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Abstract

Over the past few decades wireless networks have permeated our lives. We
use mobile phones, we operate a WLAN at home, our laptops connect to our
printers using the Bluetooth protocol, to name but a few examples. This the-
sis investigates some of the theoretical possibilities and limitations of wireless
networks.

The characteristics of wireless communication pose some challenges not
present in wired networks. E.g., mutual interference impairs the quality of
the signals received and might even prevent the correct reception of mes-
sages. Efficient power control and scheduling algorithms that coordinate the
transmissions are therefore essential for the operation of wireless networks.
Moreover, due to the shared nature of the communication medium, harmful
adversarial attacks are easier to implement, e.g., by jamming a frequency
band. Thus, algorithms that guarantee communication despite such disrup-
tions are necessary. This thesis addresses these exigent problems and provides
lower bounds and algorithms to meet these challenges.

Another difficulty is caused by the fact that wireless devices are typically
equipped with a battery as a source of energy. Recharging this battery may
be tedious or even impossible. In order to prolong the lifetime of a network,
energy-efficient algorithms for wireless networks are needed. We offer answers
to the question of how messages can be aggregated with the twofold objective
of minimizing delay and energy consumption simultaneously.

Usually, wireless devices of a network are assumed to collaborate on a
common application such as environmental monitoring. However, similar to
agents in socio-economic systems, the participants of a large network may
operate on a decentralized control regime just as often, and represent various
stake-holders with conflicting objectives. In many distributed systems, the
rules of interaction cannot be changed. However, a system designer may
be able to influence the agents’ behavior by offering payments for certain
outcomes. Thus, a designer faces the following optimization problem: How
can a desired outcome be implemented at minimal cost? And to what extent
can the social welfare be influenced within the bounds of economic rationality,
that is, by taking the implementation cost into account? In this thesis, we
aim to lay the computational and algorithmic foundations of a solution to
this problem. Besides considering classic, benevolent mechanism designers,
this thesis analyzes how malicious mechanism designers can deteriorate the
participants’ situation to a larger extent than the amount of money invested.





Zusammenfassung

In den letzten Jahrzehnten haben drahtlose Netzwerke markant an Bedeu-
tung gewonnen. Täglich benützen wir Mobiltelefone, betreiben zu Hause ein
WLAN und unsere Laptops verbinden sich via Bluetooth mit dem Drucker.
In dieser Dissertation untersuchen wir die theoretischen Möglichkeiten und
Grenzen von drahtlosen Netzwerken. Die Eigenschaften der Funkkommu-
nikation führen zu Herausforderungen, die in drahtgebundenen Netzwerken
nicht existieren. Beispielsweise beeinflussen sich Funksignale gegenseitig, was
die Übertragungsqualität mindert und unter Umständen sogar den korrekten
Empfang von Nachrichten verhindern kann. Effiziente Algorithmen für die
Steuerung der Sendeleistung und die Koordination der Sendezeitpunkte sind
darum unentbehrlich für den Betrieb von Funknetzen. Da das Kommunika-
tionsmedium für alle zugänglich ist, sind zudem böswillige Angriffe einfacher
auszuführen, zum Beispiel durch Störsender für ein Frequenzband. Aufgrund
dieser Tatsache sind Algorithmen, die es erlauben, die Kommunikation den-
noch aufrecht zu erhalten, nötig. Diese Arbeit befasst sich mit diesen grundle-
genden Problemen und liefert sowohl untere Schranken als auch Algorithmen,
die diese Herausforderungen bewältigen.

Eine weitere Schwierigkeit besteht darin, dass drahtlose Geräte häufig
mit einer Batterie als Energiequelle ausgestattet sind. Diese aufzuladen oder
auszuwechseln kann mühsam oder sogar unmöglich sein. Um die Laufzeit
von Netzwerken zu verlängern braucht es Algorithmen, die den Energiever-
brauch kontrollieren. Diese Dissertation bietet Antworten auf die Frage,
wie Nachrichten zusammengefasst werden können, mit dem Ziel, Energie-
verbrauch und Verzögerung gleichzeitig zu minimieren.

Meist wird angenommen, dass die Komponenten eines Netzwerkes zusam-
menarbeiten, um ein gemeinsames Ziel zu erreichen, wie zum Beispiel die
Überwachung eines Gebietes. Mindestens so oft jedoch sind die Teilnehmer
eines Netzwerks unabhängig und weisen zum Teil sich widersprechende
Interessen auf, ähnlich zu Agenten in einem sozio-ökonomischen System.
In vielen verteilten Sytemen können die Interaktionsregeln nicht direkt
verändert werden. Trotzdem können die Spieler beeinflusst werden, indem
eine Vergütung in Aussicht gestellt wird, für den Fall, dass eine gewisse
Situation eintrifft. Wir sind also mit den folgenden Optimierungsproblemen
konfrontiert: Wie kann eine gewünschte Situation zu möglichst tiefen Kosten
herbeigeführt werden? Und in welchem Ausmass kann das soziale Wohl
gesteigert werden im Vergleich zu den anfallenden Kosten? Im zweiten Teil
dieser Dissertation legen wir die algorithmischen Grundlagen zu einer Lösung
dieses Problems. Abgesehen von klassischen, positiven Effekten analysieren
wir auch, wie die Situation der Mitspieler mutwillig um einen grösseren als
den investierten Betrag verschlechtert werden kann.
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1
Introduction

In this chapter we briefly survey ad hoc and sensor networks, and then discuss
the algorithmic challenges they pose. The last section contains a summary
of the contributions of this thesis.

1.1 Ad Hoc and Sensor Networks

The evolution of technology has lead to the development of surprisingly small
electronic devices. Moreover, the cost of hardware has been steadily decreas-
ing. As a result, an ever growing number of objects have been equipped
with radio communication hardware, and a vast quantity of mobile devices
are omnipresent in our lives. Most of us carry a mobile phone, our laptops
access the internet via a WLAN, and futuristic scenarios envision diverse
applications for wireless communication [31, 70]. Many such applications
rely on sensor nodes, which are wireless devices capable of sensing physical
phenomena. The anticipated applications cover a broad range of domains,
such as health care. Sensor nodes attached to a patient’s body could be used
to measure his or her vital signs [103, 14]. In transport and logistics, the
storage conditions of products can be monitored by sensors and goods can
be localized in real-time at production sites or distribution centers [59, 40].

These scenarios require devices to form decentralized wireless networks,
where each participating node forwards data to other nodes based on the
network connectivity. These so-called ad hoc networks are self-organizing, in
contrast to managed infrastructure wireless networks with a designated node
coordinating the communication of the other nodes. The decentralized and
self-organizing nature of ad hoc networks makes them suitable for a variety of
applications in which central nodes cannot be relied on. Furthermore, they
may improve the scalability of networks compared to that of wireless man-
aged networks, though theoretical [53] and practical [76] limits to the overall
capacity of such networks have been identified. Minimal configuration and
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2 CHAPTER 1. INTRODUCTION

quick deployment make ad hoc networks suitable for emergency situations
due to natural disasters or military conflicts.

Over the past few decades, a great amount of research has been devoted to
networks. As a consequence, efficient algorithms for a variety of networking
tasks have been devised. Most of this work addresses fixed wired networks
with stationary nodes. Nevertheless, many of the proposed solutions can be
adapted for wireless networks. Thus, several fundamental network commu-
nication problems have been solved, yet at least as many are waiting to be
tackled. More specifically, the wireless nature of today’s networks and the
increasing heterogeneity of available devices evoke new challenges.

The aim of this thesis is to lay the necessary theoretical foundations by
designing appropriate models and by proving upper and lower bounds for
some of the problems arising in these networks.

Hardware Components

Let us look more closely at the hardware of the devices that form wireless
networks. The components relevant to wireless communication are:

• A processor: processes data and controls the functionality of other
components of the device

• A radio communication unit: responsible for transmitting and de-
coding radio signals

• Memory: stores the necessary data

• An energy source: a battery or a small solar cell

In the design of algorithms for networks consisting of a large numbers of
such devices, the capabilities and limitations of these components have to be
considered.

Processor: Even though the processors used in today’s wireless devices
are of considerable speed and power despite their small size, they can be a
limiting factor when devising new applications or protocols.

Radio communication unit: Usually, the radio communication unit
contains a transceiver, a combined radio frequency transmitter and receiver.
Its transmission range varies from a few meters to a few hundred meters.
The great success of wireless networks is mainly due to the fact that no ex-
pensive infrastructure is necessary for their deployment and to the fact that
every device can exchange information with any other device in its reception
range. However, this is also the most problematic characteristic of wireless
networks. Since the communication medium is shared by all participants,
interference has to be dealt with. Anyone can disrupt wireless communica-
tion by broadcasting a strong signal, making wireless networks vulnerable to
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jamming attacks. In addition to adversarial signals impairing the quality of
signals received, simultaneous communication attempts by other devices can
also cause disturbance and prevent the correct reception of transmissions.

Memory: Technological progress allows us to store a large amount of
data in a tiny space. However, depending on the hardware used, memory
can be scarce, e.g., in sensor nodes. Hence, there is a demand for algorithms
that use memory sparingly.

Energy source: For the devices discussed here the most critical resource
is energy. The devices are typically battery operated and it may be tedious
or impossible to recharge or exchange these batteries. Consequently, the
devices must be designed to be energy-efficient, causing designers to make
energy versus speed trade-offs.

Heterogeneous Users

Another issue influencing the performance of wireless networks does not stem
from the hardware, but from the heterogeneity of interacting users. We
cannot assume a priori that the users controlling the devices are willing to
cooperate. Many networks were built for one specific purpose and under
the assumption that every participant closely follows pre-defined protocol.
Nowadays, devices can typically be used for many purposes and they can be
programmed to execute actions different from those initially intended. This
fact particularly applies to wireless networks, where each participant can po-
tentially communicate with any other participant. Therefore, in addition to
mere technical challenges, a system designer has to take into account socio-
logical and economic aspects as well when designing protocols to maximize
the system’s performance. Often, the rules of interaction cannot be changed
but a systems designer may be able to influence the participants’ behavior
by offering financial rewards for certain outcomes.

This short and rather general overview has highlighted some of the aspects
that have to be considered when devising algorithms for wireless networks. In
the next section, we will point out areas where particular effort is necessary,
and describe the problems that this thesis addresses.

1.2 Algorithmic Challenges in Wireless Networks

As demonstrated in the previous section, the performance of a wireless net-
work depends on the successful interaction of several components. We iden-
tified those characteristics of wireless communication devices that are the
source of most problems in wireless networks. Among them are the follow-
ing three key problems wireless networks suffer from: interference, a limited
availability of energy, and selfish participants with conflicting goals. In the
following, we will pinpoint the algorithmic challenges they raise in more de-
tail.
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Interference

Efficient device discovery is a fundamental problem in wireless networks. Be-
fore a node can perform any particular task, it has to explore its vicinity for
potential communication partners and resources. While existing protocols
are quite fast under normal conditions, the time that lapses until two devices
meet is affected by interference. Because the signals are transmitted by (pub-
lic) radio waves rather than in (protected) cables, deliberate and accidental
interference has an extremely detrimental influence on wireless networks. Ac-
cidental interference occurs all too often, owing to the shared nature of the
frequency bands in which these networks operate. E.g., it is common for a
wireless network, or a part of it, to become unusable when a cordless tele-
phone is near a wireless node. Deliberate jamming attacks are not yet as
common as accidental interference, but they are certainly straightforward
to implement. One only needs to set up a transmitter and ensure that the
signals emitted have sufficient power to overwhelm the wireless network’s
signals. Jamming attacks can severely interfere with the normal operation of
wireless networks. Consequently, device discovery algorithms that can cope
with jamming attacks are needed.

Once a number of devices have been able to establish a network, interfer-
ence continues to be problematic. If two nodes close to each other transmit
concurrently, the chances are that neither of their signals can be received
correctly. Thus, transmissions have to be coordinated to allow multiple users
connected to the same physical medium to share its capacity. This goal is
typically achieved by dividing the access time or the frequency range into
smaller units and assigning them to the users. Frequency Division Multiple
Access (FDMA) assigns one or several frequency bands to each device, allow-
ing them to utilize the allocated radio spectrum without interfering with one
another. Another approach, Time Division Multiple Access (TDMA), as-
signs each device certain time slots. The users transmit in rapid succession,
all using their own time slot. The performance of wireless networks depends
on the availability of algorithms which effectively coordinate the timing and
frequency bands of broadcasting nodes. Note that for the algorithmic ques-
tion it does not matter whether FDMA or TDMA is applied, as the inherent
coordination problem remains the same.1

In addition to time and frequency allocation, the signal strengths of the
transmitting nodes influence the performance of wireless networks. Nodes
emitting signals of different power levels can increase the number of simul-
taneous transmissions. On the downside, a higher power level causes more
interference and can prevent nodes in the vicinity from transmitting success-
fully. Thus, power control constitutes an additional axis of interest.

1In the remainder of thesis we focus on scheduling algorithms that assign time slots to
wireless devices. However, these algorithms can be applied to the frequency assignment
problem as well.
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Limited Energy

Wireless devices often have a limited energy supply, since they are powered
by batteries or solar cells. Consequently, energy-efficient algorithms are re-
quired. The power consumption of the communication subsystem is often
orders of magnitudes greater than the amount energy used for data process-
ing [37, 25]. Hence, the easiest way to save energy is to reduce the number
of transmissions at the expense of processing speed. Whereas this idea leads
to economical algorithms, we usually also want our algorithms to be fast and
report results quickly, a goal that can only be reached with a frequent ex-
change of messages. In other words, we often face a trade-off between speed
and energy expenditure. A prototypical example of this trade-off involves a
large network of sensor nodes used to identify regions or resources that are
experiencing some phenomenon of particular concern (e.g., seismic activity).
The sensor nodes observe their environment and send their measurements,
in a multi-hop manner, to a given sink. In order to prolong the lifetime
of the network, we can try to use as few transmissions as possible. At the
same time, the aim is to minimize the time until the sink is informed about
the change of the measured values. The number of transmissions can be
reduced by delaying the transmission of information about one event and
then aggregating it with information about later events. For instance, a sen-
sor node monitoring the seismic activity in a certain location may delay the
transmission of the latest measurements in order to combine these with fu-
ture measurements. However, it is typically desirable that these notifications
are not delayed significantly, but transmitted quickly to a sink node where
an observer can, for example, raise an alarm in the case of an irregularity
(indicating the location and magnitude of the seismic activity in our exam-
ple). This aggregation problem needs algorithms that decide whether a node
should forward its information towards the sink immediately or wait for addi-
tional information for aggregation before transmitting. Thus, if a node knew
that all its neighbors’ messages would arrive in the next time slot, it would
preferably wait for their arrival. However, if the situation were not going
to change in the near future, forwarding the information immediatly would
reduce the delay. Since these so-called online algorithms cannot foresee the
future, they are forced to make their decision based on the current situation.
Furthermore, such aggregation algorithms must not be too complex, as the
available memory on sensor nodes is very limited.

Cooperation between Heterogeneous and Selfish Users

If users have increased control over their devices, they may be tempted to
adjust these in order to maximize their benefit. This selfish behavior can dra-
matically diminish the efficiency of a network or even paralyze it completely.
Game theory is a powerful tool for analyzing decision-making in systems
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with autonomous and rational participants. The basic assumption is that
the agents are rational and pursue well-defined objectives while taking into
account their knowledge or their expectations of the other agents’ behavior.
Many applications of game theory are related to economics, but it has been
applied to numerous fields ranging from law enforcement to voting analysis.
Since the participants of a network may not always follow their assigned pro-
tocols but may make selfish decisions, game theory provides tools to develop
analytical models of node behavior and predict the impact of different proto-
cols and policies on that behavior. Moreover, game theory can help to design
systems that offer appropriate incentives for the participants to behave in
ways constructive to the network as a whole. A major achievement of game
theory is the insight that networks of selfish agents often suffer from ineffi-
ciency due to the effects of such behavior. If a game-theoretic analysis of a
distributed computing system reveals that this is the case, the protocols of
this system should be extended by a mechanism that encourages cooperation.
We consider a mechanism designer whose power is to some extent based on
her monetary assets, primarily, though, on her creditability. She offers the
players monetary incentives for certain outcomes and the players trust her to
make the promised payments. When expecting additional payments, rational
players will necessarily change their behavior and choose one of the desired
outcomes. Thus, a designer faces the following optimization problem: How
can a desired outcome be reached at minimal cost? To this end, algorithms
assessing the cost of implementing favorable outcomes are necessary.

In view of the above challenges, this thesis analyses the complexity of
the problems at hand and provides efficient algorithms accounting for
certain characteristics of wireless networks and the traditional objective of
scalability. We formulate the main research question this thesis discusses as
follows:

How can available resources such as time, frequency channels,
energy, and monetary incentives be managed efficiently in wireless
networks?

Note that selfish users not only influence the performance of networks, but
also every situation in which parties with conflicting objectives interact. In
other words, solutions to this problem are applicable to a broad range of
situations. Therefore, we decided to treat these aspects in a more general
fashion and we divided this thesis into two parts. The first part investigates
algorithmic challenges due to the properties of wireless ad hoc and sensor
networks, whereas the second part studies how selfish users can be convinced
to approach an outcome taking the welfare of all participants into account.
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1.3 Thesis Overview

With regard to the previously mentioned challenges, we will describe the
main contributions of the thesis in the following.

• Fast Device Discovery Despite Jamming We present discovery
algorithms with the twofold objective of allowing devices to find one
another quickly in the absence of a jammer and to degrade gracefully
under adversarial jamming. Let m denote the number of channels the
devices can use. We prove, with weak assumptions as to the behav-
ior of the adversary, that there exists an algorithm without knowledge
of the jammer’s strategy that guarantees that the expected duration
until two devices meet is at most a factor of O(log2m) longer than
the optimal expected duration when knowing the jammer’s strategy.
Furthermore, we show that this is the best factor achievable. Our an-
alytical findings are complemented by simulations providing evidence
that the algorithms perform well in practice.

• Uniform Power Scheduling We study the complexity of finding an
optimal schedule for a set of communication requests in the physical
signal-to-noise-plus-interference model. We show that such coordina-
tion problems are NP-hard in this model and we suggest efficient ap-
proximation algorithms to construct a schedule for the users.

• Power Control and Scheduling If nodes can adjust their transmis-
sion power level, there are communication requests that can be sched-
uled concurrently, even though a uniform power assignment would have
caused too much interference for simultaneous transmission. We de-
fine a new measure disturbance that captures the intrinsic difficulty of
scheduling a set of communication requests. We conduct a worst-case
analysis of existing algorithms and demonstrate that low-disturbance
scnearios exist under which these algorithms perform poorly; more pre-
cisely, they schedule n requests in n time slots. In contrast, we present
a new algorithm with provable performance guarantees. Namely, it
schedules every set of cardinality n in a number of time slots in
O(log2 n) times the disturbance of the problem instance.

• Delay-Sensitive Aggregation We investigate an aggregation prob-
lem in which nodes are organized in a tree topology. We analyze a
simple online algorithm balancing the costs of energy and of delay and
improve on previous results. More precisely, we derive an upper bound
on the competitive ratio of O(min(h, c)), where h is the tree’s height,
and c is the transmission cost per edge. Moreover, we prove that this
upper bound is tight in the sense that any oblivious algorithm has a
ratio of at least Ω(min(h, c)). The best upper bound known so far was
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O(h log (cn)), where n is the network size. Furthermore, we prove a
tight competitive ratio of Θ(min(

√
h, c)) for chain networks, and we in-

troduce a model for online event aggregation, in which the importance
of an event depends on its difference from previous events.

• Mechanism Design by Creditability We provide the computa-
tional and algorithmic foundations for the distribution of monetary
incentives. We present algorithms and complexity results for the dif-
ficulty of computing the cost of reaching a certain outcome. E.g., we
show that we can determine efficiently whether it is possible to influ-
ence the performance of a given system merely by creditability, without
any payments at all. Besides considering classic, benevolent mechanism
designers, we analyze how malicious mechanism designers can corrupt
games and negatively affect the players’ situation to a larger extent
than the amount of money invested. In addition, we suggest alterna-
tive rationality models, such as risk-averse behavior, and algorithms
to determine the necessary payments for such participants.



Part I
Ad Hoc and Sensor Networks
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2
Speed Dating despite Jamming

Many wireless standards and protocols today, such as WLAN and Bluetooth,
operate on similar frequency bands. While this permits an efficient usage of
the limited medium capacity, transmissions of nodes running different pro-
tocols can interfere. This chapter studies how to design node discovery algo-
rithms for wireless networks which are robust against contending protocols
on the shared medium. We pursue a conservative approach and consider a
Byzantine adversary who disrupts the communication of our protocol in a
worst-case fashion. This model also captures disruptions controlled by an
adversarial jammer. We present optimal algorithms for several scenarios.
The analytical findings are complemented by simulations providing evidence
that the proposed protocols perform well in practice.

2.1 Device Discovery and Byzantine Disruptions

Wireless networks are ubiquitous and have become indispensable for many
tasks of our daily lives. Due to the limited range of frequencies available
for communication between wireless nodes such as laptops, PDAs or mobile
phones, many wireless standards and protocols today operate on the same
frequency bands, e.g., the ISM bands. One well-known and widely discussed
example is WLAN and Bluetooth (i.e., IEEE 802.15.2 ), but there are many
others. Such contending access of different protocols to the shared medium
leads to collisions. While ultra wide band technology (UWB) may mitigate
this problem and reduce interference, it is not always available or desirable.

This raises the question of how to devise protocols which are robust
against transmissions of other protocols by design. In this chapter, we seek to
shed light onto this question. We adopt a conservative approach and assume
that a Byzantine adversary can disturb our algorithms in an arbitrary man-
ner. This model comprises scenarios where an adversarial jammer attempts
to slow down communication or even to stop it completely. Such jamming

11



12 CHAPTER 2. SPEED DATING DESPITE JAMMING

attacks are a particularly cumbersome problem today: typically, a jamming
attack does not require any special hardware and is hence simple and cheap.

This chapter focuses on networks without a fixed infrastructure, such as
MANETs or sensor networks, which are organized in an ad hoc manner. A
fundamental operation in dynamic ad hoc networks is the search of potential
communication partners. In some sense, this operation is more difficult than
other communication tasks, as the nodes do not have any information about
each other a priori. Besides the lack of information on either hardware or
medium access addresses of other nodes, concurrent transmissions—either
of other nodes running the same protocol or other radio transmissions—
lead to collisions and interference. In addition, by injecting a high level of
noise, a jammer can slow down wireless communication significantly. Once
two nodes have met, they may agree on certain communication or channel-
hopping patterns (e.g., based on their medium access addresses) facilitating
efficient interactions in the future. Thus, it is of utmost importance to solve
this task as fast as possible.

A well-known existing protocol dealing with this problem is Bluetooth.
It specifies an asymmetric way to connect and exchange information between
devices such as mobile phones, cameras, GPS receivers or video game con-
soles. As a consequence, Bluetooth can be used to synchronize two devices
as soon as they are within each other’s transmission range, or to display the
availability of a printer. Clearly, the device discovery time is highly relevant
in these situations.

We study the problem of discovering communication partners in multi-
channel networks, despite the presence of a Byzantine adversary. Concretely,
we assume that the adversary corrupts t out of m available channels. We
say that two nodes have successfully discovered each other if and only if two
nodes are on the same channel, one transmitting, one receiving, there is no
other node transmitting on this channel, and the channel is not jammed. In
reality, nodes typically do not know whether, and how many, channels are
corrupted. The goal is to devise algorithms solving the discovery problem
efficiently without knowledge of t. We require that nodes are discovered very
fast if t is small, and that the performance of the discovery algorithm degrades
gracefully with increasing t. In other words, we want algorithms (oblivious
to t) being competitive to a discovery algorithm knowing t.

Our main contribution are fast discovery algorithms performing well with-
out knowledge of t and despite Byzantine disruptions. In particular, we de-
scribe a randomized algorithm which, in expectation, is at most a factor of
O(log2m) slower than the best algorithm knowing t, for any t. We prove
this to be optimal in the sense that this is the best ratio an algorithms that
can be described by a probability distribution over the available channels
can achieve. In addition, we study a scenario where the jammer chooses t
according to a probability density function (PDF) which is known to the de-
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vice discovery algorithm. Furthermore, we explain how to extend our results
to a multiplayer setting and discuss alternative jammer models. In order
to complement our formal analysis, we investigate the performance of our
algorithms by in silico experiments.

Related Work

With the increasing popularity of wireless networks such as WLANs or sensor
networks, security aspects and quality of service become more relevant. An
important reason for disruptions are transmissions of other devices using
different protocols. One widely studied example is WLAN and Bluetooth.
In this case, several possible solutions have been discussed by the IEEE task
force 802.15.2 [57], e.g., a non-cooperative coexistence mechanism based on
adaptive frequency hopping.

The model we study is quite general and comprises many types of disrup-
tions, such as interference [108] or jamming attacks. Resilience to jamming
is crucial as jamming attacks can often be performed at low costs as there is
no need for special hardware [11]. For these reasons, the jamming problem
in wireless networks is intensively discussed both in practice and in theory
([30, 73, 89, 112, 113]). While some researchers focus on how such attacks
can be performed [114], others concentrate on countermeasures [4]. In [77],
it has been shown that using methods based on signal strength and carrier
sensing, detecting sophisticated jammers is difficult. Moreover, a method
based on packet delivery ratios cannot decide unambiguously whether link
problems are due to mobility, congestion or jamming.

The threat of jamming attacks can be mitigated by appropriate physical
layer technologies. E.g., spread spectrum techniques can be used, rendering
it more difficult to detect the start of a packet fast enough in order to jam
it. Unfortunately, one of the most widely deployed protocols, 802.11, has
only small spreading factors [11]. In fact, it has recently been shown that the
MAC protocol of 802.11 can be attacked by simple and oblivious jammers
[15]. Many research projects deal with jammers on the MAC layer. For
instance in [26], a coding scheme for fast frequency hopping is presented. If
the adversary does not know the hopping sequence it can disturb only a subset
of transmissions due to energy constraints. Alternative solutions include
channel surfing and spatial retreat [114], or mechanisms to hide messages
[112].

The jamming problem also raises interesting algorithmic questions.
Gilbert et al. [47] investigate the efficiency of an adversary. The authors
define the jamming gain of a given protocol P which compares the disrup-
tion duration of a computation to the adversary’s cost. They find that even
the uncertainty introduced by the possibility of adversarial broadcasts is suf-
ficient to slow down many protocols. In [64] a model where the adversary
has a limited energy budget is considered; the paper studies how to achieve



14 CHAPTER 2. SPEED DATING DESPITE JAMMING

global broadcasts if the adversary is allowed to spoof addresses. In [94],
fault-tolerant broadcasting under probabilistic failures is studied. Dolev et
al. [34] analyze multi-channel networks, as we do. They present presents
tight bounds for the running time of the ε-gossip problem on multi-channel
networks. In [35], Dolev et al. describe a randomized protocol that allows
nodes to exchange authenticated messages despite a malicious adversary that
can cause collisions and spoof messages. Awerbuch et al. [11] present a MAC
protocol for single-hop networks that is provably robust to adaptive adver-
sarial jamming. The jammer can block a (1 − ε)-fraction of the time steps,
but it has to make decisions before knowing the actions of the nodes for this
step. Several algorithms are presented which, e.g., allow to elect a leader in
an energy efficient manner.

In contrast to the work discussed above, we focus on the bootstrap prob-
lem where a node has to find other nodes in its range. This device discovery
problem has been intensively studied in literature. In [19], randomized back-
off protocols are proposed for a single broadcast channel. However, their
algorithms are not directly applicable in wireless networks where unlike in
traditional broadcast systems such as the Ethernet, collisions may not be
detectable. In [72], probabilistic protocols for Bluetooth node discovery are
investigated, where the nodes seek to establish one-to-one connections. In [6]
and [7], protocols for single and multi channel ad hoc networks are described.
However, none of these papers attend to (adversarial) disruptions.

2.2 Model and Definitions

Suppose we are given a shared medium consisting of m channels c1, ..., cm.
There may be an adversary with access to the medium. We adopt a worst-
case perspective assuming that an adversary always blocks those t < m
channels which maximize the discovery time of a given algorithm.

We aim at devising discovery protocols that are efficient despite these
circumstances. Typically, the number of jammed channels t is not known to
the discovery algorithm. Consequently, our main objective is to devise algo-
rithms which are optimal with respect to all t. In other words, an algorithm
ALG should solve the node discovery problem efficiently if t is small, and
“degrade gracefully” for larger t.

For the analysis of the algorithms we investigate a slotted model where
time is divided into synchronized time slots. However, note that all our re-
sults hold up to a factor of two in unslotted scenarios as well, due to the stan-
dard trick introduced in [99] for the study of slotted vs. unslotted ALOHA.
In [99], it is shown that the realistic unslotted case and the idealized slotted
case differ only by a factor of two. The basic intuition is that a single packet
can only cause interference in two consecutive time-slots. Using the same
argument, analyzing our algorithms in an “ideal” setting with synchronized



2.2. MODEL AND DEFINITIONS 15

timeslots leads to results which are only a factor two better compared to the
more realistic unslotted setting.

In each time slot, every node can choose one channel and decide whether
it wants to listen on this channel or to transmit some information (e.g., its
ID or a seed for its hopping pattern sequence) on the channel.

We assume that the nodes cannot detect collisions (no-CD). Moreover,
they cannot differentiate between situations where (a) no node transmits on
a channel, (b) several nodes transmit simultaneously on the same channel,
or (c) the channel is jammed.

We say that two nodes v1 and v2 have discovered each other successfully
if and only if the three following conditions are met:

1. v1 and v2 are on the same channel c
2. v1 is in listening mode and v2 transmits its contact information

on c, or vice versa
3. channel c is not jammed

Since nodes cannot know, whether there are other nodes in their trans-
mission area, we count the number of time slots until a successful discovery
from the point in time when all of them are around (discovery time). We
mainly constrain ourselves to the two node case.

The node diwithif we restrict ourselves to deterministic algorithms. In a
scenario where all nodes are identical and do not have anything (e.g., IDs)
to break the symmetry, two problems arise even in the absence of a jammer:
(1) if two nodes follow a deterministic hopping pattern, they may never be
on the same channel in the same slot; (2) even if the nodes meet, choosing
deterministically whether to send or listen for announcements in this slot
may always yield situations where both nodes send or both nodes listen.
One way to break the symmetry is to allow nodes to generate random bits.
Alternatively, one may assume that the two nodes which want to discover
each other already share a certain number of bits which are unknown to the
jammer. Due to these problems, we focus on randomized algorithms.

We assume that every node runs the same algorithm, only decisions based
on random experiments differ. We investigate the class of randomized algo-
rithms that can be described by a probability distribution over the channels,
i.e., in each round, a channel is selected for communication according to a
probability distribution. This has the advantage that the algorithms work
well even if the nodes do not start the discovery process simultaneously.

We strive to find algorithms that perform well for every possible number
of jammed channels. To this end, we define a measure that captures the loss
of discovery speed due to the lack of knowledge of the number of channels
the adversary decides to jam.
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Definition 2.1 (Competitiveness). In a setting with t jammed channels, let
T tREF be the expected discovery time until two nodes discover each other for
an optimal randomized algorithm REF which has complete knowledge of t.
Let T tALG be the corresponding expected discovery time of a given algorithm
ALG. We define the

competitive ratio ρ := max
0≤t≤m−1

T tALG
T tREF

.

The smaller the achieved competitive ratio ρ, the more efficient the discovery
algorithm.

2.3 Algorithms for Device Discovery

To initiate our analysis, we first consider device discovery algorithms for the
case where the total number of jammed channels t is known. Subsequently, we
present several algorithms for devices with less knowledge on the adversaries
decisions.

Known t

In our model, a node has to select a channel c and decide whether to send or
listen on c in each round. Let us determine the best strategy if t is known.
As we will compare our algorithms which do not know t to this strategy,
we will call this reference point algorithm REF . For two nodes which have
never communicated before, it is best to send or listen with probability 0.5.
The following lemma derives the optimal distribution over the channels.

Lemma 2.2. Let m denote the total number of channels and assume t, the
number of jammed channels, is known. If t = 0 the best strategy is to use one
designated channel for discovery. If 0 < t ≤ m/2 then the expected discovery
time is minimized for an algorithm REF choosing one of the first 2t channels
uniformly at random. In all other cases, the best strategy for REF is to chose
each channel with probability 1/m. Thus, REF has a expected discovery time
of

2 if t = 0,

8t if t ≤ m/2,

2m2/(m− t) if t > m/2.

Proof. Let pi denote REF ’s probability of choosing channel ci. Without loss
of generality, assume that the channels are ordered with decreasing proba-
bility of REF , i.e., 1 ≥ p1 ≥ p2 ≥ ... ≥ pm ≥ 0. Let λ be the smallest i for
which pi = 0, in other words, REF uses λ channels for discovery. Clearly, if
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λ < t+ 1, the expected discovery time is infinite, and hence, we can concen-
trate on algorithms for which λ ≥ t+ 1.

According to our worst-case model, the jammer blocks the channels
c1, . . . , ct. It holds that

Pλ
i=t+1 pi ≤ λ−t

λ
, where (λ − t)/λ is equal to the

sum of the channel probabilities of the channels ct+1, . . . , cλ when the prob-
ability distribution over the first λ channels is uniform. That is, by cutting
some probability from those channels with probability greater than 1/λ and
distribute it over the other channels, the total probability of success will
increase. Therefore, the expected discovery time is minimized for uniform
probability distributions. As soon as

Pλ
i=t+1 pi = λ−t

λ
, we cannot further

redistribute the probabilities without decreasing the overall probability of
success since the jammer always blocks the t most probable channels.

It remains to show that λ = min(2t,m) maximizes the probability of
success. As the first t channels are jammed and the probability to be chosen
is pi = 1/λ for each channel, the probability for a successful meeting is

P[success|t] = 1
2

Pλ
i=t+1

1
λ2 = λ−t

2λ2 .

This probability is maximized for λ = 2t. If fewer channels are available, i.e.,
2t > m, the best decision is to pick any of the m channels with probability
1/m. Since the execution in one time slot is independent from the execution
in all other time slots, the expected discovery time is then given by the inverse
of the success probability.

Two Simple Algorithms

The simplest randomized algorithm chooses one of the available m channels
uniformly at random in each round. The expected expected discovery time
of this algorithm UNI is 2m2/(m − t). Hence the competitiveness of UNI
is ρUNI = m, reached when t = 0. In other words, if there are no blocked
channels, the performance of this algorithm is poor.

Since we aim at being competitive to REF for any number of jammed
channels t, we examine more sophisticated algorithms. Observe that for small
t, selecting a channel out of a small subset of channels is beneficial, since this
increases the probability that another node is using the same channel. On
the other hand, for large t, using few channels is harmful, as most of them
are jammed. One intuitive way to tackle the device discovery problem is to
use a small number of estimators for t. In each round, we choose one of the
estimators according to a probability distribution and then apply the optimal
algorithm for this “known” t̂, namely algorithm REF . In the following, we
will refer to the set of channels for such a t̂, i.e., channels c1, ..., c2t̂, as a class
of channels. Note that any such algorithm has to include the class t̂ = m/2,
otherwise the expected discovery time is infinity.

As an example, consider an algorithm ALG3 guessing t to be either t̂ = 1,
t̂ =

√
m
2

or t̂ = m
2

with equal probability. I.e., ALG3 chooses a random



18 CHAPTER 2. SPEED DATING DESPITE JAMMING

channel out of one of the classes {c1, c2}, {c1, . . . , c√m} or {c1, . . . , cm} in
each round.

Theorem 2.3. The competitive ratio of A3 is

ρ3 =
9m

4(
√
m− 1)

∈ O(
√
m).

Proof. The exact probability for a successful meeting, given the number of
channels the nodes take into account, is given in Figure 2.1. Note that we
omit the factor 0.5 which is due to the constraint that the nodes should not
be either both listening or both sending. Summarized, we have the following
success probabilities.
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Since the outcome of each round is independent of all previous rounds, the

expected discovery time is the inverse of the success probability. It remains
to compute the competitiveness ρ3, i.e., the maximum ratio of the expected
discovery time of ALG3 and REF . It is easy to verify that the maximum
ratio is reached if t =

√
m. Thus ρ3 is 9m/4(

√
m − 1), completing the the

proof.
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Figure 2.1: Meeting probability when applying ALG3 (Factors 0.5 omitted).

This shows us that ALG3 is a factor of Θ(
√
m) better than UNI with

respect to its competitiveness.
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Class Algorithms

The previous paragraphhas motivated the study of class algorithms using
several estimators for t. We pursue this idea further and investigate the
optimal number of classes for the family of algorithms selecting the estimator
for the next round uniformly at random among k guess classes bt1 ≤ ... ≤ bti ≤
... ≤ btk for t for k ≤ m/2. The algorithm chooses each such class i with a
uniform probability, and subsequently selects a channel to transmit uniformly
at random from a given set of 2bti channels. We concentrate on algorithms
ALGk where the guesses grow by constant factors, i.e., whose estimations
for bt are of the following magnitudes: bt = m1/k, ...,mi/k, ...,m. We begin by
deriving a bound on the expected discovery time of ALGk.

Theorem 2.4. Let m denote the number of channels and let t < m be the

number of jammed channels. Let β1 =
j
k·ln(t)
lnm

k
, β2 = m−

β1
k and β3 =

2β1 − 2k − 1 for some integer value k ≤ m/2. The expected discovery time
of ALGk is

2k2m(m1/k − 1)2

m
1
k β3 − t

m
+ β3 + β2

“
m

k+1
k + 2t+m− tβ2m

” .
Proof. Consider a time slot where node v1 chooses class i1 and assume node
v2 chooses class i2 in the same round. If a discovery is possible in this
time slot, we have i1 ≥ i2 > k·ln(t)

lnm
. The second inequality is due to our

requirement that mi2/k > t; otherwise the devices cannot find each other
since the estimator t̂ of at least one device smaller than t/2. The probability
that the two nodes successfully meet in this round is

p(i1, i2, t) = mi2/k−t
mi1/kmi2/k

= 1

mi1/k
− t

m(i1+i2)/k .

The overall success probability in some round is given by

P[success|t] =
1

2k2

0@ kX
i1=β1+1

0@ i1−1X
i2=β1+1

p(i1, i2, t) +
kX

i2=i1

p(i2, i1, t)

1A1A .

Expanding the sums leads to P[success|t] := (m
1
k (2β1 − 2k− 1)− t

m
+ 2k−

2β1 − 1 + m−
β1
k (m

k+1
k + 2t + m − tm1− β1

k ))/(2k2m(m1/k − 1)2), of which
the expected discovery time can be derived.

Since we are particularly interested in an algorithm’s competitiveness, we
can examine the ratio achieved by this algorithm for k = blogmc. We give a
brief sketch of the derivation.
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We distinguish three cases for t. If t = 0, the ratio is Θ(logm), verifiable
by calculating 2/P[success|t = 0]. For t ∈ [1, . . . ,m/2], the expected running
time is

O(log2m ·mt/(m− logm)),

hence the ratio is O(log2m). It remains to consider t > m/2. The expected
discovery time of ALGlogm is

2m2 log2m

m− t ,

compared to REF needing 2m2/(m− t) time slots in expectation. Thus the
ratio is at most O(log2m) for ALGlogm. Interestingly, as we will see later,
this is asymptotically optimal even for general randomized algorithms.

Corollary 2.5. ALGlogm has a competitive ratio of at most O(log2m).

Optimal Competitiveness

We have studied how to combine algorithms tailored for a certain estimated
t in order to construct efficient node discovery protocols. In particular, we
have derived the execution time for a general class of algorithms ALGk. This
raises two questions: What is the best competitive ratio achieved by ALGk
with the best choice of k? How much do we lose compared to any algorithm
solving the device discovery problem by focusing on such class estimation
algorithms ALGk only?

In the following, we adopt a more direct approach, and construct an
optimal algorithm using a probability distribution −→p = (p1, . . . , pm), i.e.,
choosing a channel i with probability pi, where p1 ≥ p2 ≥ . . . ≥ pm ≥ 0.
In other words we have to find −→p yielding the lowest possible competitive-
ness. From this analysis, we can conclude that no loss incurs when using on
class algorithms ALGk , i.e., there is a class algorithm, ALGlogn with an
asymptotically optimal competitive ratio.

Recall that the best possible expected discovery time (cf. Lemma 2.2) if t
channels are jammed and if t is known. Thus, in order to devise an optimal
algorithm OPT , we need to solve the following optimization problem.

min ρ = min−→p
max

0≤t<m
T tALG
T tREF

,

where
T tALG
T tREF

=

8>><>>:
1Pm

i=1 p
2
i

if t = 0

1
4t
Pm
i=t+1 p

2
i

if t ≤ m/2
m−t

m2Pm
i=t+1 p

2
i

if t > m/2.

In addition, it must hold that
Pm
i=1 pi = 1, and p1 ≥ p2 ≥ ... ≥ pm ≥ 0.



2.3. ALGORITHMS FOR DEVICE DISCOVERY 21

We simplify the min max ρ objective function to min ρ by generating the
following optimization system.

min ρ such that

t = 0 : 1Pm
i=1 p

2
i
≤ ρ (1)

1 ≤ t ≤ m/2 : 1
4t
Pm
i=t+1 p

2
i
≤ ρ (2)

t > m/2 : m−t
m2Pm

i=t+1 p
2
i
≤ ρ (3)

and

mX
i=1

pi = 1, p1 ≥ p2 ≥ ... ≥ pm ≥ 0.

Observe that ρ is minimal if equality holds for all inequations in (1), (2) and
(3). This yields an equation system allowing us to compute the values pi.
Thus the optimal channel selection probabilities are

p1 =
q

7
8ρ

pi =
q

1
4i(i−1)ρ

for i∈ [2,m/2],

pj = 1
m
·
q

1
ρ

for j > m/2.

Due to the constraint
Pm
i=1 pi = 1, the competitiveness is

ρ = 1
4

“
1 +

p
7/2 +

Pm/2
i=2 1/

p
i(i− 1)

”2

.

Since

Hm/2−1 =

m/2X
i=2

1/
p

(i− 1)2 >

m/2X
i=2

1/
√
i2 = Hm/2 − 1,

where Hi is the ith harmonic number, it holds that ρ ∈ Θ(log2m). Thus, we
have derived the following result.

Theorem 2.6. Algorithm OPT solves the device discovery problem with
optimal competitiveness

1
4

“
1 +

p
7/2 +

Pm/2
i=2 1/

p
i(i− 1)

”2

∈ Θ(log2m).

As mentioned above, the class algorithm ALGlogm features an asymptot-
ically optimal competitiveness of Θ(log2m) as well.
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Optimality for Known Probability Distribution of t

In the previous section, we have described an algorithm which solves the dis-
covery problem optimally for unknown t. In the following, we continue our
investigations in a slightly different model where the algorithm has a rough
estimation on the total number of jammed channels. Concretely, we assume
that an algorithm has an a priori knowledge on the probability distribution
of the total number of jammed channels: Let p(0), p(1), . . . , p(i), . . . , p(m) be
the probability that i channels are jammed. We know from Section 2.3 that
if t = i ≤ m/2 is known, the optimal discovery time is 8i in expectation.
We want to devise an algorithm ALGPDF which estimates t using the distri-
bution x0, x1, ..., xm/2 over the classes estimating bt = i, and minimizing the
expected total execution time.

Let pi denote the success probability for t = i ≤ m/2, i.e., i channels
are jammed. For the two classes j and l used by the two nodes, we have a
success probability of

max{min{2j − i, 2l − i}, 0}
(2 · 2j · 2l ,

since the nodes can only meet on unjammed channels. In order to compute
pi, we need to sum over all possible pairs of classes multiplied with the
probability of selecting them.

pi = P [success|t = i]

=

m/2−1X
j>i/2

m/2X
l>i/2

xjxl
min(2j − i, 2l − i)

8jl

=

m/2−1X
j>i/2

m/2X
l=j+1

2xjxl
2j − i

8jl
+

m/2X
j=i

x2
j · 2j − i

8j2
.

For t > m/2, the expected discovery time is m2

(m−t)x2
m/2

. This leaves us

with the following optimization problem:

min

»Pm/2
i=0 p(i)/pi +

Pm
i=m/2+1 p(i) · m2

x2
m/2(m−i)

–
subject to

Pm/2
i=0 xi = 1.

Unfortunately, this formulation is still non-linear. However, there are
tools available that can compute the optimal xi’s of ALGPDF numerically
using this formulation.
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2.4 Multi-Player Setting

Scenarios with more than two nodes raise many interesting questions. One
could try to minimize the time until the first two nodes have met, the time
until a given node has found another given node, or the time until all nodes
have had at least one direct encounter with all other nodes in the vicinity.
In practice, instead of computing a complete graph where each pair of nodes
has interacted directly, it might be more important to simply guarantee con-
nectivity, i.e. ensure the existence of acquaintance paths between all pairs of
nodes. In some of these models, it is beneficial to coordinate the nodes and
divide the work when they meet.

We leave the study of node coordination strategies for future research.
However, in the following, we want to initiate the multi-player analysis with
a scenario where the total number of nodes n and the total number of jammed
channels t is known, and where a node u wants to find a specific other node
v while other nodes are performing similar searches concurrently. Again, we
assume a symmetric situation where all nodes execute the same randomized
algorithm.

Theorem 2.7. Let n be the number of nodes and assume t, the number of
jammed channels, is known. If there are Ω(n + t) channels available, the
asymptotically best expected discovery time is Θ(n+ t). The algorithm select-
ing one of the first max(2t, 2n) channels uniformly at random and sending
with probability 1/2 achieves this bound.

Proof. Let the ith channel be selected with probability pi, and assume a given
node sends (or listens) on the channel with probability ps (or with probability
1 − ps). By the same argument as presented in the previous section, there
exists a randomized algorithm minimizing the expected node discovery time
by selecting pi = 1/k ∀i < k for some variable k. The discovery probability
if k channels are used is given by

(k − t)k−22ps(1− ps)(1− ps/k)n−2.

Thus, it remains to compute ps and k. Let us start with the last factor of the
success probability. Using the fact that (1− x/n)n > e−x, we can guarantee
that the term (1−ps/k)n−2 is asymptotically constant, if ps/k ∝ n (condition
(1)). Clearly, we have to choose k > t to ensure that a meeting can happen
(condition (2)). Asymptotically, the expected discovery time is in Θ(t+ n),
regardless of the precise choice of k and ps—as long as the conditions (1)
and (2) are satisfied. Concretely, setting ps = 1/2 and k = max(2t, 2(n− 2))
leads to an asymptotically optimal expected discovery time.

In reality, nodes typically do not know the number of nodes that are active
in the same area simultaneously. What happens if we apply the optimal
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strategy for two nodes devised in Section 2.3, even though there might be
several other nodes? Using the same arguments as in Section 2.3, we can
derive that every node executing algorithm OPT is asymptotically optimal
as well.

Corollary 2.8. Let n be the number of nodes and t the number of jammed
channels. Assume that n and t are unknown to the nodes. Algorithm OPT
from Section 2.3 achieves an asymptotically optimal competitiveness.

2.5 Alternative Jammer Models

So far, we have focused on a worst case jammer model where the jammer
blocks those t channels used with the highest probability by the nodes. How-
ever, depending on the hardware of the jammer, many alternative models
can be of interest too. We can categorize jammers into pure jammers which
do not listen and adapt to the traffic generated by the nodes, and listening
jammers which listen on some channels to check whether a node is currently
transmitting there. See Figure 2.2 for an overview.

ability:

sending only
ability:

sending and receiving

Budget Jammer

Worst Case Jammer

Byzantine JammerOblivious Jammer

Jammers

adaptiveStatic Jammer

Budget Jammer

adaptive
Byzantine Jammer

Figure 2.2: Jammer models.

We can distinguish between different types of pure jammers. In the sim-
plest case, the jammer jams a fixed set of t channels (static jammer). If the
set of jammed channels is known to the nodes, discovery is of course simple.
Otherwise our optimal algorithm solves the problem efficiently. Alternatively,
an oblivious jammer may jam t channels selected at random in every round.
If these channels are chosen uniformly at random, then a good strategy to
discover a node is to simply wait on some fixed channel until it is free. How-
ever, an oblivious jammer is more tedious than a static jammer during the
subsequent communication: while in the case of static jammers once a free
channel has been found nodes can communicate on this channel without in-
terruptions, an oblivious jammer continues to have a non-zero probability
to interfere. A slightly more complex jammer is a Byzantine jammer which
might either remain on the same channels or choose alternative channels to
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jam at random. Since we consider pure jammers only, this decision cannot
depend on the actions of the nodes. A Byzantine jammer is interesting, as
applying the algorithms devised for static or oblivious jammers might turn
out not to be a successful strategy. Finally, another pure jammer model is
the budget jammer. The budget jammer amortizes its cost over a number
of rounds. For example, it is allowed to jam a total of t · r channels over a
period of r rounds. I.e., a jammer may jam much more than t channels in
one round but then only a few in the next rounds. It can easily be seen that
our optimal algorithm proposed in Section 2.3 has the same competitiveness
when attacked by this adversary or a static jammer.

Listening jammers have the ability to check whether a node is currently
transmitting on a given channel. We assume that in each round, the jammer
can listen on ts channels and jam on tj = t−ts channels, where ts (and hence
tj) can change dynamically over time. Of course we can examine Byzantine
and budget jammers again. A number of new attacks are now possible, since
the adversary can adapt its strategy to the behavior of the nodes, especially
in the multi-player case. For instance, a jammer may reverse engineer the
hopping pattern used by the nodes after they have met. An adaptive budget
jammer on the other hand may use all its power to target and subsequently
block a particular node during the communication phase.

We do not indulge into a more detailed discussion here. However, in
summary, we want to emphasize that there exist many additional types of
jammer models which may be of concern in practice. We believe that due to
the rather pessimistic model studied in Section 2.3, our discovery algorithms
perform well and the upper bounds on the expected discovery time hold for
many alternative models.

2.6 Simulations

In order to complement our formal results, we conducted several in silico
experiments to study the behavior of our algorithms in different settings. In
this section, we discuss our main simulation results. If not mentioned other-
wise, we examine a system with 128 channels (Bluetooth uses 79 channels, 32
for discovery) and we discuss the average discovery time of 1000 experiments.

Device Discovery

In a first set of experiments, we studied the average discovery time of the
optimal algorithm OPT and the algorithm using a logarithmic number of
estimators or classes (ALGlogm), see also Section 2.3. A simple solution
to the device discovery problem typically used in practice is to select the
available channels uniformly at random. Therefore, we include in our plots
the algorithm UNI which has a balanced distribution over the channels.
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Figure 2.3: Average discovery time of OPT , ALGlogm, and UNI as a func-
tion of the total number of jammed channels t.

Figure 2.3 shows that in case only a small number of channels is jammed,
OPT and ALGlogm yield much shorter discovery time (around a factor ten
for t = 0). However, as expected, the uniform algorithm UNI is much faster
if a large fraction of channels are jammed.

The study of the algorithms’ competitive ratio is more interesting. Fig-
ure 2.4 plots the ratios of the different algorithms’ discovery time divided
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Figure 2.4: Competitive ratios of OPT , ALGlogm, and UNI as a function
of the total number of jammed channels t.
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by the optimal running time if t is known achieved by REF (cf. Section
2.3). The figure shows that our optimal algorithm OPT has indeed a per-
fectly balanced competitiveness of around 12, independently of the number
of jammed channels t. The uniform algorithm UNI is particularly inefficient
for small t, but improves quickly for increasing t. However, over all possible
values for t, UNI’s ratio is much worse than that of OPT and ALGlogm.
Note that ALGlogm is never more than a constant factor off from the optimal
algorithm OPT (a factor of around four in this example). The competitive
ratio of ALGlogm reaches its maximum at t > m/2.
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Figure 2.5: Average discovery time of OPT , ALGlogm, and UNI as a func-
tion of the total number of jammed channels t. For this plot, the jammed
channels are chosen uniformly at random.

So far, we have assumed a rather pessimistic point of view in our analysis
and we considered a worst case adversarial jammer only. Figure 2.5 studies
the algorithms in a setting where a random set of t channels is jammed.
Clearly, OPT and ALGlogm perform much better than UNI even for quite
a large number of jammed channels. Only if the number of jammed channels
exceeds 100, the average discovery time is worse.

Microwave Case Study

Besides adversarial jamming attacks, a reason for collisions during the discov-
ery phase is interference from other radio sources. It is well-known that mi-
crowave ovens interfere with Bluetooth channels (e.g., [68]), especially Blue-
tooth Channels 60-70. These channels are among the 32 channels that the
Bluetooth protocol uses for discovery (called inquiry in Bluetooth speak).
In other words, the Bluetooth protocol does not exploit the full range of
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the radiation emitted by a set of microwave ovens.  Figure 3 
shows the power radiated by Microwave Oven I at a 
distance of 10 feet as a function of frequency and time. The 
collected data was collapsed into minimum, maximum and 
average interference vectors covering the channel set. 
Figures 4 and 5 show the interference measured at each 
individual Bluetooth channel when Microwave Oven I is 
placed a distance of 10 feet and 20 feet from the 
measurement equipment, respectively.  

 

 

Figure 3. Interference received 10 feet away from Microwave Oven I as 
function of frequency and time. 

 

Figure 4. Interference experienced by each indvidual Bluetooth Channel 
when the receiver is 10 feet away from Microwave Oven I. 

 
 

 

Figure 5. Interference experienced by each indvidual Bluetooth Channel 
when the receiver is 20 feet away from Microwave Oven I. 

 
The Bluetooth standard requires a receiver sensitivity of 

-70dBm for a raw BER (Bit Error Rate) of 0.1% [1].  Using 
this threshold, the device’s allowable noise floor can be 
calculated. By treating the power radiated from the 
microwave oven as non-coherent noise, the frame error rate 
was estimated for the six types of Bluetooth packets based 
on the probability of retransmission derived in [2]. Figures 6 
and 7 show the expected FER for each of these packet types 
when Microwave Oven I is operating 10 feet and 20 feet 
away from the receiver. 

 

 
 
 

 

 

 

 

 

 

Figure 6. FER for the six ACL packet when the receiver is 10 feet away 
from Microwave Oven I. 

 
 
 

Figure 2.6: Interference experienced by each individual Bluetooth Channel
when the receiver is 20 feet away from a Microwave Oven. This figure from
[68] is used with the permission of the authors and is subject to IEEE copy-
right restrictions

available channels for discovery. The Bluetooth protocol is asymmetric, i.e.,
nodes either scan the inquiry channels from time to time, or they try to find
nodes nearby.

We have conducted a case study modelling the presence of other nodes
and a microwave oven. To this end, we simplified the Bluetooth inquiry
protocol to its core device discovery algorithm. One node scans the channels
constantly and the other node performs the Bluetooth inquiry frequency
hopping pattern until they meet. Since Bluetooth only uses 32 out of the 79
available channels for discovery, our optimal algorithm is clearly in advantage
by exploiting the whole range of frequencies. We ignore this advantage and
consider the following set up: two nodes applying the Bluetooth inquiry
protocol and two nodes executing the optimal algorithm for 32 channels seek
to meet the node following the same protocol. We have counted the number
of time slots Bluetooth and our optimal algorithm need until this meeting
happens with and without interference by a microwave oven. We obtained
the following results:

Microwave BT OPT

off 34.49 15.16
on 45.76 15.70
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Figure 2.7: Comparison of the discovery time of OPT (once with randomly
and once with worst-case jammed channels) to UNI if t = 10 channels are
jammed and for different number of nodes executing the same algorithm
concurrently.

There is a substantial difference between the performance of the two pro-
tocols, especially when considering that the Bluetooth protocol is asymmet-
ric. Hence no collisions occur on the same channels in our setting with two
Bluetooth nodes. In other words, our setting is punishing the optimal al-
gorithm for being symmetric. We believe that there are many interesting
scenarios where symmetry is required and protocols following a Bluetooth
approach are not suitable.

Multi-Player Settings

The algorithms described in Section 2.3 are tailored to settings where two
nodes want to meet efficiently despite a adversarial jammer. However, our
analysis and our experiments show, that the number of time slots until two
designated nodes meet increases linearly in the number of nodes in the vicin-
ity. In large networks or times of high contentions the UNI algorithm per-
forms much better. Thus, in these scenarios, it is beneficial to use this
algorithm.

2.7 Concluding Remarks

The fast and robust discovery of other devices is one of the most fundamen-
tal problems in wireless computing. Consequently, a prerequisite to efficient
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networking are algorithms with the twofold objective of allowing devices to
find each other quickly in the absence of any interference, degrading grace-
fully under increasing disturbance. In other words, discovery algorithms that
work well in different settings and under various conditions are necessary.
This chapter has presented optimal algorithms for a very general, Byzantine
model of communication disruptions. This implies that our algorithms can
be used in many other scenarios with stronger assumptions on the nature
of such disruptions. In other words, our algorithms can cope with inciden-
tal as well as with malicious interference. Furthermore, our algorithms are
ideal candidates for energy and memory constrained sensor nodes as they are
simple and fully distributed.

Other approaches, e.g., based on exponential search techniques can out-
perform our protocols if the adversary is static, i.e. does not change the
number of blocked channels. Such protocols are not able to deal with situ-
ations where the number of blocked channels varies. Another disadvantage
of the exponential search technique is the fact that, in contrast to our al-
gorithm, it requires the nodes to start the discovery protocol at the same
time.

Our results open many directions for future research. It is important to
reason about how the first successful contact between two nodes can be used
for more efficient future information exchange (e.g., by establishing a shared
secret key), and how, subsequently, more complex tasks can be performed
over the multi-channel system.



3
Uniform Power Scheduling

How long does it take to find an optimal schedule for a given set of communi-
cation links in a wireless ad-hoc network? Is this problem difficult – even in
a simplified model? What if we do not need to schedule all communication
links, but simply want to choose the most “valuable” ones? And how hard
is it to produce a result which is not necessarily optimal, but only falls short
of an optimal solution by a guaranteed factor? In this chapter, we study
the computational complexity of constructing optimal schedules. In partic-
ular, we present NP-hardness results and approximation algorithms for two
problems: Scheduling and One-Shot Scheduling. The first problem consists
in finding a minimum-length schedule for a given set of links. The second
problem receives a weighted set of links as input and consists in finding a
maximum-weight subset of links to be scheduled simultaneously in one shot.

3.1 Geometry Matters

When studying wireless networks, the choice of the interference model is of
fundamental significance. Not only has the selected model to incorporate
the nature of real networks, but also to facilitate the development of rigorous
reasoning.

One model of choice is the abstract Signal-to-Interference-plus-Noise-
Ratio (or short, SINRA) model. In the SINRA model, a signal is received
successfully depending on the ratio of the received signal strength and the
sum of the interference caused by nodes sending simultaneously (plus noise).

The wireless networking community usually adheres to the physical
SINR model (SINRP ). In this inherently geometric model, the nodes live
in space, and the gain (or signal attenuation) between two nodes is deter-
mined by the distance between the two nodes. In particular, a signal fades
with the distance to the power of alpha, alpha being the so-called path-loss
parameter.

31
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SINRP makes some simplifying assumptions, such as perfectly isotropic
radios, no obstructions, or a constant ambient noise level. The more general
SINRA model allows arbitrary values in the gain matrix among the partic-
ipating nodes of a wireless network. This model can capture some of the
properties SINRP is missing. On the other hand, SINRA is not all that
realistic either, since in reality, if a node u is close to a node v, which in
turn is close to a node w, then u and w will also be close. So the entries in
the gain matrix will be constrained by the other entries. Thus, tSINRP is
too optimistic, whereas SINRA is too pessimistic. Hence, a real network is
positioned somewhere between the SINRP and the SINRA model.

When studying algorithms or protocols, upper bounds should be derived
for the pessimistic model, as an algorithm for a strictly1 more pessimistic
model will also work for reality. However, also the converse is true: If one is
interested in lower bounds (impossibility results or capacity constraints), one
must use the optimistic model. A strictly more optimistic model guarantees
that results are applicable in practice.

In this chapter we study two optimization problems in wireless networks:
Scheduling and One-Shot Scheduling. Apart from presenting approximation
algorithms, our main result is the proof of hardness of these problems. In
particular, we formally prove that Scheduling and One-Shot Scheduling are
both NP-hard in the SINRP model. Since the SINRP model is weaker than
reality, this implies that one cannot compute an optimal schedule of wireless
requests in practice, unless P = NP .

To the best of our knowledge, these are the first NP-hardness proofs for
the SINRP model.2 As we will discuss in the next section in more de-
tail, there have been various NP-completeness proofs for wireless networks
model, in particular for so-called unit disk graphs (UDG) or for the SINRA
model. In contrast to our work, these proofs are graph-based. In an or-
thodox SINRA proof one establishes an arbitrary gain matrix between the
participating nodes of a wireless network, giving O(n2) degrees of freedom.
In particular, this allows to build a graph, as the gain between any two nodes
can be set to either 1 (“link”) or 0 (“no link”). One ends up with a standard
graph, and it trivially follows that e.g. scheduling is as hard as coloring in
graphs. A similar argument holds for proofs for the UDG model.3

In reality, however, gain cannot be chosen arbitrarily. As we argued

1Note that models are rarely strictly harder than reality; SINRA is a typical example,
as SINRA does not include several difficulties of reality, e.g. short-term fading.

2In order to prove that the problems at hand are NP-complete as well, we have to
prove that they in the complexity class NP. For some operations on integers it is not
yet clear whether they can be computed efficiently by a Turing machine. E.g., it is not
known how a sum of of square roots of integers can be compared quickly to an integer [90].
Since our model requires the computation of roots of integers, we do not know whether
scheduling and related problems are in NP. If we assume the Real RAM model (often
used in computational geometry), all our computations can be implemented efficiently.

3Not surprisingly as the G in UDG stands for graph.
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before, the triangular inequality makes all the entries in the gain matrix
interdependent. If we turn to the SINRP model, we must choose positions
of the nodes in space (e.g. in a plane), which determines the attenuation
between two nodes, giving only O(n) degrees of freedom. Arguing that two
nodes cannot transmit concurrently in a schedule becomes much harder, since
the nodes all influence each other. This is what intuitively makes the problem
harder. In the SINRP model, one must always deal with the complete
(weighted) graph; this asks for a different kind of proof.

The problem of scheduling link transmissions in a wireless network in
order to optimize one or more of performance objectives (e.g. throughput,
delay, fairness or energy) has been a subject of much interest over the past
decades.

Previous Complexity Results

An issue of prime importance is the complexity of scheduling problems. As
has already been argued in the introduction, there have been various NP-
completeness proofs for wireless networks. To the best of our knowledge,
these proofs are either built for the UDG model [56, 69], or for the abstract
SINR model (SINRA), and present reductions without a geometric repre-
sentation. A typical such proof establishes an arbitrary gain matrix between
the participating nodes, which results in a standard graph. Afterwards, the
hardness is proved by a reduction from graph coloring, for example [20].

The joint problem of power control and scheduling with the objective of
minimizing the total transmit power subject to the end-to-end bandwidth
guarantees and the bit error rate constraints of each communication ses-
sion is addressed by Kozat et al. in [66]. They prove their problem to be
NP-complete by using a reduction from integer programming under the as-
sumption that the values of the gain matrix can be chosen arbitrarily.

Similarly, Leung and Wang [75] prove that the problem of maximizing
data throughput by adaptive modulation and power control while meeting
packet error requirements is NP-complete under the assumption that the
values of the gain matrix are arbitrary.

Another problem is proposed by Chatterjee et al. in [79] as the power con-
strained discrete rate allocation problem. A solution finds the rates at which
the base station must transmit to each user including SINR constraints.
They prove that this problem is NP-complete for CDMA data networks by
a reduction from the Knapsack problem using a gain matrix with gain value
1 for all links.

The problem of scheduling broadcast requests has been studied by
Ephremides and Truong [39]. They show that in a generalized, non-geometric
model, finding an optimal schedule is NP-complete, if no interference is toler-
ated. Other aspects of scheduling and power control using an arbitrary gain
matrix are studied for instance in [20, 21, 32, 93, 96, 97].
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One of the very few lower bounds for the SINRP model is due to Gupta
and Kumar [53]. They analyze the overall capacity of ad-hoc networks in the
SINRP model from an information theoretic perspective, and prove that a
wireless network comprised of n nodes cannot provide a throughput of more
than Θ(1/

√
n).

Graph-Based Scheduling Algorithms

Of course the design of efficient algorithms for scheduling has been explored
as well. In order to compute a time-schedule such that spatial reuse is maxi-
mized, most of the proposed schemes are based on traditional graph-theoretic
models. They use a graph representation of a wireless network, modeling in-
terference by some (often binary) graph property. For example, a set of
“interference-edges” might be defined, containing pairs of nodes within a
certain distance to each other, thus modeling interference as a local measure.

Graph-based scheduling algorithms usually employ an implicit or explicit
coloring strategy, which neglects the aggregated interference of nodes located
farther away. A variety of centralized and decentralized approximation algo-
rithms have been proposed and their quality analyzed for this kind of model
[54, 71, 84, 98, 102]. Most recently, Brar et al. [23] present a scheduling
method that is based on a greedy assignment of weighted colors. Although
these algorithms present extensive theoretical analysis, they are constrained
to the limitations of a model that does not reflect the real nature of wireless
networks. In particular, such graph-based models ignore the accumulated
interference of a large number of distant nodes.

In [17, 50, 51], it is argued that the performance of graph-based algorithms
is inferior to algorithms in more realistic SINR models. More recently,
Moscibroda et al. [86] show experimentally that the theoretical limits of any
protocol, which obeys the laws of graph-based models, can be broken by a
protocol explicitly defined for the SINRP model.

Scheduling Algorithms for the SINRP Model

The computation of efficient schedules in the SINRP model has been studied
in a more restricted number of papers. In [85], an efficient power-assignment
algorithm, which schedules a strongly connected set of links in O(log4 n)
time slots in the SINRP model, is presented. In [48], randomized local
algorithms for broadcasting are analyzed. The work of [18, 20, 58] proposes
mathematical programming formulations for optimal schedules. However,
the resulting formulations are infeasible from a computational point of view
as the running time is exponential in the input.
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3.2 Model and Definitions

We are interested in devising scheduling protocols that exhibit a provably
good performance even in non-uniformly distributed networks. We therefore
consider the network to consist of a set of n nodes X = {x1, . . . , xn} that are
arbitrarily (possibly even worst-case) located in the Euclidean plane. The
Euclidean distance between two nodes xi, xj ∈ X, is denoted by d(xi, xj).
For simplicity and without loss of generality, we assume that the minimal
distance between any two nodes is 1.

A communication request li from a sender si ∈ X to a receiver ri ∈ X is
represented as a directed link (si, ri) with length di = d(si, ri).

The Physical SINR Model (SINRP )

A crucial aspect when studying scheduling in wireless networks is to use an
appropriate model. In the past, researchers have studied a wide range of
communication models, ranging from complex channel models to simplistic
graph-based protocol models. A standard model that is realistic, but also
concise enough to allow for stringent reasoning and proofs is the Physical
Signal-to-Interference-plus-Noise-Ratio (SINRP ) model [53]. In this model,
the successful reception of a transmission depends on the received signal
strength, the interference caused by nodes transmitting simultaneously, and
the ambient noise level. A message can be transmitted successfully if the
ratio of the received signal strength and the sum of the interference caused
by nodes sending simultaneously plus the noise level exceeds a hardware-
dependent value β.

The received power Pr(si) of a signal transmitted by sender si at an
intended receiver ri is

Pr(si) = P (si) · g(si, ri),

where P (si) is the transmission power of si and g(si, ri) comprises the prop-
agation attenuation (link gain) modeled as g(si, ri) = d−αi . The path-loss
exponent α is a constant between 2 and 6, whose exact value depends on
external conditions of the medium (humidity, obstacles, . . . ), as well as the
exact sender-receiver distance. As common, we assume that α > 2 [53].

Given a request li = (si, ri), we use the notation Ir(sj) = Pr(sj) for any
other sender sj concurrent to si, in order to emphasize that the signal power
transmitted by sj is perceived at ri as interference. The total interference
Ir experienced by a receiver ri is the sum of the interference power values
created by all nodes in the network transmitting simultaneously (except the
intending sender si), that is, Ir :=

P
sj∈X\{si} Ir(sj). Finally, let N denote

the ambient noise power level. Then, ri receives si’s transmission if and only
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if

SINR(i) =
Pr(si)

N +
P
j 6=i Ir(sj)

(3.1)

=
P (si)g(si, ri)

N +
P
j 6=i P (sj)g(sj , ri)

=

P (si)
dαi

N +
P
j 6=i

P (sj)

d(sj ,ri)α

≥ β,

where β is the minimum SINR required for a successful message reception.

In the sequel we assume β ≥ 1.

In this chapter we assume that all nodes transmit with the same power
level. This assumption is also referred to as uniform power assignment
scheme [52]. This kind of power assignment has been widely adopted in
practical systems and has been studied in depth in [105].

For the sake of simplicity, in the following analysis sections, we set N = 0
and ignore the influence of noise in the calculation of SINR. However, this
has no significant effect on the results.

Scheduling Problem

The aim of an algorithm for the Scheduling problem is to generate a short
sequence of link sets, such that the SINR level is above a threshold β at every
intended receiver in each link set and all links are scheduled successfully at
least once.

More precisely, let L be a set of communication requests. A schedule is
represented by S = (S1,S2, . . . ,ST ), where St denotes a subset of links of L,
designated to time slot t. As in [53], we assume without loss of generality
that transmissions are slotted into synchronized slots of equal length and in
each time slot t, a node can either transmit or remain silent.

The task of a scheduling algorithm is to schedule a set of communication
requests L such that all messages are successfully received.

Definition 3.1. Consider a time slot t. The request li = (si, ri) is suc-
cessfully scheduled in time slot t if ri can decode message from si correctly
according to the SINR inequality (3.1).

Let Lt be the set of all successfully scheduled links in time slot t. We
aim at ensuring that after as few time slots as possible every link has been
transmitted, i.e., the union of all sets Lt equals the set of requests L. The
scheduling complexity defined in [85] is a measure that captures the amount
of time required by a scheduling protocol to schedule requests in the SINRP
model.
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Definition 3.2. The Scheduling problem for L consists in finding a schedule
S of minimal length T such that the union of all successfully transmitted linksST (S)
t=1 Lt equals L. An algorithm’s scheduling complexity is the length of the

schedule generated.

Evidently, an algorithm’s quality is reflected by its scheduling complexity.
Ideally, a wireless scheduling protocol should achieve an optimal scheduling
complexity in all networks and for arbitrary communication requests.

In the sequel, we assume that there are no conflicts in the transmission
setup, i.e., each node is either a sender or a receiver and each receiver is
associated with only one sender. These conflicts can be resolved efficiently
by introducing additional nodes at the same position such that there is one
sender-receiver pair for each link. Therefore we neglect them for simplicity’s
sake.

One-Shot Scheduling Problem

In contrast to the Scheduling problem, where we were interested in a schedule
for all links, the objective of an algorithm solving the One-Shot Scheduling
problem is to pick a subset of weighted links such that the total weight is
maximized and the SINR level is at least β at every scheduled receiver. In
other words, we attempt to use one slot to its full capacity.

Formally, let L be a set of communication requests, where each link li
is assigned a weight wi. A set S = (l1, l2, . . . , lm) ⊆ L is a solution to an
instance of a One-Shot Scheduling problem if the following two conditions
hold:

S = argmax
S′⊆L

X
lj∈S′

wj ,

SINR(rj) ≥ β, ∀lj ∈ S.

3.3 NP-Hardness of Scheduling Problems

Solving problems in the SINR setting is very difficult. Even finding an
algorithm determining a good approximation for every problem instance is
hard, as is documented by the vast amount of literature with heuristics on
this subject [18, 20, 46, 50, 58, 85, 87].

As mentioned earlier in this chapter, there are hardly any results on
the hardness of problems in a geometric setting. However, insights on the
complexity are very important for the design of efficient algorithms. In this
section we analyze the Scheduling problem and the One-Shot Scheduling
problem and prove them to be NP-hard in the SINRP model.
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Figure 3.1: Reduction from Partition: link ln+1 (or ln+2) can be scheduled if
and only if the interference caused by simultaneously scheduled links sj , j ∈
{1 · · ·n} is less our equal to σ/2.

Scheduling Problem

Proving the Scheduling problem to be NP-hard implies that there exists
no polynomial time algorithm for determining an optimal schedule, unless
P = NP . It is widely believed that an NP-hard computational problem is
not tractable efficiently.

To prove the hardness of the scheduling problem, we present a polynomial
time reduction from the Partition problem, an NP-complete special case of
the well known Subset Sum problem. If the solution to an instance of the
Scheduling problem implies a solution to any instance of the Partition prob-
lem, Scheduling must be at least as hard as Partition.

Lemma 3.3. The Partition problem is reducible to the Scheduling problem
in polynomial time.

Proof. The Partition problem (proved to be NP-complete by Karp in his
seminal work [62]) can be formulated as follows: Given a set I of integers, is
it possible to divide this set into two subsets I1 and I2, such that the sums
of the numbers in each subset are equal? The subsets I1 and I2 must form
a partition in the sense that they are disjoint and they cover I.
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Partition problem: Find I1, I2 ⊂ I = {i1, . . . , in} s.t.:

I1 ∩ I2 = ∅,
I1 ∪ I2 = I, andX
ij∈I1

ij =
X
ij∈I2

ij =
1

2

X
ij∈I

ij .

The proof proceeds as follows. First, we define a many-to-one reduction
from any instance of the Partition problem to a geometric instance of the
Scheduling problem. Then, we argue that the instance of the Scheduling
problem cannot be scheduled in T ≤ 1 time slots, but can be scheduled in
1 < T ≤ 2 time slots if and only if the instance of the Partition problem is
solved.

Let us look at a set I = {i1, . . . , in} of integers, where the elements of I
add up to σ,

nX
j=1

ij = σ.

Without loss of generality, we can assume all elements to be distinct
and positive. We construct the following Scheduling problem instance with
n + 2 links L = {l1, . . . , ln+2} (see Figure 3.1). We refer to the sender node
belonging to lj as sj and the receiver node rj . We assign each of these nodes
a position (X,Y) in the plane. For each integer ij in I we set the x-axis
coordinate of sj to (P/ij)

1/α,

pos(sj) =

 „
P

ij

« 1
α

, 0

!
∀ 1 ≤ j ≤ n.

Next, we designate for every ri, 1 ≤ i ≤ n its position to be at distance
dmin to its sender si, where

dmin = P
1
α ·

“
1

(imax−1)1/α
− 1

i
1/α
max

”
“

1 + (nβ)
1
α

” (3.2)

and imax is the maximal value of the integers in set I. Thus

pos(ri) = pos(si) + (dmin, 0).

Finally, we place rn+1 and rn+2 at the center (0, 0) and their senders
sn+1, sn+2 perpendicular to the x-axis, at distance (2P/βσ)1/α, i.e.,

pos(rn+1) = pos(rn+2) = (0, 0),

pos(sn+1) =

 
0,

„
2P

β · σ
« 1
α

!
,

pos(sn+2) =

 
0,−

„
2P

β · σ
« 1
α

!
.
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Having defined the geometric instance of the Scheduling problem for any
instance of the Partition problem, we proceed by showing that in order to
find a schedule of length 1 < T ≤ 2, a solution to the Partition problem is
required. Clearly, it is not possible to schedule all links in one slot, since the
receivers rn+1 and rn+2 are at the same position and we assume β ≥ 1.

In order to transmit successfully, the SINR constraint at the intended
receiver has to be satisfied. In the following lemma we prove that the re-
ceivers r1, . . . , rn are close enough to their respective senders to guarantee
successful transmission, regardless of the number of other links scheduled
simultaneously.

Lemma 3.4. Let Li = {lj |1 ≤ j ≤ n + 1 and i 6= j}. It holds for all i ≤ n
that the SINR exceeds β when the link li is scheduled concurrently with the
set Li,

SINR(ri) =

P
dαiP

lj∈Li
P

d(sj ,ri)α

> β.

We are not considering ln+2, since ln+1 and ln+2 can never be scheduled
simultaneously and the distance between sn+2 and any other node is the
same as the distance between sn+1 and this node.

Proof. Since the positions of the sender nodes s1, . . . , sn depend on the values
of i1, . . . , in, we can determine the minimum distance between two sender
nodes sj , sk.

d(sj , sk) = |d(sj , rn+1)− d(sk, rn+1)|

=

˛̨̨̨
˛
„
P

ij

« 1
α

−
„
P

ik

« 1
α

˛̨̨̨
˛

≥ P
1
α

„
1

(imax − 1)1/α
− 1

i
1/α
max

«
. (3.3)

Thus, one can deduce that the sender sj closest to ri, i 6= j is located at
least at distance d(sj , si) − dmin from ri (dmin is defined in (3.2)). All the
other sender nodes (including sn+1) are farther away. This suffices to show
a lower bound for SINR(ri).

SINR(ri) >

1
dαmin
n

(d(sj ,si)−dmin)α

≥ 1

n

““
1 + (nβ)

1
α

”
− 1
”α

= β. (3.4)
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Having proved that successful transmission is guaranteed for links
l1, . . . ln, no matter how many other links are scheduled concurrently, we
now return to the proof of Lemma 3.3.

We claim that there exists a solution to the Partition problem if and only
if there exists a 2-slot schedule for L. For the first part of the claim, assume
we know two subsets I1, I2 ⊂ I, whose elements sum up to σ/2. To construct
a 2-slot schedule, ∀ij ∈ I1, we assign the link lj to the first time slot, along
with ln+1, and assign the remaining links to the second time slot. Due to
Lemma 3.4 we can focus our analysis on the receivers rn+1 and rn+2. The
situation is the same for both receivers, so it suffices to examine rn+1. The
signal power rn+1 receives from its sender node sn+1 is

Prn+1(sn+1) =
P„“

2P
βσ

” 1
α

«α =
βσ

2
.

The interference rn+1 experiences from each sender sj is

Irn+1(sj) =
P„“

P
ij

” 1
α

«α = ij ,

which results in total interference of

Irn+1 =
X
ij∈I1

ij =
σ

2
.

This allows to lower bound the SINR at rn+1

SINR(rn+1) ≥ Prn+1(sn+1)

Irn+1

=
βσ/2

σ/2
= β,

which, in combination with Lemma 3.4, proves that our schedule guarantees
successful transmission for all links.

For the second part of the claim, we need to show that if no solution
to the Partition problem exists, we cannot find a 2-slot schedule for L. No
solution to the Partition problem implies that for every partition of I into
two subsets, the sum of one set is greater than σ/2. Assume we could still
find a schedule with only two slots. Since the receivers rn+1 and rn+2 are
at the same position, they have to be assigned to different slots to permit a
successful transmission. Because we have to split L \ {ln+1, ln+2} into two
sets and the received power from sj , j = 1, . . . , n at (0,0) is ij , we end up with
a total interference at (0,0) greater than σ/2 for one slot, which prevents the
correct reception of the signal from sn+1 or sn+2.

By Lemma 3.3, Partition is reducible to Scheduling. Therefore, we can
now state a theorem on the complexity of the Scheduling problem.

Theorem 3.5. The Scheduling problem in the SINRP model is NP-hard.
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Figure 3.2: Reduction from Knapsack: the weight of simultaneously sched-
uled links is maximized if and only if the sum of the values pj assigned to
them is maximized and the knapsack capacity W is not violated.

One-Shot Scheduling problem

In this section we prove that the decision version of the weighted One-Shot
version of the Scheduling problem, under uniform power assignment scheme,
is also NP-hard in the SINRP model. We proceed by describing a polynomial
time reduction for the Knapsack problem in Lemma 3.6.

Lemma 3.6. Knapsack is reducible to the One-Shot Scheduling problem in
polynomial time.

Proof. Let us first introduce the Knapsack problem: Consider n kinds of
items, x1 through xn, where each item xj has a value pj and a weight wj .
The maximum weight that we can carry in a bag is W . Our aim is to choose
the items we put in the bag such that the sum of the values is maximized.
We can formulated this task as an integer program.

Knapsack problem:

max
nX
j=1

pjxj , s.t. (3.5)

nX
j=1

wjxj ≤ W, (3.6)

xj ∈ {0, 1}, j = 1, . . . , n
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Without loss of generality, we assume that there are only items of distinct
integer weights. As in the proof for the Scheduling problem, we start by
defining a many-to-one reduction from any instance of the Knapsack problem
to a geometric instance of the One-Shot Scheduling problem, and afterwards
prove that the latter can be solved if and only if the former is also solved.

We have to dispose links in the plane, such that the rules of the Knapsack
problem are enforced (see Figure 3.2). We position a sender node si in the
plane for each xi, such that the received power from si at (0,0) is wi, i.e.,

pos(si) =

 „
P

wi

« 1
α

, 0

!
, ∀1 ≤ j ≤ n.

Now we set ri close enough to si to guarantee successful reception regard-
less of other links.

pos(ri) = pos(si) + (dmin, 0), where

dmin = P
1
α ·

“
1

(wmax−1)1/α
− 1

w
1/α
max

”
“

1 + (nβ)
1
α

” ,

and wmax is the largest weight in this problem instance.

In the next step we place an additional link ln+1, such that rn+1 is at
(0,0) and sn+1 is in such a distance that the received power at (0,0) is βW .

pos(rn+1) = (0, 0),

pos(sn+1) =

 
0,

„
P

βW

« 1
α

!
.

Thereafter, we assign a weight to each link:

weight(li) = pi, ∀1 ≤ i ≤ n

weight(ln+1) = 2 ·
nX
j=1

pj .

Note that SINR(ri) > β,∀i = 1 . . . n, even if all link transmissions are
concurrent, since we can apply Lemma 3.4 (due to the fact that we chose
the distance between a sender and a receiver of a link to be dmin in both
reductions). If we execute an algorithm solving this One-Shot Scheduling
problem, we obtain a solution for the Knapsack problem: Let SOPT be the
set of links of an optimal solution to the One-Shot problem constructed
above. The described assignment of weights ensures that ln+1 is picked,



44 CHAPTER 3. UNIFORM POWER SCHEDULING

since without it the maximal sum of weights cannot be reached. We can
compute SINR(rn+1) as follows

SINR(rn+1) =
Prn+1(sn+1)

Irn+1

=

P “
P
βW

” 1
α

!α
P
lj∈SOPT

P „
P
wj

« 1
α

!α

= β · WP
lj∈SOPT wj

,

and since a valid solution allows ln+1 to be transmitted successfully, we have
SINR(rn+1) > β. Consequently a solution to the One-Shot Scheduling
problem satisfies X

lj∈SOPT
wj < W.

Hence, each of the selected links li stands for xi in (3.5) and (3.6), which
fulfills the condition of the Knapsack problem. Because SOPT maximizes the
sum of the weights at the same time, the sum of the values of the items of
the Knapsack problem is maximized as well.

Lemma 3.6 implies that no algorithm can solve the One-Shot Scheduling
problem without solving an NP-hard problem. Thus the One-Shot Scheduling
problem is NP-hard as well.

Theorem 3.7. One-Shot Scheduling in the SINRP model is NP-hard.

In contrast to these results on the complexity of scheduling with a uniform
power assignment, the question whether the Scheduling problem with power
control is also NP-hard remains open and is an area of active research.

3.4 Approximation Algorithms

In this section we propose two approximation algorithms for the Scheduling
and the One-Shot Scheduling problems.

Before describing the algorithms, let us introduce the notion of length
diversity, namely the number of magnitudes of distances. Formally, g(L) is
defined as

g(L) := |{m|∃li, lj ∈ L : blog(di/dj)c = m}|. (3.7)

For our problem, g(L) denotes the number of non-empty length classes
of the set of links to be scheduled. In realistic scenarios, the diversity g(L)
is usually a small constant.
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The algorithms we present consist of two steps: First, the problem in-
stance is partitioned into disjoint link length classes; then, a feasible schedule
is constructed for each length class using a greedy strategy.

Scheduling

Algorithm 3.1 Approximation Algorithm for the Scheduling problem

Input: A set L of links located arbitrarily in the Euclidean plane
Output: A schedule S in which every link can be transmitted successfully

1: Let R = R0, . . . , Rlog(lmax) such that Rk is the set of links li of length
2k ≤ di < 2k+1;

2: t = 1;
3: for all Rk 6= ∅ do
4: Partition the plane into squares of width µ · 2k;
5: 4-color the cells such that no two adjacent cells have the same color.
6: for j = 1 to 4 do
7: Select color j;
8: repeat
9: For each square A of color j, pick one link li ∈ Rk with receiver

ri in A, assign it to time slot t (Lkj = Lkj ∪ li);
10: t = t+ 1; St = Lkj ;
11: until all links of Rk in the selected squares are scheduled
12: od
13: od
14: return S;

The algorithm (for a description in pseudo-code see Algorithm 3.1) starts
by partitioning the input set of links L into length classes (R0, · · · , Rg(L)).
Each subset Rk is scheduled separately. First, the plane is partitioned into
square grid cells of side µ · 2k, where µ is defined as follows

µ = 4

„
8β · (α− 1)

(α− 2)

« 1
α

, (3.8)

and then the cells are colored regularly with 4 colors (see Figure 3.3). Links
whose receivers belong to different cells of the same color are scheduled si-
multaneously (added to set Lkj ). Note that the inner repeat loop (lines
8-11) constructs a schedule of length ∆(Akmax), which is the maximum num-
ber of links in length class k, whose receivers are in the same grid cell Ak.
Given that there are 4 colors and g(L) length classes, all links a scheduled in
4 ·∆(Akmax) · g(L) time slots.
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µ2k
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Figure 3.3: In line 7 of Algorithm 1, the algorithm picks all squares numbered
by j. The example shows an inner loop iteration for length classRk and j = 3.
The algorithm schedules one unscheduled link from each selected square (if
there exists one).

We show now that the schedule obtained by Algorithm 3.1 is correct, by
proving in Theorem 3.8 that all links can be scheduled successfully in their
respective time slot.

Theorem 3.8. Consider an arbitrary set of links L to be scheduled. For
every time slot t, the set St of links output by Algorithm 3.1 is scheduled
successfully, i.e., the SINR at every intended receiver is larger than β.

Proof. We demonstrate that all transmissions scheduled in a time slot t are
received successfully by the intended receivers, i.e., their SINR is sufficiently
high.

Without loss of generality, let us examine links in a length class Rk. Every
link li ∈ Rk satisfies di < 2k+1, thus the perceived power at ri from si is at
least

Pri(si) ≥
P

2α(k+1)
. (3.9)

Since Algorithm 3.1 schedules at most one link in each cell with the same
color concurrently, the closest 8 senders sj scheduled in the same time slot
must be at least at distance d(ri, sj) ≥ µ2k − 2k+1 = 2k(µ − 2) to ri (see
Figure 3.3). Consequently, the sum of their interference experienced by ri is



3.4. APPROXIMATION ALGORITHMS 47

less than
8X
j=1

Pri(sj) ≤
8P

(2k(µ− 2))α
.

In the next step, we consider the (at most) 16 senders sj at distance 3µ2k −
2k+1 ≤ d(ri, sj) ≤ 5µ2k − 2k+1. They contribute a total interference of

25X
j=9

Pri(sj) ≤
16P

(2k(3µ− 2))α
.

We continue aggregating the interference from nodes sj at distance range

(2l − 1)µ2k − 2k+1 ≤ d(ri, sj) < (2l + 1)µ2k − 2k+1,

∀l = 1, 2, . . .. Since at most 8l links are picked in each interval, the interfer-
ence caused by them is at most

d(ri,sj)<

(2l+1)µ2k−2k+1X
d(ri,sj)≥

(2l−1)µ2k−2k+1

Pri(sj) ≤
8P · l

(2k((2l − 1)µ− 2))α
.

Thus, the total interference at a scheduled receiver ri can be upper bounded
by

Iri ≤
∞X
l=1

8P · l
(2k((2l − 1)µ− 2))α

≤ 8P

2kα

∞X
l=1

l

( 1
2
(2l − 1)µ)α

(3.10)

≤ 8P

2(k−1)αµα

∞X
l=1

l

(2l − l)α

≤ 8P

2(k−1)αµα

∞X
l=1

1

lα−1

≤ 8P

2(k−1)αµα
(α− 1)

(α− 2)
, (3.11)

where (3.10) follows because x − 2 > x/2, ∀x > 4 and µ > 4, given that
β ≥ 1 and α ≥ 2; and (3.11) follows from a bound on Riemann’s zeta
function. Using (3.9), (3.11), and plugging in the value of µ, defined in (3.8),
the SINR at receiver ri can be lower bounded by
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Link length classes:

k+1
k

k-1

k2⋅μk2⋅μ

Ak
max

Interference

i

Figure 3.4: Lower Bound: an optimum algorithm could schedule at most q
links with receivers in Akmax in length class k in a single time slot.

SINR(ri) =
Pri(si)

Iri

>
P

2α(k+1)

8P

2(k−1)αµα
(α−1)
(α−2)

=
µα

4α · 8 · (α−1)
(α−2)

= β,

Now we turn our attention to the efficiency of Algorithm 3.1. In partic-
ular, in Theorem 3.9 we bound its approximation ratio.

Theorem 3.9. The approximation ratio of Algorithm 3.1 is O(g(L)), where
g(L) is the length diversity of the input, defined in (3.7).
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Proof. The proof relies on the choice of a so called critical square Akmax =
µ2k × µ2k (see Figure 3.4), i.e., we choose the cell with the highest density
∆(Akmax) over all g(L) generated grids. Note that ∆(Akmax) is the number of
links li whose receiver is located in cell Akmax and whose length class is k, i.e.,
2k ≤ di < 2k+1. We proceed by showing that an optimum algorithm OPT
can schedule all ∆(Akmax) in at least TOPT = d∆(Akmax)/qe time slots, where
q is a constant dependent on parameters α and β (µ is defined in (3.8)):

q =

`
2(
√

2µ+ 1)
´α

β
. (3.12)

Assume, by contradiction, that OPT schedules all links in less than TOPT
time slots. Therefore, there must exist a time slot t′, 1 ≤ t′ ≤ TOPT , such
that more than q links in Akmax are scheduled simultaneously. We pick one
of the scheduled links li, ri ∈ Akmax in time slot t′ and calculate the resulting
SINR level at ri:

SINR(ri ∈ Akmax) ≤
P
dαi

P ·Pq
j=0 d(sj , ri)−α

<
P

2kα

P · q · (2√2µ2k + 2k+1)−α
(3.13)

= β, (3.14)

where (3.13) follows from the fact that di ≥ 2k, dj < 2k+1 and d(ri, rj) ≤
2
√

2µ2k; and (3.14) follows from definition (3.12) of q.

Hence, to schedule all links in the critical square Akmax, OPT needs time

TOPT ≥
‰

∆(Akmax)

q

ı
. (3.15)

On the other hand, Algorithm 3.1 schedules all links in L in time

T (Algorithm 3.1) ≤ 4 ·∆(Akmax) · g(L). (3.16)

The approximation ratio follows from (3.15) and (3.16):

T (Algorithm 3.1)

TOPT
≤ 4q · g(L)

= O(g(L)). (3.17)
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One-Shot Scheduling

Algorithm 3.1 can be adapted to solve the weighted One-Shot Scheduling
problem described in Section 3.2 (see pseudo code in Algorithm 3.2). As
before, the input set L is partitioned into g(L) length classes, and grids with
cell size µ · 2k, k ∈ {0 · · · g(L)} are colored with 4 colors j ∈ {1 · · · 4}. Then,
4 · g(L) feasible schedules Lkj are generated by greedily picking the heaviest
link in each square Ak of the same color. In the end, the heaviest set of links
among all colors and all link classes is chosen.

Algorithm 3.2 Approximation Algorithm for One-Shot Scheduling

Input: A set L of links located arbitrarily in the Euclidean plane
Output: A subset Lkj in which every link can be transmitted successfully

and the total weight w(Lkj ) is maximized
1: Let R = R0, . . . , Rlog(lmax) such that Rk is the set of links li of length

2k ≤ di < 2k+1;
2: for all Rk 6= ∅ do
3: Partition the plane into squares of width µ · 2k;
4: 4-color the cells such that no two adjacent cells have the same color.
5: for j = 1 to 4 do
6: For each square A of color j, pick the heaviest link li ∈ Rk with

receiver ri in A, assign it to Lkj (Lkj = Lkj ∪ li);
7: od
8: od
9: return argmaxLkj

P
li∈Lkj w(li);

Since we pick one link per selected square, the feasibility of any schedule
Lkj constructed by Algorithm 3.2 has been proved in Theorem 3.8. In the
next theorem we analyze the approximation ratio of this algorithm.

Theorem 3.10. The approximation ratio of Algorithm 3.2 is O(g(L)), where
g(L) is the length diversity of the input (defined in (3.7)).

Proof. We start by defining OPTk to be a subset of the optimum schedule
OPT comprised by links that belong to length class k, i.e., 2k ≤ di ∈ OPTk <
2k+1. Observe that

w(OPT ) =

g(L)X
k=0

w(OPTk). (3.18)

In Theorem 3.9 we showed that an optimum algorithm could schedule at most
q (defined in (3.12)) links in each cell Ak at a time. Therefore, given that
every feasible schedule Lkj computed by Algorithm 3.2 contains the heaviest
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link in every forth cell, the following bound holds:

w(Lkj ) ≥ 1

4q
· w(OPTk), (3.19)

∀j ∈ {1 · · · 4}, k ∈ {0 · · · g(L)}.

Since Algorithm 3.2 returns the schedule Lkj of maximum weight over all
length classes and colorings (there are at most 4 · g(L) schedules Lkj ), the
approximation ratio follows:

argmax
Lkj

w(Lkj ) ≥ 1

4 · g(L)
·
g(L)X
k=0

w(Lkj )

≥
(3.19)

1

16q · g(L)
·
g(L)X
k=0

w(OPTk)

=
(3.18)

w(OPT )

16q · g(L)
(3.20)

⇒
w(OPT )

w(Algorithm 3.2)
≤ 16q · g(L)

= O(g(L)). (3.21)

Because of ambient noise, there is usually a maximal distance for a suc-
cessful transmission in realistic scenarios. Moreover, because of hardware
size, a sender and a receiver cannot be arbitrarily close to each other. Hence,
one can establish constant minimum and maximum link lengths, which re-
sults in a constant number of link length classes g(L). Using this observation,
we can state the following corollary.

Corollary 3.11. Assuming a constant maximum and minimum link length,
g(L) is constant, and Algorithms 3.1 and 3.2 achieve constant approximation
ratios.

3.5 Concluding Remarks

In this chapter we wanted to gain deeper insights into the complexity of
scheduling in wireless ad-hoc networks. To the best of our knowledge, we
presented the first NP-hardness proofs for the SINRP model. As opposed
to other NP-hardness proofs proposed for wireless networks, which rely on
a graph structure and an arbitrary gain matrix, our proof explores the geo-
metric nature of such networks – a property, which we consider fundamental.
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When the distribution of nodes on the Euclidean plane is considered, all the
entries in the gain matrix become constrained by the other entries. Therefore,
arguing that two nodes cannot transmit concurrently in a schedule becomes
much harder. Hence, a different kind of proof is necessary, where the con-
straints of the NP-complete problem are enforced by the geometry of the
reduction.



4
Power Control and Scheduling

In the previous chapter, we assumed that every node transmitts with the
same power level. Depending on the hardware, nodes are able to adjust their
transmission power. This capability can increase the number of links that can
transmit succesfully at the same time. To exploit this fact, we need efficient
power control and scheduling algorithms that assign a power level to each
node for every time slot. However, even an optimal power control algorithm
cannot guarantee acceptable SINR levels for all links concurrently because,
in general, only a subset of all links can be scheduled in parallel. It is therefore
unavoidable to postpone the transmission of some communication requests to
subsequent time slots. As short schedules maximize network throughput, the
ultimate aim of any scheduling algorithm remains hence to find a schedule
of minimum (or at least close to minimal) length.

4.1 Simulations vs Worst Case Analysis

Scheduling and power control being of utmost theoretical and practical im-
portance for wireless networks, it is not surprising that numerous algorithms
are known for this problem. Most of them have in common that they were
developed using heuristic (rule of thumb) reasoning, and evaluated through
complex simulations. It is clear that simulation is problematic, as one can
never cover all possible scenarios. What if an algorithm works well in most
(simulated) scenarios but is inferior in some other classes of scenarios? What
if these devastating classes are important or even critical in practice? In
contrast, analytic worst-case analysis has the advantage to include all pos-
sible cases, and offers strict performance guarantees. In this chapter, want
to overcome this shortcome and thoroughly analyze the existing algorithms.
We propose a new measure disturbance in order to comprise the intrinsic
difficulty of finding a short schedule for a problem instance. Moreover, we
prove that for certain problem instances all existing algorithms we are aware
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of perform poorly even if disturbance is low. In addition we present a new
scheduling algorithm called LDS that exhibits explicit worst-case guarantees.
We prove that on a class of scenarios our algorithm performs exponentially
better than the previous algorithms. In particular, LDS schedules n trans-
mission requests in O(log2 n) time opposed to previous algorithms requiring
Ω(n) time.

Overview of Existing Algorithms

A wide range of models and various classes of algorithms have been suggested
in order to solve the problem of scheduling and power control. As mentioned
in the previous chapter, scheduling algorithms defined for a graph-based in-
terference model are of inferior quality in practices since they model interfer-
ence as a binary property and ignore the accumulated interference of a large
number of distant nodes. Moreover, graph-based scheduling algorithms are
too conservative as they do not tap the full potential of spatial reuse. Over-
lapping links, for instance, are not scheduled simultaneously in a graph-based
scheduling algorithm, although this is feasible in pratice [85].

As we argue in detail in Section 4.3, algorithms explicitly defined for the
SINRP model can broadly be classified into three categories. One approach
is to assign the same power to all transmitting nodes. In [85] it is shown that
algorithms with such uniform power assignment can result in long schedules.
In the same paper it is proved that the second intuitive procedure, adjusting
the power proportionally to the so-called “energy-metric”, can lead to long
schedules as well.

More sophisticated methods are based on results from [1], where Aein
shows how to determine the maximum achievable SINR∗ in polynomial time
for satellite communications system. These results being directly applicable
to wireless networks, it is possible to find an optimal power assignment effi-
ciently. However, the problem is that SINR∗ may be too low to guarantee
correct reception at all receivers. That implies that our problem of partition-
ing the set of communication requests into time slots meeting the required
SINR criteria remains unresolved. A brute force approach for finding the
optimal schedule attempts to find for each time slot the largest set of remain-
ing links which can be scheduled simultaneously by checking for each subset
of links whether it allows a sufficiently high SINR. As there are 2n subsets,
however, the required time complexity grows exponentially with the number
of links.

Consequently, many computationally efficient methods for postponing the
transmission of links according to some (“link removal”) heuristics have been
devised. The first among them is presented by Zander [118]. He proposes an
algorithm called SRA, which removes nodes from the current time slot by a
stepwise approximation criterion, involving row and column sums of the gain
matrix. He examines the problem in a model for cellular networks, but his
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results can be adapted to other wireless networks easily. He demonstrates
that SRA returns better results than algorithms with fixed power levels or
constant received power levels with simulations. In [119] Zander devises an
improved algorithm called LISRA that requires less knowledge of the network
and the SINR for each time slot converges to SINR∗ in a distributed fashion
without knowing all link gains. Subsequently, several improvements on this
convergence procedure have been proposed. E.g., Grandhi et al. [49] devised
a distributed algorithm that converges exponentially fast to the maximum
SINR level which is achievable for a certain system. A similar approach is
pursued in [44], along with the description of an extensive simulation. In
these papers, the aim is to guarantee fast convergence for the power vector,
a goal not considered in our work, where we focus on power control in combi-
nation with scheduling. The idea of Lee et al. [74] is to postpone links which
either have a high level of interference at the receiver or links of which the
sender causes much interference to other receivers. They compared their and
Zander’s algorithms with a simulation where the nodes are distributed uni-
formly at random. The distributed algorithm proposed by Wang et al. [110]
eliminates links which cause most interference in order to allow the remaining
links to reach an acceptable SINR level. They present simulation results to
show that their algorithm produces schedules close to the global optimum
solution, when the nodes and links are distributed uniformly at random. In
contrast to other authors they include noise, the system processing gain and
the maximum possible power level in their model. Most recently, Brar et
al. [23] present a scheduling method that is based on a greedy assignment of
weighted colors.

All the above polynomial-time algorithms have one crucial drawback:
The authors provide no worst-case analysis on their performance and all
assumptions on their algorithm’s quality are based on simulations and—in
the case of [23]—analysis of randomly deployed networks. In Section 4.3, we
show that these link removal heuristics have a bad worst-case performance,
creating schedules which are exponentially longer than necessary for certain
networks.

The same limitation holds for the influential algorithm for next neighbor
transmissions and power control by ElBatt and Ephremides [38]. They com-
bine two heuristics to produce a short schedule and the corresponding power
assignment. First a set of valid links is selected by greedily choosing nodes
such that no node is receiving and transmitting in the same slot (to avoid
self-interference) and no sender is situated within a certain range of an al-
ready selected receiving node. In a second phase, Zander’s LISRA algorithm
is applied to these links. As it is possible to construct scenarios, where all
links together form a valid set, the worst case behavior of LISRA carries over
to the algorithm of [38] as well (see Section 4.3).

Recently, polynomial-time algorithms with provable guarantees in
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SINRP model environments for specific network topologies were proposed
and analyzed in [85, 87]. In this chapter, we improve on these algorithms
and give strict worst-case guarantees even in scenarios in which no efficient
bounds have been derived.

Other aspects of scheduling and power control are studied for instance
in [20, 32, 93, 96, 97].

4.2 Model and Definitions

We adopt the same model as in Chapter 3 with two exceptions. We assume
that the nodes can adjust their transmission power and we include noise in
the description and in the analysis of our algorithm.

Problem Formulation

The aim of a scheduling and power control algorithm is to generate a sequence
of power assignment vectors, such that the SINR level is above a threshold
β at every intended receiver and all links are scheduled successfully at least
once.

More formally, let L be a set of communication requests li. Pt denotes the
power assignment vector, where Pt(si) determines the transmission power of
sender si in time slot t. A schedule is represented by S = (P1, . . . , PT ). The
task of a scheduling algorithm is construct a schedule such that all messages
are successfully received. As in the previous chapter, we measure the quality
of an algorithm by its scheduling complexity, the length of the schedules it
generates.

Feasibility

Remember that in the SINRP model, the propagation attenuation (or link
gain) between a sender node si and a receiver node rj in the Euclidean
plane is modeled as g(si, rj) = d(si, rj)

−α. Whether or not a set of links
can be scheduled in the same time slot depends on the link gain between all
sender/receiver pairs. Note that the link gain matrix

Z =

»
g(sj , ri)

g(si, ri)

–
i,j

=

»
dαi

d(sj , ri)α

–
i,j

is a matrix consisting of positive values only. Zander showed in [119], that
this property can be exploited to compute the maximum achievable SIR∗ for
wireless networks efficiently.1

1[119] ignores the influence of noise, thus his results are valid in the Signal-to-
Interference-Ratio (SIR) model. See [95] for an approach that handles noise as well.
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Finding a power assignment yielding the maximal SIR level can essen-
tially be reduced to solving an Eigenvalue problem for the link gain matrix
Z. For positive matrices there is exactly one real eigenvalue λ∗ for which
all elements of the corresponding eigenvector have the same sign. Zander
showed that the maximum achievable SIR∗ is given by

SIR∗ =
1

λ∗ − 1
.

Furthermore, the corresponding eigenvector P∗ constitutes a power vector
reaching this maximum for all links, i.e. they all have the same SIR level.

Theorem 4.1 (Zander). In the absence of noise, a set of links can be suc-
cessfully scheduled in one time slot if and only if the largest eigenvalue of the
link gain matrix is less than 1/β + 1.

Inevitably there is noise in every real system. Nonetheless, this result is
still useful since it provides a efficient method to determine if a set of links
can NOT be scheduled concurrently. The converse however does not hold in
the SINRP model.

Disturbance

Since we study arbitrary, possibly worst-case network and request settings, we
introduce a formal measure that captures the intrinsic difficulty of scheduling
a given set of communication requests.

For a given set of communication requests L and some constant ρ ≥ 1, we
define the ρ-disturbance as the maximal number of senders (receivers) that
are in close physical proximity (depending on the parameter ρ) of any sender
(receiver). Consider disks Si and Ri of radius di/ρ around sender si and
receiver ri, respectively. Formally, the ρ-disturbance of a link li is the larger
of either the number of senders in Si or the number of receivers in Ri. The
ρ-disturbance of L is then the maximum ρ-disturbance of any link li ∈ L.

Definition 4.2. Given a set of requests L, the ρ-disturbance, denoted as χρ
of L is defined as

χρ := max
li∈L

χρ(li),

where the disturbance χρ(li) for request li is the maximum of |{rj | d(rj , ri) ≤
di/ρ}| and |{sj | d(sj , si) ≤ di/ρ}|.

As it turns out, the disturbance of a set of requests indeed captures
the fundamental difficulty of scheduling these requests. Solving problem in-
stances with low disturbance efficiently is very important in practice since in
realistic networks one always tries to prevent situations with many receivers
clustered in the same area. Section 4.4 presents LDS, a scheduling algorithm
that achieves a provably fast performance for all networks and requests that
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si ri

Figure 4.1: Illustrating example for the disturbance of a communication re-
quest li. For ρ = 3 the disturbance in this case is χ3(li) = 4.

have low disturbance. On the other hand, we prove in Section 4.3 that cur-
rently known scheduling algorithms may perform highly sub-optimally even
in instances with low disturbance. In fact, the number of time slots required
by any such algorithm may be exponentially higher than the optimum.

4.3 Inefficiency of Existing Protocols

Classification of Power Control Algorithms

Intuitively, the disturbance of a set of requests in a network characterizes
the difficulty of scheduling these requests in a wireless communication envi-
ronment. Therefore, an efficient scheduling algorithm should be capable of
generating short schedules in settings with low disturbance. Unfortunately,
all previously known scheduling algorithms may require a linear number of
time slots in order to schedule a set of requests even if their ρ-disturbance is
as low as 1.

Existing scheduling algorithms for the SINRP model can be classified
into three classes:2:

• uniform power assignment : the transmission power of all nodes is the
same.

• linear power assignment : the transmission power for a link of length
di is set to a value proportional to dαi . Protocols analyzed using the
so-called “energy-metric” belong to this category.

• link removal heuristics

Uniform and Linear Power Assignment

Recently, it has been proven in [85] that every algorithm employing a uni-
form or linear power assignment scheme has a poor worst-case efficiency. In

2Notice that algorithms based on graph-models can typically be characterized as either
employing a uniform or linear power assignment scheme.
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particular, any such algorithm may require a linear number of time slots even
if every node merely wants to transmit to its closest neighbor in the network.

Theorem 4.3 ([85]). Every algorithm employing a uniform or linear power
assignment scheme has a worst-case scheduling complexity of Ω(n) even in
settings with ρ-disturbance 1.

Theorem 4.3 indicates that a large number of scheduling algorithms pro-
posed in the literature has bad worst-case behavior.

Link Removal Algorithms

In contrast to these intuitive, but inefficient scheduling schemes, link removal
heuristics are much more sophisticated. The heuristics known in the litera-
ture are all based on a generic link removal algorithm.

Algorithm 4.1 Generic Link Removal Algorithm

1: time slot t := 1;
2: while there are links to schedule do
3: compute SINR∗ and P∗ from Z;
4: while SINR∗ ≤ β do
5: remove links lk for which CON is satisfied;
6: compute SINR∗ and P∗ from new Z;
7: od
8: schedule the links of Z in time slot t and assign P∗;
9: time slot t := t+ 1;

10: compute new Z for unscheduled links;
11: od

The idea of these algorithms is to postpone the transmission of a link lk
from the set of the links if some condition CON holds, until the minimal
SINR level for successful reception is met. Then the optimal power vector
is assigned and the procedure is repeated with the remaining links.

We scrutinize the four algorithms SRA, SMIRA,WCRP and LISRA,
which follow the execution of the generic algorithm and differ only in the
condition CON .

SRA (Stepwise Removal Algorithm), devised by Zander in [118], iteratively
removes the link with the largest row or column sum of Z, since these sums
provide a bound on the maximal eigenvalue, until the required SINR level
is met.

CON : max{
X
j

Zkj ,
X
j

Zjk} is maximimal for k.
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SMIRA (Stepwise Maximum Interference Removal Algorithm), by Lee et
al. [74], excludes links which cause or receive the most interference when
power is assigned optimally, taking the normalized link gain matrix Z and
the corresponding optimal power vector into account.

CON : max{
X
j 6=k

PjZkj , Pk
X
j 6=k

Zjk} is maximimal for k.

Lee et al. suggest versions of this algorithm considering only
maxk(

P
j 6=k PjZkj) or maxk(Pk

P
j 6=k Zjk) in the condition and demonstrate

with simulations, that they perform worse than SMIRA. Our analysis can be
adapted easily to these cases with the same complexity result.

WCRP is a (distributed) algorithm presented in [110]. When adapted to
our model, it first computes for each row i the value MIMSR (maximum
interference to minimum signal ratio), defined by

MIMSR(i) = max{βG(i, j)

G(i, i)
|j 6= i ∧ j not scheduled}

and removes links with MIMSR above a threshold ζ. We present here a
simplified and centralized version, which produces schedules of at most the
same length as the original algorithm.

CON : MIMSR(k) > ζ.

LISRA (Limited Information Stepwise Removal Algorithm), described in
[119], postpones the transmission of the links with the lowest SINR when
all sender transmit with equal power, to increase the probability for the
remaining links to reach the SINR threshold3. To generate schedules with
LISRA we replace Step 5 of the generic with

5a: set P = 1 and compute SINR;
5b: remove links γk for which mini SINR(i) = SINR(k);

CON : SINR(k) is minimal for k.

These algorithms have all been tested in situations with nodes distributed
uniformly at random. No worst case analysis has been done and the authors
do not give any guarantees on their behavior. To prove our point we construct
an example where the schedules these algorithms produce are extremely long.

3In its original version, step 3 contains the execution of an iterative distributed algo-
rithm based on locally available information. The number of rounds is fixed beforehand,
hence the quality of the results depend on the convergence speed of the algorithm. As we
are most interested in the maximal length of the schedules LISRA produces, we replace
the algorithm in step 3 by a (centralized) eigenvalue decomposition.
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Figure 4.2: A set of communication request of exponentially increasing
length. For this instance, all existing power control and scheduling algo-
rithms assign a separate time slot to each link, even though the 3-disturbance
is χ3 = 1 and no more than O(logn) time slots are necessary

Consider a scenario S with k = n
2

communication requests where all the
sender and receiver nodes are situated on a straight line with the following
distance to 0: Sender node si = −2i, receiver node ri = 2i, ∀0 < i ≤ k. This
situation is depicted in Figure reffig:worstcasescenario. We set α = 3, the
noise level N = 0 and the minimum SINR necessary for successful transmis-
sion to β = 2. For this situation all the algorithms described above perform
poorly, namely they schedule each link individually and require Ω(n) time
slots, even though we prove O(logn) time slots to be sufficient. Because the
3-disturbance of the above scenario S is χ3 = 1, our example demonstrates
that these algorithms exhibit severe worst-case problems even in networks
with low disturbance.

Theorem 4.4. SRA, LISRA, SMIRA and WCRP produce a schedule of
length Ω(n) for the scenario S in which the 3-disturbance χ3 is 1.

Proof. Starting with SRA, we prove the claim for each algorithm individually.

SRA: As we cannot schedule all links in the same slot, we compute the
column and row sums of Z to decide which links we postpone to subsequent
time slots. The sum for row i is

Ri =

nX
j=1

z(i, j) =

nX
j=1

„
2i+1

2j + 2i

«α
,

which is maximal when i = n. Analogously the sum for column i is

Ci =

nX
j=1

z(j, i) =

nX
j=1

„
2j+1

2j + 2i

«α
.

This sum reaches its maximum when i = 1, since i only appears in the
denominator. Hence we have to determine max{Rn, C1}.
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The summands of C1 grow with j whereas the summands of Rn decrease.

As a consequence we can simplify the analysis by comparing 2n+1

2n−j+1+2n
to

2j+1

2j+2
.

2n+1

2n−j+1 + 2n
=

2j

1 + 2j−1
=

2j+1

2 + 2j
∀0 < j ≤ n.

Hence we know that the largest row sum is equal to the largest column
row, which causes either the shortest or the longest link to be removed from
the set of links to schedule in the next time slot. Without loss of generality
we assume that we postpone the transmission of the shortest link.

Without the first link we have to deal with almost the same situation, the
only difference is the fact that the sums start with j = 2 instead of 1. Again
we remove the shortest link. This game continues until only one link is left,
since two links next to each other cannot be scheduled in the same slot.

Lemma 4.5. Two links li and li+1 cannot be scheduled in the same slot.

Proof. Let li = (−2i, 2i), lj = (−2j , 2j). We compute

Z =

0@ 1
“

2i+1

2j+2i

”α“
2j+1

2j+2i

”α
1

1A
and set j = i+ 1. Now the larger eigenvalue is

λ∗ = 1/2
“
z1,1 + z2,2 +

p
4z1,2z2,1 + (z1,1 − z2,2)2

”
= 1/2

“
1 + 1 +

“p
4 · 2i+j+2/(2i + 2j)2

”α”
j=i+1

= 1 +

 √
22i+3

2i + 2i+1

!α
= 1 +

„√
8

3

«α
> 1.83.

Consequently SINR∗ = 1
λ∗−1

< 1.19, implying that the links li and li+1

cannot be transmitted simultaneously.

We can derive from the above, that SRA schedules all links individually,
i.e. the length of the schedule is Ω(n).

SMIRA: The transmission of link li is postponed if either the interference
received and the interference caused by link li is above a certain threshold.
As the receiving node of link 1 suffers from the highest level of interference
we remove it. This situation occurs again in the next time slot, hence each
link is scheduled individually, leading to a complexity of Ω(n).



4.3. INEFFICIENCY OF EXISTING PROTOCOLS 63

WCRP: We compute the MIMSR value for each link i.

MIMSR(i) = max
j

β ·G(i, j)

L ·G(i, i)
= β ·max

i

„
2i+1

2i + 2j

«α
.

As MIMSR(i) cannot exceed β2α, we define ζ = 10. Hence all links apart
from the three shortest links are removed. Let us assume for simplicity
that those can be scheduled in one slot. If we repeat this step, again the
three shortest links remain and we can conclude that this method produces
a schedule of length dn/3e ∈ Ω(n)

LISRA: The same holds for LISRA, although with a slightly different rea-
soning. LISRA iteratively removes the link which achieves the lowest SINR
with equal power distribution until β is reached. In our example, the link to
be postponed will always be the longest link. As we have seen above, two
neighboring links cannot be scheduled in the same time slot, hence LISRA
also needs Ω(n) slots.

All four algorithms produce a schedule of length Ω(n) for this example.
However, it is possible to construct a much shorter schedule. We present a
schedule that needs as few as O(logn) time slots for the n/2 links.

Theorem 4.6. There exists a scheduling and power assignment scheme
which produces a schedule of length O(logn) for scenario S for all n > 16.

Proof. Consider the schedule where every lognth link starting with 1 is se-
lected for transmission in slot 1, every lognth link starting with 2 for slot 2,
etc. More formally, we schedule {lt, lt+logn, lt+2 logn, . . .} in time slot t. We
construct a power assignment P (si) such that every link exceeds a signal-to-
interference-ratio of 2.

Let us have a closer look at the set Lt containing the links sched-
uled for time slot t. There are at most d n

2 logn
e links scheduled in this

slot, of which we select link li = (−2i, 2i), the τ thi longest link. Consider
the assignment P (si) = (2n)τi2α(i+1) to si and recall that SINR(i) =
Pr(si)/

P
lj∈Lt\{li} Ii(sj).

We note that the largest amount of interference is caused by the neigh-
boring links l(i−logn) and l(i+logn). Moreover, the interference power is cut
in half for each link further away from li.

Claim 4.7. The following two inequalities hold for all values 0 < j < n and
n ≥ 8

Ii(si−j logn) > 2Ii(si−(j+1) logn)

Ii(si+j logn) > 2Ii(si+(j+1) logn).
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Proof. The first inequality holds because of

Ii(si−j logn)

Ii(si−(j+1) logn)
=

P (si−j logn)g(si−j logn, ri)

P (si−(j+1) logn)g(si−(j+1) logn, ri)

=
(2n)τi+j2α(i−j logn+1)(2i + 2i−j logn)−α

(2n)τi+j+12α(i−(j+1) logn+1)(2i + 2i−(j+1) logn)−α

=
nα

2n

(1 + n−j−1)α

(1 + n−j)α

>
nα−1

4
≥ 2 ∀n ≥ 8.

The other inequality can be proved analogously.

Ii(i+ j logn)

Ii(i+ (j + 1) logn)
=

P (i+ j logn)G(i, i+ j logn)

P (i+ (j + 1) logn)G(i, i+ (j + 1) logn)

=
(2n)τi−j2α(i+j logn+1)(2i + 2i+j logn)−α

(2n)τi−j−12α(i+(j+1) logn+1)(2i + 2i+(j+1) logn)−α

=
2n

nα
(1 + nj+1)α

(1 + nj)α

>
2n

nα
nα

2α

=
n

2α−1
≥ 2 ∀n ≥ 8.

Applying Claim 4.7 we can bound SINR(i) as follows

SINR(i) =
Pr(si)P

lj∈Lt\{li}Ii(sj)
≥ Pr(si)

2(Ii(si−logn)+Ii(si+logn))

=

(2n)τi2α(i+1)

2α(i+1)

2( (2n)τi+12α(i−logn+1)

(2i+2i−logn)α
+ (2n)τi−12α(i+logn+1)

(2i+2i+logn)α
)

=
(2n)τi

2 (2n)τi−12α(i−logn+1)

2α(i−logn) ( (2n)2

(2logn+1)α
+ 22α logn

(22 logn+2logn)α
)

=
2n

2α+1( (2n)2

(n+1)α
+ n2α

(n2+n)α
)

=
n(n+ 1)α

2α(4n2 + nα)
≥ 2 ∀n > 16.

Since the above holds for all communication requests in all slots, we have
proved that this schedule allows the successful transmission of all links in
O(logn) time slots.



4.4. LOW-DISTURBANCE SCHEDULING ALGORITHM 65

4.4 Low-Disturbance Scheduling Algorithm

In this section, we propose a novel scheduling algorithm, called the Low-
Disturbance Scheduling Algorithm(LDS), which achieves provable perfor-
mance guarantees even in worst-case networks. In particular, given a network
and a set of communication requests, LDS computes a schedule whose length
is within a polylogarithmic factor of the network’s disturbance.

Description

The algorithm consists of three parts: a pre-processing step, the main
scheduling-loop, and a test-subroutine that determines whether a link is to
be scheduled in a given time slot.

The purpose of the pre-processing phase is to assign two values τ(i) and
γ(i) to every request li. The value γ(i) is an integer values between 1 and
dlog(3nβ)+ρ logαe. The idea is that only requests with the same γ(i) values
are considered for scheduling in the same iteration of the main scheduling-
loop (Lines 2 and 3 of the main scheduling-loop). The second assigned value,
τ(i), further partitions the requests. In particular, it holds that the length
of all requests that have the same γ(i) and τ(i) differ by at most a factor
two. On the other hand, we show in Lemma 4.11 that if two requests li
and lj satisfy τ(i) < τ(j), then the length of li, di, is at least by a factor
1
2
(3nβρα)τ(j)−τ(i) longer than dj . Generally speaking, the assignment of τ(i)

ensures that the smaller the value τ(i) assigned to a requests li, the longer
the corresponding communication link, and vice versa.

In summary, the pre-processing phase partitions the set of requests in
such a way that two requests li and lj that are assigned the same γ(i) have
either almost equal length (if, τ(i) = τ(j)) or very different length. This
partition will turn out to be crucial in the actual scheduling process, which
takes part in the subsequent main scheduling-loop.

Each for-loop iteration of the main scheduling-loop schedules the set of
requests having the same γ(i) values, denoted by Fk. As long as not all
requests of Fk have been scheduled, the algorithm considers the remaining
requests in Fk in decreasing order of their length di. Specifically, the algo-
rithm checks for each request whether it can safely be scheduled alongside
the longer links that have already been selected. If a request is chosen to be
scheduled in time slot t, it is added to Lt, otherwise it remains in Fk.

The decision whether a request li is selected for scheduling or not takes
place in the allowed(li,Lt) subroutine. For each (longer) request lj ∈ Lt
that has already been chosen to be scheduled in time slot t, the subroutine
checks three conditions. Only if none of them is violated, li is added to Lt.
Notice, however, that the selection-criteria are significantly more complex
than the simple “reuse-distance” argument that has been used in previous
work (e.g. [38]).
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Algorithm 4.2 The LDS Protocol for requests L

Pre-processing phase:
1: τcur := 1; γcur := 1; last := d1;
2: Consider all requests li ∈ L in decreasing order of di:
3: for each li ∈ L do
4: if last/di ≥ 2 then
5: if γcur < dlog(3nβ) + ρ logαe then
6: γcur := γcur + 1;
7: else
8: γcur := 1; τcur := τcur + 1;
9: fi

10: last := di;
11: fi
12: γ(i) := γcur; τ(i) := τcur;
13: od

Main scheduling-loop:
1: Define constant ν such that ν := 4N ;
2: t := 1;
3: for k = 1 to dlog(3nβ) + ρ logαe do
4: Let Fk be the set of all requests li with γ(i) = k.
5: while not all requests in Fk have been scheduled do
6: Lt := ∅;
7: Consider all li ∈ Fk in decreasing order of di:
8: if allowed(li, Lt) then
9: Lt := Lt ∪ {li}; Fk := Fk \ {li}

10: fi
11: Schedule all li ∈ Et in time slot t, assigning si

a transmission power of Pi = ν · dαi · (3nβρα)τ(i);
12: t := t+ 1;
13: od
14: od

allowed(li,Lt)

1: Define constant µ such that µ := 4 α

q
120β(α−1)

α−2
;

2: for each lj ∈ Lt do
3: δij := τ(i)− τ(j);
4: if τ(i) = τ(j) and µ · di > d(si, sj)

5: or τ(i) > τ(j) and di · (3nβρα)
δij+1
α > d(si, rj)

6: or τ(i) > τ(j) and dj/ρ > d(sj , ri)
7: then return false
8: od
9: return true
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In particular, the second criterion states that li is scheduled only if for
all longer requests lj ∈ Lt, it holds that

di · (3nβρα)
τ(i)−τ(j)+1

α > d(si, rj)

if τ(i) > τ(j). That is, the distance that must be maintained between the
sender si of li and the receiver of rj of some lj ∈ Lt depends on the relative
values of τ(i) and τ(j) assigned in the pre-processing phase.

The definition of the three selection-criteria guarantees that all simulta-
neously transmitted requests in a single time slot are received successfully by
the intended receivers. Additionally, the subsequent analysis section shows
that all requests can be scheduled efficiently even in worst-case networks.

Analysis

In this section, we prove that the LDS algorithm is both correct (i.e., all
requests scheduled during the algorithm’s execution are received successfully
at the intended receivers) and fast. Specifically, we prove that every set of
requests can be scheduled efficiently even in worst-case networks provided
that the ρ-disturbance of the requests is small. As we show in Section 4.3,
this distinguishes the LDS algorithm from all existing algorithms, that may
perform badly even if the disturbance is small.

We begin with two simple lemmas that bound the amount of interference
created by simultaneously scheduled senders sj at an intended received ri.

Lemma 4.8. Let li and lj be two requests with τ(i) 6= τ(j) the algorithm
selects for the same time slot. The interference at ri created by sj is at most

Ir(sj) ≤ ν · ρατ(i) · (3nβ)τ(i)−1,

where ν = 4N .

Proof. We distinguish two cases:
a) τ(i) < τ(j). In this case, we know that di > dj by the definition of
Line 6 in the main scheduling-loop. Hence, by the time lj is added to Lt by
the allowed(`j,Lt) subroutine, li is already in Lt. Because allowed(`j,Lt)
evaluated to true, the distance d(sj , ri) is at least

dj · (3nβρα)
δij+1
α ,

where δij := τ(j)− τ(i). Hence the interference of sj at ri is at most

Ir(sj) =
Pj

d(sj , ri)α
≤ ν · dαj · (3nβρα)τ(j)

dαj · (3nβρα)δij+1

= ν · (3nβρα)τ(i)−1,
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which is smaller than the upper-bound claimed in the lemma.
b) τ(i) > τ(j). In this case, it holds that di < dj . Because both links have
been selected by the algorithm, it follows that d(sj , ri) ≥ dj/ρ. Furthermore,
it holds that τ(i) ≥ τ(j) + 1, thus the maximum amount of interference that
can be caused by sj at ri is

Ir(sj) =
Pj

d(sj , ri)α
≤ ν · dαj · (3nβρα)τ(j)

(dj/ρ)α

= ν · ρα(τ(j)+1) · (3nβ)τ(j)

≤ ν · ρατ(i) · (3nβ)τ(i)−1.

The next lemma bounds the total interference created by all nodes trans-
mitting simultaneously for which τ(i) = τ(j).

Lemma 4.9. Given a request li, the total interference I0
r at ri created by

all senders sj transmitting simultaneously for which τ(i) = τ(j) is at most
I0
r ≤ ν

4
βτ(i)−1(3nρα)τ(i).

Proof. By the pre-processing phase, it holds that if both τ(i) = τ(j) and

γ(i) = γ(j), then
dj
2
≤ di ≤ 2dj is satisfied. Thus, all requests have roughly

the same lengths and we can bound the total interference using a standard
area argument. Specifically, by Line 3 of the allowed(li,Lt) subroutine, li
and lj being scheduled in the same time slot implies that µ · di > d(si, sj),
where µ := 4 α

p
120β(α− 1)/α− 2. Now, consider all concurrently trans-

mitting nodes sj for which τ(i) = τ(j) and consider disks Dj of radius µdi
4

centered at each such sender. Because of the required spatial reuse distance
and the fact that the length of two requests differs by at most a factor two,
it holds that d(sj , sj′) >

µdi
2

and hence, disks Dj do not overlap. The area

of each such disk is A(Di) ≥ (µdi
4

)2π.
Consider rings Rk of width µdi around ri, consisting of all senders sj

transmitting simultaneously for which τ(i) = τ(j) and

kµ

2
di ≤ d(sj , ri) ≤ (k + 1)µ

2
di.

Observe that by the first condition of the subroutine, R1 must be empty.
Consider a ring Rk and the transmitters contained in it. All corresponding
disks Di must be entirely located in an “extended” ring R∗k of area

A(R∗k) =

"„
(k + 1)µdi

2
+
µdi
2

«2

−
„
kµdi

2
− µdi

2

«2
#
π

=
3(2k + 1)

4
µ2d2

iπ.
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The distance of a sender sj in Rk from ri has a lower bound of kµ
2
di. Further-

more, each such sender transmits at a power at most ν · (2di)α · (3nβρα)τ(i).
Using the fact that the disks Di do not overlap, we can bound the interference
at ri from nodes in ring Rk by

I0
r (Rk) ≤ A(R∗k)

A(Di)
· ν(3βnρα)τ(i) · (2di)α

( kµ
2
di)α

<
12(2k + 1)ν(3βnρα)τ(i) · 22α

(kµ)α

≤ 30ν(3βnρα)τ(i) · 22α

kα−1µα
,

where the last inequality follows because only rings where k ≥ 2 need to be
considered. Summing up the interference generated by all rings results in a
total interference of

I0
r <

∞X
k=1

I0
r (Rk) ≤ 30ν(3βnρα)τ(i) · 22α

µα

∞X
k=1

1

kα−1

<
30ν(3βnρα)τ(i) · 22α

µα
· α− 1

α− 2

<
ν

4
βτ(i)−1(3nρα)τ(i),

where the second-to-last inequality follows from a bound on Riemann’s zeta-
function and the last one from plugging in the definition of µ. This concludes
the proof.

Using the previous two lemmas, it can now be shown that every message
scheduled for transmission by the algorithm can be decoded successfully by
the intended receiver.

Theorem 4.10. The schedule computed by the algorithm allows all requests
to be successfully received by the intended receiver.

Proof. Using Lemmas 4.8 and 4.9, we bound the total interference Ir created
by concurrent senders as

Ir ≤ ν

4
βτ(i)−1(3nρα)τ(i) +

X
sj :τ(i) 6=τ(j)

νρατ(i)(3nβ)τ(i)−1

≤ (ν/4 + ν/3) (3nρα)τ(i)βτ(i)−1.

The theorem follows from verifying that the resulting SINR is sufficiently
high and by noting that every request is scheduled for transmission exactly
once by the algorithm.

SINR(ri) ≥ ν · (3nβρα)τ(i)

N +
`
ν
3

+ ν
4

´
(3nρα)τ(i)βτ(i)−1

> β.
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So far, we have proven that the produced schedule is correct in the sense
that all messages are actually received successfully. It now remains to show
that the schedule is short and includes all requests. For this reason, we bound
the number of time slots required to schedule all requests that have the same
γ(i) value. That is, we bound the amount of time used for one iteration of
the for-loop in the main scheduling-loop. We begin with two simple lemmas.

Lemma 4.11. Consider two requests li and lj with γ(i) = γ(j). If τ(i) ≥
τ(j) it holds that

dj ≥ 1/2(3nβρα)τ(i)−τ(j) · di.
Proof. If two requests li and lj have the same γ value but different τ values,
γ(i) has been increased at least (τ(i)− τ(j))dlog(3nβ) + ρ logαe times since
processing lj . The reason is that γ(i) must be increased exactly dlog(3nβ) +
ρ logαe times (and reset to 0 once) in order to reach γ(i) = γ(j) for the next
higher value of τ . Due to Line 4, each but one such increase implies a halving
of the length dj . Hence,

dj ≥ di · 2(τ(i)−τ(j))(log(3nβ)+ρ logα) ≥ di · (3nβρα)τ(i)−τ(j).

Lemma 4.12. In any disk D of radius R, there can be at most χρ receivers
ri of requests li with length di ≥ 2ρR.

Proof. If di ≥ 2ρR for all li, the disk of radius di/ρ around each receiver
fully covers D. The claim now follows from the definition of χρ.

In order to bound the number of time slots required to schedule all re-
quests in the same iteration of the main loop, we define the notion of blocking
requests.

Definition 4.13. lj is a blocking request for li if γ(i) = γ(j), dj ≥ di, and
allowed(li,Lt) evaluates to false if lj ∈ Lt. Bi denotes the set of blocking
requests of li.

Consequently, blocking requests lj ∈ Bi are those requests that can
“block” a request li from being scheduled in a given time slot. Because
each such blocking request can prevent li from being scheduled only in a
single time slot (when it is scheduled itself), it holds that li is scheduled in
time slot |Bi|+ 1 or earlier of the for-loop iteration when requests with γ(i)
are scheduled. We distinguish three kinds of blocking requests, depending on
which of the three conditions in the allowed(li,Lt) subroutine is responsi-
ble for the blocking, and we bound the number of blocking requests in each
category independently.
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Lemma 4.14. Let B1
i be the set of blocking requests lj ∈ Bi with τ(i) = τ(j)

and µdi > d(si, sj). For all li it holds that |B1
i | ≤ 4ρ2(µ+ 2)2χρ.

Proof. From τ(i) = τ(j), it follows by Lemma 4.11 that di ≤ dj ≤ 2di for all
lj ∈ B1

i . By Lemma 4.12, we know that there can be at most χρ receivers
of blocking requests with length at least di in any disk of radius di/(2ρ).
Because µdi > d(si, sj) holds for any blocking request in B1

i , any receiver
corresponding to a blocking request must be located inside a disk of radius
(µ+ 2)di centered at si. Thus,

|B1
i | ≤ χρ · π(µ+ 2)2d2

i
1

(2ρ)2
πd2

i

= 4ρ2(µ+ 2)2χρ.

The next lemma is key to our worst-case result and bounds the number
of blocking requests that prevent a shorter request by the second condition
of the allowed(li,Lt) subroutine.

Lemma 4.15. Let B2
i be the set of blocking requests lj ∈ Bi with τ(i) > τ(j)

and di · (3nβρα)δij+1/α > d(si, rj). For all li it holds that

|B2
i | ≤ 16 log(n+ 1)χρ.

Proof. First we show that for any integer ϕ ≥ −1, there can be O(χρ) dif-
ferent blocking requests lj ∈ B2

i (ϕ) where

(3nβρα)α
ϕ · di < d(si, rj) ≤ (3nβρα)α

ϕ+1 · di.
By the definition of the second condition in the allowed(li,Lt) subroutine,

each such request lj ∈ B2
i (ϕ) must satisfy

δij+1

α
> αϕ, and hence δij ≥

αϕ+1. By Lemma 4.11, we know that each such blocking request lj ∈ B2
i (ϕ)

with d(si, rj) in the range specified above must be of length at least dj ≥
1
2
(3nβρα)α

ϕ+1 · di.
It remains to show that there can be at most O(χρ) such requests lj ∈

B2
i (ϕ). For simplicity, define K := (3nβρα)α

ϕ+1 ·di. By Lemma 4.12 and the
above lower bound on dj , at most χρ receivers of requests in B2

i (ϕ) can be
in any disk of radius K

4ρ
. By definition all these receivers rj must be within

distance K of si, thus that there can be at most 16ρ2χρ blocking requests in
B2
i (ϕ) by the classic area argument.

We know that for any integer ϕ > −1, there are at most 16ρ2χρ blocking
requests in B2

i (ϕ). The value δij between two requests li and lj cannot exceed
n and hence, the furthest distance d(si, rj) of any blocking request lj can be

(3nβρα)
n+1
α di. It follows that |B2

i (ϕ)| = 0 for all ϕ > n+1
α

. Finally, because

α(ϕ+1) > n+1
α

for some ϕ ≥ logα(n + 1), it follows that there are at most
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O(logn) many “rings”, each of which can contain at most 16ρ2χρ blocking
receivers. Hence,

|B2
i | =

∞X
ϕ:=−1

|B2
i (ϕ)| ≤ logα(n+ 1) · 16ρ2χρ.

Finally, we bound the number of blocking requests that can block a re-
quest ri due to the third constraint in the allowed(li,Lt) subroutine.

Lemma 4.16. Let B3
i be the set of requests lj ∈ Bi with τ(i) > τ(j) and

dj
ρ
> d(sj , ri). It holds |B3

i | ≤ 6χρ ∀li.

Proof. Assume for contradiction that there are more than 6χρ such blocking
requests lj ∈ B3

i . For each of these dj > di. Partition the area around
ri into cones of angle π/3. At least one of these cones must contain the
senders sj of χρ + 1 or more blocking requests. The angle of this cone
being π/3, the distance of the furthest such sender s′j to each of the other
blocking senders sj in this cone is at most d(s′j , sj) < d(s′j , ri), and hence,
d(s′j , sj) < di/ρ < d′j/ρ. There are at least χρ + 1 senders within distance
d′j/ρ of s′j , which contradicts χρ’s definition.

As every blocking request can block a request li at most once, we combine
the above and prove the following theorem.

Theorem 4.17. The number of time slots required by Algorithm 4.2 to suc-
cessfully schedule all requests li ∈ L is at most O

`
χρρ

2 logn · (logn+ ρ)
´
.

Proof. By Lemmas 4.14, 4.15, and 4.16, any request li can be blocked by at
most

B1
i +B2

i +B3
i ≤ 4ρ2(µ+ 2)2χρ+16ρ2 log(n+ 1)χρ+6χρ

blocking requests. Thus, after at most O(χρρ
2 · logn) iterations of the while-

loop, all requests having the same γ(i) value are scheduled successfully. The
theorem follows as the number of for-loop iterations is dlog(3nβ) + ρ logαe.

Let us now examine the schedule our LDS-algorithm creates for the in-
stance used to illustrate the inefficiency of previous algorithms. The 3-
disturbance χ3 of setting S is 1. Consequently, we obtain a schedule of length
O(log2 n) by plugging in the value ρ = 3 into the bound of Theorem 4.17.
Notice that this is exponentially shorter than the schedules generated by any
uniform or linear power assignment algorithm as well as any of the known
link removal heuristics.
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Corollary 4.18. For ρ = 3, the LDS scheduling algorithm produces a sched-
ule of length O(log2n) for scenario S.

The LDS algorithm thus significantly outperforms existing scheduling
strategies in worst-case scenarios. Nonetheless, the analysis of the power
assignment P (·) of Theorem 4.6 demonstrates that an even better solution
with complexity O(logn) exists. Hence, the aim for future research remains
to devise algorithms, with results even closer to the optimum.

4.5 Concluding Remarks

In this chapter, we have shown that all scheduling algorithms studied so far
may have an extremely suboptimal performance in worst-case networks. In
order to ameliorate this situation, we propose the LDS scheduling algorithm.
By employing a novel power assignment scheme and reuse distance criterion,
our algorithm achieves a provably efficient performance in any network and
request setting that features low disturbance.

In general, it can be argued that the network topologies and request se-
quences found in real-world applications may not have an explicit worst-case
structure. We hope, however, that our power assignment strategy in combi-
nation with the theoretical insights gained from our worst-case analysis will
ultimately lead to an increase in bandwidth and capacity beyond heuristics in
real networks. Further investigation in this direction are bound to prove use-
ful in areas such as wireless mesh networks, sensor networks, or even cellular
networks.





5
Delay-Sensitive Aggregation

This chapter studies the fundamental trade-off between delay and communi-
cation cost in networks. We consider an online optimization problem where
nodes are organized in a tree topology. The nodes seek to minimize the time
until the root is informed about the changes of their states and to use as
few transmissions as possible at the same time. We derive an upper bound
on the competitive ratio of O(min(h, c)) where h is the tree’s height, and
c is the transmission cost per edge. Moreover, we prove that this upper
bound is tight in the sense that any oblivious algorithm has a ratio of at
least Ω(min(h, c)). For chain networks, we prove a tight competitive ratio
of Θ(min(

√
h, c)). Furthermore, we introduce a model for value-sensitive ag-

gregation, where the cost depends on the number of transmissions and the
error at the root.

5.1 Time and Energy Trade-Off

The analysis of distributed algorithms often revolves around time and mes-
sage complexity. On the one hand, we want our distributed algorithms to
be fast, on the other hand, communication should be minimized. Problems
often ask to optimize one of the two—and treat the other only as a secondary
target. However, there are situations where time and message complexity are
equally important.

In this chapter, we study such a case known as distributed aggregation.
Nodes of a large distributed network may sense potentially interesting data
which they are to report to a central authority (sink). Not only should
the data make its way fast through the network such that information is not
unnecessarily delayed; but also, since message transmission is costly, one may
reduce the number of transmissions by aggregating messages along the way.
In other words, nodes may wait for further packets before forwarding them in
order to decrease the number of transmission at the expense of a later arrival

75
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of the information at the sink. This problem has many applications. In the
past it was mostly studied in contexts such as control message aggregation.
In the heyday of wireless networking the first application that comes to mind
is perhaps sensor networking. Due to energy constraints, it is necessary to
minimize the number of transmissions. At the same time, it is desirable to
aim at minimizing the time until the nodes are informed about changes of
measured values.

We assume that the communication network of the nodes forms a pre-
computed directed spanning tree on which information about events is passed
to the root node (the sink). Data arrives at the nodes in an online (worst-
case) fashion. The main challenge is to decide at what points in time the
data should be forwarded to a parent in the tree.

Results

We prove that a simple algorithm achieves a competitive ratio of O(min(h, c))
where h is the tree’s height, and c is the transmission cost per edge. This
improves an existing upper bound of O(h log (cn)), where n is the network
size. The examined algorithm is oblivious, i.e., decisions at each node are
based solely upon the static local information available at the node. Being
oblivious is a desirable property of distributed algorithms, since non-oblivious
algorithms need dynamic updating mechanisms—a costly operation.

We also demonstrate that this upper bound is tight in the sense that
there exist problem instances where any oblivious algorithm has a ratio of
at least Ω(min(h, c)). Earlier work proved a lower bound of Ω(

√
h) on a

chain network. Therefore, we examine this topology more closely and show
that chain networks are inherently simpler than general trees by giving a
competitive ratio of Θ(min(

√
h, c)) for oblivious algorithms.

In the last part of this chapter, we present an event aggregation model
which takes into account that nodes often have non-binary data to aggre-
gate and greater differences between values need to be reported to the root
faster than small differences. We present a model comprising this additional
constraint as well as an oblivious algorithm achieving a competitive ratio of
Θ(c/ε) on a one-link network, where ε is the minimum difference between two
values. We also describe an optimal offline algorithm (requiring polynomial
time) for this model.

Related Work

The trade-off between delay and communication cost appears in various con-
texts, and plays a role in the design of algorithms for wireless sensor networks,
for Internet transfer protocols, and also appears in organization theory. This
section gives a brief overview of related work on this topic.
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A basic problem in the design of Internet transfer protocols such as the
TCP protocol concerns the acknowledgments (ACKs) which have to be sent
by a receiver in order to inform the sender about the successful reception
of packets: In many protocols, a delay algorithm is employed to acknowl-
edge multiple ACK packets with a single message or to piggy-back the ACK
on outgoing data segments [107]. The main objective of these algorithms
is to save bandwidth (and other overhead at the sender and receiver) while
still guaranteeing small delays. The problem of aggregating ACKs in this
manner is also known as the TCP acknowledgment problem [36]. Karlin et
al. [61] pointed out interesting relationships of the single-link acknowledg-
ment problem to other problems such as ski-rental, and gave an optimal,
e/(e− 1)-competitive randomized online algorithm.

There are many variations of the theme, e.g., Albers et al. [3] seek to min-
imize the number of acknowledgments sent plus the maximum delay incurred
for any of these packets. They propose a π2/6-competitive deterministic al-
gorithm for the single link, which is also a lower bound for any deterministic
online algorithm. Frederiksen et al. [45] consider deterministic and random-
ized algorithms for bundling packets in a single-link network; their objective
function measures the total time elapsed while packets are waiting at the leaf
node, but have not been delivered yet.

There is also much literature on aggregation in sensor networks [67, 104,
106, 109, 116, 117]. E.g., Becchetti et al. [16] studied online and offline
algorithms for scenarios where fixed deadlines must be met. They show
that the offline version of the problem is strongly NP-hard and provide a
2-approximation algorithm. More complexity results for settings with fixed
deadlines have been derived in [88].

Korteweg et al. [65] address a similar problem following a bicriterion
approach which considers time and communication as two independent opti-
mization problems: a (B,A)-bicriterion problem minimizes objective A under
a budget on objective B. Inter alia, the authors prove that if r is the ratio
between the maximum and the minimum delay allowed, then the competitive
ratio of their algorithm is (2hλ, 2h1−λ log r) for any λ in (0, 1].

The paper closest to our work is by Khanna et al. [63]. Our model is de-
rived from [63] which investigates the task of centralized and decentralized
online control message aggregation on weighted tree topologies. In particu-
lar, [63] presents a O(h logα)-competitive distributed algorithm, where h is
the tree’s height, and α is the sum of the weights of the tree’s edges. More-
over, the authors show that any oblivious distributed online algorithm has a
competitive ratio of at least Ω(

√
h). In this chapter, we study the same algo-

rithm and we give a new analysis for scenarios where the communication cost
is c on all links, resulting in a better upper bound of O(min (h, c)). We also
derive a new generalized lower bound for edge cost which is different from h,
and show that for any oblivious aggregation algorithm, the competitive ra-
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tio is at least Ω(min(h, c)). Moreover, by taking into account many intrinsic
properties of our algorithm, we show that for chain graphs an upper bound of
O(min(

√
h, c)) holds. This is asymptotically tight. Brito et al. [24] extended

the work of Khanna et al. by proving general upper and lower bounds for the
asynchronous and the centralized ACK aggregation problem. Interestingly,
the asynchronous model yields higher lower bounds in the distributed case
than the slotted model, e.g., the lower bound for the chain network is Ω(h) in
the distributed asynchronous model, a factor of

√
h greater than the bounds

in the synchronous model.

Finally, our value-sensitive aggregation model is reminiscent of the recent
“online tracking” work by Yi and Zhang [115]. The authors study a 1-
lookahead scenario where Alice outputs a function f : Z+ → Zd, and Bob,
knowing all values at t ≤ tnow needs to guess f(t) in an online fashion.
Different scenarios are examined, and competitive strategies are presented
that result in small errors only and save on communication cost. Our model
differs from [115] as it describes a 0-lookahead model and as in their model,
nodes are forced to send updates if the measured value differs sufficiently
from the value stored at the root.

5.2 Model and Definitions

The network to be considered is modeled by a rooted tree T = (V,E) of
height h with root r ∈ V and n = |V | nodes. Every node u except for the
root r (the sink) has a parent node v, i.e., an edge (u, v) ∈ E. The cost of
transmitting a message over an edge is c ≥ 1.

We assume that events occur at the leaf nodes L ⊂ V (e.g., a control
message arriving at a node, or a sensor node detecting an environmental
change). We will refer to the information about the occurrence of a single
event as an event packet. Leaf l creates an event packet p for every event
that happens at l.

Eventually, all event packets have to be forwarded to the root. Instead
of sending each packet p ∈ P individually to a node’s parent after the event
took place, nodes can retain packets and send a message m consisting of one
or more packets together later, thus saving on communication cost as we have
to pay for a link only once per message (rather than per event). Messages
can be merged iteratively with other messages on their way to the root.

We consider a synchronous model where time is divided into time slots.
In each slot, an arbitrary number of events can arrive at each node. For an
event packet p, tl (p) denotes the time slot its corresponding event occurred
at a node and tr (p) the time when it reaches the root. For each time slot an
event waits at a node, we add one unit to the delay cost, i.e., the delay cost
dc (p) the event accumulates until reaching the root is dc (p) = tr (p)− tl (p).
Each message can only be forwarded one hop per time slot, i.e., a message
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always has to wait one time slot at a node before being transmitted to the
next node. Thus, the delay accumulated by an event is at least hl, where hl
denotes the length of the path from the respective leaf l to the root. The
total delay cost of all events accumulated up to time slot T is hence

dcT =
X

p∈P,tr(p)≤T
dc (p) +

X
p∈P,tr(p)>T

(T − tl (p)).

Nodes can aggregate as many event packets as needed. At each time step
t, a node may aggregate awaiting event packets and forward the resulting
message to its parent. The cost of sending a message is c per edge no matter
how many event packets it contains. Consequently, the total communication
cost is the sum of the edge cost of all message transmissions. More formally,
let St be the set of nodes sending out a message in time slot t, then the total
communication cost ccT up to time slot T is ccT =

PT
t=1 |St|. The total cost

up to time T is the sum of both the delay and the communication cost,

costT = dcT + ccT .

Observe that the edge cost c allows us to weight delay and communication
costs: a larger c implies that communication cost become relatively more
important compared to the delay cost. Note that we neglect the energy
consumption in idle listening mode and consider the nodes’ transmission cost
only. We believe that this is justified for networks where listening nodes have
their radios turned off most of the time and only check for data transfers at
the very beginning of each time slot.

Nodes do not know the future arrival time of events, and hence have to
make the decisions on when to send messages online. We are in the realm of
competitive analysis [22] and define the (strict) competitive ratio ρ achieved
by an online algorithm AGG as the delay and communication cost of AGG
divided by the total cost of an optimal offline algorithm OPT .

Definition 5.1 (ρ-competitiveness). An online algorithm AGG is (strictly)
ρ-competitive compared to an optimal offline algorithm OPT if for all input
sequences S, i.e., all possible event arrival sequences,

costALG(S) ≤ ρ · costOPT (S).

The goal of an online algorithm designer is hence to devise algorithms
minimizing ρ, as a small ρ describes the guaranteed worst-case quality of an
algorithm.

We focus on oblivious online algorithms.

Definition 5.2 (Oblivious Algorithms). A distributed online algorithm ALG
is called oblivious if the decisions by each node v ∈ V whether to transmit
a message solely depends on the number of events currently stored at node v
and on the arrival times of the corresponding messages at node v.
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In particular, Definition 5.2 implies that the decisions of a node v do not
depend on packets forwarded by v earlier or on v’s location in the aggregation
network.

5.3 Oblivious Online Algorithm

This section describes and analyzes the deterministic online algorithm AGG
presented in [36, 63]. The algorithm is oblivious in the sense that decision
are reached independently of the distance to the root (cf Definition 5.2). Es-
sentially, the event aggregation algorithm AGG seeks to balance the total
delay cost and the total communication cost. In order to do so, it aggregates
information about multiple events into one message until the forwarding con-
dition is satisfied. Whenever a new event occurs or a message arrives, it is
merged with the message waiting for transmission at the node.

For a message m at node v, we define delayv(m, t), denoting the delay
associated with message m currently stored at node v at time t. Informally, it
is the sum of the accumulated delay cost of all the event packets the message
m contains. In every time step a message remains at a node, delayv(m, t) is
increased by the number of packets in the message. If a message arrives at
a node where another message is already waiting to be forwarded, the two
messages are merged. More formally, let a message m be a set of merged
messages {m1, . . . ,mk}, where message mi consists of |mi| packets and ar-
rived at the current node in time slot ti. The delay of message m at node v
at time t is defined by

delayv(m, t) :=

kX
i=1

|mi|(t− ti).

When executing algorithm AGG, a node v forwards a message m to its
parent as soon as the current accumulated delay exceeds the transmission
cost:

delayv (m, t) ≥ c.

We demonstrate the execution of AGG on a simple example. Consider
the tree and the event arrival sequence in Figure 5.1. There are two events
occurring at leaf node v1, one in time slot t = 1, one at time t = 2. Node
v2 receives two packets at t = 2. The transmission cost is set to c = 3. For
this input sequence, node v1 sends its two packets after time t = 2 and node
v2 after time t = 3, i.e., as soon as the accumulated delay reaches or exceeds
c = 3. Node v3 incurs a delay of two after the message from v1 arrives. In the
next time slot, v3’s delay cost increases to 6, as the message from v2 arrives
with two additional packets, so there are four messages at v3 now.
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The goal of an online algorithm designer is hence to devise algo-
rithms minimizing ρ, as a small ρ describes the guaranteed (worst-
case) quality of an algorithm.

In the following, we will mainly focus on oblivious online algo-
rithms. Being oblivious is a desirable property of distributed algo-
rithms, since non-oblivious algorithms require a dynamic updating
mechanism at each node that informs it about changes in the hier-
archical structure—a costly operation [8].

DEFINITION 3.2 (OBLIVIOUS ALGORITHMS). A distributed
online algorithm ALG is called oblivious if the decisions by each
node v ∈ V whether to transmit a message or not solely depends
on the time slots when the packets currently stored at v arrived (at
v).

In particular, Definition 3.2 implies that the decisions of a node v
do not depend on packets forwarded by v earlier or on v’s location
in the aggregation network.

TODO: Define delay (m) For each messagem, we define delay(m),
denoting the delay associated with message m. Informally, it is the
sum of the accumulated delay cost of all the event packets it con-
tains, minus the sum of the edge cost of every edge a message was
sent over. Thus not only the delay but also the communication cost
paid already is taken into account. END TODO

4. ALGORITHM AND ANALYSIS

4.1 Algorithm
This section describes and analyzes the deterministic online al-

gorithm AGG presented in [5, 8]. The algorithm is oblivious in the
sense that given the same packet arrival times, each node will re-
act in the same way, i.e., independently of its distance to the root
(cf. Definition 3.2). Essentially, the event aggregation algorithm
AGG seeks to balance the total delay cost and the total commu-
nication cost. In order to do so, it aggregates information about
multiple events into one message until the forwarding condition is
satisfied. Whenever a new event occurs or a message arrives, it
is merged with the message waiting for transmission at the node.
Concretely, a node u forwards a message m to its parent v as soon
as

delay (m) ≥ c.
We demonstrate the execution of AGG on a simple example.

Consider the tree and the event arrival sequence in Figure 1. There
are two events occurring at leaf node v1, one in time slot t = 1, one
at time t = 2. Node v2 receives two packets at t = 2. The trans-
mission cost is set to c = 3. For this input sequence, node v1 sends
its two packets after time t = 2 and node v2 after time t = 3, i.e.,
as soon as the accumulated delay reaches or exceeds three. Node
v3 incurs a delay of two after the message from v1 arrives. In the
next time slot, v3’s delay cost increases to 7, as the message from
v2 carries an “overflow delay” of 4− c = 1 and there are four mes-
sages at v3. Adding this up to the delay cost of the previous slot
results in 2+1+4=7.

4.2 Tight Bound for Trees
We establish a new upper bound ofO(min(h, c)) on the compet-

itive ratio of AGG by an astoundingly simple analysis. Instead of
calculating the delay and the communication cost the event pack-
ets accumulate, we focus on the messages AGG and OPT send.
We proceed as follows. First, we investigate the competitiveness of
AGG for a single link network, then tackle the chain network, and
finally generalize our analysis to tree topologies.
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v3 events at node v1 v2
t = 1 1 0
t = 2 1 2

delay at node v1 v2 v3
t = 1 1 0 0
t = 2 3 2 0
t = 3 0 4 2
t = 4 0 0 7
t = 5 0 0 0

Figure 1: Example execution of AGG where the transmission
cost c is 3.

THEOREM 4.1. On arbitrary trees, the competitive ratio ofAGG
is at most

ρ =
costAGG

costOPT
∈ O(min (h, c)).

PROOF. The proof unfolds in several lemmas.

LEMMA 4.2. The competitive ratio of AGG on a single link is
at most 2.

PROOF. Consider a single link of cost c. Let ti be the time slot
where AGG sends the message mi containing information on ki
events. This transmission entails a communication cost of ccAGGi =
c. The total delay of the events in message mi is dcAGGi = c+ xi
for some xi ≥ 0, because mi will be sent as soon as its events’
delay exceeds c, and because there can be (xi + 1) ≥ 0 simulta-
neous event arrivals in the time slot immediately preceding ti. Any
optimal offline algorithm OPT will have at least delay costs xi
as well. In addition, OPT incurs a cost of at least c for the event
packets contained in mi, either because of a transmission or due to
the accumulated delay, costAGGi /costOPTi ≤ (2c+ xi)/(c+ xi).
This expression is maximized for xi = 0, implying a competitive
ratio of 2. 2

In a next step we analyse the chain network. First, we assume
that each message of the optimal offline algorithm which is sent
from a given leaf node comprises packets of multiple messages sent
by AGG at this leaf, and show that the claim indeed holds in this
case. Second, we prove that the claim holds true also ifAGG sends
more messages than OPT . Finally, our results are generalized for
arbitrary sending sequences and for trees.

LEMMA 4.3. If the optimal algorithm’s messages sent from a
given leaf l include all packets of multiple messages of AGG, the
competitive ratio is at most O(min (hl, c)).

PROOF. LetmA
i denote the ith message leaf node l located at depth

hl sends to its parent. Let the total number of messages sent by
AGG at l be denoted by MA

l . Due to our assumption, a message
mO
j ofOPT contains the event packets of one or several messages

of AGG, i.e., mO
j = ∪i′k=imA

k for some i′ ≥ i. Let the total
number of messages sent by the optimal algorithm at node l be
MO
l . The cost a message mO

j accumulates is at least (i′ − i +

Figure 5.1: Example execution of AGG where the transmission cost c is 3.

5.4 Tight Bound for Trees

Upper Bound

We establish a new upper bound of O(min(h, c)) on the competitive ratio
of AGG by a surprisingly simple analysis. Instead of calculating the delay
and the communication cost the event packets accumulate, we focus on the
messages AGG and OPT send. We proceed as follows. First, we investigate
the competitiveness of AGG for a single link network, then tackle the chain
network, and finally generalize our analysis to tree topologies.

Theorem 5.3. On arbitrary trees, the competitive ratio of AGG is at most

ρ =
costAGG

costOPT
∈ O(min (h, c)).

Proof. As a warm up, we consider the competitive ratio on a single link.

Lemma 5.4. [36] The competitive ratio of AGG on a single link is at most 2.

Proof. Consider a single link of cost c. Let ti be the time slot AGG sends the
message mi containing information on ki events. This transmission entails
a communication cost of ccAGGi = c. The total delay cost of the events in
message mi is dcAGGi = c + xi for some xi ≥ 0, because mi will be sent as
soon as its events’ delay exceeds c, and because there can be (xi + 1) ≥ 0
simultaneous event arrivals in the time slot immediately preceding ti. Any
optimal offline algorithm OPT has at least delay cost xi as well. In ad-
dition, OPT incurs a cost of at least c for the event packets contained in
mi, either because of a transmission or due to the accumulated delay, thus
costAGGi /costOPTi ≤ (2c + xi)/(c + xi). This expression is maximized for
xi = 0, implying a competitive ratio of 2.
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In a next step we analyze the chain network. Given a sequence of event
arrivals at the leaf, we can compute when AGG sends messages to the leaf’s
parent node. We study the cost accumulated by these messages in groups of
three messages. Then our results are generalized to trees.

1     2     3     4 … ti ti+1   ti+2 time

OPT OPTAGG AGG AGG AGG AGGAGG

Figure 5.2: Illustration of a sequence of event arrivals at a leaf and the
corresponding forwarding actions of the online algorithm AGG for c = 4.
In addition, the time slots where the optimal offline algorithm forwards its
messages are marked as well. Note that we cannot verify in this limited view
of a leaf node how much better OPT ’s decisions are because of our lack of
knowledge on the situation at the other nodes.

Lemma 5.5. For the events occurring at a given leaf l, the competitive ratio
is at most O(min (hl, c)).

Proof. Given a sequence of event arrivals at the leaf, we can compute when
AGG sends messages to the leaf’s parent node. We define mA

i to be the ith

message that leaf node l located at depth hl sends to its parent. Let t0 be
the first time slot, and the time slot when message mA

i is forwarded towards
the root by l is denoted by ti. Let the total number of messages that leaf l
transmits be MA

l . If such a message contains less than c packets it incurs a
transmission cost of c and a delay cost of less than 2c per hop towards the
root. If a message consists of more than c packets, the delay cost per hop is
bounded by the number of packets. Thus, the total cost for AGG amounts
at most hl(c+ max(2c, |mA

i |)) for message mA
i .

In order to determine the minimum cost an offline algorithm accumu-
lates, we divide the time into intervals of three message transmissions. More
precisely, we consider time periods [tj , tj+3], where j mod 3 = 0. There are
two possibilities for algorithm OPT : Either it sends one or more messages
in the period [tj , tj+3] as well, yielding at least a transmission cost of c, or
the delay accumulated by these packets is at least c. Either way, the cost
accumulated by OPT at leaf l for these packets is at least c. In addition,
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the delay cost accumulating until the packets arrive at the root is at least
(hl − 1)(|mA

j |+ |mA
j+1|+ |mA

j+2|), since every packet in mA
j , m

A
j+1 and mA

j+2

incurs a delay cost of at least one for each hop towards the root. Thus,
OPT ’s total cost for a period [tj , tj+3] is at least

c+ (hl − 1)(|mA
j |+ |mA

j+1|+ |mA
j+2|).

Unless MA
l mod 3 = 0, we cannot consider all messages in groups of three.

If there are one or two last messages that do not belong to such a group, the
respective cost of OPT for the period [t3bMA

l
/3c, tMA

l
] is at least c + (hl −

1)|mMA
l
| or c+ (hl − 1)(|mMA

l
|+ |mMA

l
−1|).

This implies that for any given sequence of event arrivals at a leaf the
competitive ratio is

ρ =
costAGG

costOPT

≤
PMA

l
j=1 hl(c+ max(2c, |mA

j |))
cdMA

l /3e+
PMA

l
j=1 hl|mA

j |

≤ 3MA
l hlc+

PMA
l

j=1 hl|mA
j |

cMA
l /3 +

PMA
l

j=1 hl|mA
j |

<
3MA

l hlc

MA
l (c/3 + hl)

+ 1

∈ O (min (hl, c)) .

Observe that we make no assumptions on the behavior of the optimal
algorithm in Lemma 5.5. Moreover, we charge the optimal algorithm OPT
only for the transmissions over the edges between the leafs and their neighbors
when bounding OPT ’s communication cost, i.e., we basically exempt the
optimal algorithm from paying for any other transmission. Furthermore, we
ignore the cost AGG could potentially save by merging its messages on their
way to the root: We assign the highest possible delay and communication cost
to every message of AGG. These properties allow us to extend Lemma 5.5 to
trees without modification: more precisely, if we consider the longest path in
the tree the statement holds for general trees as well.

Lower Bound

We conclude our investigations of the tree network with a lower bound stating
that AGG is asymptotically optimal compared to any oblivious algorithm
(Definition 5.2). Recall that for oblivious algorithms, it holds that the wait
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root

v1 v2 v3 ... vn/2-1

vn/2

Figure 5.3: Lower bound topology.

time w only depends on the packet arrival time of the packets currently stored
by a given node.

Theorem 5.6. On the tree, any oblivious deterministic online algorithm has
a competitive ratio of at least

ρ =
costALG

costOPT
∈ Ω(min(h, c)).

Proof. Consider the tree topology depicted in Figure 5.3 which consists of
a chain network of n/2 + 1 nodes, where all nodes except for the two last
ones have an additional neighbor (n even).The leaf nodes are referred to by
v1, ..., vn/2.

Assume an input sequence where all leafs simultaneously get one packet.
We now compute the minimum delay and communication cost any oblivious
online algorithm ALG will accrue for this instance. Since ALG is oblivious,
according to Definition 5.2, each leaf node vi will send the packet to its
parent after waiting for w time slots, where the packet arrives at time w+ 1.
(The value of w ≥ 0 depends on the chosen algorithm; observe that w is the
same for all nodes, because we assume ALG to be oblivious.) From there,
the packets leave at time 2w + 2. This process is repeated until all packets
reach the root. Generally, the packet of leaf node vi will arrive at a node
at distance j from vi at time j + jw, and will stay there for w time slots.
Observe that the packets of two nodes vi−1 and vi are never merged into one
message. Thus, ALG has communication cost in the order of Θ

`
h2c
´

and
delay cost in the order of Θ

`
h2
´
.

The optimal algorithm OPT has to send at least one message over each
edge, resulting in a communication cost in Θ (ch). The minimum delay cost
until all packets reach the root is Θ

`
h2
´
. If all the packets are merged into

one message on their way to the root, the delay and communication cost is
in this order of magnitude. This yields the following lower bound on the
competitive ratio

ρ =
costALG

costOPT
∈ Ω

„
h2 + h2c

2hc+ h2

«
,

which completes the proof.
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This result implies that AGG is asymptotically optimal in the sense that
there exists no oblivious online algorithm achieving a better performance.

Discussion

Note that the above analysis for upper and lower bounds carries over to
the model where events can appear at any node, not only at the leafs: The
case where events occur at inner nodes can be reduced to a problem instance
where events only occur at leafs by simply creating a new tree with additional
leafs attached to any node where events occur; we have to map the arrival
time slots to earlier time slots, ensuring that they arrive at the inner nodes
at the correct time.

Theorem 5.3 can be compared to the results obtained in [63]. There, an
upper bound of O (h logα) is derived for the competitive ratio of AGG, where
α is the total communication cost (sum of edge weights) of the tree. If all
edges have a weight c, this translates into O (h log (nc)), which is O

`
h2 log c

´
in balanced binary trees. In this case, the analysis presented above is better
by a factor of Θ (h log c) if h < c. In other networks, for instance, on chain
topologies, the gap between the two bounds narrows, although there always
remains a factor in the order of Ω(log(max(h, c)): Let us only take the edges
on the longest path into account for the upper bound of [63]. Thus the
bound reduces to O(h log(hc)). If c > h this is in O(h log c) whereas the
bound presented here is O(h). If c < h the bound from [63] gives O(h log h)
and our analysis results in O(c).

5.5 Tight Bound for Chains

Upper Bound

In order to obtain our upper bound for trees, the previous section has al-
ready briefly studied the competitiveness of AGG on chain networks. In the
following, we show by a more detailed analysis taking into account many
intrinsic properties of AGG, that the bound can be improved. In particu-
lar, we leverage the fact that the algorithm can merge messages and forward
them together, i.e., save on transmission cost. Moreover, a merged message
moves faster towards the root since it now contains more packets and reaches
the forwarding threshold in fewer time slots than the two separate messages
consisting of fewer packets. Concretely, we prove that on the chain topology,
AGG is O(

√
h)-competitive, and that no oblivious algorithm can be less than

Ω(min(c,
√
h))-competitive.

Theorem 5.7. In chain graphs, the competitive ratio of AGG is

ρ =
costAGG

costOPT
∈ O

“
min

“√
h, c
””

.
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Proof. We use the following lemmata repeatedly.

Lemma 5.8. When executing AGG, a message consisting of ni packets that
arrive at the leaf at the same time reaches the node in distance l from the
leaf after ldc/nie time slots if the message does not merge with any other
message.

Proof. Let tj denote the time the message spends at depth hj , i.e., at the jth

node of its path towards the root. Since AGG is oblivious and no messages
are merged, tj = dc/nie is the same for every node of the chain. Thus the
number of time slots the message spends on a path of length l is

Pl−1
j=0 tj =

ldc/nie.
Lemma 5.9. If AGG does not merge any messages then there are at least

max

„
1, h

‰
c

ni

ı
− (h− 1)

‰
c

ni+1

ı«
time slots between the arrival of the packets of mA

i and the arrival of the
packets of mA

i+1 at the leaf node, if mA
i+1 contains more messages than mA

i .

Proof. To ensure that mA
i reaches the root separately even though it is fol-

lowed by a larger message, mA
i has to have arrived at the root before mA

i+1

arrives at the node in depth 1. By Lemma 5.8 we know that mA
i reaches

the root hdc/nie time slots after its arrival at the leaf. If mA
i+1 arrives at

the leaf δi time slots after the departure of mA
i then it reaches the node in

distance 1 to the root(h − 1)dc/ni+1e time slots later. Hence we can derive
the inequality hdc/nie < δi + (h− 1)dc/ni+1e and the claim follows.

Since a smaller message moves at at lower speed, a message mi+1 contain-
ing ni+1 packets can never catch up a message mi with ni+1 or more packets,
even if there is only one time slot between their departure and arrival.

We start analyzing input sequences where AGG does not merge any mes-
sages at inner nodes. We then show that merge operations cannot deteriorate
the competitive ratio.

Lemma 5.10. For sequences where AGG does not merge any messages, the
competitive ratio of AGG is O(

√
h) on chain graphs.

Proof. We pick a transmission of the optimal offline algorithm OPT and
compare the cost accumulated for the packets within this message to the
cost the online algorithm AGG incurs for the same packets. We show that
the competitive ratio for each such transmission is in O(

√
h) by proving an

upper bound on the cost for the online algorithm AGG followed by a lower
bound on the cost the optimal algorithm accrues.

Let us consider the case where OPT ’s message mO consists of packets
distributed over z messages mA

i of the online algorithm AGG. In other words,
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we assume that for a certain number of packets, the online algorithm sends
messages mA

i where i ∈ {1, . . . , z} and OPT sends one message mO. If there
are any packets in the first or the last message of AGG that the optimal
algorithm OPT does not include in mO, we ignore them when computing
the delay and communication cost for OPT . Let ni denote the number of
packets in message mA

i . For i = 1 or i = z we set ni to the number of packets
that are in mA

i and in mO .
When sending the z messages individually to the root, AGG incurs a

transmission cost of ccAGG = zhc and a delay cost of dcAGG < 2zhc.
After having bounded the cost for AGG we now turn to the minimum

cost an offline algorithm faces. Clearly, the transmission of mO entails a
communication cost of ccOPT = ch for OPT . As a next step we want
to determine the minimum delay cost accumulated by the z messages mA

i ,
which are merged into message mO by the optimal algorithm. Without loss
of generality, we assume that for each message mA

i , 1 ≤ i ≤ z, all ni packets
arrive simultaneously, since OPT would clearly incur higher delay cost if
packets arrived dispersed over time.

We consider two cases: a) the minimum delay cost if the majority of
messages is large, i.e., contains more than c/2 packets, and b) the minimum
delay cost if the majority of the packets is small, i.e., consists of at most c/2
packets. We show that in both cases the delay cost of the optimal algorithm
is in Ω(cz2).

a) If more than z/2 messages contain more than c/2 packets, we ignore
all other messages and focus on the messages with ni > c/2. Let δj denote
the number of time slots between the arrival of message mA

j and the arrival
of mA

j+1. Assume there are y messages with ni > c/2. They are responsible
for a total delay cost of at least

dcOPT >
yX
i=1

ni

yX
j=i

δj .

Even when δj = 1 for all j, this sum amounts to

dcOPT >
yX
i=1

ni

yX
j=i

δj ≥
yX
i=1

c

2
(y − i) ∈ Ω(y2c).

Thus this sum is in Ω(z2c), because y > z/2.
b) If the majority of messages mA

i contain at most c/2 packets, we ignore
the other messages. For simplicity’s sake we let z denote the number of
messages with ni ≤ c/2. Let λi denote the time period between the arrival
of the ni packets and the time slot when the corresponding message mA

i

departs from the leaf. Moreover, let δi be the time period after the message
has departed from the leaf until the next set of ni+1 packets arrives. See
Figure 5.5 for an example.
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mi mi+1 mi+2

λi
λi+1δi δi+1δi-1

time

mi mi+1

mi-1

Figure 5.4: A sequence of message arrivals and departures for AGG at a leaf.
The message mA

i is forwarded after δi time slots at the leaf. δi time slots
later the next message arrives.

The total sum of the delay cost the OPT accumulates at the leaf for all
messages mA

i is given by

dcOPT =

z−1X
i=1

ni

z−1X
j=i

(λj + δj) .

The following facts enable us to derive a bound for the delay cost the
optimal algorithm incurs by waiting until the packets of all messages mA

i

have arrived at the leaf:
(i) If the number of packets between two messages differs by a factor of at
most two, the time they spend at the leaf differs by the same factor.
(ii) If the difference between the size of two messages is larger than a factor of
two, we can apply Lemma 5.9 to compute the minimum number of time slots
between their arrival that ensures that a larger message cannot catch up with
a smaller message on their path to the root. It holds that if 2ni < nj , j > i
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then the number of time slots mA
j arrives later than mA

i is at least

h

‰
c

ni

ı
− (h− 1)

‰
c

nj

ı
≥ h

c

ni
− (h− 1)

„
c

nj
+ 1

«
>

2hc− (h− 1)(c− 2ni)

2ni

>
hc

4ni
,

as ni < c/4 due to our assumption that the largest message contains at most
c/2 packets and no messages are merged after they leave the leaf node. More
formally, the following holds.

Fact 5.11. (i) If 2ni > nj , j > i then λj = dc/nje > c/2ni ≥ λi/2.
(ii) If 2ni < nj , j > i then

Pj−1
k=i λk + δk >

hc
4ni

.

We construct a binary vector a where ai = 1 if there exists a message
mA
j with j > i and 2ni < nj . Using this vector we can rewrite the delay cost

dcOPT the optimal algorithm incurs at the leaf.

dcOPT =

z−1X
i=1

ni

z−1X
j=i

(λj + δj)

>

z−1X
i=1

ni

 
ai
hc

4ni
+ (1− ai)

z−1X
j=i

c

2ni

!
(5.1)

>

z−1X
i=1

„
aihc

4
+

(1− ai)(z − 1− i)c
2

«

=
c

4

z−1X
i=1

(ai(h− 2z + 2 + 2i) + 2z − 2− 2i) . (5.2)

In (5.1), we used the Fact 5.11 to bound
Pz−1
j=i λj + δj . If ai = 1, we

apply Fact 5.11(ii) and the sum is replaced by number of time slots until the
large message responsible for ai = 1 arrives, in the other case, we have a
lower bound for λj due to Fact 5.11(i).

If h > z − 2 the sum in (5.2) is minimized if ai = 0 for all messages. In
this case it holds that

dcOPT >
c

4

z−1X
i=1

(2z − 2− 2i)

=
c

4
(z − 1)(2z − 2− z)

>
c

4
(z − 2)2

∈ Ω(cz2).
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If h < z − 2, then
Pz−1
i=1 ai(h− 2z + 2 + 2i) can be negative. This sum is

minimized if the messages with ai = 1 occur first. Let the number of these
messages be y. In this case, we have to consider

Py
i=1 h − 2z + 2 + 2i =

y(h − 2z + 3 + y), which reaches its minimum of −(1/4)(2z − h − 3)2 for
y = z − h/2− 3/2. Consequently,

dcOPT >
c

4

z−1X
i=1

(ai(h− 2z + 2 + 2i) + 2z − 2− 2i)

> − c

16
(2z − h− 3)2 +

c

4
(z − 2)2

∈ Ω(cz2).

Hence dcOPT is in Ω(cz2) in both cases a) and b). We can conclude that
combining the delay and communication cost for OPT yields the desired
upper bound of the competitve ratio.

ρ =
costAGG

costOPT
∈ O

„
zhc

cz2 + ch

«
= O

„
min

„
h

z
, z

««
= O

“√
h
”
.

We now investigate what happens if there are fewer time slots between
packet arrivals, i.e., situations where merge operations can occur. To this
end, we consider a sequence of packet arrivals without merge operations and
compare it to the same sequence where the number of time slots between
consecutive arrivals is reduced. More precisely, let S = {(n1, t1), (n2, t2), . . .}
denote a sequence of packet arrivals, where (ni, ti) describes the arrival of ni
packets in time slot ti. We compute the difference between the cost accu-
mulated for sequences S = {(n1, t1), (n2, t2), . . .} without merged messages
and S′ = {(n′1, t′1), (n′2, t

′
2), . . .}, where for all i > 0 it holds that ni = n′i and

ti+1 − ti ≥ t′i+1 − t′i.

Lemma 5.12. Consider a transmission of OPT in the sequence S′ and
assume that AGG merges µi messages into one message at hop distance i
from the leaf. Compared to a sequence S where no messages are merged,
AGG can reduce its cost by at least

Ω(µi · c · (h− i)).

Proof. If the µi messages are sent to the root individually, the communication
cost of the online algorithm is µi(h−i)c for the transmissions from the node at
distance i to the root node. Merging theses messages reduces the cost for the
transmission to (h−i)c. Consequently the difference is in Ω(µi ·c·(h−i)).
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Lemma 5.13. Consider a transmission of OPT in the sequence S′ and
assume that AGG merges µi messages into one message at hop distance i
from the leaf. Compared to a sequence S where no messages are merged,
OPT can reduce its cost by at most

O(µi · c · (h− i)).

Proof. Consider the µi messages that AGG merges at node i. We denote
the size of the messages under scrutiny by n1, . . . , nµi . Note that a messages
of size nj cannot catch up with a message of greater size nj > ni unless
it merges with another message first. This implies, that in order to have
µi messages merging at distance i from the leaf, the message size of AGG’s
messages has to be strictly monotonically increasing.

In the following, let the superscript s identify variables considered in the
scenario where AGG does not merge any messages, and the superscript m
identify variables in the other scenario. Let λl + δl denote the time period
between two consecutive arrival time slots of the set of nl and the set of
nl+1 packets, where λl = dc/nle is the number of time slots the lth message
spends at the leaf δl is the number of time slots between mA

l ’s departure and
mA
l+1’s arrival that ensure that mA

l+1 does not catch up (too early) with mA
l .

For sequences where AGG does not merge any packets, OPT ’s delay cost is
given by

dcs =

µi−1X
l=1

µi−1X
j=l

nl(δ
s
j + λj).

In order to guarantee that consecutive messages are not merged by AGG we
can apply Lemma 5.9 to determine δsl = max (κsl , 0), where κsl = h dc/nle −
(h − 1) dc/nl+1e − dc/nle . Since nl < nl+1 we know that κsl < h(dc/nle −
dc/nl+1e) which is never negative. Note that this entails that

µi−1X
j=l

δsj ≤ dhc/nle − dhc/nµie .

If we assume the merge operation of µi messages to happen at depth
h− i we can compute a lower bound for the shortened time period between
two messages. Observe that in order to ensure that messages do not merge
too early, it must hold that δml > max (κml , 0), where κml = i dc/nle − (i −
1) dc/nl+1e − dc/nle. Due to nl < nl+1, it holds that κml ≥ (i− 1)(dc/nle −
dc/nl+1e) and thus

µi−1X
j=l

−δmj ≥ d(i− 1)c/nµi − dic/nlee .
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Combining the above implies that OPT can reduce its delay cost by at
most

∆dcOPT = dcs − dcm

≤
µi−1X
l=1

nl

µi−1X
j=l

δsj −
µi−1X
l=1

nl

µi−1X
j=l

δmj

=

µi−1X
l=1

nlh

„‰
c

nl

ı
−
‰
c

nµi

ı«
− (i− 1)

„‰
c

nl

ı
−
‰
c

nµi

ı«

≤
µi−1X
l=1

nl (h− i+ 1))

„
c

nl
− c

nµi
+ 1

«
= (µi − 1)(h− i+ 1)(c+ 1).

Lemma 5.14. Consider a sequence of packet arrivals on a chain graph sat-
isfying the following conditions: AGG sends some messages individually to
the root and performs one merge operation on the other messages. If OPT
merges all these messages into one at the leaf then the competitive ratio is in
O(min(

√
h, c)).

Proof. Let the number of messages AGG sends individually to the root be
denoted by ν and the number of messages AGG merges at distance i from
the leaf be denoted by µ. If the packets that form the µ messages AGG
merges arrive before the ν messages sent to the root separately the claim
follows directly from Lemmas 5.12 and 5.13. Otherwise we have to take the
delay cost the ν messages can save since the to be merged messages can
arrive closer to each other into account. Applying the Lemmas 5.12 and 5.13
leads to a total cost for AGG of less than 3(νhc + hc + µic) and the total
cost for OPT amounts to at least Ω

`
hc+ min(ν2c, νhc) + µic

´
. As in the

proofs above we can assume without loss of generality that (ν+µ) ∈ ω(
√
h).

If νh < ν2 the competitive ratio is in O(1), otherwise the ratio is at most
O( νh+µ

h+ν2+µ
). Assume ν to be lager than µ. This implies that ν >

√
h and

hence the ratio is O(νh/ν2) = O(
√
h). If µ is larger than ν, we have a ratio

of O(hnµ/(h+ nµ2)), which is O(
√
h).

Hence, we have shown that the competitive ratio does not deteriorate
for one occurrence of a merge operation. We can apply the above lemma
and induction on the number of merge operations one message takes part in:
Treat the node where a merge occurs as a new leaf node and consider the
merge operations on the remaining chain until the root independently. For
this network, the same arguments apply, and we can conclude that the cost
the online and the offline algorithm save by merging does not inflict a change
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in the asymptotic worst case competitive ratio. Hence it follows together
with Theorem 5.3 that the competitive ratio is at most O(min(

√
h, c)) on

chain graphs.

Lower Bound

We now show that AGG is asymptotically optimal for all oblivious online
algorithms, i.e., we derive a lower bound for chain networks of Ω(min(

√
h, c)).

Theorem 5.15. For chain networks the competitive ratio of any oblivious
algorithm ALG is at least

ρ =
costALG

costOPT
∈ Ω

“
min(

√
h, c)

”
.

Proof. Let ALG denote any oblivious online algorithm, and assume that
packets arrive one-by-one: at time 0, a packet p arrives at the leaf node l.
The next packet arrives at the leaf exactly when ALG sends the packet at l.
Let w denote the time a packet waits at l, and observe that the same waiting
time holds for all nodes on the way from the leaf to the root due to the
oblivious nature of ALG. Thus, the total waiting time per packet is hw, and
the communication cost is hc: costALG = hw + hc. We now derive an upper
bound on the optimal algorithm’s cost for this sequence. We partition the
packets into blocks of size

√
h, i.e., one message contains

√
h packets. Thus,

the communication cost per packet of this algorithm is hc/
√
h =
√
hc. The

delay cost per message at the leaf is
P√h−1
i=1 iw ∈ Θ(hw). In addition, each

packet experiences one unit of delay per hop on the way up to the root. Thus,
the optimal cost per packet is costOPT ≤ Θ(

√
hc+ w

√
h+ h). Therefore, it

asymptotically holds for this sequence that

ρ ≥ hc+ hw√
hc+ w

√
h+ h

=
h(c+ w)√
h(c+ w) + h

.

The lower bound follows from distinguishing three cases. If h and c+ w are
asymptotically equivalent, this yields Ω(

√
h). If h is asymptotically larger

than c+w, the best oblivious algorithm choosing w as small as possible gives
a lower bound of Ω (c). Finally, if h < c + w, the lower bound is in Ω(

√
h),

completing the proof.

Discussion

Our findings can be compared to the analysis presented in [63]. Their Ω(
√
h)

lower bound holds for arbitrary oblivious algorithms on trees. We have shown
that this upper bound is too pessimistic, as general trees are inherently more
difficult than chain topologies, and that the lower bound can be increased
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to Ω(min(h, c)). For chain networks, we have generalized their result to
arbitrary edge cost, yielding a lower bound of Ω(min(

√
h, c)), which is proved

tight by AGG.

5.6 Value-Sensitive Aggregation

There are many scenarios where, in contrast to the aggregation model con-
sidered above, the information to be delivered is not binary (e.g., event mes-
sages) but where arbitrary value aggregations need to be performed at the
root. E.g., consider a set of sensor nodes measuring the temperature or oxy-
gen levels at certain outdoor locations, and the root is interested to have
up-to-date information on these measurements. In this case, larger value
changes are more important and should be propagated faster to the root,
e.g., such that an alarm can be raised soon in case of drastic environmental
changes.

In the following, we consider a most simple topology: a network consisting
of a leaf and a sink. Let the value measured by the leaf l at time t be lt.
We assume that the leaf node can only send the value it currently measures.
The root node’s latest value of node l at time t is denoted by rt. We seek
to minimize the following optimization function: cost = M · c +

P
t |lt − rt|

where M is the total number of message transmissions and c the cost per
transmission, i.e., M · c is the total communication cost.

Typically, the values measured by a sensor node do not change arbitrarily,
but there is a bound on the maximal change per time unit. In the following,
we assume that the value measured by a node changes by at most ∆ per time
slot. Moreover, we assume that the sensor nodes can only measure discrete
quantities, and that the difference between two measured values is at least ε.

Optimal Offline Algorithm for Link

There exists a simple optimal (offline) algorithmOPT which applies dynamic
programming. OPT exploits the following optimal substructure: If we know
the best sending times for all slots t′ < t given that a message is sent at time
t′, we can compute the optimal sending times assuming that OPT sends at
time t.

Let the number of time slots under scrutiny be T . Note that, we only
have to consider the time slots with value changes, because an optimal al-
gorithm either sends a value immediately after it has changed or not until
the value has changed again. Let time slot ti denote the time slot when
the ith value change occurred and we set t0 = 0. Determining all time slots
with value changes requires iterating over all T time slots. To compute the
minimum cost accumulated until time slot ti, we consider each possible last
transmission j < i and add the inaccuracy cost which accrued at the root
node between the two transmissions j and i.
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Due to the arguments above, we can construct an array OPT [·] of size
λ+ 1, where λ is the total number of value changes at the leaf node. We set
OPT [0] = 0, as we assume that initially, the root stores the correct value.
The remaining matrix entries are then computed as follows:

OPT [i] = min
j<i

0@OPT [j] + c+ |lti − ltj |+
i−1X

k=j+1

|ltk − ltj |(tk+1 − tk)

1A .

In time O(λ2) we construct a matrix A[·][·] of size (λ + 1) × (λ + 1), where
for all 1 ≤ j, i ≤ λ the entry Ai,j = |lti − ltj |(ti+1 − ti). This allows us to

compute any sum
Pi−1
k=j+1 |ltk − ltj |(tk+1 − tk) for 1 ≤ i ≤ j ≤ λ in constant

time. For a given i, 1 ≤ i ≤ λ, computing OPT [i] takes time O(λ) using
these precomputed values. Thus, we have the following theorem.

Theorem 5.16. In a link network, the optimal aggregation strategy for T
time slots can be computed in time O(T +λ2), where λ is the number of value
changes at the leaf.

If the input for the offline algorithm consists of a sequence of value changes
and the time slots when they happened, the time complexity is in O(λ2).

Online Algorithm for Link

We propose the following online algorithm AGG, which can be seen as a
generalization of the algorithm presented in the previous section: The leaf l
sends the value it currently measures if and only if

PT
t=τ |lt − lτ | ≥ c, where

τ is the last time l has transmitted its value and T is the current time.

For the analysis of AGG, we consider the time periods between two trans-
missions of AGG. For each such period, we can bound the competitive ratio
yielding an overall competitive ratio. We first need the following helper
lemma.

Lemma 5.17. Let ρ be the competitive ratio of AGG when AGG’s delay
cost is c in each time period I, then 3ρ/2 is an upper bound on the total
competitive ratio.

Proof. First observe that AGG can have a larger delay cost than c in a period,
e.g., if in a time slot where the accumulated delay cost is c−ε for an arbitrarily
small ε > 0 there is a large value change of size ∆ at the leaf. Hence, the
online algorithm’s delay in any period is at most 2(c − ε) + ∆. Consider
a period I where the online algorithm’s delay cost is 2(c − ε) + k for some
k ≤ ∆. Compared to the case studied so far, AGG’s delay cost will increase
by at most k+ c− 2ε. However, due to the large value change, we know that
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the optimal algorithm’s delay cost must increase by at least k as well. The
new competitive ratio ρ′ is hence

ρ′ =
CC′AGG +DC′AGG
CC′OPT +DC′OPT

≤ ccAGG + dcAGG + k + c− 2ε

ccOPT + dcOPT + k

=
ccAGG + dcAGG

ccOPT + dcOPT + k
+

k + c− 2ε

ccOPT + dcOPT + k

< ρ+
c− 2ε

ccOPT + dcOPT

< ρ+
c− 2ε

(ccAGG + dcAGG)/ρ

< ρ+
c− 2ε

2c/ρ

<
3ρ

2
.

Theorem 5.18. The competitive ratio of AGG is

ρ =
costAGG

costOPT
∈ Θ(c/ε),

where c is the link cost and ε is the minimum difference between two values.

Proof. We first prove that ρ ∈ O(c/ε), and subsequently show that ρ ∈
Ω(c/ε).

Proof for ρ ∈ O(c/ε): First, the ratio is computed under the assumption
that the delay cost of AGG is exactly c; we then apply Lemma 5.17. We clas-
sify the possible types of periods I between two sending events of the online
algorithm and consider them separately. Observe that for any period where
the optimal algorithm OPT transmits, the competitive ratio is at most 2, as
OPT has cost at least c and the online algorithm AGG has communication
cost c and delay cost c. It remains to examine the situations where OPT
does not send.

Assume that at the beginning of this period, AGG sends the value A0,
and at the end, it sends the value A1. Furthermore we denote the optimal
algorithm’s value at the root at the beginning and at the end of this period
by O0 and O1, respectively. We define δ0 := |A0 − O0| and δ1 := |A1 − O1|
and examine all possible cases under the assumption that the delay cost of
AGG is c for every period.

Case δ0 = δ1 = 0: If OPT has no transmission, it must have the same
delay cost in this period as AGG, because the initial and final values are the
same, and hence ρI ≤ 2.



5.7. CONCLUDING REMARKS 97

Case δ0 = 0, δ1 6= 0: If OPT has no transmission, it must have at least
the same delay cost as AGG in I , thus ρI ≤ 2.

Case δ0 6= 0, δ1 = 0: If OPT has no transmission, it incurs at least delay
cost δ0 in the first time slot, as AGG sends the correct value at the beginning
of the period. Hence, ρI ≤ 2c/δ0.

Case δ0 6= 0, δ1 6= 0: In this case, OPT has delay cost δ0 as well yielding
ρI ≤ 2c/δ0.

Thus, for each of these periods, ρI ≤ 2c/δ0. It must hold that δ0 > ε,
and the claim follows by applying Lemma 5.17.

Lower bound: Consider the following sequence of values at the leaf node:

0, εc/ε, 0c/ε−1, −ε, 0c/ε−1, ε, 0c/ε−1, −ε, . . .

where αβ denotes that the value α remains for β time slots. Observe that
for each subsequence (0c/ε−1,−ε, 0c/ε−1, ε), 2ε is an upper bound on OPT ’s
delay cost: It is the total delay cost if there are no transmissions at all in the
entire sequence. In contrast, AGG has 2c delay cost plus two transmissions.
Thus, neglecting the cost of the first time slot, we have ρ ≥ 4c/2ε = 2c/ε.

5.7 Concluding Remarks

In this chapter we have studied an online aggregation problem motivated by
the increasing popularity of wireless sensor networks. When tackling this
problem we face a trade-off between event notification time and transmis-
sion cost. We have studied a simple distributed algorithm which achieves a
competitive ratio of Θ(min(h, c)) in case of general trees and Θ(min(

√
h, c))

in case of chains. In addition to binary event aggregation, we analyse a new
model where the root is interested in the nodes’ values (e.g., the measured
temperature or humidity). In both settings there are many intriguing open
questions for future research. E.g., the exploration of asynchronous models
for the value-sensitive model, the study of non-oblivious algorithms, or algo-
rithms which have a limited amount of information about the states of their
neighbors, can yield deeper insights into the event aggregation problem and
may also be useful in other applications. Moreover, it would be interesting to
apply the competitive analysis framework [9] accounting for system inflicted
nondeterminism in distributed settings to this problem.

The trade-off between delay and communication cost appears in vari-
ous technical contexts, and it plays a role in the design of algorithms for
wireless sensor networks and for Internet transfer protocols. Additionally,
results in this area can carry over to surprisingly different problems. E.g.,
Papadimitriou et al. [91, 92] investigate the following optimization problem
in organization theory: An organization is modeled as a tree where employ-
ees (leaves) receive messages to be sent to the boss (the root). The authors
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observe that before it is possible to accept some communication, humans typ-
ically must do a “context switch” in order to process the message properly,
and that the cost of these context switches becomes large if communications
are not scheduled carefully. Concretely, the cost function consists of two
components, one capturing the total number of messages sent along the tree,
and the other one capturing the total delay incurred by the messages before
they reach the root. This is very similar to the model we explored in this
chapter. Papadimitriou et al. assume a Poisson process queuing model for
the formal analysis of this dilemma of interruptions, but of course the bounds
from this chapter hold in the organizational setting as well.



6
Conclusions and Outlook

In this part of the thesis we have investigated two areas that are critical to the
successful operation of wireless networking: first, inadvertent and adversar-
ial interference and second, the limited availability of energy. We discussed
models and proposed algorithms for device discovery under Byzantine dis-
ruptions, power control, scheduling and an energy-latency trade-off.

The initial state in an ad hoc network is a collection of devices that are
unaware of each other’s presence. The very first step in building a network is
thus, to find other devices. This device discovery procedure is a key step in
configuring and optimizing the topology of the network. The shared nature of
the communication medium in wireless networks induces their vulnerability
to jamming attacks of various strengths. Of course, such a disruption of
communication delays the discovery process. In Chapter 2, we presented
algorithms that allow for fast device discovery degrading gracefully with the
strength of the attacker. Our algorithms all have in common that they are
simple and fully distributed, hence they are ideal candidates for energy and
memory constrained sensor nodes.

Not only does interference constitute a challenge when establishing a net-
work, it remains cumbersome in every phase of operation. Signals trans-
mitted concurrently disturb each other, even if their respective senders are
far away from each other. In order to still use the available bandwidth ef-
ficiently, we examined the scheduling problem and suggest algorithms with
provable performance guarantees. In Chapter 4, we presented a power control
and scheduling algorithm that remedies some of the drawbacks of previous
approaches. In its current state, it is centralized and hence suitable to be
employed in static networks with known traffic patterns only. Whether a
distributed algorithm working in a manner similar to this algorithm exists,
is an intriguing open question. Ideally, such a distributed worst-case effi-
cient scheduling algorithm could lead to improved MAC-layer solutions, as
combined power control and scheduling are crucial to a theoretical under-

99
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standing of media access control problems. In Chapter 3, we considered
networks where every node emits signals of the same power level. The main
contribution of this chapter is a method of reducing a problem known to be
NP-complete by constructing a geometric instance of the scheduling problem.
The method consists in disposing nodes in the plane in a way that restricts
the number of possible solutions and enforces the constraints of the NP-
complete problem. We believe that this method of reduction can be adapted
to prove other problems to be hard in the physical model. E.g., an exciting
research direction is to analyze the complexity of the joint problem of power
control and scheduling.

In Chapter 5 we have studied an online aggregation problem which can
be regarded as a generalization of the classic ski-rental problem to trees.
This generalization captures the trade-off between speed and energy preva-
lent in wireless sensor networks. We have analysed a simple algorithm that
attempts to minimizes the delay until messages reach the root and features
an economical use of energy by aggregating messages. Despite its straightfor-
ward approach, it achieves the best possible asymptotic competitive ratio in
the class of oblivious, deterministic and fully distributed algorithms. More-
over, the algorithm fulfills its task without knowledge of the presence and the
state of devices in its vicinity, and it does not base its decisions on previous
events. Thus, apart from the efficiency criterion, this algorithm is attractive
for practical applications as it poses minimal hardware requirements on sen-
sor nodes (low memory and computational requirements). Obviously, a real
network may impose several additional constraints that an useful algorithm
has to take into account. This holds for all our results, e.g., even though our
interference model is more realistic than many others, it still contains several
simplifying assumptions and all our models entirely ignore the effect of mobil-
ity which is characteristic for the use of many wireless devices. Nevertheless,
we believe that a solid theoretical underpinning is necessary for the design of
any efficient system. We hope that, although some of our results are merely
a small step towards a better understanding of the problems under scrutiny,
our results will prove beneficial for future ad hoc and sensor networks.
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7
Manipulation in Games

7.1 Introduction

The quest for a deeper understanding of our world and its highly intercon-
nected systems and processes often requires a huge amount of computational
resources which can only be obtained by connecting thousands of computers.
Similarly to agents in socio- economic systems, the computers in such net-
works often operate on a decentralized control regime, and represent various
stake-holders with diverse objectives. Therefore, in addition to mere techni-
cal challenges, a system designer often has to take into account sociological
and economic aspects as well when reasoning about protocols for maximizing
system performance.

Game theory is a powerful tool for analyzing decision making in systems
with autonomous and rational (or selfish) participants. It is used in a wide
variety of fields such as biology, economics, politics, or computer science.
A major achievement of game theory is the insight that networks of self-
interested agents often suffer from inefficiency due to effects of selfishness.
The concept of the price of anarchy allows to quantify these effects: The
price of anarchy compares the performance of a distributed system consisting
of selfish participants to the performance of an optimal reference system
where all participants collaborate perfectly. If a game theoretic analysis of
a distributed computing system reveals that the system has a large price of
anarchy, this indicates that the protocol should be extended by a mechanism
encouraging cooperation.

In many distributed systems, a mechanism designer cannot change the
rules of interactions. However, she may be able to influence the agents’
behavior by offering payments for certain outcomes. On this account, we
consider a mechanism designer whose power is to some extent based on her
monetary assets, primarily, though, on her creditability. That is, the players
trust her to pay the promised payments. Thus, a certain subset of outcomes
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is implemented in a given game if, by expecting additional non-negative pay-
ments, rational players will necessarily choose one of the desired outcomes.
A designer faces the following optimization problem: How can the desired
outcome be implemented at minimal cost? Surprisingly, it is sometimes pos-
sible to improve the performance of a given system merely by creditability,
i.e., without any payments at all.

Chapter 8 presents several results for this problem. We propose algo-
rithms for finding incentive compatible implementations of a desired set of
outcomes, we show how a bankrupt mechanism designer can decide in poly-
nomial time if a set of outcomes can be implemented at no cost at all, and
an interesting connection to best response graphs is established. We propose
and analyze efficient heuristic algorithms and demonstrate their performance.
Furthermore, we extend our analysis for risk-averse behavior and study dy-
namic games where the mechanism designer offers payments in each round.

Whether a mechanism designer is prepared to invest the cost of imple-
menting a desired outcome often depends on how much better than the orig-
inal outcome the implemented outcome is. If the social welfare gain does
not exceed the implementation cost, the mechanism designer might decide
not to influence the game at all. In many games, however, manipulating the
players’ utility is profitable.

The following extension of the well-known prisoners’ dilemma illustrates
this phenomenon. Two bank robbers, both members of the Al Capone clan,
are arrested by the police. The policemen have insufficient evidence for con-
victing them of robbing a bank, but they could charge them with a minor
crime. Cleverly, the policemen interrogate each suspect separately and offer
both of them the same deal. If one testifies to the fact that his accomplice
has participated in the bank robbery, they do not charge him for the minor
crime. If one robber testifies and the other remains silent, the former goes
free and the latter receives a three-year sentence for robbing the bank and a
one-year sentence for committing the minor crime. If both betray the other,
each of them will get three years for the bank robbery. If both remain silent,
the police can convict them for the minor crime only and they get one year
each. There is another option, of course, namely to confess to the bank rob-
bery and thus supply the police with evidence to convict both criminals for
a four-year sentence (cf. G in Figure 7.1). A short game-theoretic analysis
shows that a player’s best strategy is to testify. Thus, the prisoners will
betray each other and both get charged a three-year sentence.

Now assume that Mr. Capone gets a chance to take influence on his
employees’ decisions. Before they take their decision, Mr. Capone calls each
of them and promises that if they both remain silent, they will receive money
compensating for one year in jail,1 and furthermore, if one remains silent and
the other betrays him, Mr. Capone will pay the former money worth two years

1For this scenario, we presume that time really is money!
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in prison (cf. V in Figure 7.1). Thus, Mr. Capone creates a new situation
for the two criminals where remaining silent is the most rational behavior.
Mr. Capone has saved his clan two years in jail.

Let us consider a slightly different scenario. After the police officers have
made their offer to the prisoners, their commander-in-chief devises an even
more promising plan. He offers each criminal to drop two years of the four-
year sentence in case he confesses the bank robbery and his accomplice be-
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Figure 7.1: Extended prisoners’ dilemma: G shows the prisoners’ initial
payoffs, where payoff values equal saved years. The first strategy is to remain
silent (s), the second to testify (t) and the third to confess (c). Nash equilibria
are colored gray, and non-dominated strategy profiles have a bold border.
The left bimatrix V shows Mr. Capone’s offered payments which modify
G to the game G(V ). By offering payments V ′, the police implements the
strategy profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V ′ implement
(c, c) for free.
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trays him. Moreover, if he confesses and the accomplice remains silent they
would let him go free and even reward his honesty with a share of the booty
(worth going to prison for one year). However, if both suspects confess the
robbery, they will spend four years in jail. In this new situation, it is most
rational for a prisoner to confess. Consequently, the commander-in-chief
implements the best outcome from his point of view without dropping any
sentence and he increases the accumulated years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both
prisoners keep quiet results in four saved years for the robbers. By subtract-
ing the implementation cost, the equivalent to two years in prison, from the
saved years, we see that this implementation yields a benefit of two years
for the Capone clan. We say that the leverage of the strategy profile where
both prisoners play s is two. For the police, the leverage of the strategy
profile where both prisoners play c is two, since the implementation costs
nothing and increases the years in prison by two. Since implementing c re-
duces the players’ gain, we say the strategy profile where both play c has
a malicious leverage of two. In the described scenario, Mr. Capone and
the commander-in-chief solve the optimization problem of finding the game’s
strategy profile(s) which bear the largest (malicious) leverage and therewith
the problem of implementing the corresponding outcome at optimal cost.

Chapter 9 analyzes these problems’ complexities and presents algorithms
for finding the leverage of games for cautious and optimistic mechanism de-
signers.

In the remainder of this chapter, we review related work and give an
overview of our contributions, followed by an introduction of our model and
some basic game theoretic definitions.

7.2 Related Work

The mathematical tools of game theory have become popular in computer
science recently as they allow to gain deeper insights into the socio-economic
complexity of today’s distributed systems. Game theory combines algorith-
mic ideas with concepts and techniques from mathematical economics. Pop-
ular problems in computer science studied from a game theoretic point of
view include virus propagation [10], congestion [27], wireless spectrum auc-
tions [120], among many others.

The observation that systems often perform poorly in the presence of self-
ish players has sparked research for countermeasures [33, 80]. For example,
Cole et al. [28, 29] have study how incentive mechanisms can influence selfish
behavior in a routing system where the latency experienced by the network
traffic on an edge of the network is a function of the edge congestion, and
where the network users are assumed to selfishly route traffic on minimum-
latency paths. They show that by pricing network edges the inefficiency
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of selfish routing can always be eradicated, even for heterogeneous traffic
in single-commodity networks. Wang et al. [111] present a unicast routing
system for non-cooperative wireless networks which is socially efficient.

Typically, when a game-theoretic analysis reveals that a system may suf-
fer from selfish behavior, appropriate countermeasures are taken in order to
enforce a desired behavior (e.g.,[43]). As it is often infeasible for a mechanism
designer to influence the rules according to which the players act in a dis-
tributed system, she has to resort to other measures. One way to manipulate
the players’ decisions is to offer them money for certain outcomes.

Monderer and Tennenholtz [81] show how creditability can be used to
outwit selfish agents and influence their decisions. They consider a mecha-
nism designer who cannot enforce behaviors and cannot change the system,
and who attempts to lead agents to adopt desired behaviors in a given multi-
agent setting. The only way the third party can influence the outcome of the
game is by promising non-negative monetary transfers conditioned on the
observed behavior of the agents. The authors demonstrate that the mecha-
nism designer might be able to induce a desired outcome at very low cost. In
particular, they prove that any pure Nash equilibrium of a game with com-
plete information has a zero-implementation, i.e., it can be transformed into
a dominant strategy profile at zero cost. Similar results hold for any given ex-
post equilibrium of a frugal VCG mechanism. Moreover, the paper addresses
the question of the hardness of computing the minimal implementation cost.

We extend [81] in various respects. We suggest several new algorithms, for
instance a polynomial time algorithm for deciding whether a set of strategy
profiles has a 0-implementation. We point out connections to graph-theoretic
concepts and we generalize the theorem by Monderer and Tennenholtz on the
cost of Nash equilibria. We correct their algorithm for computing an optimal
exact implementation, and we provide evidence that their NP-hardness proof
of deciding whether a k-implementation exists is wrong. [81] attends to pes-
simistic mechanism designers calculating with maximum possible payments
for a desired outcome. In this thesis, we also consider less anxious mecha-
nism designers taking the risk of high worst case cost if the expected cost is
small. For the latter we prove that computing the optimal implementation
cost is NP-hard in general. Regarding pessimistic mechanism designers we
were less lucky, since Monderer and Tennenholtz’ complexity results turned
out to be wrong and we were not able to fix them. Therefore, we propose
polynomial-time heuristic algorithms and evaluate their performance by sim-
ulations. Furthermore, we generalize the implementation concept to other
game theoretic models. We examine players aiming at maximizing the aver-
age payoff and show how the mechanism designer can find such implemen-
tations. As another contribution, we consider the case of risk-averse players
and the complexity of computing the optimal implementation, and we initi-
ate the study of mechanism design by creditability in round based dynamic
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games, where the mechanism can adapt the offered payments in every round.
Furthermore, we introduce the concept of leverage, a measure for the change
of behavior a mechanism design can inflict, taking into account the social
gain and the implementation cost. Regarding the payments offered by the
mechanism designer as some form of insurance, it seems natural that out-
comes of a game can be improved at no cost. However, as a first contribution,
we show that a malicious mechanism designer can in some cases even reduce
the social welfare at no cost. Second, we present algorithms to compute both
the beneficial as well as the malicious leverage, and provide evidence that
several optimization problems related to the leverage are NP-hard.

To the best of our knowledge, this is the first work studying malicious
mechanism designers which aim at influencing a game based primarily on
their creditability. Other types of maliciousness have been studied before in
various contexts, especially in cryptography, and it is beyond the scope of
this thesis to provide a complete overview of this literature. Recently, the
concept of BAR games [2] has been introduced which aims at understanding
the impact of altruistic and malicious behavior in game theory. Moscibroda
et al. [83] extend the virus inoculation game from [10] to comprise both
selfish and malicious players. A similar model has recently been studied in
the context of congestion games [13]. Our work is also related to Stackelberg
theory [100] where a fraction of the entire population is orchestrated by a
global leader. In contrast to our model, the leader is not bound to offer any
incentives to follow her objectives. Finally, in the recent research thread of
combinatorial agencies [12], a setting is studied where a mechanism designer
seeks to influence the outcome of a game by contracting the players individu-
ally; however, as she is not able to observe the players’ actions, the contracts
can only depend on the overall outcome.

In recent years, many mechanism design results involving payments of
money, stamps, points or similar objects of value have been proposed. In
networking, the fundamental problem with these schemes is that relying on
monetary transfers often imposes a high implementation barrier [55]. There-
fore, researchers have started investigating mechanisms without money. Un-
fortunately, the fundamental Arrow’s Theorem [8, 101] shows that the power
of mechanisms without money is severely limited in general. However, the
observation that computer systems typically have the ability to arbitrarily
reduce service quality (e.g., by dropping messages or insert delays) has given
raise to the study of how such ”punishments” can increase the social gain
beyond the loss inflicted [55]. In contrast to the non-negative payments ex-
amined in our work, they use negative incentives to steer the players to a
desired behavior. Moscibroda and Schmid [82] analyze mechanisms without
payments for a model similar to the one studied in this article.Their work
can be regarded as an application of the theories devised in this article to
the domain of throughput maximization.
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7.3 Preliminaries and Model

Game Theory

A finite strategic game can be described by a tuple G = (N,X,U), where N =
{1, 2, . . . , n} is the set of players and each player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies
is denoted by X := X1×X2×. . .×Xn. In the following, a particular outcome
x ∈ X is called strategy profile and we refer to the set of all other players’
strategies of a given player i by X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn.
An element of Xi is denoted by xi, and similarly, x−i ∈ X−i; hence x−i is a
vector consisting of the strategy profiles of xi. Finally, U = (U1, U2, . . . , Un)
is an n-tuple of payoff functions (utilities), where Ui : X → R determines
player i’s payoff arising from the game’s outcome.

The social gain of a game’s outcome is given by the sum of the individ-
ual players’ payoffs at the corresponding strategy profile x, i.e. gain(x) :=Pn
i=1 Ui(x). Let xi, x

′
i ∈ Xi be two strategies available to Player i.

We say that xi dominates x′i iff Ui(xi, x−i) ≥ Ui(x′i, x−i) for every x−i ∈
X−i and there exists at least one x−i for which a strict inequality holds.
xi is the dominant strategy for player i if it dominates every other strategy
x′i ∈ Xi\{xi}. xi is a non-dominated strategy if no other strategy dominates
it. By X∗ = X∗1 × . . .×X∗n we will denote the set of non-dominated strategy
profiles, where X∗i is the set of non-dominated strategies available to the
individual player i.

The set of best responses Bi(x−i) for player i given the other players’ ac-
tions is defined as Bi(x−i) := {xi|Ui(xi, x−i) = maxxj∈Xi\{xi} Ui(xj , x−i)}.
A Nash equilibrium is a strategy profile x ∈ X such that for all i ∈ N ,
xi ∈ Bi(x−i), i.e., no player has an incentive to choose a different strategy
unilaterally.

Mechanism Design by Creditability

Our model is based on the classic assumption that players are rational and
always choose a non-dominated strategy. Additionally, we assume that play-
ers do not collude. We examine the impact of payments to players offered by
a mechanism designer (an interested third party) who seeks to influence the
outcome of a game. These payments are described by a tuple of non-negative
payment functions V = (V1, V2, . . . , Vn), where Vi : X → R+, i.e. the pay-
ments for player i depend on the strategy Player i selects as well as on the
choices of all other players. Thereby, we assume that the players trust the
mechanism designer to finally pay the promised amount of money, i.e., con-
sider her trustworthy (mechanism design by creditability). The original game
G = (N,X,U) is modified to G(V ) := (N,X, [U + V ]) by these payments,
where [U + V ]i(x) = Ui(x) + Vi(x), that is, each player i obtains the pay-



110 CHAPTER 7. MANIPULATION IN GAMES

ments of Vi in addition to the payoffs of Ui. The players’ choice of strategies
changes accordingly: Each player now selects a non-dominated strategy in
G(V ). Henceforth, the set of non-dominated strategy profiles of G(V ) is de-
noted by X∗(V ). Observe that we have made two implicit assumptions: The
mechanism designer can observe the actions chosen by the players and the
players can determine the payoffs of all their strategies and compute the best
strategy among them.

A strategy profile set – also called strategy profile region – O ⊆ X of
G is a subset of all strategy profiles X, i.e., a region in the payoff matrix
consisting of one or multiple strategy profiles. Similarly to Xi and X−i, we
define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and O−i := {x−i|∃xi ∈
Xi s.t. (xi, x−i) ∈ O}.

The mechanism designer’s main objective is to force the players to choose
a certain strategy profile or a set of strategy profiles, without spending too
much. We study two kinds of implementation costs: worst-case implementa-
tion cost and uniform implementation cost.

First, we will consider a pessimistic scenario where the mechanism de-
signer calculates with the maximum possible payments for a desired outcome
(worst-case implementation cost). For a desired strategy profile set O, we
say that payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V is called (worst-
case) k-implementation if, in addition V (x) ≤ k, ∀x ∈ X∗(V ). That is, the
players’ non-dominated strategies are within the desired strategy profile, and
the payments do not exceed k for any possible outcome. Moreover, V is an
exact k-implementation of O if X∗(V ) = O and V (x) ≤ k ∀x ∈ X∗(V ).

The cost k(O) of implementing O is the lowest of all non-negative num-
bers q for which there exists a q-implementation. If an implementation meets
this lower bound, it is optimal, i.e., V is an optimal implementation of O if V
implements O and maxx∈X∗(V ) V (x) = k(O). The cost k∗(O) of implement-
ing O exactly is the smallest non-negative number q for which there exists an
exact q-implementation of O. V is an optimal exact implementation of O if
it implements O exactly and requires cost k∗(O). The set of all implementa-
tions of O will be denoted by V(O), and the set of all exact implementations
of O by V∗(O).

A strategy profile set O = {z} of cardinality one – consisting of only one
strategy profile – is called a singleton. Clearly, for singletons it holds that
non-exact and exact k-implementations are equivalent. For simplicity’s sake
we often write z instead of {z} . Observe that only subsets of X which are in
2X1 × 2X2 × . . .× 2Xn , i.e., the Cartesian product of subsets of the players’
strategies, can be implemented exactly. We call such a subset of X a convex
strategy profile set.2 In conclusion, we have the following definitions for the
worst-case implementation cost:

2These sets define a convex area in the n-dimensional hyper-cuboid, provided that
the strategies are depicted such that all oi are next to each other.
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Definition 7.1 (Worst-Case Cost and Exact Worst-Case Cost). A
strategy profile set O has worst-case implementation cost k(O) :=
minV ∈V(O){maxz∈X∗(V ) V (z)}. A strategy profile set O has exact worst-case
implementation cost k∗(O) := minV ∈V∗(O){maxz∈X∗(V ) V (z)}.

The assumption that the cost of an implementation V is equal to the cost
of the strategy profile in X∗(V ) with the highest payments is pessimistic. We
can also consider a less anxious mechanism designer who takes the risk of
high worst case cost if the expected cost is small. If players only know their
own utilities, assuming them to select one of their non-dominated strategies
uniformly at random, is a first simple model an optimistic mechanism de-
signer might apply. We define the uniform cost of an implementation V as
the average of all strategy profiles’ possible cost in X∗(V ). Thus we assume
all non-dominated strategy profiles x ∈ X∗(V ) to have the same probability.

Definition 7.2 (Uniform Cost and Exact Uniform Cost). A strat-
egy profile set O has uniform implementation cost kUNI(O) :=
minV ∈V(O){∅z∈X∗(V ) V (z)} where ∅ is defined as ∅x∈X f(x) := 1/ |X| ·P
x∈X f(x). A strategy profile set O has exact uniform implementation cost

k∗UNI(O) := minV ∈V∗(O){∅z∈X∗(V ) V (z)}.

(Malicious) Leverage

Mechanism designers can implement desired outcomes in games at certain
cost. This raises the question for which games it makes sense to take influ-
ence at all. This part examines two diametrically opposed kinds of inter-
ested third parties, the first one being benevolent towards the participants
of the game, and the other being malicious. While the former is interested
in increasing a game’s social gain, the latter seeks to minimize the players’
welfare. We define a measure indicating whether the mechanism of imple-
mentation enables them to modify a game in a favorable way such that their
gain exceeds the manipulation’s cost. We call these measures the leverage
and malicious leverage, respectively. Note that in the following, we will often
write “(malicious) leverage” to describe both leverage and malicious leverage.

As the concept of leverage depends on the implementation cost, we ex-
amine the worst-case and the uniform leverage. The worst-case leverage is a
lower bound on the mechanism designer’s influence: We assume that without
the additional payments, the players choose a strategy profile in the original
game where the social gain is maximal, while in the modified game, they
select a strategy profile among the newly non-dominated profiles where the
difference between the social gain and the mechanism designer’s cost is min-
imized. The value of the leverage is given by the net social gain achieved
by this implementation minus the amount of money the mechanism designer
had to spend. For malicious mechanism designers we have to invert signs
and swap max and min. Moreover, the payments made by the mechanism
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designer have to be subtracted twice, because a malicious mechanism de-
signer considers money received by the players to be a loss. The leverage
and malicious leverage of a strategy profile set O are defined as follows.

Definition 7.3 (Worst-Case (Malicious) Leverage). Let

lev(O) := max
V ∈V(O)

{ min
z∈X∗(V )

{U(z)− V (z)}} − max
x∗∈X∗

U(x∗)

and

mlev(O) := min
x∗∈X∗

U(x∗)− min
V ∈V(O)

{ max
z∈X∗(V )

{U(z) + 2V (z)}}.

The leverage and malicious leverage of a strategy profile set O are
LEV (O) := max{0, lev(O)} and MLEV (O) := max{0,mlev(O)}, respec-
tively.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if
she will lose money. If the desired set consists only of one strategy profile
z, i.e., O = {z}, we will speak of the singleton leverage. Similarly to the
(worst-case) leverage, we can define the uniform leverage for less anxious
mechanism designers.

Definition 7.4 (Uniform (Malicious) Leverage). Let

levUNI(O) := max
V ∈V(O)

{ ∅
z∈X∗(V )

(U(z)− V (z))} − ∅
x∗∈X∗

U(x∗)

and

mlevUNI(O) := ∅
x∗∈X∗

U(x∗)− min
V ∈V(O)

{ ∅
z∈X∗(V )

{U(z) + 2V (z)}}.

The uniform leverage and malicious uniform leverage of a strategy pro-
file set O are LEVUNI(O) := max{0, levUNI(O)} and MLEVUNI(O) :=
max{0,mlevUNI(O)}, respectively.

We define the exact (uniform) leverage LEV ∗(O) and the exact (uniform)
malicious leverage MLEV ∗(O) by simply changing V(O) to V∗(O) in the
definition of LEV(UNI)(O) and MLEV(UNI)(O). Thus, the exact (uniform)
(malicious) leverage measures a set’s leverage if the interested party may only
promise payments which implement O exactly.
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k-Implementations

This chapter attends to the problem of a mechanism designer seeking to
influence the outcome of a strategic game based on her creditability. The
mechanism designer offers additional payments to the players depending on
their mutual choice of strategies in order to steer them to certain decisions.
Of course, the mechanism designer aims at spending as little as possible
and yet implementing her desired outcome. We present several algorithms
and complexity results for this optimization problem both for singleton tar-
get strategy profiles and target strategy profile regions. After considering
the implementation cost of singleton in the first section, we discuss how a
greedy mechanism designer that does not want to spend any money can in-
fluence games. The third section examines a pessimistic scenario where the
mechanism designer calculates with the maximum possible payments for a
desired outcome (worst-case implementation cost) followed by the fourth sec-
tion where we assume a more optimistic mechanism designer that bases her
decision on the expected payments due if an outcome is chosen uniformly at
random out of the implemented set of outcomes. We conclude our chapter
on k-implementations by a brief excursion on other rationality models the
players might adopt.

8.1 Singletons

In order to become familiar with the concepts and the notation of mechanism
design by creditability, we begin by considering the smallest implementable
unit of a game: a singleton. Note that for singletons the notions of worst
case implementation cost and uniform implementation cost coincide. In [81],
Monderer and Tennenholtz characterize the implementation cost of a single-
ton as follows.

113



114 CHAPTER 8. K-IMPLEMENTATIONS

Theorem 8.1 ([81]). Let G = (N,X,U) be a game with at least two strategies
for every player. Every strategy profile z has an implementation V , and
moreover its implementation cost amounts to

k(z) =

nX
i=1

max
xi∈Xi

(Ui(xi, z−i)− Ui(zi, z−i)) .

Proof. Assume V implements z. In this case, the only non-dominated strat-
egy profile in the modified game G(V ) is z, i.e., X∗(V ) = z. Thus V has
to ensure that for every i ∈ N it holds that zi is the only non-dominated
strategy. Formally, the following condition has to be met:

Vi(zi, x−i) + Ui(zi, x−i) ≥ Ui(xi, x−i) for every xi ∈ Xi and x−i ∈ X−i.
That is

Vi(zi, x−i) ≥ max
xi∈Xi

(Ui(xi, x−i)− Ui(zi, x−i)) for every x−i ∈ X−i.

V satisfying this inequality does not guarantee that it is the only non-
dominated strategy available to player i. We remedy this by increasing V ’s
payments for every strategy profile where x−i 6= z−i (here we use our as-
sumption that every player has at least two strategies). Note that this does
not change the cost of our implementation, as the mechanism designer is
only charged for the payments in X∗(V ) = z. The payments for strategy
profiles where xi 6= zi do not have to be modified to reach our goal. Hence
the statement of the theorem follows by constructing V such that

Vi(xi, x−i) =

8>><>>:
0 if xi 6= zi

max
xi∈Xi

(Ui(xi, x−i)− Ui(zi, x−i)) if xi = zi, x−i = z−i

max
xi∈Xi

(Ui(xi, x−i)− Ui(zi, x−i)) + 1 if xi = zi, x−i 6= z−i

and summing up the payments for all players.

Observe that z constitutes a Nash equilibrium if and only if for every
player i ∈ N , maxxi∈Xi(Ui(xi, z−i) − Ui(zi, z−i)) = 0 for every x−i ∈ X−i.
Hence the following characterization of Nash equilibria can be deduced from
Theorem 8.1.

Corollary 8.2 ([81]). Let G = (N,X,U) be a game with at least two strate-
gies for every player. A strategy profile z is a Nash equilibrium if and only
if z has a 0-implementation.

This corollary entails that some outcomes than be implemented with-
out spending anything. In the next section, we demonstrate that not only
singletons, but also strategy profile sets can feature 0-implementation. More-
over, strategy profile sets exhibit the nice property, that we can be determine
efficiently if they can be implemented for free.
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8.2 Bankrupt Mechanism Designers

Imagine a mechanism designer who is broke. At first sight, it seems that
without any money, she will hardly be able to influence the outcome of a
game. However, this intuition ignores the power of creditability: a game can
have 0-implementable regions. As for singletons, the definitions of worst case
and uniform implementation cost coincide for 0-implementations.

Let V be an exact implementation of O with exact cost k∗(O). It holds
that if k∗(O) = 0, V cannot contain any payments larger than 0 in O.
Consequently, for a region O to be 0-implementable exactly, any strategy
s outside Oi must be dominated within the range of O−i by a oi, or there
must be one oi for which no payoff Ui(s, o−i) is larger than Ui(oi, o−i). In the
latter case, the strategy oi can still dominate s by using a payment V (oi, x−i)
with x−i ∈ X−i\O−i outside O. Note that this is only possible under the
assumption that O−i ⊂ X−i ∀i ∈ N .
ALGbankrupt (cf. Algorithm 8.1) describes how a bankrupt designer can

decide in polynomial time whether a certain region is 0-implementable. It
proceeds by checking for each player i if the strategies in X∗i \Oi are domi-
nated or “almost” dominated within the range of O−i by at least one strategy
insideOi. If there is one strategy without such a dominating strategy, O is not
0-implementable exactly. On the other hand, if for every strategy s ∈ X∗i \Oi
such a dominating strategy is found, O can be implemented exactly without
expenses.

Algorithm 8.1 Exact 0-Implementation (ALGbankrupt)
Input: Game G, convex region O with O−i ⊂ X−i ∀i
Output: > if k∗(O) = 0, ⊥ otherwise
1: compute X∗;
2: for all i ∈ N do
3: for all s ∈ X∗i \Oi do
4: dZero := ⊥;
5: for all oi ∈ Oi do
6: b := >;
7: for all o−i ∈ O−i do
8: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
9: od

10: dZero := dZero ∨ b;
11: od
12: if ¬ dZero then
13: return ⊥;
14: fi
15: od
16: od
17: return >;
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Theorem 8.3. Given a convex strategy profile region O where O−i ⊂ X−i ∀i,
Algorithm ALGbankrupt decides whether O has an exact 0-implementation in
time O

`
n |X|2´.

Proof. ALGbankrupt is correct because it checks for each yet to be dominated
strategy s ∈ X∗i \Oi whether it can be dominated by one oi ∈ Oi at zero cost.
This is the property that makes O exactly 0-implementable. Computing X∗

takes time O
`
n |X|2´. All other costs are asymptotically negligible.

Best Response Graphs

Best response strategies maximize the payoff for a player given the other
players’ decisions. For now, let us restrict our analysis to games where the
sets of best response strategies consist of only one strategy for each x−i
∀i ∈ N . Given a game G, we construct a directed best response graph GG
with vertices vx for strategy profiles x ∈ X iff x is a best response for at
least one player, i.e., if ∃i ∈ N such that xi ∈ Bi(x−i). There is a directed
edge e = (vx, vy) iff ∃i ∈ N such that x−i = y−i and {yi} = Bi(y−i). In
other words, an edge from vx to vy, indicates that it is better to play yi
instead of xi for a player if for the other players’ strategies x−i = y−i. A
strategy profile region O ⊂ X has a corresponding subgraph GG,O containing
the vertices {vx|x ∈ O} and the edges which both start and end in a vertex
of the subgraph. We say GG,O has an outgoing edge e = (vx, vy) if x ∈ O and
y /∈ O. Note that outgoing edges are not in the edge set of GG,O. Clearly, it
holds that if a singleton x’s corresponding subgraph GG,{x} has no outgoing
edges then x is a Nash equilibrium. More generally, we make the following
observation.

Theorem 8.4. Let G be a game and |Bi(x−i)| = 1 ∀i ∈ N, x−i ∈ X−i.
If a convex region O has an exact 0-implementation, then the corresponding
subgraph GG,O in the game’s best response graph has no outgoing edges.

Proof. Let V be an exact 0-implementation of O. Note that V (o) = 0 ∀o ∈ O,
otherwise the cost induced by V are larger than 0. Assume for the sake of
contradiction that GG,O has an outgoing edge. Let x ∈ O be a strategy profile
for which its corresponding vertex vx has an outgoing edge e to vy, y ∈ X\O.
Since V (x) is 0, GG(V ),O still has the same outgoing edge e. This means that
for one Player j it is better to play strategy yj in G(V ) than to play xj given
that x−j = y−j . Since yj is not dominated by any strategy in Oj , Player j
will hence choose also strategies outside Oj and therefore V is not a correct
implementation of O, thus contradicting our assumption.

In order to extend best response graphs to games with multiple best
responses, we modify the edge construction as follows: In the general best
response graph GG of a game G there is a directed edge e = (vx, vy) iff ∃i ∈ N
s.t. x−i = y−i, yi ∈ Bi(y−i) and |Bi(y−i)| = 1.
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Corollary 8.5. Theorem 8.4 holds for arbitrary games.

Note that Theorem 8.4 is a generalization of Monderer and Tennenholtz’
Corollary 8.2 from [81]. They discovered that for a singleton x, it holds that
x has a 0-implementation if and only if x is a Nash equilibrium. While their
observation covers the special case of singleton-regions, our theorem holds for
any strategy profile region. Unfortunately, for general regions, one direction
of the equivalence holding for singletons does not hold anymore due to the
fact that 0-implementable regions O must contain a player’s best response
to any o−i but they need not contain best responses exclusively.

5
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5

5
1

10
10

10
0

0
10

Figure 8.1: Sample game G with best response graph GG. The Nash equilib-
rium in the bottom left corner has no outgoing edges. The dotted arrows do
not belong to the edge set of GG as the row has multiple best responses.

8.3 Worst-Case Implementation Cost

We begin by studying exact implementations where the mechanism designer
aims at implementing an entire strategy profile region based on her cred-
itability. Subsequently, we examine general k-implementations.

Exact Implementation

Recall that the matrix V is an exact k-implementation of a strategy region
O iff X∗(V ) = O and

Pn
i=1 Vi(x) ≤ k ∀x ∈ X∗(V ), i.e. each strategy Oi

is part of the set of player i’s non-dominated strategies for all Players i.
We present the first correct algorithm to find such implementations. Then
we show that a bankrupt mechanism designer can determine in polynomial
time whether a given region is implementable at zero cost. We will also
establish an interesting connection between zero cost implementations and
best response graphs.

Algorithm and Complexity

Recall that in our model each player classifies the strategies available to her
as either dominated or non-dominated. Thereby, each dominated strategy
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xi ∈ Xi\X∗i is dominated by at least one non-dominated strategy x∗i ∈ X∗i .
In other words, a game determines for each player i a relation MG

i from dom-
inated to non-dominated strategies MG

i : Xi\X∗i → X∗i , where MG
i (xi) = x∗i

states that xi ∈ Xi\X∗i is dominated by x∗i ∈ X∗i . See Figure 8.2 for an
example.

0 1 4

5 5 1

4 10 4

0 0 10

4 5 4

4 0 0a

b
d*a

c
e*b

d*
c f*

e*
X\X* X*

f*

Figure 8.2: Game from a single player’s point of view with the corresponding
relation of dominated (Xi\X∗i = {a, b, c}) to non-dominated strategies (X∗i =
{d∗, e∗, f∗}).

When implementing a strategy profile region O exactly, the mechanism
designer creates a modified game G(V ) with a new relation MV

i : Xi \Oi →
Oi such that all strategies outside Oi map to at least one strategy in
Oi. Therewith, the set of all newly non-dominated strategies of player i
must constitute Oi. As every V ∈ V∗(O) determines a set of relations
MV := {MV

i : i ∈ N}, there must be a set MV for every V implement-
ing O optimally as well. If we are given such an optimal relation set MV

without the corresponding optimal exact implementation, we can compute
a V with minimal payments and the same relation MV , i.e., given an op-
timal relation we can find an optimal exact implementation. As an illus-
trating example, assume an optimal relation set for G with MG

i (x∗i1) = oi
and MG

i (x∗i2) = oi. Thus, we can compute V such that oi must domi-
nate x∗i1 and x∗i2 in G(V ), namely, the condition Ui(oi, o−i) + Vi(oi, o−i) ≥
maxs∈(x∗i1,x

∗
i2)(Ui(s, o−i) + Vi(s, o−i)) must hold ∀o−i ∈ O−i. In an optimal

implementation, Player i is not offered payments for strategy profiles of the
form (ōi, x−i) where ōi ∈ Xi\Oi, x−i ∈ X−i. Hence, the condition above can
be simplified to Vi(oi, o−i) = max(0,maxs∈{x∗i1,x∗i2} (Ui(s, o−i)))−Ui(oi, o−i).
Let Si(oi):={s ∈ Xi\Oi|MV

i (s) = oi} be the set of strategies where MV

corresponds to an optimal exact implementation of O. Then, an imple-
mentation V with Vi(ōi, x−i) = 0, Vi(oi, ō−i) = ∞ for any player i, and
Vi(oi, o−i) = max

˘
0,maxs∈Si(oi) (Ui(s, o−i))

¯−Ui(oi, o−i) is an optimal ex-
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act implementation of O as well. Therefore, the problem of finding an opti-
mal exact implementation V of O corresponds to the problem of finding an
optimal set of relations MV

i : Xi\Oi → Oi.
Our algorithm ALGexact (cf. Algorithm 8.2) exploits this fact and con-

structs an implementation V for all possible relation sets, checks the cost
that V would entail and returns the lowest cost found.

Algorithm 8.2 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) :=∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current player i
Output: k∗(O) for G(V )
1: if

˛̨
X∗i (V )\Oi

˛̨
> 0 then

2: s := any strategy in X∗i (V )\Oi; kbest :=∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i)));
6: od
7: k := ExactK(V +W , i);
8: if k < kbest then
9: kbest := k;

10: fi
11: for all o−i ∈ O−i do
12: Wi(oi, o−i) := 0;
13: od
14: od
15: return kbest;
16: else if i > 1 then
17: return ExactK(V , i− 1);
18: else
19: return maxo∈O

P
i Vi(o);

20: fi

Theorem 8.6. ALGexact computes a strategy profile region’s optimal exact
implementation cost in time

O

„
|X|2 max

i∈N
(|Oi|n|X

∗
i \Oi|−1) + n|O|max

i∈N
(|Oi|n|X

∗
i \Oi|)

«
.

Proof. ALGexact is correct as it checks all possible relations in the relation set
MV = {MV

i : X∗i (V )\Oi → Oi ∀i ∈ N} recursively by calling the subroutine
ExactK in Line 6. Therefore, it must find the relation set which corresponds
to an implementation with optimal cost.
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It remains to prove the algorithm’s runtime. Computing the non-
dominated region X∗ by checking for each strategy whether it is dominated
takes time

Pn
i=1

`|Xi|
2

´|X−i| = O(n|X|2). The complexity of this computa-
tion asymptotically dominates the runtime required by Lines 1 and 2. We
next examine the complexity of subroutine ExactK. Computing Line 1 costs
|X|2, the two for-loops in Lines 3 and 4 are executed |O| times, and ExactK is
called |Oi| times (Line 6). Hence, we derive the following (asymptotic) recur-
sive equations for the runtime Ti(`) for ExactK (V, i) if i has yet ` strategies
to dominate:

Ti(`) =

8><>:
|X|2 + |O|+ |Oi|Ti(`− 1) if (0 < ` < |X∗i \Oi|) ∧ (i ∈ N)

Ti−1(|X∗i−1 \Oi−1|) if ` = 0 ∧ i ∈ N
n|O| if ` = 0 ∧ i = 0

For `i = |X∗i \Oi|, we obtain Ti(`i) = |Oi|`i−1|X|2 + |Oi|`iTi−1(`i−1) if i > 1.
Let ai = |Oi|`i−1|X|2, bi = |Oi|`i and a = maxi∈N ai, b = maxi∈N bi; hence

Ti(`i) = ai + biTi−1(`i−1)

= a

"
iX

j=1

j−1Y
k=1

bk

#
+

"
iY

k=1

bk

#
T1(0)

= a

iX
j=1

bj−1 + bin|O|

= abi−1 + bin|O|
and the claim follows.

Note that ALGexact has a large time complexity. In fact, a faster al-
gorithm for this problem, called Optimal Perturbation Algorithm has been
presented in [81]. In a nutshell, this algorithm proceeds as follows: After
initializing V similarly to our algorithm, the values of the region O in the
matrix V are increased slowly for every player i, i.e., by all possible differences
between an agent’s payoffs in the original game. The algorithm terminates
as soon as all strategies in X∗i \Oi are dominated. See 8.3 for a description
in pseudocode.

Unfortunately, this algorithm does not always return an optimal imple-
mentation. In some cases, it increases the payments unnecessarily. The
game depicted in Figure 8.3 is an example demonstrating that the optimal
perturbation algorithm presented in [81] is not correct.
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Algorithm 8.3 Perturbation Algorithm for two players [81]

Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: V satisfying X∗(V ) = O
1: M := maxi∈N, x∈X Ui(x);
2: E := sorted set {el|el = Ui(x) − Ui(y), x, y ∈ X, i ∈ {1, 2}}, i.e.,(e0, e1, ..., ek)

is the list of possible differences between an agents’ payoffs in U(the possible
results one obtains by subtracting two possible payoffs of an agent in the given
game G);

3: Vi(x) := 0 ∀x ∈ X, i ∈ {1, 2};
4: V1(x1, x2) := M ∀x1 ∈ O1 and x2 ∈ X2 \O2;
5: V2(x1, x2) := M ∀x1 ∈ X1 \O1 and x2 ∈ O2;
6: i := 0;
7: repeat
8: V1(o) := ei ∀o ∈ O;
9: i := i+ 1;

10: until X∗1 (V ) ≡ O1

11: i := 0;
12: repeat
13: V2(o) := ei ∀o ∈ O;
14: i := i+ 1;
15: until X∗2 (V ) ≡ O2

16: return V ;
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Figure 8.3: Game G, X∗ and O and payments VOPT , VPERTURB .

As can be verified easily, VOPT implements O with cost k = 3. The matrix
VPERTURB computed by the optimal perturbation algorithm implements O
as well, however, it has cost k = 5. The set of possible differences between
an agent’s payoffs in the original game for G is E = {2, 3, 4}. We execute the
steps 3 to 5 twice and obtain a perturbation game G(VM ). After the steps 8
to 11 for e1 = 2 we have generated V (p1, e1) and X∗(V ′)1 coincides with O1.
Executing steps 15 to 18 for player 2 three times until the condition in Line
15 is satisfied is responsible for the construction of V (p2, e1) and V (p2, e2).
Thus, the perturbation algorithm returns the matrix VPERTURB .
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Not only does this leave us without a polynomial algorithm, we even con-
jecture that the problem is inherently hard and that deciding whether an
k-exact implementation exists is NP-hard.

Conjecture 1. Finding an optimal exact implementation of a strategy re-
gion is NP-hard.

Non-Exact Implementation

In contrast to exact implementations where the complete set of strategy
profiles O must be non-dominated, the additional payments in non-exact
implementations only have to ensure that a subset of O is the newly non-
dominated region. Obviously, it matters which subset this is. Knowing
that a subset O′ ⊆ O bears optimal cost, we could find k(O) by computing
k∗(O′). Apart from the fact that finding an optimal implementation includes
solving the – believed to be NP-hard – optimal exact implementation cost
problem for at least one subregion of O, finding this subregion might also
be NP-hard since there are exponentially many possible subregions. In fact,
a reduction from the SAT problem is presented in [81]. The authors show
how to construct a 2-person game in polynomial time given a CNF formula
such that the game has a 2-implementation if and only if the formula has
a satisfying assignment. However, their proof is not correct: While there
indeed exists a 2-implementation for every satisfiable formula, it can be shown
that 2-implementations also exist for non-satisfiable formulas. E.g., strategy
profiles (xi, xi) ∈ O are always 1-implementable. Unfortunately, we were not
able to correct their proof. However, we conjecture the problem to be NP-
hard, i.e., we assume that no algorithm can do much better than performing a
brute force computation of the exact implementation cost (cf. Algorithm 8.2)
of all possible subsets, unless NP = P.

Conjecture 2. Finding an optimal implementation of a strategy region is
NP-hard.

For the special case of zero cost regions, Theorem 8.4 implies the following.

Corollary 8.7. If a strategy profile region O has zero implementation cost
then the corresponding subgraph GG,O in the game’s best response graph con-
tains a subgraph GG,O′ , O′ ⊆ O, with no outgoing edges.

Corollary 8.7 is useful to a bankrupt mechanism designer since search-
ing the game’s best response graph for subgraphs without outgoing edges
helps her spot candidates for regions which can be implemented by mere
creditability. In general though, the fact that finding optimal implemen-
tations seems computationally hard raises the question whether there are
polynomial time algorithms achieving good approximations. As mentioned
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in Section 8.3, each V implementing a region O defines a domination relation
MV
i : Xi \Oi → Oi. This observation leads to the idea of designing heuristic

algorithms that find a correct implementation by establishing a corresponding
relation set {M1,M2, . . . ,Mn},Mi : X∗i \Oi → Oi where each x∗i ∈ X∗i \Oi
maps to at least one oi ∈ Oi. These algorithms are guaranteed to find a
correct implementation of O, however, the corresponding implementations
may not be cost-optimal.

Our greedy algorithmALGgreedy (cf. Algorithm 8.4) associates each strat-
egy x∗i yet to be dominated with the oi with minimal distance ∆G to x∗i ,
i.e., the maximum value that has to be added to Ui(x

′
i, x−i) such that x′i

dominates xi: ∆G(xi, x
′
i) := maxx−i∈X−i max(0, Ui(xi, x−i) − Ui(x′i, x−i)).

Similarly to the greedy approximation algorithm for the set cover problem
[60, 78] which chooses in each step the subset covering the most elements not
covered already, ALGgreedy selects a pair of (x∗i ,oi) such that by dominating
x∗i with oi, the number of strategies in X∗i \Oi that will be dominated there-
with is maximal. Thus, in each step there will be an oi assigned to dominate
x∗i which has minimal dominating cost. Additionally, ALGgreedy takes any
opportunity to dominate multiple strategies. ALGgreedy is described in detail
in Algorithm 8.4. It returns an implementation V of O; to determine V ’s
cost, one needs to compute maxx∗∈X∗(V )

P
i∈N Vi(x

∗).

Theorem 8.8. ALGgreedy returns an implementation of a convex strategy
profile region O ∈ X in time

O

„
n|X|2 max

i∈N
|X∗i \Oi|+ n|X|max

i∈N
|X∗i \Oi|3

«
.

Proof. ALGgreedy terminates since in every iteration of the while-loop, there
is at least one newly dominated strategy. The payment matrix V returned
is an implementation of O because the while-condition X∗i (V ) * Oi turned
false for all i ∈ N and thus, it holds that X∗i (V ) ⊆ Oi ∀i ∈ N .

Line 1 takes time O(|X|n). Asymptotically, computing X∗ costs
O
`|X|2n´. Setting the payments Vi(oi, ō−i) to infinity (Line 4) for all players

takes time O(n |X \O|). The while-loop (Lines 5-18) is executed |X∗i \ Oi|
times, and evaluating the while-loop’s condition takes at most time |X2|.
One iteration of the while-loop takes time

|X∗i \Oi|| {z }
Line 7

·(|Oi||X−i|| {z }
Line 8

+ |O−i|| {z }
Line 9

+ |X∗i \Oi|| {z }
Line 12

(|X|+ |O−i|)| {z }
Line 13

) + O−i|{z}
Line17

Combining the above expressions yields the claim.

ALGred (cf. Algorithm 8.5) is a more sophisticated algorithm applying
ALGgreedy. Instead of terminating when the payment matrix V implements
O, this algorithm continues to search for a payment matrix inducing even
less cost. It uses ALGgreedy to approximate the cost repeatedly, varying the
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region to be implemented. As ALGgreedy leaves the while-loop if X∗i (V ) ⊆
Oi, it might miss out on cheap implementations whereX∗i (V ) ⊆ Qi, Qi ⊂ Oi.
ALGred examines some of these subsets as well by calling ALGgreedy for some
Qi. If we manage to reduce the cost, we continue with Oi := Qi. We stop
when neither the cost can be reduced anymore nor any strategies can be
deleted from any Oi.

Theorem 8.9. Let Tg denote the runtime of ALGgreedy. ALGred returns
an implementation of O in time

O

„
n|O|max

i∈N
|Oi|(|O|+ n+ Tg)

«
.

Proof. ALGred terminates because the condition of the while-loop does not
hold anymore if there are no more strategies left, and because in at most
every maxi∈N |Oi|th iteration at least one strategy is removed. Clearly, the
while-loop is repeated at most maxi∈N |Oi| · |O| times, as a removed strategy
is never added again. We iterate over all players (time n) and look for a
strategy to be removed (time |O| in Line 5). Evaluating the if-clause (Line
6) requires time n + |Oi|. Finally in Line 10, the greedy algorithm is called
recursively, which is assumed to take time Tg. The time complexity of all
other operations can be neglected.

An alternative heuristic algorithm for computing a region O’s
implementation cost retrieves the region’s cheapest singleton, i.e.,
mino∈O k(o), where a singleton’s implementation cost is k(o) =
mino∈O

P
i∈N maxxi∈Xi (Ui(xi, o−i)− Ui(oi, o−i)) [81]. The best singleton

heuristic algorithm performs quite well for randomly generated games as our
simulations reveal (cf. Section 8.3), but it can result in an arbitrarily large
k in the worst case: Figure 8.4 depicts a game where each singleton o in
the region O consisting of the four bottom left profiles has cost k(o) = 11
whereas V implements O at cost 2.

This raises the following question: What characteristics are stringent for
a game and a corresponding desired strategy profile region O such that only
non-singleton subregions bear the optimal implementation cost? Clearly, we
have to consider games where at least one player has four or more strategies,
at least two of which must not be in Oi. Moreover, it must cost less to
dominate them with two strategies in Oi than with just one strategy in Oi.

Simulation

All our algorithms return correct implementations of the desired strategy
profile sets and – apart from the recursive algorithm ALGexact for the opti-
mal exact implementation – run in polynomial time. In order to study the
quality of the resulting implementations, we performed several simulations
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Algorithm 8.4 Greedy Algorithm ALGgreedy
Input: Game G, convex target region O
Output: Implementation V of O
1: Vi(x) := 0;Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: compute X∗;
3: for all i ∈ N do
4: Vi(oi, ō−i) :=∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
5: while X∗i (V ) * Oi do
6: cbest := 0;mbest :=null; sbest :=null;
7: for all s ∈ X∗i (V )\Oi do
8: m := arg minoi∈Oi (∆G(V )(s, oi));
9: for all o−i ∈ O−i do

10: Wi(m, o−i):=max(0, Ui(s, o−i)− (Ui(m, o−i) + Vi(m, o−i)));
11: od
12: c := 0;
13: for all x ∈ X∗i \Oi do
14: if m dominates x in G(V +W ) then
15: c+ +;
16: fi
17: od
18: if c > cbest then
19: cbest := c ; mbest := m ; sbest := s;
20: fi
21: od
22: for all o−i ∈ O−i do
23: Vi(mbest, o−i)+=max(0, Ui(sbest, o−i)−

(Ui(mbest, o−i) + Vi(mbest, o−i)));
24: od
25: od
26: od
27: return V ;

comparing the implementation cost computed by the different algorithms.
We have focused on two-person games using random game tables where both
players have payoffs chosen uniformly at random from the interval [0,max],
for some constant max. We have also studied generalized scissors, rock, pa-
per games (a.k.a., Jan Ken Pon games), that is, symmetric zero-sum games
with payoff values chosen uniformly at random from an interval [0,max].
We find that – for the same interval and the same number of strategies – the
average implementation cost of random symmetric zero-sum games, random
symmetric games, and completely random games hardly deviate. This is
probably due to the fact that in all examined types of random games virtu-
ally all strategies are non-dominated. Therefore, in the following, we present
our results on symmetric random games only.
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Algorithm 8.5 Reduction Algorithm ALGred
Input: Game G, convex target region O
Output: Implementation V of O
1: [k, V ] := greedy(G,O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi (maxo−i∈O−i Ui(oi, o−i));
6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\{xi} (maxo−i∈O−i (Ui(oi, o−i)));
8: fi
9: if |Oi| > 1 then

10: Oi := Oi \ {xi};
11: fi
12: [ktemp, V ] := greedy(G,O);
13: if ktemp ≥ k then
14: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
15: else
16: k := ktemp; Ti := {} ∀i; ci := >;
17: fi
18: od
19: od
20: return V ;

G =

20
0

11
9

15
15

15
15

11
9

20
0

15
15

15
15

19
10

10
19

9
11

0
20

10
19

19
10

0
20

9
11

V =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1

∞
0

∞
0

1
1

1
1

∞
0

∞
0

Figure 8.4: 2-player game where O ’s optimal implementation V yields a
region |X∗(V )| > 1.

Non-Exact Implementation

We observe that implementing the best singleton often yields low cost. In
other words, especially when large sets have to be implemented, our greedy
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algorithms tend to implement too many strategy profiles and consequently
incur unnecessarily high cost. However, while this is often true in random
games, there are counter examples where the cheapest singleton is costly
compared to the implementation found by the greedy algorithms; Figure 8.4
depicts a situation where the greedy algorithm computes a better solution.
We presume that ALGred might improve relatively to the best singleton
heuristic algorithm for larger player sets.

Figure 8.5 plots the implementation cost determined by the ALGgreedy,
ALGred and the singleton algorithm as a function of the number of strategies
involved. On average, the singleton algorithm performed much better than
the other two, with ALGgreedy being the worst of the candidates. In the
second plot we can see the implementation cost the algorithms compute for
different payoff value intervals [0,max]. As expected, the implementation
cost increases for larger intervals.

Exact Implementation

The observation that the greedy algorithm ALGgreedy implements rather
large subregions of O suggests that it may achieve good results for exact
implementations. We can modify an implementation V of O, which yields a
subset of O, without changing any entry Vi(o), o ∈ O, such that the resulting
V implements O exactly.

Theorem 8.10. If O−i ⊂ X−i ∀i ∈ N , it holds that k∗(O) ≤ maxo∈O V (o)
for an implementation V of O.

Proof. If V is a non-exact implementation of O, there are some strategies
Oi dominated by other strategies in Oi. A dominated strategy oi can be
made non-dominated by adding payments to the existing Vi for profiles of
the form (oi, ō−i), where ō−i ∈ X−i\O−i. Let a ∈ Oi dominate b ∈ Oi
in G(V ). The interested party can annihilate this relation of a dominat-
ing b by choosing payment Vi(b, ō−i) such that Player i’s resulting payoff
Ui(b, ō−i) + Vi(b, ō−i) is larger than Ui(a, ō−i) + Vi(a, ō−i) and therefore a
does not dominate b anymore. As such, all dominations inside Oi can be
neutralized even if |X−i \O−i| = 1. One must realize that the relation of
domination is irreflexive and transitive and therefore establishes a strict or-
der among the strategies. Let ō−i ∈ X−i\O−i be a column in player i’s
payoff matrix outside O. By choosing the payments Vi(oi, ō−i) such that the
resulting payoffs Ui(oi, ō−i) + Vi(oi, ō−i) establish the same order with the
less-than relation (<) as the strategies oi with the domination relation, all
oi ∈ Oi will be non-dominated. Thus, a V ′ can be constructed from V which
implements O exactly without modifying any entry Vi(o), o ∈ O.

Theorem 8.10 enables us to use ALGgreedy for an exact cost approxima-
tion by simply computing maxo∈O V (o) instead of maxx∈X∗(V ) V (x). Fig-
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Figure 8.5: The average implementation cost k of sets O over 100 random
games where |Oi| = bn/3c. Left : utility values chosen uniformly at random
from [0, 20]. For different intervals we obtain approximately the same result
when normalizing k with the maximal possible value. Right : eight strategies
are used; other numbers of strategies yield similar results.

ure 8.6 depicts the exact implementation cost determined by ALGgreedy ,
ALGexact and the perturbation algorithm from [81]. The first figure plots k
as a function of the number of strategies, whereas the second figure demon-
strates the effects of varying the size of the payoff interval. Due to the large
runtime of ALGexact, we were only able to compute k for a small number of
strategies. However, for these cases, our simulations reveal that ALGgreedy
often finds implementations which are close to optimal and that it is better
than the perturbation algorithm. For different payoff value intervals [0,max],
we observe a faster increase in k than in the non-exact implementation case.
This suggests that implementing a smaller region entails lower cost for ran-
dom games on average.
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Figure 8.6: The average exact implementation cost k of sets O over 100
random games where |Oi| = bn/3c. Left : utility values chosen uniformly at
random from [0, 20]. For other intervals we obtain approximately the same
result when normalizing k with the maximal possible value. Right : eight
strategies are used; the plot is similar for other numbers of strategies.

Furthermore, our simulations revealed that the variance of the cost found
decreases with the number of strategies for all algorithms, while it remains
roughly constant for intervals of various size. The variance of the singleton
heuristic is typically smaller than the variance of ALGgreedy and ALGred.
The same holds for exact implementations, where the perturbation algorithm
has the largest variance.

Finally, we tested different options to choose the next strategy in
ALGgreedy (Line 8) and ALGred (Lines 5 and 7). However, none of the alter-
natives we tested performed better than the ones described in Section 2.3.

In conclusion, our simulations have shown that for the case of non-exact
implementations, there are interesting differences between the algorithms
proposed in Section 2.3. In particular, the additional reductions by ALGred
are beneficial. For the case of exact implementations, our modified greedy
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algorithm yields good results. As a final remark we want to mention that,
although ALGgreedy and ALGred may find cheap implementations in the
average case, there are examples where the approximation ratio of these
algorithms is large.

8.4 Uniform Implementation Cost

We will now turn our attention to the situation of less anxious mechanism de-
signers who anticipate uniform rather than worst-case implementation cost.
They assume the players to select one of their non-dominated strategies uni-
formly at random. This is a reasonable assumption if the players do only
know their own utilities.

Complexity

In the following we show that it is NP-hard to compute the uniform im-
plementation cost for both the non-exact and the exact case. We devise
game configurations which reduce SET COVER to the problem of finding an
implementation of a strategy profile set with optimal uniform cost.

Theorem 8.11. In games with at least two (three) players, the problem of
finding a strategy profile set’s exact (non-exact) uniform implementation cost
is NP-hard.

Proof. Exact Case: For a given universe U of l elements {e1, e2, . . . , el} and
m subsets S = {S1, S2, . . . , Sm}, with Si ⊂ U , SET COVER is the problem
of finding the minimal collection of Si’s which contains each element ei ∈ U .
We assume without loss of generality that @(i 6= j) : Si ⊂ Sj . Given a SET
COVER problem instance SC = (U ,S), we can efficiently construct a game
G = (N,X,U) where N = {1, 2}, X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and
X2 = {e1, e2, . . . , el, d, r}. Each strategy ej corresponds to an element ej ∈ U ,
and each strategy sj corresponds to a set Sj . Player 1’s payoff function U1 is
defined as follows: U1(ei, ej) := m+ 1 if i = j and U1(ei, ej) := 0 otherwise,
U1(si, ej) := m + 1 if ej ∈ Si and U1(si, ej) := 0 otherwise, U1(ei, d) := 1,
U1(si, d) := 0, U1(x1, r) := 0 ∀x1 ∈ X1. Player 2 has a payoff of 0 when
playing r and 1 otherwise. In this game, strategies ej are not dominated
for player 1 because in column d, U1(ej , d) > U1(si, d), ∀i ∈ {1, . . .m}. The
set O we would like to implement is {(x1, x2)|x1 = si ∧ (x2 = ei ∨ x2 =
d)}. See Figure 3 for an example. Let Q = {Q1, Q2, . . . , Qk}, where each
Qj corresponds to an Si. We now claim that Q is an optimal solution for
a SET COVER problem, an optimal exact implementation V of O in the
corresponding game has payments V1(si, d) := 1 if Qi ∈ Q and V1(si, d) := 0
otherwise, and all payments V1(si, ej) := 0.

Note that by setting V1(si, d) to 1, strategy si dominates all strategies ei
which correspond to an element in Si. Thus, our payment matrix makes all



8.4. UNIFORM IMPLEMENTATION COST 131

0

0

5

0 0

5

0

00 5

0

0 0

0

0

0

5 1

5

5 0

1

00 1

0 1

0 10

0

50 0

5 5

0

5 0

0 0

0

0

0

0

0

0

0

0

5

0

0

00

0

000

5 5

0

5

5

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

055

Figure 8.7: Payoff matrix for player 1 in a game which reduces the SET
COVER problem instance SC = (U ,S) where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 =

{e1, e2, e3} to the problem of computing k∗UNI( O ). The optimal exact im-

plementation V of O in this sample game adds a payment V1 of 1 to the
strategy profiles (s1, d) and (s3, d), implying that the two sets S1 and S3

cover U optimally.

strategies ei of player 1 dominated since any strategy ei representing element
ei is dominated by the strategies sj corresponding to Sj which cover ei in
the minimal covering set.1 If there are any strategies si dominated by other
strategies sj , we can make them non-dominated by adjusting the payments
V1(si, r) for column r. Hence, any solution of SC corresponds to a valid
exact implementation of O.

It remains to show that such an implementation is indeed optimal and
there are no other optimal implementations not corresponding to a minimal
covering set. Note that by setting V1(si, d) := 1 and V1(si, r) > 0 for all si,
all strategies ej are guaranteed to be dominated and V implements O exactly
with uniform cost ∅o∈O V (o) = m/ |O|. If an implementation had a positive
payment for any strategy profile of the form (si, ej), it would cost at least
m+1 to have an effect. However, a positive payment greater than m yields a
larger. Thus, an optimal V has positive payments inside set O only in column
d. By setting V1(si, d) to 1, si dominates the strategies ej which correspond
to the elements in Si, due to our construction. An optimal implementation

1If |Sj | = 1, sj gives only equal payoffs in G(V ) to those of ei in the range of O2.
However, sj can be made dominating ei by increasing sj ’s payments V1(sj , r) in the
extra column r.
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has a minimal number of 1s in column d. This can be achieved by selecting
those rows si (V1(si, d) := 1), which form a minimal covering set and as such
all strategies ei of player 1 are dominated at minimal cost. Our reduction
can be generalized for n > 2 by simply adding players with only one strategy
and zero payoffs in all strategy profiles.

Non-Exact Case: We give a similar reduction of SET COVER to the
problem of computing kUNI(O) by extending the setup we used for proving
the exact case. We add a third player and show NP-hardness for n = 3 first
and indicate how the reduction can be adapted for games with n > 3. Given
a SET COVER problem instance SC = (U ,S), we can construct a game
G = (N,X,U) where N = {1, 2, 3}, X1 = {e1, e2, . . . , el, s1, s2, . . . , sm},
X2 = {e1, e2, . . . , el, s1, s2, . . . , sm, d, r}, X3 = {a, b}. Again, each strategy
ej corresponds to an element ej ∈ U , and each strategy sj corresponds to
a set Sj . In the following, we use ‘ ’ in profile vectors as a placeholder
for any possible strategy. Player 1’s payoff function U1 is defined as fol-
lows: U1(ei, ej , ) := (m + l)2 if i = j and 0 otherwise, U1(ei, sj , ) := 0,
U1(si, ej , ) := (m + l)2 if ej ∈ Si and 0 otherwise, U1(si, sj , ) := 0 if i = j
and (m + l)2 otherwise, U1(ei, d, ) := 1, U1(si, d, ) := 0, U1( , r, ) := 0.
Player 2 has a payoff of (m+ l)2 for any strategy profile of the form (si, si, )
and 0 for any other strategy profile. Player 3 has a payoff of m + l + 2 for
strategy profiles of the form (si, si, b), a payoff of 2 for profiles (si, ei, b) and
profiles (si, sj , b), i 6= j, and a payoff of 0 for any other profile. The set O
we would like to implement is {(x1, x2, x3)|x1 = si ∧ (x2 = ei ∨ x2 = si ∨
x2 = d) ∧ (x3 = a)}. See Figure 8.8 for an example.

First, note that any implementation of O will have V3(o1, o2, a) ≥
U3(o1, o2, b), in order to leave player 3 no advantage when playing b instead
of a. In fact, setting V3(o1, o2, a) = U3(o1, o2, b) suffices.2 Also note that
for player 2, O2 can be made non-dominated without offering any payments
inside O, e.g., set V2(ei, ej , ) = 1 and V2(ei, d, ) = 1.

Analogously to the exact case’s proof, we claim that if and only if
Q={Q1, Q2, . . . , Qk}, where each Qj corresponds to an Si, is an optimal
solution for a SET COVER problem, there exists an optimal exact imple-
mentation V of O in the corresponding game. This implementation selects
a row si (V1(si, d, a) = 1), if Qi ∈ Q and does not select si (V1(si, d, a) = 0)
otherwise. All other payments V1 inside O are 0. Player 2’s payments V2(o)
are 0 for all o ∈ O and player 3’s payoffs are set to V3(o1, o2, a) = U3(o1, o2, b).
A selected row si contributes costsi = (3(l + m) + 1)/(l + m + 1). A non-
selected row sj contributes costsj = (3(l + m))/(l + m + 1) < costsi . Thus
including non-selected rows in X∗(V ) can be profitable. Selecting all rows
si yields a correct implementation of O with uniform cost ∅m

i=1 costsi =
(3(l +m) + 1)/(l +m+ 1) < 3.

2Setting any V3(a, ō−3) > U3(b, ō−3) where ō−3 is outside O lets player 3 choose
strategy a.
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Figure 8.8: Payoff matrix for player 1 and Player 2 given Player 3 chooses
a and payoff matrix for Player 3 when she plays strategy b in a game which
reduces a SET COVER instance SC = (U ,S) where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 =

{e1, e2, e3} to the problem of computing kUNI( O ). Every implementation

V of O in this game needs to add any positive payment in the second
matrix to V3, i.e. V3(x1, x2, a) = U3(x1, x2, b), in order to convince player 3
of playing strategy a. An optimal implementation adds a payment V1 of 1
to the strategy profiles (s1, d, a) and (s3, d, a), implying that the two sets S1

and S3 cover U optimally in the corresponding SET COVER problem.
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In fact, the game’s payoffs are chosen such that it is not worth imple-
menting any set smaller than O. We show that for every set smaller than
O the exact uniform implementation cost is strictly larger. Assume a set
yielding lower cost implements α strategies for player 1, β strategies ei and
γ strategies sj for player 2. Note that implementing player 2’s strategy d is
profitable if β + γ > 0, as it adds α to the denominator and at most α to
the numerator of the implementation cost of sets without d. Consequently,
there are three cases to consider: (i) β 6= 0, γ = 0: The costs add up toP
o∈O(V1(o) + V2(o) + V3(o))/|O| ≥ (1 + (m+ l)2 + 2αβ)/(α(β + 1)), which

is greater than 3, since α ≤ m,β ≤ l. (ii) β = 0, γ 6= 0: The aggregated cost
is at least (1 +α(m+ l) + 2αγ)/(α(γ+ 1)), which is also greater than 3. (iii)
β 6= 0, γ 6= 0: Assume there are κ sets necessary to cover U . Hence the sum
of the payments in column d is at least κ. In this case, the cost amounts to
(κ+α(m+ l)+2α(β+γ))/(α(β+γ+1))=2+(m+ l−2+κ/α)/(β+γ+1) ≥
k∗(O). Equality only holds if α = γ = m and β = l. We can conclude that
O has to be implemented exactly in order to obtain minimal cost.

Therefore, an optimal implementation yields X∗(V ) = O with the inalien-
able payments to player 3 and a minimal number of 1-payments to player 1
for strategy profiles (si, d, a) such that every ej is dominated by at least one
si. The number of 1-payments is minimal if the selected rows correspond to
a minimal covering set, and the claim follows.

Note that a similar SET COVER reduction can be found for games with
more than three players. Simply add players to the described 3-player game
with only one strategy.

Due to the nature of the reduction the inapproximability results of SET
COVER [5, 42] carry over to our problem.

Theorem 8.12. No polynomial-time algorithm can achieve an approxima-
tion ratio better than Ω (nmaxi{log |X∗i \Oi|}) for both the exact and non-
exact implementation cost within any function of the input length unless
P=NP.

Proof. Exact Case: In order to prove this claim, a reduction similar to the
one in the proof of Theorem 8.11 can be applied. Consider again a SET
COVER instance with a universe U of l elements {e1, e2, . . . , el} and m sub-
sets S = {S1, S2, . . . , Sm}, with Sj ⊂ U . We construct a game G = (N,X,U)
with n players N = {1, . . . , n}, where Xi = {e1, e2, . . . , el, s1, s2, . . . , sm}
∀i ∈ {1, . . . , n − 1}, and Xn = {e1, e2, . . . , el, d, r}. Again, each strategy ej
corresponds to an element ej ∈ U , and each strategy sj corresponds to a set
Sj . Player i’s payoff function Ui, for i ∈ {1, . . . , n− 1}, is defined as follows:
Let ek and sk be strategies of player i and let el be a strategy of Player n. If
k = l, player i has payoff m+1, and 0 otherwise. Moreover, Ui(sk, el) := m+1
if el ∈ Sk and 0 otherwise, and Ui(ek, d) := 1, Ui(sk, d) := 0, Ui(xk, r) := 0
∀xk ∈ Xi. Thus, player i’s payoffs only depend on Player i and Player n’s
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strategies. Player n has a payoff of 0 when playing r and 1 otherwise, inde-
pendently of all other players’ choices. We ask for an implementation of set
O where Player i, for i ∈ {1, . . . , n− 1}, plays any strategy sk, and Player n
plays any strategy el or strategy d.

Due to the independence of the players’ payoffs, the situation is similar to
the example in Figure 3, and a SET COVER instance has to be solved for each
player i ∀i ∈ {1, . . . , n− 1}. According to the well-known inapproximability
results for SET COVER, no polynomial time algorithm exists which achieves
a better approximation ratio than Ω (log |X∗i \Oi|) for each player i, unless
P = NP, and the claim follows.

Non-Exact Case: We use the inapproximability results for SET COVER
again. Concretely, we assume a set of n = 3k players for an arbitrary constant
k ∈ N and make k groups of three players each. The payoffs of the three
players in each group are the same as described in the proof of Theorem 8.11
for the non-exact case, independently of all other players’ payoffs. Hence,
SET COVER has to be solved for n/3 players.

8.5 Alternative Rationality Models

Mechanism design by creditability offers many interesting extensions. In this
section, two alternative models of rationality are introduced. If we assume
that players do not just select any non-dominated strategy, but have other
parameters influencing their decision process, our model has to be adjusted.
In many (real world) games, players typically do not know which strategies
the other players will choose. In this case, a player cannot do better than
assume the other players to select a strategy at random. If a player wants
to maximize her gain, she will take the average payoff of strategies into
account. This kind of decision making is analyzed in the subsequent section.
Afterwards, risk-averse players are examined. Finally, we take a brief look
at the dynamics of repeated games with an interested third party offering
payments in each round.

8.5.1 Average Payoff Model

As a player may choose any non-dominated strategy, it is reasonable to com-
pute the payoff which each of her strategy will yield on average. Thus,
assuming no knowledge on the payoffs of the other players, each strategy
xi has an average payoff of pi(xi) := 1

|X−i|
P
x−i∈X−i Ui(xi, x−i) for player

i. Player i will then select the strategy s ∈ Xi with the largest pi(s), i.e.,
s = arg maxs∈Xi pi(s). If multiple strategies have the same average payoff,
she plays one of them uniformly at random. For such average strategy games,
we say that xi dominates x′i iff pi(xi) > pi(x

′
i). Note that with this modified
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meaning of domination, the region of non-dominated strategies, X∗, differs
as well.

The average payoff model has interesting properties, e.g., singleton pro-
files can be implemented for free.

Theorem 8.13. If players maximize their average payoff, singleton strategy
profiles are always 0-implementable if there are at least two players with at
least two strategies.

Proof. Let z be the strategy profile to be implemented. In order to make
player i choose strategy zi, the interested party may offer payments for any
strategy profile (zi, z̄−i) where z̄−i ∈ X−i\ {z−i} such that pi(zi) becomes
player i’s largest average payoff in G(V ). Since each player has at least two
strategies to choose from, there is at least one z̄−i, and by making Vi(zi, z̄−i)
large enough (e.g., Vi(zi, z̄−i) := maxxi∈Xi

P
x−i∈X−i Ui(xi, x−i) + ε) this

can always be achieved. Therefore, z can be implemented without promising
any payments for z.

Theorem 8.13 implies that entire strategy profile regions O are 0-
implementable as well: we just have to implement any singleton inside O.

Corollary 8.14. In average strategy games where every player has at least
two strategies, every strategy profile region can be implemented for free.

Exact implementations can be implemented at no cost as well.

Theorem 8.15. In average strategy games where O−i ⊂ X−i ∀i ∈ N , each
strategy profile region has an exact 0-implementation.

Proof. The mechanism designer can proceed as follows. First define µi :=
maxxi∈Xi{pi(xi)}. Then set

Vi(oi, ō−i) := |X−i|(µi − pi(xi))− Ui(xi, x−i) + ε,

∀oi ∈ Oi, ō−i ∈ X−i \O−i. Consequently, it holds that for each player i and
two strategies xi ∈ Oi and x′i /∈ Oi, pi(xi) > pi(x

′
i); moreover, no strategy

xi ∈ Oi is dominated by any other strategy. As payments in Vi(oi, ō−i) with
oi ∈ Oi and ō−i ∈ X−i \ O−i do not contribute to the implementation cost,
Theorem 8.15 follows.

8.5.2 Risk-Averse Players

Instead of striving for a high payoff on average, the players might be cautious
or risk-averse. To account for such behavior, we adapt our model by assuming
that the players seek to minimize the risk on missing out on benefits. In order
to achieve this objective, they select strategies where the minimum gain is
not less than any other strategy’s minimum gain. If there is more than
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one strategy with this property, the risk-averse player can choose a strategy
among these, where the average of the benefits is maximal. More formally,
let

mini := max
xi∈Xi

( min
x−i∈X−i

(Ui(xi, x−i)))

and

∅
X
f(x) :=

1

|X| ·
X
x∈X

f(x).

Then player i selects a strategy m out of the strategy set

Mi = {xi|∀x−i Ui(xi, x−i) = mini}

satisfying

m = arg max
m∈Mi

( ∅
X−i

Ui(m,x−i)).

Theorem 8.16. For risk-averse players the implementation cost of a sin-
gleton z ∈ X is k(z) =

Pn
i=1 max(0,mini − Ui(z)).

Proof. We show how to construct V implementing z with cost k and then
prove that we cannot reduce the payments of V (z). Since in this model every
player i makes her decision without taking into account the benefits other
players might or might not obtain, it suffices to consider each Vi separately.
To ensure that player i selects zi we have to set Vi(zi, x−i) to a value such
that mini is reached in G(U + V ) for each x−i. Consequently we assign
Vi(zi, x−i) = max(0,mini − Ui(zi, x−i)). We have to satisfy a second con-
dition such that zi is chosen, namely, zi = arg maxm∈M (∅X−i Ui(m,x−i)).
This is achieved by setting Vi(zi, x−i) = ∞ ∀x−i 6= z−i. We repeat these
steps for all Players i. Clearly, V constructed in this manner implements z.
Since the cost k only comprises the additional payments in V (z) and lowering
Vi(z) for any i results in player i choosing a different strategy, we can deduce
the statement of the theorem.

For strategy profile regions, the situation with risk-averse players differs
from the standard model considerably.

Theorem 8.17. For risk-averse players the implementation cost for a strat-
egy profile region O ⊂ X is k(O) = mino∈O

Pn
i=1 max(0,mini − Ui(o)).

Proof. Since we have to add up the cost to reach the required minimum for
every strategy profile in X∗(V ) it cannot cost less to exactly implement more
than one strategy profile, i.e., find V such that |X∗(V )| = 1. Thus V imple-
menting the “cheapest” singleton in O yields an optimal implementation for
O, and the claim follows.
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Algorithm 8.6 ALGriskRisk-averse Players: Exact Implementation

Input: Game G, target region O, Oi ∩X∗i = ∅ ∀i ∈ N
Output: V such that X∗(V ) = O
1: compute X∗;
2: Vi(z) = 0 for all i ∈ N, z ∈ X;
3: for all i ∈ N do
4: Vi(xi, x−i):=∞ ∀xi ∈ Oi, x−i ∈ X−i \O−i;
5: Vi(xi, x−i) := max(0,mini − Ui(xi, x−i)) ∀xi ∈ Oi, x−i ∈ X−i;
6: if O−i = X−i then
7: if τ(Oi) > τ(X∗i ) then
8: if |Xi|+ ε|Oi| > |Xi|+

P
oi
δ(oi) then

9: Vi(oi, x−i):=Vi(oi, x−i) + δ(oi) ∀oi, x−i;
10: else
11: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
12: fi
13: else
14: if ε|Oi| >

P
oi

[ε+ δ(oi)] then

15: Vi(oi, x−i):=Vi(oi, x−i) + ε+ δ(oi) ∀oi, x−i;
16: else
17: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
18: fi
19: fi
20: fi
21: od
22: return V ;

Since it is always cheaper to implement a singleton than a region un-
der this behavior model, there are no obvious reasons to implement a set of
profiles exactly. Nonetheless, for completeness, we state the exact implemen-
tation cost for risk-averse players as well.

Theorem 8.18. The problem of computing the exact implementation cost of
a region is in P for risk-averse players.

Proof. ALGrisk demonstrate how to compute Vi(o) such that V implements
the entire region O optimally. For a Player i and a set of strategies Yi ⊆ Xi,
we define

τ(Yi) := max
xi∈Yi

( ∅
X−i

((U + V )i(xi, x−i)))

to be the maximum of the average benefits over all strategies. For each
strategy of a Player i, we define δ(xi):=max(τ(Oi), τ(X∗i )) − ∅X−i((U +
V )i(xi, x−i))), for xi ∈ Xi, to be the difference of the averages. Algorithm 8.6
constructs V if the target region O and X∗ are disjoint. Analogously to the
proofs above we can deal with each player i individually. The algorithm
computes for all cases how much the interested party has to offer at least
for strategy profiles in O and sets Vi(xi, x−i) to infinity for all xi ∈ Oi,
x−i ∈ X−i \ O−i (Line 4). Then, for each player i, strategies Oi have to
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reach the minimum payoff of strategies in X∗i . This suffices for an exact
implementation if Oi ⊂ Xi, i.e. if there exists at least one strategy xi /∈
Oi. Otherwise, we determine whether it costs more to exceed the minimum
constraint or the average constraint for all Oi if Oi covers whole columns and
adjust Vi accordingly. Thus the algorithm ensures that only strategies in O
are chosen while all strategies in O are selected.

The algorithm can be extended easily to work for instances where
X∗i ⊂ Oi. As the extension is straight-forward and does not provide any
new insights, we omit it. The runtime of the algorithm can be deter-
mined to be O

`
n|X|2´, thus we can compute k∗(O) = maxo∈O V (o) and

k∗UNI(O) = ∅o∈O V (o) in polynomial time.

Observe that these results imply that computing the (exact) implemen-
tation for both a worst-case and a uniform mechanism designer is in P for
risk-averse players.

8.6 Round-Based Mechanisms

The previous sections dealt with static models only. Now, we extend our
analysis to dynamic, round-based games, where the designer offers payments
to the players after each round in order to make them change strategies.
This opens many questions: For example, imagine a concrete game such as
a network creation game [41] where all players are stuck in a costly Nash
equilibrium. The goal of a mechanism designer could then be to guide the
players into another, better Nash equilibrium. Many such extensions are
reasonable; we present one model in more detail.

In a dynamic game, we regard a strategy profile as a state in which the
participants find themselves. In a network context, each x ∈ X could rep-
resent one particular network topology. We presume to find the game in an
initial starting state sT=0 ∈ X and that, in state sT=t, each player i only
sees the states she can reach by changing her strategy given the other players
remain with their chosen strategies. Thus player i sees only strategy profiles
in XT=t

visible,i = Xi × {sT=t
−i } in round t. In every round t, the mechanism

designer offers the players a payment matrix V T=t (in addition to the game’s
static payoff matrix U). Then all players switch to their best visible strat-
egy (which is any best response Bi(s

T=t
−i )), and the game’s state changes to

sT=t+1. Before the next round starts, the mechanism designer disburses the
payments V T=t(sT=t+1) offered for the newly reached state. The same pro-
cedure is repeated until the mechanism designer decides to stop the game.
See Figure 8.9 for an illustration.

We prove that a mechanism designer can guide the players to any strategy
profile at zero cost in two rounds.
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Figure 8.9: A dynamic game: Starting in s, strategy profile e can be imple-
mented at zero cost within two rounds by taking a detour to d. The colored
region marks the visible strategy profiles at each step.

Theorem 8.19. Starting in an arbitrary strategy profile, a dynamic mech-
anism can be designed to lead the players to any strategy profile without any
expenses in at most two rounds if |Xi| ≥ 3 ∀i ∈ N .

In order to simplify the proof we begin with a helper lemma. Let XT=t
visible

denote the visible strategy profile region in round t, i.e.,

XT=t
visible =

n[
i=1

XT=t
visible,i.

Lemma 8.20. The third party can lead the players of a dynamic game to any
strategy profile outside the visible strategy profile region without any expenses
in one round.

Proof. Let s ∈ X be the starting strategy profile and e the desired end
strategy profile in the non-visible region of s. The designer can implement
e in just one round by offering each player i an infinite amount Vi(x) for
the strategy profile x = (ei, s−i) and zero for any other. Thus each player
will switch to ei. Since Vi(ei, s−i) are the only positive payments offered and
since all x = (ei, s−i) are visible and e is non-visible from s, e is implemented
at no cost.

Proof of Theorem 8.19. Consider an arbitrary starting strategy profile s and
a desired strategy profile e. If e is not visible from s, e is implementable at no
cost in one round, as seen in Lemma 8.20. If e is visible from s, the interested
party can still implement e for free by taking a detour to a strategy profile d
which is neither in s’ visible region nor in e’s visible region. Such a strategy
profile d exists if player i who sees e from s has at least 3 strategies to choose
from and |X−i| ≥ 2.



9
Leverage

This chapter studies to which extent the social welfare of a game can be
influenced by an interested third party within economic reason, i.e., by taking
the implementation cost into account. Besides considering classic, benevolent
mechanism designers, we also analyze malicious mechanism designers. For
instance, this chapter shows that a malicious mechanism designer can often
corrupt games and worsen the players’ situation to a larger extent than the
amount of money invested. Surprisingly, no money is needed at all in some
cases.

We provide algorithms for finding the leverage in games and show that for
optimistic mechanism designers, computing the leverage or approximations
thereof is NP-hard.

In this chapter, we analyze these problems’ complexities and presents al-
gorithms for finding the leverage of games for cautious and optimistic mech-
anism designers. We show that while the leverage of a single strategy profile
can be computed efficiently for both cautious and optimistic mechanism de-
signers, computing the uniform leverage of a game is NP-hard by a reduction
from the SET COVER problem, and we provide a lower bound for the ap-
proximation attainable by any polynomial-time algorithm.

9.1 Worst-Case Leverage

Singletons

In the following we will examine a mechanism designer seeking to implement
a game’s best singleton, i.e., the strategy profile with the highest singleton
leverage. Dually, a malicious designer attempts to find the profile of the
largest malicious leverage.

We propose an algorithm that computes two arrays, LEV and MLEV ,
containing all (malicious) singletons’ leverage within a strategy profile set O.

141
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By settingO = X, the algorithm computes all singletons’ (malicious) leverage
of a game. We make use of an equation presented in [81] for computing a sin-
gleton’s cost, namely that k(z) =

Pn
i=1 maxxi∈Xi{Ui(xi, z−i)− Ui(zi, z−i)}.

Algorithm 9.1 Singleton (Malicious) Leverage

Input: Game G, Set O ⊆ X
Output: LEV and MLEV
1: compute X∗;
2: for all strategy profiles x ∈ O do
3: lev[x] := −maxx∗∈X∗ U(x∗);
4: mlev[x] := minx∗∈X∗ U(x∗);
5: od
6: for all Players i ∈ N do
7: for all x−i ∈ O−i do
8: m := maxxi∈Xi Ui(xi, x−i);
9: for all strategies zi ∈ Oi do

10: lev[zi, x−i] += 2 · Ui(zi, x−i)−m;
11: mlev[zi, x−i] += Ui(zi, x−i)− 2m;
12: od
13: od
14: od
15: ∀ o ∈ O: LEV [o] := max{0, lev[o]};
16: ∀ o ∈ O: MLEV [o] := max{0,mlev[o]};
17: return LEV, MLEV ;

Algorithm 9.1 initializes the lev-array with the negative value of the origi-
nal game’s maximal social gain in the non-dominated set and the mlev-array
with
its minimal social gain. Next, it computes the set of non-dominated strategy
profiles X∗; in order to do this, we check, for each player and for each of
her strategies, whether the strategy is dominated by some other strategy.
In the remainder, the algorithm adds up the players’ contributions to the
profiles’ (malicious) leverage for each player and strategy profile. In any
field z of the leverage array lev, we add the amount that Player i would
contribute to the social gain if z was played and subtract the cost we had
to pay her, namely Ui(xi, x−i) − (m − Ui(xi, x−i)) = 2Ui(xi, x−i) −m. For
any entry z in the malicious leverage array mlev, we subtract player i’s
contribution to the social gain and also twice the amount the designer would
have to pay if z is played since she loses money and the players gain it,
−Ui(xi, x−i)− 2(m−Ui(xi, x−i)) = Ui(xi, x−i)− 2m. Finally, lev and mlev
will contain all singletons’ leverage and singletons’ malicious leverage in O.
By replacing the negative entries by zeros, the corresponding leverage arrays
LEV and MLEV are computed. The interested party can then lookup the
best non-negative singleton by searching the maximal entry in the respective
array.
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Theorem 9.1. For a game where every player has at least two strategies,
Algorithm 9.1 computes all singletons’ (malicious) leverage within a strategy
profile set O in O

`
n|X|2´ time.

Proof. The correctness of Algorithm 9.1 follows directly from the applica-
tion of the (malicious) singleton leverage definition. It remains to prove
the time complexity. Finding the non-dominated strategies in the original
game requires time

Pn
i=1

`|Xi|
2

´|X−i| = O(n|X|2), and finding the maximal
or minimal gain amongst the possible outcomes X∗ of the original game re-
quires time O(n |X|). The time for all other computations can be neglected
asymptotically, and the claim follows.

Strategy Profile Sets

Observe that implementing singletons may be optimal for entire strategy sets
as well, namely in games where the strategy profile set yielding the largest
(malicious) leverage is of cardinality 1. In some games, however, dominating
all other strategy profiles in the set is expensive and unnecessary. Therefore,
a mechanism designer is bound to consider sets consisting of more than one
strategy profile as well to find a subset of X yielding the maximal (malicious)
leverage. Moreover, we can construct games where the difference between the
best (malicious) set leverage and the best (malicious) singleton leverage gets
arbitrarily large. Figure 9.1 depicts such a game.

Although many factors influence a strategy profile set’s (malicious) lever-
age, there are some simple observations. First, if rational players already
choose strategies such that the strategy profile with the highest social gain is
non-dominated, a designer will not be able to ameliorate the outcome. Just
as well, a malicious interested party will have nothing to corrupt if a game
already yields the lowest social gain possible.

Fact 9.2.
(i) If a game G’s social optimum xopt := arg maxx∈X U(x) is in X∗

then LEV (G) = 0.
(ii) If a game G’s social minimum xworst := arg minx∈X U(x) is in X∗

then MLEV (G) = 0.

As an example, a class of games where both properties (i) and (ii) of Fact
9.2 always hold are equal sum games, where every strategy profile yields the
same gain, U(x) = c ∀x ∈ X, c : constant. (Zero sum games are a special
case of equal sum games where c = 0.)

Fact 9.3 (Equal Sum Games). The leverage and the malicious leverage of
an equal sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of an zero sum game is Matching Pennies: Two
players toss a penny. If both coins show the same face, player 2 gives his
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Figure 9.1: Two-player game where the set O bears the largest leverage.
Implementation VO yields X∗(VO) = O and VS yields one non-dominated
strategy profile. By offering payments VO, a mechanism designer has cost
2, no matter which o ∈ O will be played. However, she changes the social
welfare to α − 1. If γ < α − 3 then O has a leverage of α − 3 − γ and if
γ > α+ 3 then O has a malicious leverage of γ−α− 3. Any singleton o ∈ O
has an implementation cost of α + 1, yet the resulting leverage is 0 and the
malicious leverage is max(0, γ − 3α − 1). This demonstrates that a profile

set O ’s (malicious) leverage can be arbitrarily large, even if its singletons’s
(malicious) leverage is zero.

penny to player 1; if the pennies do not match, player 2 gets the pennies.
This matching pennies game features another interesting property: There is
no dominated strategy. Therefore an interested party could only implement
strategy profile sets O which are subsets of X∗. This raises the question
whether a set O ⊆ X∗ can ever have a (malicious) leverage. We find that
the answer is no and moreover:

Theorem 9.4. The leverage of a strategy profile set O ⊆ X intersecting with
the set of non-dominated strategy profiles X∗ is (M)LEV = 0.
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Proof. Assume that |O ∩X∗| > 0 and let ẑ be a strategy profile in
the intersection of O and X∗. Let x∗max := arg maxx∗∈X∗ U(x∗) and
x∗min := arg minx∗∈X∗ U(x∗). Let VLEV be any implementation of O reach-
ing LEV (O) and VMLEV any implementation of O reaching MLEV (O). We
get for the leverage

LEV (O) = max{0, min
z∈X∗(VLEV )

{U(z)− VLEV (z)} − U(x∗max)}

≤ max{0, [U(ẑ)− VLEV (ẑ)]− U(x∗max)}
≤ max{0, U(x∗max)− VLEV (ẑ)− U(x∗max)}
= max{0,−VLEV (ẑ)}
= 0,

and for the malicious leverage

MLEV (O) = max{0, U(x∗min)− max
z∈X∗(VMLEV )

[U(z) + 2VMLEV (z)]}

≤ max{0, U(x∗min)− U(ẑ)− 2VMLEV (ẑ)}
≤ max{0, U(x∗min)− U(x∗min)− 2VMLEV (ẑ)}
= max{0,−2VMLEV (ẑ)}
= 0.

In general, the problem of computing a strategy profile set’s (malicious)
leverage seems computationally hard. It is related to the problem of comput-
ing a set’s implementation cost, which is conjectured to be NP-hard in the
previous chapter, and hence, we conjecture the problem of finding LEV (O)
or MLEV (O) to be NP-hard in general as well. In fact, we can show that
computing the (malicious) leverage has at least the same complexity as com-
puting a set’s cost.

Theorem 9.5. If the computation of a set’s implementation cost is NP-
hard, then the computation of a strategy profile set’s (malicious) leverage is
also NP-hard.

Proof. We proceed by reducing the problem of computing k(O) to the prob-
lem of computing MLEV (O). Theorem 9.4 allows us to assume that O and
X∗ do not intersect since O∩X∗ 6= ∅ implies MLEV (O) = 0. By definition, a
strategy profile set’s cost are k(O) = minV ∈V(O){maxz∈X∗(V ) V (z)} and from
the malicious leverage’s definition, we have minV ∈(V ){maxz∈X∗(V ){U(z) +
2V (z)}} = minx∗∈X∗ U(x∗)−mlev(O). The latter equation’s left hand side
almost matches the definition of k(O) if not for the term U(z) and a factor
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of 2. If we can modify the given game such that all strategy profiles inside
X∗(V ) ⊆ O have a gain of

γ := −2nmax
x∈X
{max
i∈N

Ui(x)} − min
x∗∈X∗

U(x∗)− ε

for some ε > 0, we will be able to reduce O’s cost to

k(O) =
minx∗∈X∗ U(x∗)−mlev(O)− γ

2
= −mlev(O) + 2nmax

x∈X
{max
i∈N

Ui(x)}+ ε,

thus mlev(O) > 0 and MLEV (O) = mlev(O), ensuring that MLEV (O)
and mlev(O) are polynomially reducible to each other. This is achieved by
the following transformation of a problem instance (G,O) into a problem
instance (G′, O): Add an additional Player n+ 1 with one strategy a and a
payoff function Un+1(x) equal to γ − U(x) if x ∈ O and 0 otherwise. Thus,
a strategy profile x in G′ has social gain equal to γ if it is in O and equal
to U(x) in the original game if it is outside O. As Player n + 1 has only
one strategy available, G′ has the same number of strategy profiles as G and
furthermore, there will be no payments Vn+1 needed in order to implement
O. Player (n+ 1)’s payoffs impact only the profiles’ gain, and they have no
effect on how the other players decide their tactics. Thus, the non-dominated
set in G′ is the same as in G and it does not intersect with O. Since the
transformation does not affect the term minx∗∈X∗ U(x∗), the set’s cost in G
are equal to (minx∗∈X∗ U(x∗)−MLEV (O)− γ)/2 in G′.

Reducing the problem of computing k(O) to lev(O) is achieved by using
the same game transformation where an additional player is introduced such
that ∀o ∈ O : U(o) = γ, where

γ := nmax
x∈X
{max
i∈N
{Ui(x)}}+ max

x∗∈X∗
{U(x∗)}+ ε

for some ε > 0. We can then simplify the equation to

lev(O) = γ − k(O)− max
x∗∈X∗

U(x∗) = nmax
x∈X
{max
i∈N
{Ui(x)}} − k(O) + ε > 0

and thus we find the cost k(O) by computing

nmax
x∈X
{max
i∈N
{Ui(x)}} − LEV (O)− ε.

The task of finding a strategy profile set’s leverage is computationally
hard. Recall that we have to find an implementation V of O which maxi-
mizes the term minz∈X∗(V ){U(z)− V (z)}. Thus, there is at least one imple-
mentation V ∈ V(O) bearing O’s leverage. Since this V implements a subset
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Algorithm 9.2 Exact Leverage

Input: Game G, convex set O with O−i ⊂ X−i∀ i
Output: LEV ∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) :=∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗i ;
4: return max{0, ExactLev(V, n)−maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current player i
Output: lev∗(O) for G(V )
1: if

˛̨
X∗i (V )\Oi

˛̨
> 0 then

2: s := any strategy in X∗i (V )\Oi; levbest := 0;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i))};
6: od
7: lev := ExactLev(V +W, i);
8: if lev > levbest then
9: levbest := lev;

10: fi
11: for all o−i ∈ O−i do
12: Wi(oi, o−i) := 0;
13: od
14: od
15: return levbest;
16: fi
17: if i > 1 return ExactLev(V , i− 1);
18: else return mino∈O{U(o)− V (o)};

of O exactly, it is also valid to compute O’s leverage by searching among all
subsets O′ of O the one with the largest exact leverage LEV ∗(O′).1

In the following we will provide an algorithm which computes a convex
strategy profile set’s exact leverage. It makes use of the fact that if X∗(V )
has to be a subset of O, each strategy ōi /∈ Oi must be dominated by at
least one strategy oi in the resulting game G(V ) – a property which has been
observed and exploited before in the previous chapter in order to compute a
set’s exact cost. In order to compute LEV (O), we can apply Algorithm 9.2
for all convex subsets and return the largest value found.

Theorem 9.6. Algorithm 9.2 computes a strategy profile set’s exact leverage
in time

O

„
|X|2 max

i∈N
(|Oi|n|X

∗
i \Oi|−1) + n|O|max

i∈N
(|Oi|n|X

∗
i \Oi|)

«
.

1Note that we do not provide algorithms for computing the malicious leverage but for
the benevolent leverage only. However, we are sure that a malicious mechanism designer
will figure out how to adapt our algorithms for the benevolent leverage for a nastier
purpose.
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Proof. Clearly, the algorithm is correct as it searches for all possibilities of a
strategy in Xi\Oi to be dominated by a strategy in Oi. The time complex-
ity follows from solving the doubly recursive equation over the strategy set
and the number of players (compare to the analysis of Algorithm 8.2 in the
previous chapter).

9.2 Uniform Leverage

A mechanism designer calculating her average case cost is more optimistic
than an anxious designer. Thus, the observation stating that the uniform
(malicious) leverage is always at least as large as the worst-case (malicious)
leverage does not surprise.

Theorem 9.7. A set’s uniform (malicious) leverage is always larger than or
equal to the set’s (malicious) leverage.

Proof.

levUNI(O) = max
V ∈V(O)

{ ∅
z∈X∗(V )

{U(z)− V (z)}} − ∅
x∗∈X∗(V )

U(x∗)

≥ max
V ∈V(O)

{ min
z∈X∗(V )

{U(z)− V (z)}} − max
x∗∈X∗(V )

U(x∗)

= lev(O)

and

mlevUNI(O) = ∅
x∗∈X∗(V )

U(x∗)− min
V ∈V(O)

{ ∅
z∈X∗(V )

{U(z) + 2V (z)}}

≥ min
x∗∈X∗(V )

{U(x∗)} − min
V ∈V(O)

{ max
z∈X∗(V )

{U(z) + 2V (z)}}
= mlev(O).

Another difference concerns the sets O intersecting with X∗, i.e., cases
where O∩X∗ 6= ∅: Unlike the worst-case leverage (Theorem 9.4), the uniform
leverage can exceed zero in these cases, as can be verified by calculating O’s
leverage in Figure 3.

Complexity

We show how the uniform implementation cost can be computed in poly-
nomial time given the corresponding leverage. Thus the complexity of com-
puting the leverage follows from the NP-hardness of finding the optimal
implementation cost. The lower bounds are derived by modifying the games
constructed from the SET COVER problem in Theorem 8.11, and by using
a lower bound for the approximation quality of the SET COVER problem.
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If no polynomial time algorithm can approximate the size of a set cover
within a certain factor, we get an arbitrarily small approximated leverage
LEV approxUNI ≤ ε while the actual leverage is large. Hence the approximation
ratio converges to infinity and, unless P=NP, there exists no polynomial
time algorithm approximating the leverage of a game within any function of
the input length.

Theorem 9.8. For games with at least two players, the problem of

• computing a strategy profile set’s exact uniform leverage as well as

• computing a its exact malicious uniform leverage are NP-hard.

Furthermore, the (exact) uniform leverage of O cannot be approximated in
polynomial time within any function of the input length unless P=NP.

Proof.
NP-Hardness: Exact Case. The claim follows from the observation that if
(M)LEV ∗UNI(O) is found, we can immediately compute k∗UNI(O) which is
NP-hard (Theorem 8.11). Due to the fact that any z ∈ O is also in X∗(V )
for any V ∈ V∗(O) we know that

levUNI(O) = max
V ∈V∗(O)

{ ∅
z∈X∗(V )

{U(z)− V (z)}} − ∅
z∈X∗

U(x∗)

= max
V ∈V∗(O)

{ ∅
z∈X∗(V )

U(z)− ∅
z∈X∗(V )

V (z)} − ∅
x∗∈X∗

U(x∗)

= ∅
z∈X∗(V )

U(z)− min
V ∈V∗(O)

{ ∅
z∈X∗(V )

V (z)} − ∅
x∗∈X∗

U(x∗)

= ∅
z∈X∗(V )

U(z)− k∗UNI(O)− ∅
x∗∈X∗

U(x∗)

and

mlevUNI(O) = ∅
x∗∈X∗

U(x∗)− min
V ∈V∗(O)

{ ∅
z∈X∗(V )

{U(z) + 2V (z)}}

= ∅
x∗∈X∗

U(x∗)− ∅
z∈X∗(V )

U(z)− 2 min
V ∈V∗(O)

{ ∅
z∈X∗(V )

V (z)}

= ∅
x∗∈X∗

U(x∗)− ∅
z∈X∗(V )

U(z)− 2k∗UNI(O).

Observe that ∅x∗∈X∗ U(x∗) and ∅z∈X∗(V ) U(z) can be computed easily.
Moreover, as illustrated in the proof of Theorem 9.5, we can efficiently con-
struct a problem instance (G′, O) from any (G,O) with the same cost, such
that for G′: (m)lev(UNI) = (M)LEV(UNI).

Non-Exact Case. The claim can be proved by reducing the NP-hard problem
of computing kUNI(O) to the problem of computing (M)LEVUNI(O). This
reduction uses a slight modification of player 3’s utility in the respective game
in the proof of Theorem 8.11 ensuring ∀z ∈ O U(z) = γ, where

γ := −4(m+ l)2 − 2m2 +m(l +m).
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Set

U3(si, ej , a) := γ − U1(si, ej , a)− U2(si, ej , a),
U3(si, ej , b) := γ + 2− U1(si, ej , a)− U2(si, ej , a),

for i ∈ [1,m], j ∈ [1, l]

U3(si, sj , a) := γ − U1(si, sj , a)− U2(si, sj , a),
U3(si, sj , b) := γ + 2− U1(si, sj , a)− U2(si, sj , a),

for i 6= j

U3(si, si, a) := γ − U1(si, si, a)− U2(si, si, a),
U3(si, si, b) := γ + (m+ l + 2)− U1(si, si, a)− U2(si, si, a),

for all i

Since in this 3-player game, mlevUNI(O) > 0, kUNI(O) depends only on
O’s (malicious) leverage and the average social gain, namely

kUNI(O) = ∅
x∗∈X∗

(U(x∗)−MLEVUNI(O))/2.

Thus, once MLEVUNI(O) is known, kUNI(O) can be computed immediately,
and therefore finding the uniform malicious leverage is NP-hard as well. We
can adapt this procedure for LEVUNI(O) as well.

Lower Bound: Exact Case. The game constructed from the SET COVER
problem in Theorem 8.11 for the exact case is modified as follows: The
utilities of player 1 remain the same. The utilities of player 2 are all zero
except for U2(e1, r) := (l+m)(

Pm
i=1 |Si|(m+ 1)/(ml+m)−kLB− ε), where

k is the minimal number of sets needed to solve the corresponding SET
COVER instance, ε > 0, and LB denotes a lower bound for the approximation
quality of the SET COVER problem. Observe that X∗ consists of all strategy
profiles of column r. The target set we want to implement exactly is given
by O1 = {s1, ..., sm} and O2 = {e1, ..., el, d}. We compute

levoptUNI = ∅
o∈O

U(o)− ∅
x∈X∗

U(x)− k

=

mX
i=1

|Si|(m+ 1)/(ml +m)−
mX
i=1

|Si|(m+ 1)/(ml +m)

−(−kLB − ε)− k
= k(LB − 1) + ε.

As no polynomial time algorithm can approximate k within a factor LB,
it holds that LEV approxUNI ≤ ε. Thus the claim follows for a benevolent mech-
anism designer, because limε→0 LEV

opt
UNI/LEV

approx
UNI =∞.

For malicious mechanism designers, we modify the utilities of the game
from the proof of Theorem 8.12 for player 2:
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U2(e1, r) := (l +m)
“

2kLB + ε+
Pm
i=1 |Si|(m+1)

ml+m

”
,

and
U2( , ) := 0 for all other profiles.

It is easy to see that by a similar analysis as performed above, the theorem
also follows in this case.

Lower Bound: Non-Exact Case. We modify the game construction of Theo-
rem 8.11’s proof for the non-exact case. Let

γ :=

Pm
i=1 |Si|(m+ l)2 +m2(m+ l)2 + 3m(m+ l)

m2 +ml +m
.

For benevolent designers, we set

U2(e1, r, b) := (m+ l) (γ − kLB − ε) ,

where k is the minimal number of sets needed to solve the corresponding
SET COVER instance, ε > 0, and LB denotes a lower bound for the approx-
imation quality of the SET COVER problem and zero otherwise. Observe
that O has not changed, X∗ = {x|x ∈ X,x = ( , r, b)}, and payments outside
O do not contribute to the implementation cost; therefore, implementing O
exactly is still the cheapest solution. By a similar analysis as in the proof
of Theorem 8.11 the desired result is attained. For malicious mechanism
designers we can proceed as above if we set

U2(e1, r, b) := (m+ l) (γ + 2kLB + ε) .

Algorithms

To round off our analysis of the uniform (malicious) leverage, we investigate
algorithms for risk neutral mechanism designers. Recall Algorithm 9.1 in
Section 9.1 which computes the leverage of singletons of a desired strategy
profile set. We can adapt this algorithm in Line 3 and 4 to conform to
the definition of the uniform leverage, i.e., set mlev[x] := ∅x∗∈X∗ U(x∗) and
mlev[x] := −mlev[x]. This algorithm thus helps to find an optimal singleton.

A benevolent mechanism designer can adapt Algorithm 9.2 in order to
compute LEV ∗UNI(O): She only has to change Line 4 to

return max{0, ExactLev(V, n)− ∅
x∗∈X∗

U(x∗)}

and ‘min’ in Line 13 of ExactLev to ‘∅’. Invoking this algorithm for any
O′ ⊆ O yields the subset O with maximal leverage LEVUNI(O).
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Due to Theorem 9.8 there is no polynomial time algorithm giving a non-
trivial approximation of a uniform leverage. The simplest method to find a
lower bound for LEVUNI(O) is to search the singleton in O with the largest
uniform leverage. Unfortunately, there are games (cf. Figure 8.4) where this
lower bound is arbitrarily bad, as it is for the worst case leverage.



10
Conclusions and Outlook

There is an increasing demand for a game theoretic analysis and incentive-
compatible solutions for distributed computing systems such as the Internet.
This is mainly due to the fact that they consist of different stake-holders
aiming at maximizing their individual profits. Rendering distributed sys-
tems resilient to non-cooperative behavior has become an important research
topic. This part of the thesis has raised the following question: Which out-
comes can be implemented by promising players money while the eventual
payments are bounded? We have presented algorithms for various objectives
yielding implementations of low cost as well as computational complexity
results for cautious and optimistic mechanism designers. Moreover, we have
initiated the study of risk-averse players and round-based games and shown
that efficient algorithms do exist for these scenarios. In addition, we have
studied benevolent and malicious mechanism designers intending to change
the game’s outcome if the improvement or deterioration in social welfare ex-
ceeds the implementation cost. Our results are summarized in Figure 10 and
Figure 10.

Our models still offer interesting questions to be tackled in future research,
including the quest for implementation cost approximation algorithms or for
game classes which allow a leverage approximation. Furthermore, the mixed
leverage and the leverage of dynamic games with an interested third party
offering payments in each round are still unexplored.

Of course, we have to be aware of the limitations of these models and
results as well. There are hardly any situations where all the involved par-
ties can be determined, let alone the exact utility of each participant for
each outcome. Without this knowledge however, neither our benevolent nor
our malicious mechanism designer is able to compute an optimal payment
distribution of its available incentives.
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Impl. Cost Complexity Properties

Uniform
NP-complete

NE 0-implementablesingleton O
`
n ·Pi |Xi|

´
zero O

`
n|X|2´

Worst-case
conjectured to be NP-complete

NE 0-implementablesingleton O
`
n ·Pi |Xi|

´
zero O

`
n|X|2´

Risk-averse O
`
n|X|2´ Singletons cheapest

Average payoff All regions 0-implementable

Round-based Singletons 0-implementable in 2 rounds

Figure 10.1: Complexity results for the computation of the implementation
cost. Unless stated otherwise, complexities refer to the problem of computing
any strategy profile’s implementation cost. singleton indicates the complex-
ity of computing a singleton’s implementation cost. zero indicates the com-
plexity of deciding for a strategy profile region whether it is 0-implementable.

Leverage Complexity Properties

Uniform
NP-complete

MLEVUNI ≥MLEV
singleton O

`
n ·Pi |Xi|

´
O ∩X∗ 6= ∅

as hard as ⇒ (M)LEV = 0
Worst-case implementation cost social opt/worst ∈ X∗

⇒ (M)LEV = 0
singleton O

`
n ·Pi |Xi|

´
Equal-sum games

⇒ (M)LEV = 0

Figure 10.2: Complexity results for the computation of the leverage. single-
ton indicates the complexity of computing a singleton’s leverage.
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Moreover, a situation might change unexpectedly resulting in adapted
utilities of the players and the carefully calculated payments will not lead
to the desired outcome. Game theory is based on behavioral assumptions
on the nature of the players. However, one does never know for sure how
powerful the players are and how much they are prepared to invest in finding
out their optimal strategies. These drawbacks are common to any model,
since a model can by definition only try to capture some of the fundamental
characteristics and aspects of a system, hoping to allow for a rigorous analysis
and best possible solutions. As a consequence, we believe that our insights
on mechanism design by creditability can provide some useful intuition and
guidance in designing distributed systems.
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