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Abstract—We introduce DiscoDiff, a text-to-music gener-
ative model that utilizes two latent diffusion models to pro-
duce high-fidelity 44.1kHz music hierarchically. Our approach
significantly enhances audio quality through a coarse-to-fine
generation strategy, leveraging residual vector quantization from
the Descript Audio Codec. We consolidate this coarse-to-fine
design through an important observation that the audio latent
representation can be split into a primary and secondary part,
controlling music content and details accordingly. We validate the
effectiveness of our approach and text-audio alignment through
various objective metrics. Furthermore, we provide access to
high-quality synthetic captions for the MTG-Jamendo and FMA
datasets, as well as open-sourcing DiscoDiff’s codebase and
model checkpoints.

Index Terms—Text-to-music generation, latent diffusion model,
residual vector quantization

I. INTRODUCTION

Generating coherent long-form music at the waveform level
presents significant challenges due to the intricate, multi-
scale structure of music. Music spans extensive temporal
patterns, from rhythm patterns lasting fractions of seconds to
minute-long melodies and song structures. This complexity
necessitates methods that can handle both the fine details and
longer temporal patterns simultaneously. Recent advancements
in audio generation address this challenge by utilizing neural
audio codecs [1]–[4], compressing the audio, and reducing
the sampling rate by multiple orders of magnitude. This
compressed latent audio representation can then be used by
generative models, such as large-language models or diffusion
models to synthesize high-fidelity audio.

Building on this foundation, we leverage two key properties
of the Descript Audio Codec [3]. First, the encoder produces
a hierarchical set of nine tokens, derived from training with
Residual Vector Quantization (RVQ), which encapsulates the
multi-scale structure of the audio. Second, each of these nine
tokens is encoded in a continuous 8-dimensional space, where
each token’s contribution is additive in constructing the final
latent embedding.

In this work, we introduce DiscoDiff, a novel method
for text-to-music generation that operates in a coarse-to-fine
manner on the continuous latent representation of the Descript
Audio Codec [3]. DiscoDiff contains two 1D diffusion
models capable of generating high-fidelity music at 44.1
kHz. Our method differs from previous latent audio diffusion
approaches [5], [6], by directly leveraging the hierarchical
RVQ patterns.

We exploit these properties by using a coarse-to-fine gener-
ative approach as proposed in the text-to-speech domain [7].

*Equal contribution.

The first diffusion model is responsible for generating the
continuous latent embedding of the first token, which encap-
sulates the coarsest level of audio information. The secondary
diffusion model is conditioned on the first token and generates
the continuous latent representation of the remaining eight
tokens, progressively refining the audio. To train DiscoDiff
we generate high-quality captions for the MTG-Jamendo [8]
and FMA [9] datasets, as well as filtering sub-par samples
from FMA by means of a likelihood estimation.

Our contributions can be summarized as follows:
• We propose the application of a coarse-to-fine latent au-

dio diffusion process, leading to enhanced sample quality
in music generation.

• We curate and provide a quality ranking of the FMA
dataset, filtered according to the likelihood that the sam-
ples belong to a distribution of high-quality music. Addi-
tionally, we open-source high-quality synthetic captions
generated for MTG-Jamendo and FMA datasets.

• We release model checkpoints and accompanying code
as open-source resources, supporting reproducibility and
further advancements in the field of generative music.1

II. RELATED WORK

Text-to-music models require two necessary parts: a gener-
ative model and a text-conditioning module.

Auto-regressive models like WaveNet [10] initiate music
generation by synthesizing waveforms sample-by-sample. Re-
cent advancements [11]–[13], use transformers to generate
waveform latents, achieving high-quality samples. Denoising
Diffusion Probabilistic Models (DDPM) [14] and Latent Dif-
fusion Models (LDM) [15] offer faster sampling than auto-
regressive models. DiffWave [16], Noise2Music [5], and Rif-
fusion [17] demonstrate the effectiveness of diffusion models
for waveform and spectrogram generation.

Recent latent diffusion models outperformed direct wave-
form or spectrogram generation [18]–[21]. Stable Audio [6]
achieved excellent results, thanks to the advances in com-
pressed audio latent representation with audio encoder-
decoders (codecs) such as SoundStream [1], EnCodec [2], and
Descript Audio Codec (DAC) [3]. Residual vector quantization
(RVQ) is normally used for further compression.

For text conditioning, T5 [22] is widely used in text-to-
audio models like Make-an-Audio [23] and Noise2Music [5].
Mustango [24] employs FLAN-T5 [25], an instruction-tuned
version of T5. Another approach, audio-text embedding, dif-
fers from pure-text embedding. The w2v-BERT model [26]

1https://github.com/ETH-DISCO/discodiff
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produces joint audio-text embeddings for text conditioning,
leading to models like AudioLM [12]. MuLan [27] introduces
unsupervised learning for MusicLM [28], while CLAP [29]
recently emerged as an open-source model for generating 128-
dimensional joint embeddings for audio and text. Stable audio
uses CLAP for text conditioning.

III. METHOD

We start by introducing the core components of our method.
Instead of generating raw waveforms, we model sequences of
continuous embeddings from a neural codec. These embed-
dings offer a structured and efficient representation of audio,
enabling scalable generation. While autoregressive models,
which predict one token at a time based on previous outputs,
are the most intuitive choice for handling such sequences, they
are not the only option.

A. DDPM

In this work, we use Denoising Diffusion Probabilistic
Models (DDPM) [14], [30]. DDPMs learn to reverse a Markov
chain of T steps. Starting from the original data sample x(0),
Gaussian noise is gradually added in the forward process
until the data becomes nearly indistinguishable from pure
noise x(T ) ∼ N (0, I). The model is trained to reverse this
process, denoising x(T ) step by step to reconstruct x(0).
During generation, the model begins with pure noise x(T ) and
iteratively refines it to produce a coherent sample. DDPMs
offer advantages over autoregressive models, such as parallel
sample generation, which accelerates generation times for long
sequences and enhances sample diversity.

B. Neural Codec: DAC

For the audio representation, we use the Descript Audio
Codec (DAC) to compress the audio waveform. DAC initially
converts the single dimension waveform w ∈ R512L, sampled
at 44.1kHz, into an audio embedding sequence Z ∈ RD×L

of frame rate 44.1kHz/512 ≈ 86.1fps. Subsequently, these
embeddings go through Residual Vector Quantization (RVQ)
with K = 9 codebooks to be further compressed.

A distinctive feature of DAC that significantly contributes to
our method is the dimensionality reduction of the embedding
from D = 1024 to d = 8 using learned linear projections.
Specifically in latent query process as shown in Fig. 1, we
have computation for i = 0, . . .K − 1:

X̂i = PiZi, (Pi ∈ Rd×D, Z0 = Z)

Xi = arg min
X∈Xi

∥X− X̂i∥2

Zi+1 = Zi −QiXi, (Qi ∈ RD×d)

(1)

where Pi,Qi is the learned in/out-projection weight in DAC,
Zi is the ith residual and Xi notates the ith codebook.
This mechanism was introduced to address the unbalanced
codebook visitation problem inherent in the RVQ process. The
smaller embeddings Xi are concatenated together forming the
DAC latent

X = concat(X0, . . . ,XK−1) ∈ RKd×L (2)

codebook
find nearest

-1

Fig. 1. The ith latent query step, as given in Eq. 1. Starting with the
audio embedding Z0 and iterating this process, we obtain residuals Zi, i =
1, . . . ,K − 1 and dim-reduced latents Xi, i = 0, . . . ,K − 1. In-projection
Pi maps the D-dim residual into a smaller latent X̂i of dimension d. Xi is
found through the VQ process and then projected out through Qi back into
the D dimensional space, forming the next residual.

which is our generation target. Importantly, this reduction
allows us to generate 9 smaller latents of size 8 instead of
a single embedding of size 1024, simplifying the generation
task. We call this procedure “DAC latent query process”.

C. Generation Patterns

Due to the nature of the RVQ process, it is reasonable to
expect a hierarchical structure among the K = 9 embeddings.
Analogous to Principal Component Analysis (PCA), the first
embedding X0 is likely to capture the most significant and
coarse features of Z, while subsequent embeddings X1, X2,
..., X8 capture increasingly refined details. This inherent
structure raises an important question: in what order should
the 9 smaller embeddings be generated?

Several patterns have been explored in previous work [13].
We refer the reader to Figure 1 of [13] for a schematic
representation of these possible generation patterns. Through
experimentation, we found that the “Coarse First Pattern”
proposed in VALL-E [7] performs the best for diffusion
models given a fixed training compute budget. This pattern
involves splitting the K = 9 embeddings into two groups: the
primary latent

Xpri = X0 ∈ Rd×L (3)

and the secondary latents

Xsec = concat(X1, . . . ,XK−1) ∈ R(K−1)d×L (4)

D. DiscoDiff

Fig. 2 illustrates our general pipeline, in which two diffusion
U-nets with 1.2B parameter each are trained from scratch,
while the parameters of the DAC module as well as the
conditioning models remain frozen.

Conditioning: Our approach leverages text embedding c
obtained from Flan-T5 Large [25] model, which is intro-
duced into the diffusion models via cross-attention layers.
The weights of the Flan-T5 model are kept frozen during the
training process.

Training: The primary and secondary models fpri, fsec are
trained independently, but both using an ℓ1 loss function. The
training input for the secondary model is the concatenation of
the ground-truth primary latent X(0)

0 with the noisy secondary
latents X

(t)
sec. The secondary model is specifically trained to

denoise the secondary latents.
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Fig. 2. DiscoDiff training and sampling pipeline. Our diffusion model is trained to generate the continuous DAC latents, which are obtained through
first encoding the audio and then applying the latent query. “Latent query” is the process described in Eq. 1 and Eq. 2, while “embed recon” refers to the
computation described in Eq. 5. The term V(t), the direct output of diffusion denoising U-net, refers to the “v” objective in v-diffusion.

Sampling Given a text input, we first compute the text
condition c using the Flan-T5 model. Then, the sampling
process involves two diffusion sampling loops—primary and
secondary—that work together to produce the DAC latents.
First, we sample the primary latent X̃pri ∈ Rd×L, or equiva-
lently X̃0, through running a T -step diffusion sampling loop
with primary model, starting from Gaussian noise X

(T )
pri ∼

N (0, Id×L). Next, we sample the secondary latents X̃sec with
the secondary model through a T -step diffusion sampling loop,
starting from Gaussian noise X(T )

sec ∼ N (0, I(K−1)d×L), which
yields the next latents X̃1, . . . , X̃K−1. Finally, all latents are
combined to reconstruct the embedding Z̃ ∈ RD×L using:

Z̃ =

K−1∑
i=0

Z̃i, Z̃i = QiX̌i, (Qi ∈ RD×d)

X̌i = arg min
X∈Xi

∥X− X̃i∥2, i = 0, . . .K − 1,

(5)

where Xi is the ith codebook. Finally, Z̃ is fed into the DAC
decoder to generate the final waveform.

IV. EXPERIMENTS

A. Datasets

To develop a fully open-source model, we train
DiscoDiff using two publicly available music datasets:
MTG-Jamendo [8] and Free Music Archive (FMA) [9].
Jamendo includes over 55,000 Creative Commons-licensed

tracks (3,778 hrs), annotated with genre, instrument, and
mood/theme tags. FMA offers 106,574 tracks (8,232 hrs)
with genre and artist tags. During training, audio tracks in
both datasets are chunked into 29 second segments.

Music Captioning: Since the training datasets lack cap-
tions, we generate them via the following pipeline:

1) Use SALMONN [31] to generate raw descriptions.
2) Summarize tags into concise strings (e.g., “Genre: clas-

sical; instruments: strings, harp”).
3) Use ChatGPT-3.5-turbo to generate captions through

rephrasing raw SALMONN descriptions guided by tags,
with preference given to tags over raw descriptions.

Data Cleaning: To avoid degrading model quality, we
excluded FMA tracks with low musicality (in common aes-
thetics) such as experimental music. Hence, we created a high-
quality FMA subset resembling the Jamendo dataset in musical
characteristics. This involved selecting FMA tracks with a high
likelihood of matching Jamendo’s profile:

1) Extract CLAP embeddings for each Jamendo track,
creating a set Dclap = {c(i)aud}.

2) Fit a dc-dimensional Gaussian distribution
N (c̄aud,Σaud) to approximate Jamendo’s distribution.

3) Compute the log-likelihood log p of each FMA track’s
CLAP embedding under this distribution.

4) Rank FMA tracks by their log-likelihood values and
select the top 20%.



TABLE I
COMPARISON OF FAD AND CLAP SCORES BETWEEN EXISTING MODELS AND OUR MODEL ON MUSICCAPS. DISCODIFF W/ PL IS ONLY THE

SECONDARY MODEL SAMPLED WITH GROUND-TRUTH PRIMARY LATENT. INFERENCE REFERS TO THE TIME NEEDED TO GENERATE A SAMPLE, DURATION
REFERS TO THE LENGTH OF THE SAMPLE. WE LIST IF THE CHECKPOINT IS AVAILABLE AND IF THE MODEL WAS TRAINED ON OPEN-SOURCE DATA.

Model FADvgg ↓ CLAPscore ↑ Inference (s) Duration (s) SR (kHz) Checkpoint OS Data
DAC Enc-Decoded 1.1 0.46 - - 44.1 - -
DiscoDiff w/ PL 1.3 0.43 8 s 29 s 44.1 - -
MusicGen-L [13] 3.8 0.31 242 s 95 s 32 yes no
Riffusion [17] 14.8 0.19 25 s 5 s 44.1 yes no
Noise2Music [5] 2.1 - 36 s 30 s 24 no no
AudioLDM2 [19] 3.1 0.22 107 s 10 s 48 yes yes
Moûsai [18] 7.5 0.23 49.2 s 43 s 48 no no
DiscoDiff 4.1 0.34 16 s 29 s 44.1 yes yes

Fig. 3. Mel-spectrogram comparison between ground-truth (left) and audio
generated by the secondary model given ground-truth primary latents (right).

Based on listening tests, we selected the top 20% of FMA
files according to their log-likelihood scores. We release the
likelihood scores of the FMA dataset2.

Test Dataset: For evaluation, we use the MusicCaps
dataset [28], which contains 5,521 music examples, each
10 seconds long and paired with English captions. These
examples are a curated subset of the AudioCaps dataset [32],
with 2,858 samples from the evaluation set and 2,663 samples
from the AudioSet training split.

B. Effectiveness of Secondary Model

During our evaluation of the secondary model, which is
trained to predict the secondary latents Xsec, based on the
primary latents Xpri, we observed that it reconstructs audio
that closely resembles the original input. This phenomenon
is illustrated in Fig. 3, where the generated audio (right) is
nearly indistinguishable from the ground truth (left), as shown
by the mel-spectrograms. This observation suggests that the
primary latents are primarily responsible for governing the
core content of the audio, while the secondary latents are
crucial for refining the audio’s details. This insight underpins
our coarse-to-fine strategy, where the first model generates a
coarse representation (i.e., the primary latents Xpri) and the
secondary model subsequently refines this representation by
generating the secondary latents Xsec.

2https://huggingface.co/datasets/disco-eth/jamendo-fma-captions

C. Evaluation
We test DiscoDiff on the evaluation set of MusicCaps.

Table I presents the evaluations results of DiscoDiff based
on two main metrics:

FAD (Fréchet Audio Distance): FAD [33] assesses the
quality of generated audio by comparing audio embeddings
between generated samples and ground-truth audio, using
VGGish [34] for extraction. Lower FAD values indicate better
quality.

CLAP Score: The cosine similarity between CLAP au-
dio and text embeddings [29] measures alignment between
generated audio and its caption. A higher score means better
semantic relevance.

Despite being trained on a limited amount of publicly avail-
able data, DiscoDiff demonstrates competitive performance
when compared to closed-source diffusion models. In terms
of audio quality and conditioning effectiveness, DiscoDiff
surpasses both Riffusion and Mousai. However, due to the
smaller and less diverse training data compared to models such
as Stable Audio and MusicGen, our model produces audio
with less diversity, which accounts for its comparatively lower
performance in this area. Thanks to the use of a diffusion-
based approach, DiscoDiff achieves faster inference times
than most existing models, particularly the autoregressive
architectures.

V. CONCLUSION

We introduced a coarse-to-fine generation approach within a
latent diffusion framework to generate DAC latents, which can
be decoded to 44.1 kHz audio. This approach builds on the key
insight that the primary latent dictates the core audio content,
while the secondary latents refine the finer audio details.
Consequently, we first generate the primary latent and then
conditionally generate the secondary latents. Furthermore, we
release high-quality synthetic captions and a cleaned version
of the FMA dataset, improving its musical quality.
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