Networks, Dynamics, Algorithms
... and Learning

R

Roger Wattenhofer

Graph Neural Networks

but first...

Learning Algorithms with Self-Play: A New
Approach to the Distributed Directory Problem

Pankaj Khanchandani
Cloud Technology
Adobe Systems, India
kpankaj@adobe.com

Abstract—Many deep learning methods have been proposed re-
cently to learn algorithms for combinatorial problems. However,
most approaches focus on either supervised/imitation learning
(the target algorithm is known) or single agent reinforcement
learning (the input distribution is fixed). In some cases, however,
the input distribution scales combinatorially as well and cannot
easily be fully represented in a concise data set. In this paper,
we propose a self-play approach to learn a distributed directory
protocol to coordinate concurrent requests to a shared mobile
resource among a network of nodes. The self-play is between two

Oliver Richter, Lukas Rusch and Roger Wattenhofer

Department of Electrical Engineering and Information Technology

ETH Zurich, Switzerland

{richtero, ruschl, wattenhofer}@ethz .ch

communication. While asymptotically optimal protocols exist
for a few network topologies [1], many settings remain an
open problem with no known best solution. We show that
our approach performs on par with optimal protocols where
such protocols exist and even empirically improves upon well
known protocols by a large margin otherwise.

Further, we show that alternative learning approaches lead
to sub-optimal protocols that can be exploited, while our self-

DR P P (R TSP R (UL (VI

Distributed Directory

Distributed Directory

Shared
Token

Distributed Directory

Distributed Directory

Distributed Directory

Distributed Directory

Distributed Directory

Distributed Directory

Distributed Directory
i

Distributed Directory

Distributed Directory

Arrow

Arrow

Arrow

Arrow

Arrow

Arrow

Arrow

Arrow

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arrow on Rings

Arvy

Arvy

Arvy

Arvy

Arvy

Arvy

Arvy

Arvy

Performance

Graph Protocol Bound
Tree Arrow O(1)
Cycles Arvy(Bridge) O(1)

General? Arvy(?) ?

Arvy Agent 1, Request Agent T,

RCR

... trained to minimize competitive ratio ... trained to maximize competitive ratio

Results on Cycle

® vs. Arrow

< vs. Random 74
- vs. Ivy

+ Self-Play
avs. Arvy Bridge

Graph Neural Networks

social networks

@\/®
C?@

@/@\\®

molecule recognition

chemo-informatics

"+‘

+9
@ C‘
+‘ +

‘*’
-

recommender
systems

guestion answering
systems

knowledge graphs

High-res 3D simulations

up to 19k particles
2 different simulators (MPM & SPH)

Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.

Graph Neural Networks

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.

DC Track

“Designed” algorithm
Usually node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

“‘Learned” parameters
Usually node features
Aggregated messages

Solve classification
(node, edge, graph)

static

algorithm <

A
rest of
my talk
SAND sand
Y

dynamic

» learning

Graph Neural Networks

Graph Neural Networks

a, = AGGREGATE ({{ h,| ue N(v) }})

Graph Neural Networks

a, = AGGREGATE ({{ h,| ue N(v) }})

h, &Y =UpPDATE (h,, a,)

Graph Neural Networks

>/

Graph Neural Networks

>/ >/

Graph Neural Networks

OO0

e YaYaTarTa
CHCHCHC))

OO0

e YaYaTarTa
CHCHCHC))

aTalalala'

ONOYOOO

CNINCNI\
{))) |))
NANANANANS

Limitations of GNNs?

Limits of GNNSs

@

Limits of GNNSs

e

Limits of GNNSs

<

Limits of GNNSs

e

Limits of GNNSs

<

l
O-0-@-0-0

O

Limits of GNNSs

¢ 0

O D—)
N N

OO0

Limits of GNNSs

Limits of GNNSs

¢ 0

O D—)
N N

OO0

Limits of GNNSs

<

l l
O-0-@-0-0- -O-0-@-0-O

Limits of GNNSs

OO

(D)
U

Limits of GNNSs

Limits of GNNSs

e RS

Limits of GNNSs

peel I

Limits of GNNSs

Limits of GNNSs

1ol 1

O—®

—O=0r —O=0r

Limits of GNNSs

e L

X—O—0O=CX W—O—0O=CX

Limits of GNNSs

o

()

Limits of GNNSs

S

<

()

Graph Neural Networks

Graph Neural Networks

O—O ¥ O——0O

Graph Neural Networks

Weisfeiler-Lehman Graph Isomorphism Test

Original labels Relabeled Relabeled
i=0 i=1 =2

B.AB B AAB AB

= = =

Y010

- C = C = F -

E={A;B} E={AJBF£‘!DJ‘£;} E={A!BJE*D'E'FT ’ ’ }

More Expressive GNNs?

— run GNN on metagraph
— extend GNN model
— add random features

— DropGNN: GNNs with dropouts

DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks

Pal Andras Papp Karolis Martinkus Lukas Faber Roger Wattenhofer
ETH Zurich ETH Zurich ETH Zurich ETH Zurich
apapp@ethz.ch martinkus@ethz.ch 1faber@ethz.ch wattenhofer@ethz.ch

Abstract

This paper studies Dropout Graph Neural Networks (DropGNNs), a new approach
that aims to overcome the limitations of standard GNN frameworks. In DropGNNs,
we execute multiple runs of a GNN on the input graph, with some of the nodes
randomly and independently dropped in each of these runs. Then, we combine
the results of these runs to obtain the final result. We prove that DropGNNs can
distinguish various graph neighborhoods that cannot be separated by message
passing GNNs. We derive theoretical bounds for the number of runs required to
ensure a reliable distribution of dropouts, and we prove several properties regarding
the expressive capabilities and limits of DropGNNs. We experimentally validate
our theoretical findings on expressiveness. Furthermore, we show that DropGNNs
perform competitively on established GNN benchmarks.

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #1

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #1

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #2

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #2

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #3

GNNSs with Dropouts

<

l l
O-0-@-0-0- -O-0-@-0-O

GNNSs with Dropouts

& [

\4

l l
O-0-@-0-0- OO0

)
O

\4

GNNSs with Dropouts

v l v
OO0

GNNSs with Dropouts

Eale:

\ 4 l \4 \ 4

l
O OO0

O

GNNSs with Dropouts

[

\4

l
O-@-0-O

recognize

GNNSs with Dropouts
v v
j-?/@ O—O—X 33/@ O—O—X

GNNSs with Dropouts
Pexl L

_O/éOOOi %OOCI

GNNSs with Dropouts

pexl Ll

v v
_@/@zQz@z:CI 33/@000:

GNNSs with Dropouts

Xl Lyl

v

v
_Q/@UUCI _Q/@—Q—Q

GNNSs with Dropouts

Xl L]

v

SO0« D000

GNNSs with Dropouts

Xl Lyl

v

!
SO0, @00

1
recognize

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE h 2, ..., hM)

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 4, ..., h I

GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)

GNNSs with Dropouts

both training
and testing!

Multiple runs of the GNN }

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)

GNNSs with Dropouts

MEAN aggregation of neighbors

GNNSs with Dropouts

MEAN aggregation of neighbors

GNNSs with Dropouts

MEAN aggregation of neighbors

@’ X
© o f o
o :

MEAN = 0.66

GNNSs with Dropouts

MEAN aggregation of neighbors

@’ X
© o f o
o :

MEeaN € {0, 0.5, 1} MEAN = 0.66

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

N nodes

2N dropout
combinations

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

Observe every 1-dropout

N nodes

N different
1-dropouts

DropGNN with 1-dropouts

More runs: N nodes

|
+ more stable distribution ;
. |

— more runtime overhead !
:

|

|

Observe every 1-dropout

Theorem: if #runs = N - log N, then we observe
every 1-dropout with high probability.

DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

Theorem: in DropGNNs with port numbers, any
two graphs can be distinguished from 1-dropouts.

Example: CORA Benchmark

cites content

cited_paper_id [int paper_id int
citing_paper_id |int word_cited_id | varchar

"o

paper

paper_id |int
class_label|varchar

o o

| omie%a

Example: CORA Benchmark

ool

Primesisin P Crypto,

O—0O
O—0O

!

Experiments: QM9 dataset

Property | Unit GNN DropGNN PPGNN
U Debye 0.358 0.077 0.0934

« Bohr® 0.89 0.238 0.318
€homo Hartree | 0.00541 0.00235 0.00174
€L.uMo Hartree | 0.00623 0.00241 0.0021
Ae Hartree 0.0066 0.0044 0.0029
(R2) Bohr2 28.5 0.472 3.78
ZPVE Hartree 0.00216 0.000153 0.000399
Uo Hartree | 2.05 0.251 0.022

U Hartree 2.0 0.146 0.0504

H Hartree | 2.02 0.0845 0.0294

G Hartree 2.02 0.188 0.24

C cal/(mol | 0.42 0.0740 0.0144

K)

Other Extension Ideas?

Port Numbers

1

1

lg?2 241
O

1

®; @,

1

Angle Features

input graph

what GNNs see

Random Features

2-WL

Comparisons of Extensions

3
| tt

— |4 S

i
LT

Nk N3 N2 N1 1-WL MlMQMk:

: I 2-WL ‘J f T

=
WL ‘

Open Questions

* Theory: characterization of graphs that
can be distinguished by extensions?

* Experiments: other applications where
the graph structure is crucial?

* General: similar approach in other deep
learning areas?

static
A

DropGNN

algorithm < » learning

SAND Arvy

\
dynamic

Thank You!

Questions & Comments?

g = 2
8. ‘&6 o‘.,
L4

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch

