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Abstract—Many deep learning methods have been proposed re-
cently to learn algorithms for combinatorial problems. However,
most approaches focus on either supervised/imitation learning
(the target algorithm is known) or single agent reinforcement
learning (the input distribution is fixed). In some cases, however,
the input distribution scales combinatorially as well and cannot
easily be fully represented in a concise data set. In this paper,
we propose a self-play approach to learn a distributed directory
protocol to coordinate concurrent requests to a shared mobile
resource among a network of nodes. The self-play is between two
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communication. While asymptotically optimal protocols exist
for a few network topologies [1], many settings remain an
open problem with no known best solution. We show that
our approach performs on par with optimal protocols where
such protocols exist and even empirically improves upon well
known protocols by a large margin otherwise.

Further, we show that alternative learning approaches lead
to sub-optimal protocols that can be exploited, while our self-
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Performance

Graph Protocol Bound
Tree Arrow O(1)
Cycles Arvy(Bridge) O(1)

General? Arvy(?) ?
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High-res 3D simulations

up to 19k particles
2 different simulators (MPM & SPH)



Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




Graph Neural Networks

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




DC Track

“Designed” algorithm
Usually node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

“‘Learned” parameters
Usually node features
Aggregated messages

Solve classification
(node, edge, graph)
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a, = AGGREGATE ({{ h,| ue N(v) }})

h, &Y =UpPDATE (h,, a,)
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Limitations of GNNs?
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Weisfeiler-Lehman Graph Isomorphism Test

Original labels Relabeled Relabeled
i=0 i=1 =2
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More Expressive GNNs?

— run GNN on metagraph
— extend GNN model
— add random features

— DropGNN: GNNs with dropouts



DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks
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Abstract

This paper studies Dropout Graph Neural Networks (DropGNNs), a new approach
that aims to overcome the limitations of standard GNN frameworks. In DropGNNs,
we execute multiple runs of a GNN on the input graph, with some of the nodes
randomly and independently dropped in each of these runs. Then, we combine
the results of these runs to obtain the final result. We prove that DropGNNs can
distinguish various graph neighborhoods that cannot be separated by message
passing GNNs. We derive theoretical bounds for the number of runs required to
ensure a reliable distribution of dropouts, and we prove several properties regarding
the expressive capabilities and limits of DropGNNs. We experimentally validate
our theoretical findings on expressiveness. Furthermore, we show that DropGNNs
perform competitively on established GNN benchmarks.
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Multiple runs of the GNN

Each node removed with probability p independently
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Multiple runs of the GNN

Each node removed with probability p independently
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #3
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GNNSs with Dropouts
v v
j-?/@ O—O—X 33/@ O—O—X




GNNSs with Dropouts
Pexl L

_O/éOOOi %OOCI




GNNSs with Dropouts

pexl Ll

v v
_@/@zQz@z:CI 33/@000:




GNNSs with Dropouts

Xl Lyl

v

v
_Q/@UUCI _Q/@—Q—Q




GNNSs with Dropouts
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
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Multiple runs of the GNN
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)



GNNSs with Dropouts

both training
and testing!

Multiple runs of the GNN }

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)



GNNSs with Dropouts

MEAN aggregation of neighbors
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MEAN aggregation of neighbors
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MEAN aggregation of neighbors
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GNNSs with Dropouts

MEAN aggregation of neighbors
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DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead
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More runs:

+ more stable distribution
— more runtime overhead

N nodes

2N dropout
combinations
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DropGNN with 1-dropouts

More runs: N nodes

|
+ more stable distribution ;
. |

— more runtime overhead !
:

|

|

Observe every 1-dropout

Theorem: if #runs = N - log N, then we observe
every 1-dropout with high probability.



DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.
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DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

Theorem: in DropGNNs with port numbers, any
two graphs can be distinguished from 1-dropouts.






Example: CORA Benchmark

cites content

cited_paper_id [int paper_id int
citing_paper_id |int word_cited_id | varchar
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paper
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Example: CORA Benchmark
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Experiments: QM9 dataset

Property | Unit GNN DropGNN PPGNN
U Debye 0.358 0.077 0.0934

« Bohr® 0.89 0.238 0.318
€homo Hartree | 0.00541 0.00235 0.00174
€L.uMo Hartree | 0.00623 0.00241 0.0021
Ae Hartree 0.0066 0.0044 0.0029
(R2) Bohr2 28.5 0.472 3.78
ZPVE Hartree 0.00216 0.000153 0.000399
Uo Hartree | 2.05 0.251 0.022

U Hartree 2.0 0.146 0.0504

H Hartree | 2.02 0.0845 0.0294

G Hartree 2.02 0.188 0.24

C cal/(mol | 0.42 0.0740 0.0144

K)




Other Extension Ideas?
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Angle Features




input graph

what GNNs see

Random Features
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Comparisons of Extensions
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Open Questions

* Theory: characterization of graphs that
can be distinguished by extensions?

* Experiments: other applications where
the graph structure is crucial?

* General: similar approach in other deep
learning areas?
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Thank You!

Questions & Comments?
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