions im-
pairs the ability to adapt to dynamic changes. Second, contrary to
what one might initially think, reducing the skew on edges with a
small initial skew turns out to be as hard as reducing the skewon
edges with a large initial skew. The time needed in both casesis
linear in the global skew bound of the algorithm and is thus atleast
linear inn.

It will be interesting to see whether the trade-off established by
our algorithm can also be achieved for smaller stable skew bounds.
In particular, it will be interesting to see whether the techniques de-
veloped in [12, 13] to guarantee a local skew ofO(log n) in the
static case can be adapted for the dynamic setting. Note, how-
ever, that as a consequence of the lower bound proven in Section 3,
such an improved local skew bound necessarily comes at the cost
of worse adaptability to topology changes.

In this paper we used a weighted-graph approach to deal with the
dynamic topology: in the algorithm of Section 4, each edge carries
a weight, which starts out very large when the edge first appears
and decreases over time. We use the dynamic weights to gradually
decrease the effective diameter of the graph, giving nodes time to
adapt to the appearance of new edges. In a companion paper [10]
we use a similar approach to incorporate reference broadcast syn-
chronization in the algorithm from [13]. In that case the weight of
the edge has the traditional meaning in the context of clock syn-
chronization: it corresponds to the uncertainty along the edge. It is
our hope that extending the algorithm from [13] to the weighted-
graph model will serve as a first step towards a dynamic clock syn-
chronization algorithm withO(log n) stable local skew, but this
seems challenging.

An additional obvious generalization would be to incorporate
node insertions and deletions in the dynamic graph model. Aslong
as nodes join and leave at a constant rate, it might be possible to be
able to adapt all the parameters used sufficiently quickly inorder to
still guarantee the same basic results. The details of such aprotocol
as well as possible limitations on how fast one can adapt to changes
of the network size remain interesting open questions.

8. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for

their valuable comments on the phrasing of Theorem 3.2. We also
wish to thank Nancy Lynch for many fruitful discussions.

9. REFERENCES
[1] H. Attiya, D. Hay, and J. Welch. Optimal clock

synchronization under energy constraints in wireless ad-hoc
networks. InProc. of 9th Int. Conf. on Principles of
Distributed Systems (OPODIS), pages 221–234, 2005.

[2] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock
synchronization under different delay assumptions.SIAM
Journal on Computing, 25(2):369–389, 1996.

[3] S. Biaz and J. Welch. Closed form bounds for clock
synchronization under simple uncertainty assumptions.
Information Processing Letters, 80(3):151–157, 2001.

[4] D. Dolev, J. Halpern, B. Simons, and R. Strong. Dynamic
fault-tolerant clock synchronization.Journal of the ACM,
42(1):143–185, 1995.

[5] D. Dolev, J. Halpern, and H. Strong. On the possibility and
impossibility of achieving clock synchronization.Journal of
Computer and System Sciences, 32(2):230–250, 1986.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained network time
synchronization using reference broadcasts.ACM SIGOPS
Operating Systems Review, 36(SI):147–163, 2002.

[7] R. Fan, I. Chakraborty, and N. Lynch. Clock synchronization
for wireless networks. InProc of 8th Int. Conf. on Principles
of Distributed Systems (OPODIS), pages 400–414, 2004.

[8] R. Fan and N. Lynch. Gradient clock synchronization.
Distributed Computing, 18(4):255–266, 2006.

[9] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.The
Theory of Timed I/O Automata (Synthesis Lectures in
Computer Science). Morgan & Claypool Publishers, 2006.

[10] F. Kuhn and R. Oshman. Gradient clock synchronization
using reference broadcasts. arXiv:0905.3454v1, 2009.
http://arxiv.org/abs/0905.3454v1.

[11] L. Lamport and P. Melliar-Smith. Synchronizing clocksin
the presence of faults.Journal of the ACM, 32(1):52–78,
1985.

[12] C. Lenzen, T. Locher, and R. Wattenhofer. Clock
synchronization with bounded global and local skew. InProf.
of 49th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 500–510, 2008.

[13] C. Lenzen, T. Locher, and R. Wattenhofer. Tight bounds for
clock synchronization. InProc. of 28th ACM Symp. on
Principles of Distributed Computing (PODC), 2009.

[14] T. Locher and R. Wattenhofer. Oblivious gradient clock
synchronization. InProc. of 20th Int. Symp. on Distributed
Computing (DISC), pages 520–533, 2006.

[15] J. Lundelius and N. Lynch. An upper and lower bound for
clock synchronization.Information and Control,
62(2/3):190–204, 1984.

[16] N. A. Lynch.Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[17] K. Marzullo and S. Owicki. Maintining the time in a
distributed system. InProc. of 2nd ACM Symp. on Principles
of Distributed Computing (PODC), pages 44–54, 1983.

[18] R. Ostrovsky and B. Patt-Shamir. Optimal and efficient clock
synchronization under drifting clocks. InProc. of 18th ACM
Symp. on Principles of Distributed Computing (PODC),
pages 400–414, 1999.

[19] B. Patt-Shamir and S. Rajsbaum. A theory of clock
synchronization. InProc. of 26th ACM Symp. on Theory of
Computing (STOC), pages 810–819, 1994.

[20] T. Srikanth and S. Toueg. Optimal clock synchronization.
Journal of the ACM, 34(3):626–645, 1987.

