Gradient Clock Synchronization in Dynamic Networks

Fabian Kuhn
Computer Science and
Artificial Intelligence Lab
MIT
Cambridge, MA 02139, USA

fkuhn@csail.mit.edu

ABSTRACT

Over the last years, large-scale decentralized computerones
such as peer-to-peer and mobile ad hoc networks have beceme i
creasingly prevalent. The topologies of many of these nedsvare
often highly dynamic. This is especially true for ad hoc natwe
formed by mobile wireless devices.

In this paper, we study the fundamental problem of clock syn-
chronization in dynamic networks. We show that there is an in
herent trade-off between the skeéwguaranteed along sufficiently
old links and the time needed to guarantee a small skew alewg n
links. For any sufficiently large initial skew on a new linkete
are executions in which the time required to reduce the sketh®
linkto O(S) is at least2(n/S).

We show that this bound is tight for moderately small values o
S. Assuming a fixed set of nodes and an arbitrary pattern of edge
insertions and removals, a weak dynamic connectivity reguént
suffices to prove the following results. We present an afgori
that always maintains a skew 6f(n) between any two nodes in
the network. For a parametér = Q(,/pn), wherep is the max-
imum hardware clock drift, it is further guaranteed that fan-
munication link between two nodes v persists in the network for
O(n/S) time, the clock skew betweem and v is reduced to no
more tharO(S).

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problemssemputations on discrete struc-
tures

G.2.2 Discrete M athematics]: Graph Theory—graph algorithms
G.2.2 Discrete Mathematics]: Graph Theory—hetwork problems

General Terms
Algorithms, Theory

Keywords

clock synchronization, distributed algorithms, dynamatworks

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA'09 August 11-13, 2009, Calgary, Alberta, Canada.

Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

Thomas Locher
Computer Engineering and
Networks Laboratory
ETH Zurich
8092 Zurich, Switzerland
lochert@tik.ee.ethz.ch

Rotem Oshman
Computer Science and
Artificial Intelligence Lab
MIT
Cambridge, MA 02139, USA

rotem@csail.mit.edu

1. INTRODUCTION

Establishing coordination between participants is at tire of
many algorithmic challenges in distributed computing. Ada-
mental coordination task, and a basic prerequisite for nzgupyi-
cations, is achieving a common notion of time. Typically rgve
node in the network has access to a local hardware clockhbut t
hardware clocks of different nodes run at slightly diffdreates,
and the rates can change over time. In addition, althoughuacho
on the message delays in the network may be known, specific mes
sage delays are unpredictable. As a consequence it is ¢jgmara
possible for any node in the network to get an accurate einfa
the clock values of neighboring nodes.

Operating under these uncertainties, a distributed clga&rgo-
nization algorithm computes logical clocks at every nodigh the
goal of synchronizing these clocks as tightly as possihiadifion-
ally, distributed clock synchronization algorithms triedninimize
the maximal difference between any two logical clocks inribe
work. We call this quantity thglobal skewof a clock synchroniza-
tion algorithm. It is well-known that no algorithm can guatee
a global skew better thaf(D), where D is the diameter of the
network [3].

In many cases it is more important to tightly synchronize the
logical clocks of nearby nodes in the network than it is toimin
mize the global skew. For example, to run a time division mult
ple access (TDMA) protocol for coordinating access to theresth
communication medium in a wireless network, one only needs t
synchronize the clocks of nodes that interfere with eachrottinen
transmitting. The problem of achieving synchronizatioatttie-
pends on the distance between the two nodes is calladient
clock synchronizatianlt was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a cldausof
Q(log D/ loglog D) cannot be prevented even between immedi-
ate neighbors in the network [8]. The maximal differencensen
the two logical clocks of adjacent nodes in the network isecal
thelocal skewof a clock synchronization algorithm; for static net-
works, Lenzen et. al. have recently proven an asymptoyitigiht
bound of©(log D) for the best possible local skew an algorithm
can achieve [12, 13]. For other related work on clock syneizas
tion, see Section 6.

Most existing work on clock synchronization considersistat
networks. However, many modern networks are inherently dy-
namic. Typically formed by autonomous agents without a@ntr
control, nodes can join and leave the network in an arbitpaty
tern. In ad hoc networks where often the devices are evemassu
to be mobile, the resulting network topology can be highlgaiypic
even if the set of participating nodes remains stable. Goatidn
in dynamic networks is challenging, and due to the increpsig-
nificance of such networks, it is also particularly impottan

In this paper we study the gradient clock synchronizatimbpr 2. PRELIMINARIES
lem in dynamic networks. Because the distance between riodes)
the network can change over time, the problem becomes signifi 2.1 Notation

cantly harder in a dynamic setting. Consequently, unlilkestfatic Given an undirected static gragh = (V, E), we denote byP
case, the requirements we make on the skew between thellogicane set of all (undirected) paths @@. For convenience in notation
clocks of different nodes can also change over time. Evew ne o regard each patR € P as a set of edge® C E. We use
edge that is formed induces a new and stronger constrairfieon t P(u,v) to denote all paths between two nodes € V. The

, .

skew between its endpoints; the algorithm must adapt byciedu distance between two nodesandw is defined by
the skew on the edge until the new constraint is satisfiedceleme

distinguish between two requirementsstable local skevbound dist(u,v) := min |P].
applies, conceptually, to edges that exist for a long timbis Ts PeP(uv)
analogous to the local skew guaranteed by gradient clooksgn The definitions above are used only in the context of a static

nization algorithms for static networks. In practice, wepose a graph. (We use static graphs in the proof of the lower bound in
weakerdynamic local skevoound on all the edges, including new Section 3). In this work we are often concerned with dynamic
ones. The dynamic local skew bound is a function of how long graphs, which do not have a static set of edges. Weliige :=
the edge has existed: the bound starts out weak and growgistro {{u,v} | u,v € V'} to denote the set of afiotentialedges over a
with time, until in the limit it converges to the stable locsew static sefl” of nodes.
bound.

The following intuitive example shows that in general, theck 2.2 Network Model

skew on a hew edge cannot be reduced too quickly withouttviola We model a dynamic network over a static $&bf nodes us-
ing the stable local skew bound on edges that were formedg lon ing Timed I/O Automata (TIOA) [9]. Each node in the network

time before. Let. andv be two nodes at distandefrom each is modelled as a TIOA, and the environment is also modelled as
other. As no algorithm can prevent a skewttffi) between nodes a TIOA. The dynamic behavior of the network is modelled using
at distancés:, a newly formed edge between nodesndv can carry events of the formadd({u, v}) andremove({u, v}) for u,v € V,

Q(k) local skew. To reduce the skew on the new edge, whichever which correspond to the formation and failure (respecyivef a
node is behind must increase its logical clock by a large amou |ink betweenu andv. It is assumed that no edge is both added and
However, a sudden increasednor v's clocks will create a large removed at the same time.
skew along the edges of the old path that connects them. fSpeci The history of link formations and failures in a particulaeeu-
cally, if the algorithm guarantees a stable local ske& afieitheru tion «, together with an initial set of edgdsg, induces alynamic
nor v can instantaneously increase their logical clocks to nfwae t graph G = (V, E%), whereE® : Rt — @ is a function that
S ahead of their next neighbor along the old path. In turn, when maps a time > 0 to the set of edges (links) that existdnat time
this neighbor realizes it must increase its clock, it cannotease t. We defineE“(t) to be the set of edges that are added no later
it to more thanS ahead ofits next neighbor, and so on. Ittakes than timet, and not removed between the last time they are added
Q(k/S) time until the skew can be reduced, as information about and timet (inclusive). This includes edges that appeafij and
the new edge can take time to propagate through the path. are not removed by time We say that an edgeexists throughout

Somewhat surprisingly, the example above is not the worst on the interval[t,, t2] in « if e € E%(¢,) ande is not removed at any
possible: adjusting the local skew on a newly formed edger€an time during the intervalt1, t2).
quire even more thaf(k/S) time, wherek is the previous dis- A static executioris one in which no edges are added or re-
tance between the endpoints of the new edge. We show that (al-moved. Formally,« is a static execution if for alt;,to € R*
most) independent of the initial skew on a new edge, the tere r we haveE® (t1) = E“(t2).
quired to reduce the initial skew ®is at least2(n/S) wheren is We consider a very general model, in which edges can be in-
the number of nodes in the system. This is shown in Section 3. serted or removed arbitrarily, subject only to the follog/itonnec-

In Section 4 we show that this lower bound is asymptotically tivity constraint.
tight for moderately small values & by extending a simple gra-
dient clock synchronization algorithm described in [141he dy- DEFINITION 2.1 (I-INTERVAL CONNECTIVITY). We say that
namic case. In a static setting, the algorithm of [14] gutes a a dynamic graphG = (V, E<) is T-interval connectedf for all
local skew ofO(v/pD) wherep is the maximum hardware clock ¢ > 0, the static subgraplG(; .y = (V, E%|, ,, 1) is con-
drift. When modeling a dynamic network, we assume that the se nected, whereE“ht’HT] is the set of all edges that exist through-
of nodes remains fixed, but edges can appear and disappear in ut the interval, t + 7.
completely arbitrary pattern. If a weak connectivity raquient

is satisfied, the algorithm guarantees a global ske® @f) at all In the sequel we omit the superscriptwhen it is clear from the
times. Further, for a parametsr > ,/pn and a sufficiently large context.

constant\, the algorithm guarantees a local skew of at ndben all We assume that nodes do not necessarily find out immediately
edges that are present for at leash /S time. It will be interesting about edge insertions and removalsistead, we assume that there
to see whether techniques used in the recent strong statitegt is a parameteD, such that if an edge appears or disappears at
clock synchronization algorithms in [12, 13] can be adaptetthe time ¢ in an execution, and the change is not reversed by time

dynamic setting, in order to obtain similar results for derafalues t + D, the endpoints of the edge find out no later than time
of S. Afirst step in this direction was recently made in [10], wher ~ D. Transient link formations or failures, which do not per$e
we extended the algorithm from [13] to handle links with eiiéint D time, may or may not be detected by the nodes affected. We
bounds on message delay [6]. model the discovery by node of a link formation or failureX e

The full version of this paper can be found on the authors’-web {add({u,v}), remove({u, v}) | v € V'} by an eventliscover(X)
pages, and includes the full proofs of Theorem 3.2 and thimsla
in Section 5.

1Otherwise reference-broadcast-style synchronizationlavde
possible using these events [6].

that occurs at node. (A discover(X) event is always preceded by
eventX itself.)

DEFINITION 2.4 (DYNAMIC LOCAL SKEW). A DCSA guar-
antees adynamic local skewof s : N x RT x RT — R™, where

We also assume reliable FIFO message delivery, with messages is a skew function, if in every execution of the algorithm ime&

delays bounded b{". This is modelled using events of the form
send(u, v, m) andreceive(u, v, m) that occur at node. If nodeu
sends a message to nadat timet, the environment guarantees the
following. If edge{u, v} exists throughout the interv@d, ¢ + 7],

then nodev is guaranteed to receive the message no later than time

t+ 7. If edge{u, v} exists at time but is removed at some point
in the intervallt, t + 7], there are two possible outcomes: either the
message is delivered before the edge is removed, or the geeissa
not delivered and node discovers the edge removal no later than
time ¢t + D. Finally, if edge{u,v} does not exist at time, the
message is not delivered, and naddiscovers that the edge does
not exist no later than time+ D. These definitions correspond to
an abstract version of MAC layer acknowledgements.

In the sequel we assume tlfat> 7, that is, nodes do not nec-
essarily find out about changes to the network withitime units.
This is a reasonable assumption because even if nodes ttarsm
frequently, as much && time may pass without any message being
received on a link, and during this time link formations aailiires
cannot be detected.

2.3 The Clock Synchronization Problem

In the clock synchronization problem, each nadez V has
access to a continuotmrdware clockH,, (t), which may progress
at a different rate than real time. The hardware clocks stiften
bounded driftp: although they progress at a variable rate, their rate
is always betweem — p and1 + p the rate of real time, so that for
any nodeu and timeg; < t2 we have

(1= p)(t2 — t2) < Hultz) — Hu(tr) < (14 p)(t2 — ta).

For simplicity we assume that at the beginning of any exeatttie
hardware clock values are all

The goal of a dynamic clock synchronization algorithm (DGSA
is to output dogical clock L. (¢) such that the logical clocks of dif-
ferent nodes are close to each other. In particular we censigb
requirements. First, global skew constrainbounds the difference
between the logical clocks of any two nodes in the networklat a
times in the execution. Second,dgnamic local skew constraint
bounds the skew between two neighbors as a function of hogv lon
the link between them has existed. These requirementsrnally
defined as follows.

DEFINITION 2.2 (GLOBAL SKEW). A DCSA guarantees a
global skew ofG(n) if in any execution of the algorithm in a net-
work ofn nodes, for any two nodes v and timet > 0 we have

L.(t) — Lo(t) < G(n).

DEFINITION 2.3 (SKEW FUNCTION). Afunctions : NxR™ x
RT — RT (whereR* are the nonnegative reals) is said to be a
skew functionif the following conditions hold.

1. The functions(n, I,t) is non-decreasing il and non-in-
creasing int; and

2. Foralln € N, I € RY, the limitlim¢—o s(n, I,t) is de-
fined and finite; and

3. Forall I, I, € R we have

lim s(n,I1,t) = lim s(n,I2,t).

t—o0 —00

work overn nodes, for any edge = {u, v} and times; < o, if
edgee exists throughout the intervdd,, t2] in the execution, then
we have

|Lu(t2) = Lo(t2)] < s(n, [Lu(ts) = Lu(t)], t2 — t2).

DEFINITION 2.5 (SraBILIZING DCSA). A DCSAA is said
to bestabilizingif there is a skew functionsuch that4 guarantees
a dynamic local skew of. In this case we say thad guarantees a
stable local skevef 5(n) = lim;—.o s(n, I,t) for somel € RT.

Finally, logical clocks have to be strictly increasing amd #nus
not allowed to temporarily stop. In particular, we requine tate
of each logical clock to be at least half the rate of real tithet is,
for any nodeu and timeg; < t, we require

Lﬁg—m@gzgm—ny

3. LOWER BOUND

We begin our analysis of dynamic clock synchronization algo
rithms with a lower bound on the time needed to adjust thel loca
skew on a newly formed edge. Specifically, we show that foreve
sufficiently large initial skewl, the time needed to reduce the skew
by a factor of©(n/G(n)) is (n/5(n)). Thus, there is an inherent
tradeoff between the stable skew guaranteed by the algo#tid
the time the algorithm requires to reduce the skew on newsedge

The main idea in the proof of the lower bound is to show that
because of the local skew guarantee, even nodes that aaatdist
from a new edge may prevent the skew on it from being reduced.
To do this we choose two nodes that are far from the new edge
and create a large skew between them, while using large gessa
delays to prevent them from hearing about the new edge.

The skew is created using shifting (see, e.g., [16]). A saehd
shifting argument shows that because of the uncertaintyrdéug
message delays, nodes cannot tell the difference betwesrean-
tion in which the skew is large, and an execution in which itos.
Consequently the nodes cannot avoid having a large skewebatw
them. In the resulting execution, the message delays on kokse
are zero, and in the standard construction it is not posgibten-
trol which links these will be.

In our proof we require large message delays along cert@n sp
cific links. A straightforward modification of the argumembrin
[1] and [8] allows us to create large skews while maintairarge-
defined pattern of message delays.

More formally, given a static networs = (V, E), adelay pat-
tern for G is a pairM = (E€, P), whereE® C E is a set of
constrained linkand P : E€ — [0, 7] assigns a message delay to
each constrained link. We define thé-flexible distancéetween
two nodesu, v € V' by
min

dist s (u, 1)) = poam

P\Eﬂ.

LEMMA 3.1 (MASKING LEMMA). LetG = (V, E) be a static
network, and let\/ = (E, P) be a delay pattern fo€. For any
timet > 7 - dista (u,v)(1 4+ 1/p), there is a static executiom in
which

wgw—gﬁnziTmmmex

and furthermore, inx the delays on every link ¢ E€ are in the
range[P(e)/(1 + p), P(e)]. O

The formal statement of the lower bound is as follows.

THEOREM 3.2. Let A be a stabilizing DCSA that guarantees a
global skew ofG(n) and a dynamic local skew afwith a stable
local skew ofs(n) = o(n). Then there exist constanis{ > 0
such that for all sufficiently large and I we have

L)zgi.[.

s DA 5my) = <)

PROOFSKETCH. Consider a network comprising two parallel
chains,A and B, joined at both endsyg, w,, (see Fig. 1(a)). The
length of each chain is/2. The two chains exist throughout the
construction; new edges are eventually added alongBtudain,
but no edges are ever removed.

We wait until the algorithm has stabilized, choosing a sigfidy
large timeT’s such thats(n, 0, 7s) < & - 5(n) whereg € (1,2]isa
constant. Then we select two sufficiently large tiriesT, > Tk,
such thatl, — 71 = A(n/5(n)) for some constank. Our goal is
to add new edges at timg,, each with a skew of at modt (see
Fig. 1(b)), and cause at least one new edge to still have a skew
QI - n/G(n)) at timeTs. This last part is achieved by (a) adding
only O(G(n)/I) new edges at tim&y, and (b) creating a skew of
Q(n) betweenwy andw, at timeT>. Theaverageskew on the
new edges must then 657 - n/G(n)), which implies that at least
one new edge has a skew${I - n/G(n)).

First we show how to creat®(n) skew betweenv, andw,, at

time T». Note that, because of the new edges, the distance between

wo andw,, at timeT; is reduced taD(G(n)/I). Standard shift-
ing arguments create a skew proportional to the distanciehvit

not enough in our case, and hence we use a more roundabout way.

Informally, we want to show thaty andw,, cannot react quickly
enough to the new edges, or they would violate the local skew-g
antee along thel-chain.

We choose two nodes, v on theA-chain such thadist (wo, u)
dist(wn,v) = k, wherek = © (n/5(n)), anddist(u, v) = Q(n).
Nodesu andv are “shielded” from events on th-chain by large
message delays (see Fig. 1(a)). We first consider an exeautio
in which the network is static and no new edges are added at tim
T1. Using Lemma 3.1, we create a skewsdfn) betweenu andv
at time7% in «, while keeping delays of at lea%t/(1 + p) on alll
links betweenuvy andu and betweenw,, andv.

Nodesu, v act as a barrier between, andw,,: the local skew
guarantee implies that the clockswf andw,, cannot be more than
k-£5(n) = ©(n) removed from the clocks af andv respectively.
Hence, whenever the skew betwaeandv is Q(n), the skew be-
tweenwo andw, is alsof2 (n). (See Fig. 1(d), and note that the
figure depicts the best-case scenario for the algorithnguitctcbe,
for example, that the skew between andw,, is actually greater
than the skew betweanandv).

Finally, we create a new executigh which is identical tox
until time 7;. Attime 77 we add new edges as shown in Fig. 1(b).
Recall that at timel; the skew on each edge of tti#-chain is at
most¢-3(n). Thus, we can find a set of edges as shown in Fig. 1(b),
such that (a) each edge carries a skew in the réhget - 5(n), I],
and (b) the skews sum up to at most the skew betwegandw,,,
which is bounded by (n). WhenI > 2¢ - 5(n), the number of
edges required is at moag (n) /1.

By time T in 3, the skew on each new edge must be reduced
to at mosts(n,I,T> — T1) s(n,I,\(n/3(n))), and conse-
quently the total skew between nodes and w, cannot exceed
(2G(n)/I) - s(n, I, \(n/5(n))) (see Fig. 1(c)). However, in ad-
dition to this upper bound on the skew, we can also show tteat th
skew betweenvy andw,, at timeT> in 3 is at least2(n): nodes

u andwv cannot distinguish betweem and 8 until time T, since
they are shielded from thB-chain byk = ©(n/5(n)) edges with
large message delays. At tifig in 3, nodesu, v have the same
skew ofQ2(n) that they have iy, and as argued above, this implies
that wo andw,, also have2(n) skew between them. Combining
the upper and lower bounds on the skew betwegrandw,,, we
see thak(n, I, A\(n/5(n))) must be at leas®(7 - (n/G(n))). This
concludes the proof. O

skew =02 (n)

U v
..... ‘.
Chain A .
Wo @— — Skew on each new edge (3 1, 1] _ - Wn
: N - _ - A
\ // \\ // \\ // \\ / .
Chain B

(b) Executions at timeT: (new edges shown as dashed lines)

skew =02 (n)
N

(c) Execution3 at timeT>»

L,(Ty) 1
<k-
L., (T1)

Q(n)

Lwo(Tl)
-

(d) The logical clocks ofvg, u, v, w, attimeT: in executions
a andg (assumingL., (T1) < L,(T1))

L.(Ty)

Figure 1: Illustrationsfor the proof of Theorem 3.2

Theorem 3.2 makes no assumptions on the global gkew.
However, most static clock synchronization algorithmshia liter-
ature guarantee a global skew®@fD) in networks of diameteb.
Moreover, all gradient clock synchronization algorithnisuhich
we are awargely on having a global skew a® (D) in order to
prove their gradient property [12, 13, 14].

In dynamic graphs the diameter is undefined, and the natural
extention is to require a global skew G{n) = O(n). This is
achieved by the algorithm presented in Section 4, and hece, t
the global skew bound is used to prove the local skew guagante
It therefore seems most interesting to consider algorittimaspro-
vide a global skew guarantee 6f(n). For such algorithms, The-
orem 3.2 shows that it take3(n/5(n)) time to reduce the initial
skew on a new edge byanstantfraction.

COROLLARY 3.3. Let.A be a stabilizing DCSA that guarantees
a global skew 0§ (n) = O(n) and a dynamic local skew efwith
a stable local skew of(n) = o(n). Then there exist constants
A, ¢ > 0 such that for all sufficiently large and I we have

n

5(n)

4. ADYNAMIC CLOCK
SYNCHRONIZATION ALGORITHM

Next we present a simple DCSA that achieves the tradeoff demo
strated in the previous section.

The algorithm is based on nodes sending each other peripédic u
dates containing their own logical clock value and theiineate for
the maximal logical clock in the network. Updates are seralito
neighbors evern\ H subjective time units; that is, if nodesends
an update to all its neighbors at real timethe next time it will
send an update is real tintesuch thatH . (t') = H.(t) + AH.
Since the hardware clock afprogresses at a rate of at least p,
updates are sent at least once e\@% real time units.

Define

s(n, I,\-)>¢-1.

AT::T+A—H,
1-p

AT == (1+p) AT.

Since every node sends messages to all its neighbors ableaest
everylATH time units, and messages take at nibsime units to ar-
rive, AT'is the longest amount of real time that may pass between
the receipt of two messages along an edge, provided the adge e
ists throughout the interval. Since nodes do not have atoessl
time, they useA7"’ to conservatively estimate the time they have
to wait between receiving two messages from a neighboA 77
subjective time has passed and a message was not receavédkth

to that neighbor must have failed.

The algorithm we present here is event-based: nodes react to

messages they receive, anddiscover(X) events, whereX e
{add({u, v}), remove({u,v}) |v € V}. In addition, each node
can schedule delayed events by invoksag timer(At, timer-ID).

If set_timer(At, timer-ID) is called byu at real timet, then at real
timet' such thatfl,, (') = H,(t) + At, analarm(timer-1D) event

is triggered at node. A delayed event can be cancelled by calling
cancel(timer-1D).

The algorithm uses two types of timers: ttiek timer is set to
go off every subjective\ H time, and dost(v) timer is set to go
off A7’ subjective time units after a message frons received.

Throughout the run of the algorithm each nadenaintains two
setsI'y,, T, of nodes, withl",, C Y,. The nodes ifl’,, can be
thought of as “tentative neighbors” af. a nodewv is added to
T . when adiscover(add({u, v})) event occurs at, and removed
when adiscover(remove({u,v})) event occurs. The criterion for

membership i, is more restrictive: the sdt,, contains those
nodes ofY,, thatu has heard from at mogk7”’ subjective time
units ago. IfA7” subjective time units pass amcdoes not receive
a message from, it removesv from I, (but not fromY,). The
nodes inl",, are the only ones used to determine nadelogical
clock value, since they are the ones for whiclhas an accurate
estimate. Howevel sends (or tries to send) periodic updates to all
nodes inY,,.

In addition toT",, andY',,, nodeu maintains the following local
variables.

L, Nodewu’s logical clock.

max
Ly,

Nodew'’s estimate for the maximum logical
clock in the network.

Nodewu's estimate for the current value of
nodev’s logical clock.

Ly forvel,

The value of node’s hardware clock when
v was last added tb,.

C, forveTly,

The local variables are modified upon processing the various
events as shown in Algorithm 2. Between events, the vasable
L., Ly* andL;, for all v € T',, are increased at the rate @&
hardware clock.

Nodew uses a non-increasing functidh: R™ — R to deter-
mine how much perceived skew itis willing to tolerate on eadbe
{u,v} wherev € I',,. The parameter to the function(i&,, — C%,),
the subjective amount of time that has passed sirttiscovered the
edge. The amount of perceived skew nodes are willing toatser
starts out very large, and decreases linearly until it reaelf'target
skew” of By (a parameter). Specifically, the functighis given by

_ ; B
B(At) := max{Bo,5g(n) + 1+ p)T+ Bo (1+p)7’At} ,

where

T::%ZAT—&-T—%ZZ

and whereg (n) is the bound on the global skew derived in Theo-
rem 5.5 (Section 5.1). Informally, the purposeifs to have nodes
wait ©(G(n)/Bo) time units before they start adjusting the skew
on new edges (this is formally stated in Section 5.2, Lemrfia 5.
SinceBy is approximately the local skew of the algorithm and we
will show thatG (n) = O(n), this waiting period matches the lower

bound of Section 3. For correctness we require

Bo > 2(1+ p)T. @)

The logical clock of each node is adjusted after every evient.
each adjustment, node increases.,, to the largest value that it
can, subject to the following constraints: (1) is never decreased,
(2) L, cannot exceed;;**, and (3) for allv € T, the perceived
skew on edg€u, v} cannot exceed the value &f for that edge;
that is, for allv € T, we requireL, — L,, < B(H, — Cy). If
the constraints cannot be met (e.g« ihas a neighbor that is very
far behind), node: cannot make a discrete increase to its logical
clock. However, the logical clock continues to increasehatrate
of u’s hardware clock. The update rule is given by

Procedure Adj ust Cl ock

L, «+ max {LW min {Lz’ax, rr&n {Ly + B(Hy, — C:j)}}}

Algorithm 2: Responses to events that occur at nede

1 when discover(add({u,v})) occurs ats
Send(uv 'U, <Lu7 Lg)ax>)

Ty — Yo U{v}

Adj ust d ock()

2
3
4
5 end
6 when discover(remove({u,v})) occurs ai
7 Dy —Tu\ {v}
8 Ty — Tou\ {v}
9 Adj ust d ock()
end
when alarm(lost(v)) occurs atu
[y — T\ {v}
Adj ust d ock()
end
when receive(u, v, (L., L}***)) occurs atu
cancel(lost(v))

10
11
12
13
14
15
16

17 ifvg T, then

18 Ly« Ty U{v}

19 Cy «— H,

20 L) «— L,

21 Ly™ — max {7, Ly™*}
22 Adj ust d ock()

23 set_timer(A7’,lost(v))

24 end

25 when alarm(tick) occurs atu

26 forall v € Y, do

27 send(u, v, (Lu, L))
28 Adj ust d ock()

29 set_timer(AH, tick)

30 end

For simplicity, we assume that all nodes know (upper bounds
on) the maximum hardware clock drift, the propagation delay
T, as well as the boun@ on the time between topology changes
and the nodes discovering these changes. Depending on lyawv ed
insertions and deletions are discoverBdypically is a function of
p, T, as well as the parametéyH. Throughout the remainder of
the paper, we assume thiBt > max{7,AH/(1 — p)}. We also
assume that all nodes knaw the number of nodes participating
in the system. With these assumptions, each nokieows enough
to compute the value oB;, for everyv € T',. In particular, all
nodes can compute the bou@dn) on the global skew. Note that
the same asymptotic results can be achieved if all nodes know
up to a constant factor. This would allow to generalize thérge
and also adapt to nodes joining and leaving the system asong
only changes at a constant rate.

5. ANALYSISOF THE ALGORITHM

To analyze the algorithm it is important to understand wioatc
ditions prevent nodes from making discrete changes to litgical
clocks. The following definitions and lemmas charactertzesée
conditions and describe basic properties of the algorithm.

Let

Bu(t) := B(Hu(t) — Cy(t))

be the amount of perceived skew nodés willing to tolerate on
the edge{u, v} at real timet.

DEFINITION 5.1 (BLOCKED NODES). We say that a node
is blocked by node at timet if Ly **(t) > L. (t) andv € T'y(t)

and L. (t) — Ly, (t) > By (t). In this case we also say that node
blocks node: at timet and that nodeu is blocked at time.

Itis easy to see that being blocked prevents noffem increasing
its logical clock in procedur@ddj ust Cl ock() . The next lemma
shows that being blocked is tloaly reason that can prevent a node
from increasing its logical clock to its max estimate.

LEMMA 5.1. If Ly**(t) > Lu(t), then nodeu is blocked at
timet. O

Each node: decides whether or not to increase its clock based
on its estimates of its neighbors’ clocks, aiming to keepstev on
each edgdu, v} no greater thamB;,. Since the estimaté;, may
be larger than the real value @6 clock, nodeu may overshoot the
mark. The following lemmas relate nodés estimates to the real
clock values of its neighbors, and show thé&t perceived skew is
not too far off the mark when it decides to make a jump.

LEMMA 5.2 (ESTIMATE QUALITY). For all v € T, (t) we
haveL; (t) > L,(t — 7). O

LEMMA 5.3 (REAL VS. DESIRED SKEW. If nodeu makes a
discrete change to its logical clock at timethen immediately fol-
lowing the jump, for allv € T',(t) we haveL,(t) — L,(t) <
By(t)+2p- 7. O

5.1 Global Skew

The basic strategy to bound the global skew of our dynamizkclo
synchronization algorithm is the same as the one used intia sta
network (see [14]). We first show that for any two nodeandw,
the estimated.;; **(¢t) and Ly **(¢) of the maximum clock value in
the system are not too far apart. Second, we show that if tiEag|
skew exceeds a certain value at titnéhe nodev with the smallest
logical clock valueL, (t) cannot be blocked at time By Lemma
5.1, we then havd., (t) = L7**(t), and thus the bound on the
maximal difference between two estimate$**(t) and L**(¢)
also yields a bound on the global skew. We define

L™(t) .= max Ly ().

PROPERTY1 (RATE OF L™**). The value of.™** increases
at a rate of at most + p. That s, for alltz > ¢; > 0 we have

Llnax(t2) _Llnax(tl) S (1 +P)(t2 _tl)

The error in the estimatds;;**(¢) can be bounded by applying
an interval connectivity assumption (Definition 2.1). Thistated
by the following lemma.

LEMMA 5.4 (MAX PROPAGATIONLEMMA). If the dynamic
graphG'is (7 + D)-interval connected, then for all> 0 and all
u € V it holds that

LP(t) = L2(1) < (14 p)- T +2p-D) - (n — 1),

ProoF. All hardware clocks and max estimates are initialized
to O at time 0, and henc&™**(0) — L;'**(0) = 0. The max
clock L™** increases at a rate of no more thias p, and the max
estimateL’;**(¢) of any nodeu increases at a rate of at ledst p.
Consequently, the differendg™®*(t) — L3;**(¢) grows at a rate of
no more thar{1+p) — (1—p) = 2p, and because < 1, the claim
holds at least until time

(1+p)7T+2p-D
2p

n—1)>(T +D)-(n—1).

Thus, it is sufficient to consider timessuch that > (7 + D) -
(n—1).
Fori € {1,...,n}, define
ii=t—(n—14i)(7T +D),
and

Vii={v e V| Ly™(t:) > L™ (t1) + i — 1)(1 — p)D}.

Intuitively, V; is the set of nodes that have a good max estimate at

time¢;. We prove by induction onthat for alli € {1, ...
have|V;| > i.

,n} we

By definition, Vi = {v € V | Ly'®(t1) > L™**(t1)}. There
= L™*(t¢1), and conse-
quently we getV1| > 1. For the induction step, suppose that

exists some node such thatL;'*(¢1)

|Vi—1| > i — 1. By definition, for allv € V;_; we have
L™ (1) > L™ (t) + (i —2)(1-p)D. (2)

The max estimate of each node increases at least at the rige of

hardware clock. Consequently, from (2), foralE V;_1,
Ly (t:) > L™ (ti1) + (6 — tiza)(1 = p)
> L™ (t1) + (1 = 2)(1 = p)D + (ti — ti-1)(1 — p)
> L™ (t1) + (i — 1)(1 - p)D,
and hencd/;_; C V;.
If V\ Vici =0, then|V;| > Vi

e = {v,w}, wherev € V;_; andw € V \ V;_1, such thak ex-
ists throughout the intervédd;_1,¢;]. There are times,a > ti—1

andt... < t; such that node sends nodev a message containing
Ly (tsna) at timetsna, and nodew receives the message at time

trev and updates its max estimate. Thus we have

L™ (ti) > L™ (trev) + (1 = p)(ti — trev)
> Ly (tsna) + (1 = p)(ti — trey)
> Ly (tic1) + (1 — p)(t; — trev + tsna — ti—1)
> Ly (tie1) + (L= p)(ts —ti-1 —T)
= Ly™(ti—1) + (1 — p)D (From (2))

> L™ (1) + (i — 1)(1 — p)D.

It follows thatw € V;. Sincew ¢ V;—1 andV;—1 U {w} C V; we
have|V;| > |Vi—1| + 1 > 4. This concludes the induction.

The claim we proved implies th&f, = V/; thatis, forallv € V,
at timet,, = t we have

LE™(t) > L™ (1) + (n— 1)(1 - p)D. @3)
From Property 1,
L™ (1) < L™ (t1) + (1 + p)(t — t1)
=L"(t1) + (1 + p)(n — 1)(T + D), 4)
and combining (3) and (4) yields
L™ (t) — L™™(t) < (n— 1) (1 + p)T +2p- D).
|

1| = n and we are done. Oth-
erwise, by(7 + D)-interval connectivity of, there exists an edge

PROOF. We show the stronger statement that at all times
Yv eV L™ (t) — Ly (t) < G(n),

and the claim then follows from the definition 6f*** and because
forall w € V and timeg > 0 we haveL;**(t) > L.(t).

For the sake of contradiction, assume that this is not the.cas
Then there is some timg nodev € V ande > 0 such that

L™ (t) — Ly(t) > G(n) +e. 5)

Let £ be the infimum of times when (5) holds for some node
v. By Lemma 5.4, we havé™*(f) — L™**(¢) < G(n), and thus
L, (%) < L¥**(%). Hence, Lemma 5.1 shows that nadis blocked
at timet. By Definition 5.1, there is a node € T, (¢) such that
L,(t) — Ly(t) > By(t) > Bo. From Lemma 5.2, it therefore
holds thatL.(f — 7) < L.(t) — Bo, and by Property 1 we have
L™ (t — 1) > L™ (%) — (1 + p)7. We therefore obtain

L™ — 1) — > L™(0) — Ly(f) —

Because we assume thdg > (1 + p)7, this is a contradiction to
the assumption thdtis the infimum of times when (5) is satisfied
for the first time for some node. o

5.2 Local Skew

The local skew guarantee of the algorithm hinges on the ffett t
the constraint imposed by a newly formed edge is so weaknthat
edge can violate it: for a long time after edge, v} is detected,
the value of B! stays greater than the global skéifn). Since
no edge carries a skew that is greater t@_an) the requirement
is trivially satisfied. In fact, only aftef2 (G(n) /Bo) time can a
node be blocked by a new neighbor, and this is formalized by th
following lemma.

L.(t—7) (14 p)T + Bo.

LEMMA 5.6. If nodev blocks node: at timet, thenv € T, ()
for all ¢’ € [t — W, t], whereW (standing for “wait”") is given by

W= (45120) +1) O

Informally, the intervalt — W, t] corresponds to the time required
according to Theorem 3.2 for information about the new edge t
spread throughout the network.

Recall that node communicates frequently with nodeslin, so
intuitively, any node inT",, should have fairly up-to-date informa-
tion about nodex. In particular, Lemma 5.6 implies thatifblocks
u, thenv has had accurate information abaeifor a long time prior
to t. This observation will allow us to argue that whemlocksu,
it is “aware” for a long time that it lags far behind; thus, eod
must itself be blocked, or else it would have caught up witteno
v. Note, however, that the neighbor relation in our algoriiemot
symmetric: it is possible that ¢ I',(¢) even wherv blocksw at
time ¢. This can happen if the edde:, v} was recently removed,
and the removal was discovered only by Therefore, instead of
arguing aboutL; (t), which is undefined ifu ¢ I',(¢), we show
that L**(¢) reflects a recent value df;;**, asu wasrecentlyin

Using the approach sketched above, Lemma 5.4 allows us to L. SinceLy™ > L., this is sufficient for node to see that it has

prove the following theorem, which bounds the global skewof

algorithm.

THEOREM5.5 (GLOBAL SKEW). The algorithm guarantees

a global skew of

G(n):==(1+p) T+2p-D)-(n—-1).

fallen behind.

LEMMA 5.7 (“EDGE REVERSAL). If nodewv blocks nodeu
attimet, thenforallt’ € [t—W +AT,t—7] we havel ;**(t') >
Lyt —). O

We are now ready to prove the local skew guarantee.

THEOREM 5.8. For any two nodes:, v and timet such that
v € Ly(t),

which we combine with (9), yielding

Lu(tesn) = Lugyy (ten) > (€4 1)(Bo — (1+ p)7)

1
> 2+ 1By

v g(n))
=B,t—-W)+2 4——=+1).
() pT(Bo LWy
-2 27
=G(n).
This is the contradiction we sought.
Next we describe in more detail how the chaif . .., ust1 IS

constructed inductively. At each step we maintain the foihy
three properties:

Lu(t) = Ly(t) < BL(t — W) + 2pW

PROOFSKETCH. Suppose by way of contradiction that at time
t there are two nodes, v € V such thaw € T',, but

Lu(t) — Lo(t) > BL(t — W) + 2pW.

There are two parts to the proof. First, we show that sincskbe
betweenu andv is very largeu has been blocked for a long time,
and its logical clock has not increased by much. More forynall
sinceB,, is non-increasing, for all’ € [t — W, ¢] we have

(1) Ifi # 0thenLy(t) — Lu, (t;) > i - Bo,
(2) Forallt’ € [t2e—it1,t:] we haveLl 7 (¢") > Ly (t' —i7), and

BU(t') < BU(t — W), ©) (3) If i < ¢Zthen nodeu; is blocked at time;.

The first property is the one we are really interested in, hadther

two are necessary for the induction to go through. Spedical

property (2) is used to show that is blocked: by showing that;

is “aware” of a recent value af’s logical clock we can show that

Ly (ti) > Lu,(t:), and then we apply Lemma 5.1 to show that

u; is blocked. This fact is then used to extend the chain further
The base isip = u, which clearly satisfies all three properties.

For the induction step, suppose thatsatisfies the properties, and

From Lemma 5.3 and Lemma 5.6, at any tithe [t — W, t] node

u's logical clock cannot jump to a value that excedds(t’) +
BY(t') +2p1 < Ly(t') + By (t — W) + 2p7. Thus, whenever the
skew betweem andv exceedsB;, (t — W) + 2p7, nodeu’s logical
clock increases at the rate @& hardware clock, which is at most
1+ p. In addition, node’s logical clock always increases at a rate
of at leastl — p. Together we have that whenever the skew between
u andv exceedsB,, (t — W) + 2p7 itincreases at a rate of at most

(I+p)—(1=p)=2p.

At time t the skew between andv exceeds3;, (t — W) +2pW.
By the argument above, the differer&@l” — 2p7 was built up at a
rate of at mos®p. It follows that throughout the intervgd — W +

7, t], nodew’s logical clock increases at the rate of its hardware

clock, and for alk’ € [t — W + 7,] we have

Lu(t) — Lu(t) < (1 +p)(t —1'). %
In the second part of the proof we argue that nodeould not
have fallen so far behind nodeunless it was itself blocked until

very recently by some other nodg, which is far behindv. And
why doesu; lag behindv? Why, it mustalso have been blocked
recently. In this way we construct a chaii, u1, ... of nodes,
whereuy = u, w1 = v, and each node; is blocked byu;, at

timet; := ¢t — i7. We are able to extend the chain up to length

¢+ 1, where

W—r
. ®)

Sincewu;+1 blocksu; at timet;, by definition we havelL.,, (t;) —

L=

Lot (t:) > Buit'(t;) > Bo, and Lemma 5.2 allows us to trans-

late this into
Ly, (tl) - Lui+1 (tz‘+1) > By.

Summing the inequalities for @l < i < ¢+ 1 we get

Lu(t) = Lu,,, (tes1) > (¢ + 1)Bo. ©)
Note that by definition of we have(¢ + 1) By > G(n); however,
this is not quite a contradiction to the global skew, becd@%ee-
lates the clocks of, andu,; at different timesNow the first part
of the proof comes into play: we use (7) to obtain

Lu(t) = Lu(terr) < (14 p)(t—tea) = (1+p)(£+ D)7, (10)

letu;+1 be a node that blocks; at timet;. By definition,
L, (ti) — L™ (t:) > Bui™ (t;) > Bo,
and using Lemma 5.2 we obtain
L, (t:) —

If i« = 0 this is exactly property (1), and if > 0 we can use the
induction hypothesis to obtain property (1).

To show thatu;;1 satisfies property (2), lef € [tae—i,tit1]-
Simple math shows that € [t; — W + AT, ¢; — 7], so we can
use Lemma 5.6 to obtain

L“'H»l (ti+1) > By.

max
Ly

) > LY — 7).

Now we use the induction hypothesis, applied to nadet time
t' — 1,10 get
LY () > Ly(t' — 7 —i7) = Lo (t' — (i + 1)7),

Uj41

as desired.

Finally we use properties (1) and (2) to show that nage; is
blocked at timet;+1 (property (3)) ifi < ¢. By Lemma 5.1, itis
sufficient to establish thal”, (ti+1) > Lu,,, (ti+1). Property
(1) shows that

Ly yy (tiv1) < Lu(t) — (i + 1) Bo,
and property (2) shows that
Ll (tit1) 2 Lu(tivr — (i 4+ 1)7) = Lu(t2it2).
To relate the two bounds we use (7), which gives us
Lu(toiq2) > Lu(t) —2(1 + p)(i + 1)Bo
2 Lu(t) - i+ 1)Bo.

This concludes the induction. O

Theorem 5.8 describes the local skew guarantee from a point guarantee a global skew 6f(D). (Note that the lower bounds of

of view that is subjective to node: the statement of the theorem
assumes that € Iy, and the value of3; depends on the local
variablesC;, and H,. In particular, H, may progress at a rate
slower than real time, andmay not be irl",, when the edgéu, v}

is formed (although it is added quickly). The following chaoy
states the “objective” local skew guarantee of the algorith

COROLLARY 5.9. The algorithm guarantees a dynamic local
skew of

s(n,I,At) = B((1 — p)(At — W — 1)) + 2pW

:@(max{Bo,n—ﬂ~At}+
1+p

regardless of the initial skew on the edge.

ﬂ
By)’

COROLLARY 5.10. If the parameterB, is chosen asBy, >
Ay/pn for a constant\ > 0, the stable local skew of the algorithm
is O(Bo). Further, the time to reach this stable skew on a new edge
is O(n/By). Hence, for this choice aBy, the trade-off achieved
by the algorithm asymptotically matches the trade-off gilg the
lower bound in Theorem 3.2.

6. RELATED WORK

Being a fundamental problem in distributed computing, ia$
surprising that there is a rich literature on clock synciwation
algorithms and lower bounds. Until recently, the work oncklo
synchronization focused on global synchronization, oe.,min-
imizing the maximal clock difference between any two nodes i
the system. Essentially all lower bounds on distributedickyn-
chronization use thshifting technique introduced in [15], which
exploits uncertainty resulting from unknown message dglédye
scalingtechnigue from [5], which uses uncertainty that arises as a
consequence of different clock rates, or a combination efttyo
techniques. Using the shifting technique, it is shown intfgjt
even if clocks experience no drift, a clock skew®f2 can not be
avoided in a network of diametéb. In light of this result, the algo-
rithm described in [20], which guarantees a global ske@D),
is asymptotically optimal. In [1], Attiya et. al. show thab wo
nodes can avoid a skew that is equal to the cumulative umerta
on the minimum-uncertainty path between them. We generaliz
this result slightly in Section 3 (Lemma 3.1), and use it tover
our lower bound.

A number of related algorithms and lower bounds for varying
models and with different properties have been describeel €.
[1, 2, 7, 18, 19]). All algorithms described in these papersdt
guarantees a skew between neighboring nodes that is biedfer t
O(D). Recognizing this limitation of existing algorithms, Famda
Lynch introduce the gradient clock synchronization prable [8],
and show that on a path of length no clock synchronization algo-
rithm can avoid incurring a skew 6%(log D/ log log D) between
adjacent nodes. This lower bound has recently been imprmved
Q(log D) in [13].

The first algorithm to guarantee a non-trivial local skew was
scribed by Locher and Wattenhofer in [14]. The algorithmZid][
guarantees a local skew 6f(v/pD) between any two neighbors
in a network of diameteD, wherep denotes the maximal hard-
ware clock drift. The algorithm of [14] forms the basis foetty-
namic gradient clock synchronization algorithm describethis
paper. For static networks, Lenzen et. al. recently imptdaiie up-
per bound taD(log D) in [12, 13]. This is asymptotically optimal
in light of the lower bound from [13]. All non-trivial gradie clock
synchronization algorithms of which we are aware [12, 13a12b

[8, 13] make no assumptions about the global skew.)

Most closely related to the dynamic clock synchronizatiosbp
lem considered in this work are algorithms that cope withHtjau
nodes (e.g. [4, 5, 11, 17]). This line of research goes fanhey
studying crash failures and message omissions, and desalb
gorithms that can cope with Byzantine faults, a topic thatuisof
the scope of the present paper. However, none of these papers
sider a truly dynamic setting; in particular, the resulty i@ the
fact that a considerable part of the network remains nohyfand
stable. Additionally, the algorithms and lower bounds désd
in these papers focus solely on global synchronization,dandot
guarantee a local skew that is smaller than the global skew. T
the best of our knowledge, the present paper is the first to dbo
gradient clock synchronization in dynamic networks.

7. CONCLUSION

We have established fundamental trade-offs for gradiestkcl
synchronization algorithms in dynamic networks. Firsg, time to
adjust the skew on a newly formed edge is inversely propuatio
to the skew one is willing to tolerate on well-establishedesd
Hence, having a stronger skew requirement in stable congifm-
pairs the ability to adapt to dynamic changes. Second, agnto
what one might initially think, reducing the skew on edgethve
small initial skew turns out to be as hard as reducing the skew
edges with a large initial skew. The time needed in both ciases
linear in the global skew bound of the algorithm and is thusadt
linear inn.

It will be interesting to see whether the trade-off estdidi by
our algorithm can also be achieved for smaller stable skawd®
In particular, it will be interesting to see whether the teiges de-
veloped in [12, 13] to guarantee a local skew®flogn) in the
static case can be adapted for the dynamic setting. Note; how
ever, that as a consequence of the lower bound proven in8e;ti
such an improved local skew bound necessarily comes at #te co
of worse adaptability to topology changes.

In this paper we used a weighted-graph approach to dealwéth t
dynamic topology: in the algorithm of Section 4, each edgeea
a weight, which starts out very large when the edge first agpea
and decreases over time. We use the dynamic weights to disadua
decrease the effective diameter of the graph, giving nddes to
adapt to the appearance of new edges. In a companion paper [10
we use a similar approach to incorporate reference broadgas
chronization in the algorithm from [13]. In that case the gigiof
the edge has the traditional meaning in the context of clgck s
chronization: it corresponds to the uncertainty along tigee It is
our hope that extending the algorithm from [13] to the wedght
graph model will serve as a first step towards a dynamic clgok s
chronization algorithm withO(log n) stable local skew, but this
seems challenging.

An additional obvious generalization would be to incorpera
node insertions and deletions in the dynamic graph modelorg
as nodes join and leave at a constant rate, it might be pedsilble
able to adapt all the parameters used sufficiently quickbyrdter to
still guarantee the same basic results. The details of spoftacol
as well as possible limitations on how fast one can adaptaogés
of the network size remain interesting open questions.

8. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for
their valuable comments on the phrasing of Theorem 3.2. (e al
wish to thank Nancy Lynch for many fruitful discussions.

9. REFERENCES

[1] H. Attiya, D. Hay, and J. Welch. Optimal clock
synchronization under energy constraints in wirelessad-h
networks. InProc. of 9th Int. Conf. on Principles of
Distributed Systems (OPODI$)ages 221-234, 2005.

[2] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock
synchronization under different delay assumpti@&i&\M
Journal on Computing?5(2):369-389, 1996.

[3] S. Biaz and J. Welch. Closed form bounds for clock
synchronization under simple uncertainty assumptions.
Information Processing Letter80(3):151-157, 2001.

[4] D. Dolev, J. Halpern, B. Simons, and R. Strong. Dynamic
fault-tolerant clock synchronizatiodournal of the ACM
42(1):143-185, 1995.

[5] D. Dolev, J. Halpern, and H. Strong. On the possibilitglan
impossibility of achieving clock synchronizatiodournal of
Computer and System Sciencg®(2):230—250, 1986.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained netwarke
synchronization using reference broadca&GM SIGOPS
Operating Systems Revig86(Sl):147-163, 2002.

[7] R. Fan, I. Chakraborty, and N. Lynch. Clock synchronizat
for wireless networks. IProc of 8th Int. Conf. on Principles
of Distributed Systems (OPODI|S®)ages 400-414, 2004.

[8] R. Fan and N. Lynch. Gradient clock synchronization.
Distributed Computing18(4):255-266, 2006.

[9] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandragére
Theory of Timed I/0 Automata (Synthesis Lectures in
Computer ScienceMorgan & Claypool Publishers, 2006.

[10] F. Kuhn and R. Oshman. Gradient clock synchronization
using reference broadcasts. arXiv:0905.3454v1, 2009.
http://arxiv.org/abs/0905. 3454v1.

[11] L. Lamport and P. Melliar-Smith. Synchronizing cloaks
the presence of faultdournal of the ACM32(1):52-78,
1985.

[12] C. Lenzen, T. Locher, and R. Wattenhofer. Clock
synchronization with bounded global and local skewPtof.
of 49th IEEE Symp. on Foundations of Computer Science
(FOCS) pages 500-510, 2008.

[13] C. Lenzen, T. Locher, and R. Wattenhofer. Tight bourads f
clock synchronization. I®roc. of 28th ACM Symp. on
Principles of Distributed Computing (POD{30009.

[14] T. Locher and R. Wattenhofer. Oblivious gradient clock
synchronization. IProc. of 20th Int. Symp. on Distributed
Computing (DISC)pages 520-533, 2006.

[15] J. Lundelius and N. Lynch. An upper and lower bound for
clock synchronizationinformation and Contrgl
62(2/3):190-204, 1984.

[16] N. A. Lynch. Distributed AlgorithmsMorgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[17] K. Marzullo and S. Owicki. Maintining the time in a
distributed system. IRroc. of 2nd ACM Symp. on Principles
of Distributed Computing (PODCpages 44-54, 1983.

[18] R. Ostrovsky and B. Patt-Shamir. Optimal and efficidatk
synchronization under drifting clocks. Proc. of 18th ACM
Symp. on Principles of Distributed Computing (PODC)
pages 400-414, 1999.

[19] B. Patt-Shamir and S. Rajsbaum. A theory of clock
synchronization. IfProc. of 26th ACM Symp. on Theory of
Computing (STOC)pages 810-819, 1994.

[20] T. Srikanth and S. Toueg. Optimal clock synchronizatio
Journal of the ACM34(3):626-645, 1987.

