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Abstract

We study the problem of computing the diameter of a network in a distributed way. In the
model of distributed computation we consider is node can transmit a different (but short) message

to each of its neighbors each synchronous round. We provide an Ω̃(n) lower bound for the number
of communication rounds needed, where n denotes the number of nodes in the network. This lower
bound is valid even if the diameter of the network is a small constant. We also show that a (3/2−ε)-
approximation of the diameter requires Ω̃(

√
n + D) rounds. Furthermore we use our new technique

to prove an Ω̃(
√
n+D) lower bound on approximating the girth of a graph by a factor 2− ε.

1 Introduction

Without doubt, a fundamental property of a network is its diameter (denote by D). In distributed
computing, the network diameter plays a prominent role as the boundary between so-called local and
global problems. In distributed complexity, some problems are global (“difficult”), in the sense that
far-apart nodes must communicate with each other in order to solve the problem. Typical examples
of such global problems include counting the total number of nodes in the network, or constructing
a spanning tree (both require time Θ(D). Global problems need at least time Ω(D), where D is the
diameter of the network. Then again, many of these global problems can be computed in O(D) time,
usually by a simple flooding/echo procedure. If a problem is not global, it is local, as it can be computed
in time independent of the diameter. Typical examples of local problems include combinatorial graph
problems such as matching or vertex cover.1

Computing the diameter of a network is surely a global problem as one cannot hope to compute the
diameter D in o(D) time. However, can the nodes of a network find its diameter in O(D) time? In this
paper, we answer this question negatively, by presenting a lower bound of Ω̃(n), where n is the number
of nodes of the network. Our lower bound can be proved by means of communication complexity, and
even holds for networks of constant diameter. Moreover, we show that a (3/2− ε)-approximation of the
diameter, and a (2− ε)-approximation of the girth also have an Ω̃(

√
n+D) distributed complexity.

All our bounds hold in the message passing model with limited bandwidth (also known as CONGEST
model, [25]), the standard model of distributed computation. In this model each node can send a different
but short message to each of its neighbors in each round. Since our lower bounds are substantial, we
hope that some of our techniques might be of use also in a non-distributed (sequential) setting. Some
of the best sequential techniques for computing the diameter use fast matrix multiplication, resulting
in time o(n ·m). In contrast, we present a lower bound of Ω̃(n) in a system that is m-parallel. That is

1More accurately, researchers distinguish between strictly local and pseudo-local problems. Strictly local problems allow for

constant-time distributed algorithms, whereas the distributed time complexity of pseudo-local problems may depend on the size of
the network, but is independent of the diameter of the network. Finding a constant approximation of a dominating set in a planar

graph is an elaborate example of a strictly local problem [19], whereas matching and vertex cover are pseudo-local [18].



a speedup of m is possible due to communicating over m edges of the network at the same time. This
indicates that the diameter problem does not allow for a high parallel speedup of sequential algorithms.

Usually the fastest known sequential algorithms (e.g. [2, 3, 33]) use the fast matrix multiplication
algorithm by Coppersmith and Winograd [5] and run in time O(n2.376). For sparse graphs well thought
specialized algorithms such as [4] are faster.

In the light of all this progress that was made on the upper bounds it is somehow surprising that
almost nothing is known about lower bounds for this problem (even for any model of computation). To
the best of our knowledge we are the first to give nontrivial lower bounds for computing the diameter
of a graph. These bounds are valid in a distributed setting.

2 Model and Basic Definitions

Model: As a model of computation we consider a synchronized network of processors represented by an
undirected graph G = (V,E). Nodes V correspond to processors and edges E correspond to connections
between the processors over which they can communicate. We denote the number of nodes of a graph
by n and the number of its edges by m. Each processor has unbounded computational power and
initially has no knowledge of the nodes in the graph G other than itself and its immediate neighbors.
We consider a round based model where every node can send B bits of information over all its edges in
one round. This model is called CONGEST(B) model [26]. Typically one chooses B = O(log n), which
is the number of bits needed to encode an ID of a node of a network (we assume IDs to be in a range
polynomial in the network size). In this case of B = O(log n) the model is just called CONGEST. We
are interested in the minimal number of communication-rounds that are needed until some problem is
solved. Therefore we assume that internal computation is free. To be more formal, we are interested in
evaluating a function h : Cn → S, where Cn is the set of all graphs over n nodes, and S is e.g. {0, 1} or
N and define distributed round complexity as follows:

Definition 2.1. (distributed round complexity). Let Aε be the set of distributed algorithms that use
(public) randomness (indicated by “pub”) and evaluate a function h on the underlying graph G over n

nodes with an error probability smaller than ε. Denote by Rdc−pubε (A(G)) the distributed round complexity
(indicated by “dc”) representing the number of rounds that an algorithm A ∈ Aε needs in order to
compute h(G) on G. We define

Rdc−pubε (h) = min
A∈Aε

max
G∈Cn

Rdc−pubε (A(G))

to be the smallest amount of rounds any algorithm needs in order to compute h.

Throughout the paper we often state results in a less formal way. Example: when h is diam (the function

that maps a graph to its diameter) and Rdc−pub0 (diam) = O(n), we often just write “the deterministic
round complexity of computing the diameter is O(n)”.

The problems we consider are computing the diameter and the girth of a graph as well as
approximations to them. A set {0, . . . , k} is denoted by writing [k]0.

Definition 2.2. (distance, diameter, girth). Let G = (V,E) be a graph and u, v ∈ V any two nodes
in G. The distance d(u, v) between u and v is the length of a shortest path between u and v. The
diameter D := maxu,v∈V d(u, v) of a graph G is the maximum distance between any two nodes of the
graph. Sometimes we write diam(G) instead of D. The girth g of a graph G is the length of the shortest
cycle in G. (If G is a forest its girth is infinity.)

Definition 2.3. (approximation). Given an optimization problem P over graphs, denote by
OPTP (G) ∈ Q the optimal solution for P on G and by A(G) the solution of an algorithm A for P
on G. We say A is ρ-approximate for P if OPTP (G) ≤ A(G) ≤ ρ ·OPTP (G) for any graph G.



To obtain our lower bounds we need knowledge on the basics of communication complexity that was first
introduced by Yao in [35]. Here, two computationally unbounded parties Alice and Bob each receive a
k-bit string a ∈ {0, 1}k and b ∈ {0, 1}k respectively. Alice and Bob can communicate with each other
one bit at a time and want to evaluate a function h : {0, 1}k×{0, 1}k → {0, 1} on their input. We assume
that Alice and Bob have access to public randomness for their computation and we are interested in
the number of bits that Alice and Bob need to exchange in order to compute h.

Definition 2.4. (communication complexity). Let Aε be the set of two-party algorithms that use public
randomness (denoted by pub) and when used by Alice and Bob, compute h on any input a to Alice and
b to Bob with an error probability smaller than ε. Let A ∈ Aε be an algorithm that computes h.
Denote by Rcc−pubε (A(a, b)) the communication complexity (denoted by cc) representing the number of
1-bit messages exchanged by Alice and Bob while executing algorithm A on a and b. We define

Rcc−pubε (h) = min
A∈Aε

max
a,b∈{0,1}k

Rcc−pub(A(a, b))

to be the smallest amount of bits any algorithm would need to send in order to compute h.

A well studied problem in communication complexity is that of set disjointness, where we are given
two subsets of [k − 1]0 and need to decide whether they are disjoint. Here, the strings a and b indicate
membership of elements to each of these sets.

Definition 2.5. (disjointness problem). The set disjointness function disjk : {0, 1}k×{0, 1}k → {0, 1}
is defined as follows.

disjk(a, b) =

{
0 if there is an i ∈ [k − 1]0 such that a(i)=b(i)=1

1 otherwise

where a(i) and b(i) are the i-th bit of a and b respectively (indicating whether an element is a member
of the corresponding set.)

We use the following basic theorem that was proven in Example 3.22 in [20].

Theorem 2.1. For any sufficiently small ε > 0 we can bound Rcc−pubε (disjk) by Ω(k).

3 Our Contribution and Related Work

In this paper we show that networks require Ω(n/B) rounds in the message passing model with limited
bandwidth to calculate the exact diameter. We obtain the lower bound even for graphs with small
diameter. This is particularly interesting, since each two nodes are in close communication range to
each other. In Section 6 we also show that an approximation to the diameter that is closer than a
factor of 3

2 to the actual diameter is impossible to obtain by using any algorithm that does not use
Ω(
√
n/B + D) rounds. This non-approximability result is already interesting by itself but even more

due to an ingenious sequential algorithm by Aingworth, Chekuri and Motwani [1]. They provided a 3
2 -

approximation in time O(m ·
√
n log n+n2 · log n) which would imply an O(

√
n log n+ n2·logn

m )-algorithm
if it could be fully parallelized in our model. Here we refer to the parallelism that comes from the fact
that one can communicate via all m edges in one time slot which can imply stronger speedup than
having n processors. An example for such a maximal speedup is computing a BFS-tree starting in some
node v on a constant-diameter graph where each node has a unique identifier. This takes sequential
time Θ(n+m) but time O(1) in our distributed model.



It might be interesting whether our lower bound can be extended to a lower bound in the sequential
model.

Finally we show an Ω(
√
n/B + D) lower bound for approximations better than 2 of the girth.

Opposed to this the diameter can be 2-approximated in time O(D) by performing a breadth-first search
from one node and taking the depth of the resulting tree as an estimate.

The technique we develop to prove our lower bounds is mainly inspired by the connection between
communication complexity and distributed computing as described in [6]. The first paper that
introduced a technique to apply lower bounds for communication complexity in a distributed setting
is [28] that proved an Ω̃(

√
n/B + D) lower bound2 on computing a minimum spanning tree (MST).

Later [7] improved their technique by using a modified graph to yield approximation lower bounds for
MST. In [6] these bounds were improved further and extended to a long list of problems including
non-approximability results. To achieve this they used the graph from [7] but a new technique on how
to apply lower bounds from communication complexity. In this paper we introduce new graphs based
on a new technique and new proofs adapted to these graphs on how to transfer the communication
complexity lower bounds. One main difference to the previous results that provided Ω̃(

√
n/B + D)

lower bounds is that our graphs are able to yield Ω(n/B +D) lower bounds.
Observe that the bounds we derive can not be obtained by just extending the technique of [6] but

require a new approach. To explain why this is the case we summarize the key-ideas of [6]. The first
step in [6] is to transfer an Ω(n) lower bound for the set disjointness problem (and the equality problem)
in communication complexity to an Ω̃(

√
n/B+D) lower bound in distributed computing using a special

graph. Then these graphs are modified to yield lower bounds for different kind of problems. Remark
that all of the lower bounds proven in [6] are of the type Ω̃(

√
n/B+D) and a main question was whether

the technique can be used to prove stronger lower bounds. For many of the problems considered in [6]
this is not possible due to almost matching upper bounds. Usually the graphs of [6] are constructed such
that any algorithm needs to send (roughly)

√
n bits either through one short path (taking time (roughly)√

n) or in parallel through (roughly)
√
n long paths of length (roughly)

√
n, taking time (roughly)

√
n

as well. To prove the lower bounds of [6] these long paths are connected in a special way depending on
the problem at hand and questions such as “Is there a minimum spanning tree of a certain weight?”
asked for these graphs heavily rely on these long paths and the above mentioned connections between
them. Exactly this fact is the reason why we cannot just use these graphs to prove lower bounds on
computing the diameter: to obtain a meaningful lower bound we would always need to assume that the
diameter of our graphs is significantly smaller than

√
n and it is not clear how we could utilize these

long paths of length (roughly)
√
n that are already longer than the diameter. E.g.: What if we want to

give the algorithm a hard time distinguishing whether the diameter is 4 or 5? A similar reasoning can
be done for computing the girth of a graph. Also for the girth we are not aware of any nontrivial lower
bounds that were proven before. Note that currently we do not see how our technique could be used to
yield or improve the results of [6] for the problems studied therein.

A further advantage regards the diameter of the graphs for which our lower bounds are valid.
Although previous constructions are very thoughtful they often only work as long as the graph that
yields the algorithm to perform bad has a diameter depending on n. E.g. in [6] the diameter is Θ(log n)
and the nice follow-up [24] also needs to use Θ(log n)-diameter graphs for a range of their parameters.
Although previous used graphs can be modified to have only a constant diameter, unfortunately this is
at the cost of getting weaker lower bounds, e.g. [7, 23, 6]. As mentioned in [10] it would be nice to have
faster algorithms for graphs of low diameter. We show that there is no hope to compute the diameter
fast by providing worst case graphs. These graphs have even small diameter (at most five).

2The set Ω̃(f(n)) includes functions differing from f(n) by up to a polylogartihmic factor, that is e.g. f(n)/ log2 n.



3.1 Further Related Work Concerning Lower Bounds in Distributed Computing. Although
[8] lists hundreds of lower bounds in distributed computing, only few are known in our model. Most of
them are already mentioned above and use similar techniques. A further bound that used techniques
related to those in [6] is the unconditional Ω(

√
lD + D) lower bound on computing random walks of

length l in diameter D graphs by [24]. The authors of [24] were able to provide strong lower bounds
that even depend on the diameter itself. One of the further rare bounds in our model is presented in
[17] and concerns MST verification. They demonstrate examples showing that this needs Ω(

√
n + D)

time.

3.2 Concerning the Diameter and All Pairs Shortest Paths in Sequential Models. One
classical approach to compute the diameter is taught in many lectures: perform a breath first search
(BFS) from each node in the graph - the depth of the deepest such BFS-tree is the diameter. This takes
time O(n2 +n ·m) in most sequential models of computing. In the distributed model considered in this
paper, this approach (if not modified) takes time O(n ·D) since each BFS-search takes O(D) time.

Due to its importance and close connection to the all pairs shortest path problem (APSP), much
effort was spent to obtain fast (sequential) algorithms for various versions of computing the diameter
and APSP, e.g. in [2, 3, 4, 5, 33]. Although we already mentioned that no lower bounds are known
for computing the diameter, at least few are known for APSP. These are of interest as well since all
known fast algorithms to compute the exact diameter (that we are aware of) solve (at least implicitly)
the all pairs shortest paths problem first and compute the diameter from the result. Furthermore lower
bounds for the diameter immediately imply lower bounds for the APSP problem. However, it seems
that there are only lower bounds for special classes of algorithms. Especially in our model no nontrivial
lower bounds are known for APSP and one has to be careful about how to define the problem in this
model – e.g. whether each node should know the n2 distances between any pair of nodes or only the
n distances between itself and any other node. More details on this and lower bounds for distributed
computation of APSP can be found in [13].

Regarding known lower bounds for APSP in sequential models, one of the first lower bounds was
provided by Kerr in [16] who showed that any oblivious APSP algorithm need to perform Ω(n3)
comparisons. Later Graham, Yao, and Yao showed in [11] that if one wants to use an information-
theoretic argument, it is nontrivial to prove an ω(n2) lower bound on the comparison-complexity of
APSP, where additions are granted for free. A result by Karger et al. [15] shows that any APSP-
algorithm (on directed graphs) that is based on path-comparison takes time Ω(n3) on some graph of n2

edges. In [29] Pettie shows that any algorithm needs Ω(m · n + n2 · log n) time to compute APSP on
directed graphs if it uses an hierarchy-based approach as in [12, 30, 34]. By hierarchy-based approach
we mean that one first computes some kind of hierarchy, and then solves n shortest paths single source
problems using n independent processes. Note that all these lower bounds can easily be broken using fast
matrix multiplication (at least when m is not too small) demonstrating that these classes of algorithms
for which lower bounds are known are rather restrictive. In contrast to this our lower bounds are valid
for all algorithms in the model we consider.

3.3 Recent Related Work and Improvements. We summarize progress since the conferece
version [9] of this paper appeared. The authors of [14, 27] independently discovered algorithms to solve
APSP in time O(n). This implies O(n)-algorithms for the diameter that almost match the lower bound
provided here. Later, [21] presented a third way to compute APSP in time O(n). Distributed lower
bounds and algorithms for various approximations to the diameter and related problems such as center,
radius and peripheral vertices were studied in [13, 14, 21, 27]. Among these, most relevant our paper is
an asymptotically almost optimal 3/2-approximation to the diameter stated in [13] that is obtained by



combining results of [14, 27] with ideas from [31]. The same runtime is achieved in [21] using a different

approach. Regarding the girth, a (2− 1/g)-approximation can be computed in time O(n
2
3 +D · log D

g )
according to [14]. Improved distributed approximations of shortest paths and construction of routing
tables were studied in [22, 32]. Our Ω̃(n)-lower bound for computing the diameter was modified to work
for graphs with diameter 2 and 3 in [14].

4 Relating Distributed Round Complexity to Two-Party Communication Complexity

We show lower bounds on the distributed runtime of several graph problems such as “what is the
diameter of the underlying graph?”. In this paper we consider decision-versions of the problems, e.g.
“Is the diameter larger than 4?”. These versions immediately imply lower bounds on the original
problems. To achieve these lower bounds we use reductions that transform two-party communication
complexity lower bounds (on the number of bits that need to be exchanged by Alice and Bob) into
lower bounds on the round complexity in distributed computing. In this section, we show how to derive
a two-party communication version f ′ from any distributed graph-function f and provide a reduction
from f ′ to f as well as relate their complexities. Later, in Sections 5, 6 and 7 we pick a “base”-function h
(e.g. the disjointness function) that can be evaluated by two parties and a communication lower bound
for this evaluation (e.g. Theorem 2.1) to derive a lower bound for f ′ and thus for f . An overview of the
whole reduction-procedure can be found in Figure 4.

R(Alice; a) R(Bob; b)

m((Ga;Ck); (Gb;Ck))

a b g(a,b) communication problem

Ga Gb f 0((Ga; Ck); (Gb; Ck)) communication problem on solving

Ck Ck a graph problem s.t.

f 0((Ga; Ck); (Gb; Ck)) = g(a; b)

f(Ga;b) graph problem s.t.f(Ga;b) = g(a; b)

Ga;b

Figure 1: Upper part: This part depends on the problem at hand and is described in the sections
devoted to the problems we study. In general we reduce the communication problem of computing
h(a, b) to a communication problem of computing f ′((Ga, Ck), (Gb, Ck)) where a part of a graph is
given to Alice and a part of it is given to Bob. According to the reduction Red, Alice constructs part
Ga (light gray, left side) from a and Bob Gb (light gray, right side) from b. Both adds the same set
of edges Ck to Ga and Gb respectively. Lower part: This part is independent of f and shared by all
of our reductions and is described in this section. We reduce the two-party communication problem
of computing f ′((Ga, Ck), (Gb, Ck)) to the graph problem of computing f(Ga,b). The graph Ga,b is
constructed by connecting Ga to Gb using Ck.

First we need to show how to simulate distributed graph-algorithms in two-party communication.
To keep things simple we introduce the notation of a cut.



Definition 4.1. (cut). Let G = (V,E) be a graph. A cut (Ga, Gb, Ck) is a partition of G into two
disjoint subgraphs Ga = (Va, Ea) and Gb = (Vb, Eb) and a cut-set Ck ⊆ E s.t. V = Va∪̇Vb and
E = Ea∪̇Eb∪̇Ck, where ∪̇ denotes the disjoint union of two sets. The cut-set Ck consists of ck := |Ck|
edges whose endpoints are in different subsets of the node-partition.

Observe that now we can define a two-party communication problem f ′ according to the graph-problem
f in a canonical way. That is we define

f ′((Ga, Ck), (Gb, Ck)) := f(G)

for any graph G and cut (Ga, Gb, Ck) of G. When computing f ′((Ga, Ck), (Gb, Ck)) Alice gets input
(Ga, Ck) and Bob gets input (Gb, Ck). Now we formally show how f ′ can be reduced to f and analyze
the complexity-relation in Theorem 4.1.

Lemma 4.1. The function f ′ can be reduced to f .

Proof. Let ((Ga, Ck), (Gb, Ck)) be an input to f ′. Given a distributed algorithm A for f , Alice and
Bob can use algorithm A to solve f ′((Ga, Ck), (Gb, Ck)) in direct communication. We hence forth call
Ma(r) the set of messages sent by algorithm A over the edges in the cut-set Ck from nodes in Va to
nodes in Vb in the graph G (induced by the cut (Ga, Gb, Ck)) in round r. Conversely we call M b(r) the
messages sent from Vb to Va in round r. We show how Alice simulates A on the nodes of Va ⊆ Va,b of
Ga,b without knowing the state of the nodes Vb. Bob does the same for Gb. In each simulated round r
of the algorithm A, Alice goes through the following steps:

1. Alice collects the messages Ma(r) that nodes in Va wanted to send over edges in Ck during round
r of the execution of algorithm A and sends Ma(r) to Bob using their communication channel.

2. Alice receives M b(r) from Bob using their communication channel. Alice provides this information
to the according simulated nodes in Va.

At the same time Bob does the same with Vb and sends according messages to Alice. Note that using
this scheme, Alice and Bob can simulate A on G in direct communication.

In the following sections we want to further reduce a “base-”function (such as disjk) of type
h : {0, 1}k × {0, 1}k → {0, 1} to f ′ and define:

Definition 4.2. A ck-reduction

Red : {Alice,Bob} × {0, 1}k → {(H,Ck) : G is any graph and H is any subgraph of

G such that (H,G \H,Ck) is a cut of G with |Ck| = ck}

is a function that transforms any h-inputs a, b into inputs for f ′ s.t. h(a, b) =
f ′(Red(Alice, a),Red(Bob, b)).

Observe that the size of Ck does not depend on a nor b.

Remark 4.1. Using a reduction as above we obtain Rcc−pubε (g) = Rcc−pubε (f ′) since the reduction
requires h(a, b) = f ′(Red(Alice, a),Red(Bob, b)) which in turn implies that the same number of bits
need to be exchanged when computing h(a, b) and f ′(Red(Alice, a),Red(Bob, b)).

We state the relation of the complexities of f ′ and f depending on ck since it turns out that exactly
these ck edges can be used to simulate the single communication channel of Alice and Bob.



Theorem 4.1. Let B ≥ 1 and f be any function on graphs and f ′ the function derived from f as
described above. Let h be a base-function that can be reduced to f ′ using a ck-reduction. We can bound

Rcc−pubε (f ′)

2ck ·B
≤ Rdc−pubε (f).

Proof. Given a graph G and cut (Ga, Gb, Ck), where Ck is of size ck. We know that Rcc−pubε (f ′) is a
lower bound on the number of bits that any distributed algorithm A must send over edges in Ck. This is
because the information a and b are stored in Ga and Gb and these parts of the graph can use exactly the

edges in Ck to communicate with each other. Now these bits can not be encoded in less than Rcc−pubε (f ′)
B

messages in our distributed model and we conclude that Rcc−pubε (f ′)
B messages need to be sent over cut

Ck. In each round any algorithm can send at most |Ck| messages via Ck into each direction and we

obtain that Rcc−pubε (f ′)
2|Ck|B is always a lower bound for Rdc−pubε (f). Observe that here we abstract away how

algorithm A works in detail - its round complexity could be actually much higher than suggested by
this bound. Due to Remark 4.1 the statement follows.

We finish this section by defining a map that is used in each lower-bound section.

Definition 4.3. Denote by m a map that maps f ′-inputs ((Ga, Ck), (Gb, Ck)) to the graph Ga,b that
corresponds to the cut, that is Ga,b := (Va,b, Ea,b), s.t. Va,b := Va ∪ Vb and Ea,b := Ea ∪ Eb ∪ Ck.

5 Diameter Lower Bound

Theorem 5.1. For any n ≥ 10 and B ≥ 1 and sufficiently small ε any distributed randomized ε-error
algorithm A that computes the exact diameter of a graph requires at least Ω

(
n
B

)
time for some n-node

graph even when the diameter is at most 5.

Remark 5.1. The diameter of the graph used to prove the theorem above does not depend on n.
Furthermore this theorem can be extended to hold for any larger diameter. However we are interested
in small diameters, since then communication distances are short.

Deciding whether a graph G has diameter less than 5 or not is the decision-version diam5 of the function
diam, that is

diam5(G) :=

{
1 : diam(G) < 5
0 : else

In order to prove Theorem 5.1 we follow the high-level idea explained in Section 4, where f is diam5,
and derive a function diam′5 from diam5 as described in Section 4. To prove bounds depending on n, we
choose the length k of the input to the base-function h to be a function k(n)2 depending on n and set
k(n) :=

⌊
n
10

⌋
. As base-function h we consider the disjk(n)2 problem. Now we need to define a reduction

Red that given inputs a and b to h maps (Alice, a) and (Bob, b) to inputs (Ga, Ck(n)2) and (Gb, Ck(n)2)
for diam′5. During the reduction Red, Alice defines the following sets of nodes L and L′, Bob defines
R and R′ (as displayed in Figure 2):

L = {lν |ν ∈ [2k(n)− 1]0} R = {rν |ν ∈ [2k(n)− 1]0}
L′ = {l′ν |ν ∈ [2k(n)− 1]0} R′ = {r′ν |ν ∈ [2k(n)− 1]0}

As a first step (that is independent of the input a) in constructing Ga, Alice connects nodes lν with
nodes l′ν for all ν ∈ [2k(n)−1]0. In the same way Bob connects rν with r′ν to construct Gb. Furthermore



Ga Ck2n Gb

cL cR

l00 l0 r0 r0
0

l01 l1 r1 r0
1

l02 l2 r2 r0
2

l03 l3 r3 r0
3

w0 w1

upper

part

lower

part

Figure 2: The above graph Ga,b is for n = 20. Therefore we set k(n) = 2 and add two fill-up nodes. and
results from inputs a = (0, 0, 0, 1), b = (0, 1, 1, 1) using the reduction Red. Accordingly the dashed red
edges represent a and b. To be more detailed, edge (l0, l2) represents a(0) = 0, edge (l0, l3) represents
a(1) = 0, edge (l1, l2) represents a(2) = 0 and edge (r0, r2) represents b(0) = 0. This causes the diameter
to be larger than 4 witnessed by d(l′1, r

′
3) = 5. Using Theorem 5.2 we conclude that a and b are not

disjoint, which is indeed true.

Alice adds a node cL to Ga that is connected to all nodes in L and Bob adds a node cR to Gb that is
connected to all nodes in R. Then Alice adds edges between all nodes lν and lµ where ν, µ < k(n), such
that the subgraph induced by the upper nodes of L is a clique. She is doing the same with the lower
nodes of L by adding edges between all nodes lν and lµ where ν, µ ≥ k(n). Similarly Bob adds (clique-)
edges between all nodes rν and rµ where ν, µ < k(n) and ν, µ ≥ k(n) respectively. Furthermore, for each
i ∈ [k(n)2 − 1]0, if a(i) = 0, Alice connects node li mod k(n) from the upper half to node l

k(n)+
⌊

i
k(n)

⌋ in

the lower half by an edge. An example of this can be found in Figure 2 with detailed explanations in the
caption. Note that this is the only part that depends on the input a and we can represent all values of the
[k(n)2−1]0 bits of a by the k(n)2 possible edges between the k(n) nodes {lν : ν ∈ [k(n)−1]0} and the k(n)
nodes {lν : ν ∈ {k(n), . . . , 2k(n)− 1}}. We call the resulting graph Ga = (Va, Ea) (see formal definition
below) and define Gb in a similar way depending on b. So far Ga and Gb contain the 8k(n) nodes in
L,L′, R,R′ as well as cL and cR. Therefore we add n− 8k(n)− 2 fill-up nodes {w0, . . . , wn−8k(n)−3} and
edges (wi, r0) to Gb. This ensures that the final graph m((Ga, Ck(n)2), (Gb, Ck(n)2)) has exactly n nodes
such that the lower bound holds for all n. More formally we have:



Va := L ∪ L′ ∪ {cL}
Ea :=

⋃2k(n)−1
ν=0 {(lν , l′ν), (lν , cL)}
∪{(lν , lµ) : ν 6= µ ∧ ν, µ ∈ [k(n)− 1]0}
∪{(lν , lµ) : ν 6= µ ∧ ν, µ ∈ {k(n), . . . , 2k(n)− 1}}
∪{(li mod k(n), lk(n)+

⌊
i

k(n)

⌋) : i ∈ [k(n)2 − 1]0, a(i) = 0}

Vb := R ∪R′ ∪ {cR} ∪ {wi : i ∈ [n− 8k(n) + 1]0}
Eb :=

⋃2k(n)−1
ν=0 {(rν , r′ν), (rν , cR)}
∪{(wi, r0) : i ∈ [n− 8k(n) + 1]0}
∪{(rν , rµ) : ν 6= µ ∧ ν, µ ∈ [k(n)− 1]0}
∪{(rν , rµ) : ν 6= µ ∧ ν, µ ∈ {k(n), . . . , 2k(n)− 1}}
∪{(ri mod k(n), rk(n)+

⌊
i

k(n)

⌋) : i ∈ [k(n)2 − 1]0, b(i) = 0}

Finally we define the cut-set Ck(n)2 := {(lν , rν) : ν ∈ [2k(n) − 1]0} to consist of the 2k(n) edges
connecting each lν to the corresponding rν and threfore Ga to Gb. Thus Red is a 2k(n)-reduction.
Observe that (Ga, Ck(n)2) can be computed from a without knowing b and (Gb, Ck(n)2) can be
computed from b without knowing a, thus the reduction Red has the desired properties. Now we
set Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) (see Definition 4.3).

Lemma 5.1. The graph Ga,b is an n-node graph with diameter at most 5.

Proof. The graph Ga,b contains the 8k(n) nodes in L, L′, R and R′. Furthermore it contains
{cL, cR} and n − (8k(n) + 2) fill-up nodes. Thus, in total there are n nodes in the graph. Observe
that due to the choice of k(n) the number n − (8k(n) + 2) of fill-up nodes is always non-negative:
n − (8k(n) + 2) ≥ 10k(n) − (8k(n) + 2) ≥ 0 where the first inequality follows from the choice of k(n)
and the second inequality is a result of the fact that n ≥ 10 implies k(n) ≥ 1.

We prove that the diameter is at most 5 by showing that for any nodes u and v in Ga,b the distance
d(u, v) is at most 5. To do this we distinguish three cases:

1. Nodes u and v are both in Ga: To observe this we note that every node in Ga is connected to
cL via at most 2 hops. This implies that the distance between any two nodes u and v in Ga is
d(u, v) ≤ d(u, cL) + d(cL, v) ≤ 4.

2. Nodes u and v are both in Gb: This case is completely analog to the previous, thus d(u, v) ≤ 4.

3. Node u is in Ga and node v is in Gb (or the other way round): From u it is at most one hop
to some node lν ∈ L and from v it is at most one hop to some node rµ ∈ R. Then there is the
following u-v-path of length 5: (u, lν , cL, lµ, rµ, v). Thus we conclude that d(u, v) ≤ 5.

As mentioned in the high-level description we relate the problem of deciding whether a and b are disjoint
to the problem of computing the diameter of a graph. To achieve this we extend the analysis of the
diameter of Ga,b.

Theorem 5.2. The diameter of Ga,b is 4 if the sets a and b are disjoint, else it is 5.

Proof. If a and b are not disjoint, then there exists an i such that a(i) = b(i) = 1. Let ν := i mod k(n)

and µ = k(n) +
⌊

i
k(n)

⌋
. We show that the two nodes l′ν and r′µ have distance at least 5. To observe

this we first note that any l′ν-r′µ-path must contain the neighbors lν and rµ of l′ν and r′µ. Furthermore



the path must contain an edge from the cut-set Ck(n)2 since these are the only edges that connect Ga
to Gb. Thus there are already three edges in any path. To obtain a path of length 4 we can only add
one more edge from either Ga or Gb. When looking at the construction, the only two paths of length 4
that we can hope for are (l′ν , lν , lµ, rµ, r

′
µ) and (l′ν , lν , rν , rµ, r

′
µ). However, due to a(i) = b(i) = 1 and the

choice of ν and µ the construction of Ga,b does neither include the edge (lν , lµ) nor the edge (rν , rµ).
Thus none of these paths exists and we conclude that d((l′ν , r

′
µ) > 4. Combined with Lemma 5.1 this

implies that d((l′ν , r
′
µ) = 5 if a and b are not disjoint.

Conversely if a and b are disjoint, the diameter of Ga,b is at most 4. We prove this by showing that
for any nodes u and v in Ga,b the distance d(u, v) is at most 4. To do this we distinguish three cases:

1. Nodes u and v are both in Ga: Same as in proof of Lemma 5.1, thus d(u, v) ≤ 4.

2. Nodes u and v are both in Gb: Same as in proof of Lemma 5.1, thus d(u, v) ≤ 4.

3. Node u is in Ga and node v is in Gb (or the other way round): Without loss of generality we can
assume u ∈ Va and v ∈ Vb. From u it is at most one hop to some node lν ∈ L and from v it is at most
one hop to some node rµ ∈ R. Since we assumed that a and b are disjoint there must be at least
one of the edges (lν , lµ) or (rν , rµ). Thus there is at least one of the paths (lν , lµ, rµ) or (lν , rν , rµ)
witnessing that d(lν , rµ) ≤ 2. Thus we conclude that d(u, v) ≤ d(u, lν) + d(lν , rµ) + d(rµ, v) ≤ 4.

Proof. (of Theorem 5.1) To solve the disjk(n)2 function using any algorithm for diam5 we use the
reduction from diam′5 to diam5 presented in Section 4 and the reduction Red from disjk(n)2 to diam′5
presented above. We can apply Theorem 4.1 and know that

Rcc−pubε (disjk(n)2)

2|Ck(n)2 | ·B
≤ Rdc−pubε (diam5)

Due to Theorem 2.1 we know that Rcc−pubε (disjk(n)2) is at least Ω(k(n)2). Together with the fact

that |Ck(n)2 | = 2k(n) we conclude that Rdc−pubε (diam5) = Ω(k(n)/B). We obtain the stated result since

we chose k(n) :=
⌊
n
10

⌋
.

6 Diameter Approximation Lower Bound

Theorem 6.1. For any 1 > δ > 0, n ≥ 12
⌈

3
4δ

⌉
+ 8 and B ≥ 1 and sufficiently small ε, any distributed

ε-error algorithm A that (3
2 − δ)-approximates the diameter of a graph requires at least Ω

(√
δn
B

)
time

for some n-node graph with diameter at most 16
⌈

3
4δ

⌉
+ 4.

Remark 6.1. The diameter of the graph used to prove the theorem above does not depend on n.
Furthermore this theorem can be extended to hold for any larger diameter. However we are interested
in small diameters, since then communication distances are short.

The high-level idea is to introduce a gap between the diameters within a family of graphs. Graphs Ga,b
constructed from disjoint inputs a and b have a diameter that is a factor of at least (3

2 − δ) shorter than
the diameter of graphs constructed from inputs that were not disjoint.

First we introduce the constant ps that in the construction of the graphs defines the length of “short
paths” that we add to the graphs. We set this length to be ps :=

⌈
3
4δ

⌉
. During the reduction we construct

graphs Ga,b from a and b such that any (3
2 − δ)-approximation algorithm for the diameter estimates

diam(Ga,b) to be less than 6ps if a and b are disjoint. If a and b are not disjoint the diameter (and thus



the estimate) is always larger than 6ps. Since the reduction Red delivers the above promise-problem3

we can just use the function diam6ps as the decision-version of (3
2 − δ)-approximating the diameter.

diam6ps(G) :=

{
1 : diam(G) < 6ps
0 : else

In order to prove Theorem 6.1 we follow the high-level idea explained in Section 4 and derive a
function diam′6ps from diam6ps as described in Section 4. Like in the previous section, to prove lower
bounds depending on n, we choose the length k of the input to the base-function h to be a function

k(n)2 depending on n and set k(n) :=

⌊√
n

12d 3
4δe+8

⌋
. This time we consider the disjk(n)2 problem to

be the base-function h. Now we need to define a reduction Red that given inputs a and b to h, maps
(Alice, a) and (Bob, b) to inputs (Ga, Ck(n)2) and (Gb, Ck(n)2) for diam′6ps . We define L, L′, R and R′

Ga Ck2n Gb
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Figure 3: Graph used to calculate disjk(n)2 when given a diameter estimator-algorithm. The graph in
the example is for n = 200 and δ = 1/4, thus ps = 3 and pl = 6 and k(n) = 2. Let the input strings be
a = (0, 0, 0, 1) and b = (0, 1, 1, 1). The long Path PA0,2 represents a(0) = 0, the long path PA0,3 represents

a(1) = 0, the long path PA1,2 represents a(2) = 0, the long path PB0,2 represents b(0) = 0. Note that only
important nodes are explicitly displayed. In Ga we include 100− n̄a = 59 fill-up nodes, in Gb we include
100− n̄b = 69 fill-up nodes. Since the sets are not disjoint the diameter is larger than 6ps as witnessed
by d(l′1, r

′
3) = 6ps + 1.

as in the previous section. Given inputs a ∈ {0, 1}k(n)2 and b ∈ {0, 1}k(n)2 Alice constructs Ga and Bob
constructs Gb. For each ν ∈ [2k − 1]0 Alice adds a short path TAν of length ps connecting nodes lν to
l′ν as depicted in Figure 3. Now Alice adds long paths PAν,µ of length pl := 2ps for ν 6= µ ∈ [k − 1]0 and
for ν 6= µ ∈ {k, 2k − 1}. Furthermore for each i ∈ [k(n)2 − 1]0 with a(i) = 0 Alice computes ν := i

mod k(n) and µ := k(n) +
⌊

i
k(n)

⌋
and adds a long path PAν,µ connecting lν to lµ. The graph Gb is

constructed by Bob in the same way using paths TBν and PBν,µ that are added depending on b.
Now we set the cut-set Ck(n)2 that connects Ga with Gb to be Ck(n)2 := ∪i∈[2k(n)−1]0{(li, ri)}. Thus

Red is a 2k(n)-reduction. We could define Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) (see Definition 4.3), but

3In a promise problem the input is promised to belong to a subset of all possible inputs.



unfortunately the graph would not necessarily have n nodes yet as each of Va and Vb is smaller than
n/2.E.g. let n̄a denote the number nodes that were added to Va so far. Then we know:

n̄a = |L|+ |L′|+ #nodes in paths of Ga

= 2k(n) + 2k(n) + 2k(n) · (ps − 1)︸ ︷︷ ︸
nodes in TAi

+
1

2
(k(n)− 1)k(n)(pl − 1)︸ ︷︷ ︸

all-to-all connections between

nodes l0, . . . , lk(n)−1

+
1

2
(k(n)− 1)k(n)(pl − 1)︸ ︷︷ ︸

all-to-all connections between

nodes lk(n), . . . , l2k(n)−1

+
∑

i∈[k(n)2−1]0:a(i)=0

(pl − 1)

︸ ︷︷ ︸
paths depending on a

and can bound this further by

≤ 4k(n) + 2k(n) · ps + 2k(n)2 · (pl − 1)

≤ k(n)2 · (6ps + 4)

=

⌊√
n

12
⌈

3
4δ

⌉
+ 8

⌋2

·
(

6

⌈
3

4δ

⌉
+ 4

)
≤ n/2

and can show n̄b ≤ n/2 in a similar way. However, we want our lower bound to be valid for all graph-sizes
n′ and thus need to fill up the graph with nodes until there are n nodes in total. Therefore we add as
many fill-up nodes wA0 , . . . , w

A
n/2−n̄a−1 to Ga (each connected by an edge to l0) such that |Va| = n/2 and

as many fill-up nodes wB0 , . . . , w
B
n/2−n̄b−1 to Gb (each connected by an edge to r0) such that |Vb| = n/2.

Note that in case n is odd, we can just add one more fill-up node e.g. to Gb.
Finally we set Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) using Definition 4.3 of m.

Lemma 6.1. If a = b = 1k(n)2 the graph is disconnected. Otherwise the graph Ga,b over n nodes
has diameter at most 16ps + 4. Thus the lower bound on approximating the diameter is valid when
communication distances are short.

Note that it is likely that with a more detailed analysis the diameter can be bounded to be even smaller.

Proof. In case a = b = 1k(n)2 there are no connections between the nodes in the upper part, these are
the nodes in {li, l′i, ri, r′i, wAν , wBµ : i ∈ [k− 1]0, ν ∈ {0, . . . , n/2− n̄a− 1}, µ ∈ {0, . . . , n/2− n̄b− 1}}, and
the nodes in the lower part (these are all nodes not listed above). This is due to the construction which
does not add any long path with end-points in both parts. However, these long paths are the only way
to connect these parts.

For the second statement we can assume that it is not the case that a = b = 1k(n)2 . Note that the
diameter is at most two times the distance from l0 to the node with largest distance to l0. Let u be any
node in Ga,b we show that d(u, l0) ≤ 8ps + 2 by analyzing two cases:

1. Node u is in the upper part of Ga,b: From u it is at most ps hops to some node l ∈ L (or r ∈ R).
Due to the construction there is always a long path connecting l to l0 (or r to r0 and then an edge
connecting r0 to l0). Thus d(u, l0) ≤ ps + pl + 1 ≤ 3ps + 1.



2. Node u is in the lower part of Ga,b: Since we assume that it is not the case that a = b = 1k(n)2

there must be some node v in the lower part that is connected to some node w in the upper part
by a long path. Now with the same argument as in the first case we obtain d(w, l0) ≤ ps + pl + 1.
Applying this argument in the lower part we obtain d(u, v) ≤ ps + pl + 1. Thus, in total we have
that d(u, l0) ≤ d(u, v) + d(v, w) + d(w, l0) ≤ 2ps + 3pl + 2 which in turn is less or equal to 8ps + 2.

Hence the diameter is at most 16ps + 4. note that this bound can be optimized.

Lemma 6.2. The sets a and b are disjoint, if and only if the estimate d′ of the diameter of Ga,b is less
than 6ps.

Proof. If a and b are not disjoint there exists an i such that a(i) = b(i) = 1. Let ν := i mod k(n) and

µ := k(n)+
⌊

i
k(n)

⌋
. We show that the two nodes l′ν and r′µ have distance greater than 6ps. First observe

that any path that connects them includes nodes lν and rµ. Thus d(l′ν , r
′
µ) = d(lν , rµ) + 2ps. Now we

argue that nodes lν and rµ must have a distance greater than 2pl = 4ps. This is since a(i) = b(i) = 1
implies that there is neither a direct path between lν to lµ nor from rν to rµ and one need to make a
detour visiting another node v ∈ L ∪ R. Due to the construction of Ga,b this takes at least two long
paths and one edge. Thus d(l′ν , l

′
µ) ≥ 2pl + 2ps + 1 = 6ps + 1. Which implies that the diameter d is at

least 6ps. Therefore the estimate d′ to the diameter produced by any approximation algorithm is larger
or equal to 6ps as well.

Conversely assume that a and b are disjoint and take nodes u and v that define the diameter, that
is u and v are chosen such that d(u, v) is maximal with respect to Ga,b. There is a node u′ ∈ L∪R such
that d(u, u′) ≤ ps. Similarly there is a node v′ ∈ L∪R such that d(v, v′) ≤ ps. Since a and b are disjoint
the construction always yields a connection of length 1 + pl between any two nodes in u′, v′ ∈ L ∪ R.
Thus d = d(u, v) ≤ 2ps + 2 + pl = 4ps + 2. We obtain for the estimate d′ for the diameter d of any
3
2 − δ-approximation algorithm that

d′ ≤
(

3

2
− δ
)
d

=

(
3

2
− δ
)

(4ps + 2)

≤
(

3

2
− 3

4ps

)
(4ps + 2),

where we use the definition of ps that depends on δ in the last inequality. This in turn is smaller than
6ps − 3

2ps
< 6ps and proves the statement.

Proof. (of Theorem 6.1). To solve the disjk(n)2 problem using any (3/2−δ)-approximation-algorithm for
diam we use the reduction Red from disjk(n)2 to diam′6ps and observed that Red delivered a promise-
problem such that there is a reduction from diam′6ps to diam via diam6ps . However, we need to assume
that either a or b contains at least one 0 in order to apply lemma 6.1. Fortunately we can ignore this
case since Alice and Bob can easily determine whether a = b = 1k(n)2 s.t. D = ∞ using 2 bits of
communication. In this case Ga and Gb are not connected to each other. This does not affect our
asymptotic lower bounds. According to Theorem 4.1, we know that

Rcc−pubε (disjk(n)2)

2|Ck(n)2 | ·B
≤ Rdc−pubε (diam6ps)



Due to Theorem 2.1 we know that Rcc−pubε (disjk(n)2) is at least Ω(k(n)2). Together with the fact

that |Ck(n)2 | = 2k(n) we conclude that for all inputs to h of size k(n) we obtain Rdc−pubε (diam6ps) =

Ω(k(n)/B). We obtain the result since we chose k(n) :=

⌊√
n

12d 3
4δe+8

⌋
= Θ(

√
δn).

7 Girth Approximation Lower Bound

Theorem 7.1. For any δ > 0, n ≥ 32
⌈

2
δ

⌉
− 4 and B ≥ 1 and sufficiently small ε, any distributed

(2 − δ)-approximate ε-error algorithm A that estimates the girth of a graph requires at least Ω
(√

δn
B

)
time for some n-node graph with diameter at most

(
8
⌈

2
δ

⌉
+ 2
)

Remark 7.1. The diameter and girth of the graph used to prove the theorem above do not depend on n.
Furthermore this theorem can be extended to hold for any larger diameter. However we are interested
in small diameters, since then communication distances are short.

The high-level idea is to introduce a gap between the girths within a family of graphs. Graphs Ga,b
constructed from disjoint inputs a and b have a girth that is a factor shorter than the girth of graphs
constructed from inputs that were not disjoint. Thus a good enough approximation-algorithm can
distinguish them.

First we define the constants ps :=
⌈

2
δ

⌉
and pl := 4ps indicating the length of short/long paths that

we add to a graph in the reduction Red. During the reduction we construct graphs Ga,b from a and b
such that any (2− δ)-approximation algorithm for the girth estimates girth(Ga,b) to be less than pl. If
a and b are not disjoint the girth (and thus the estimate) is always larger than pl. Since the reduction
Red delivers the above promise-problem we can just use the function girthpl as the decision-version of
(2− δ)-approximating the girth.

girthpl(G) :=

{
1 : girth(G) < pl
0 : else

In order to prove Theorem 7.1 we follow the high-level idea explained in Section 4 and derive a
function girth′pl from girthpl as described in Section 4. To prove lower bounds depending on n, we
choose the length k of the input to the base-function h to be a function k(n)2 depending on n and set

k(n) :=

⌊√
n

32d 2δe−4

⌋
. As base-function h we consider the disjk(n)2 problem. Now we need to define a

reduction Red that given inputs a and b to h, maps (Alice, a) and (Bob, b) to inputs (Ga, Ck(n)2) and
(Gb, Ck(n)2) for girth′pl . During the reduction Red, Alice defines the set of nodes L and Bob defines R as

in the previous section. Given input a ∈ {0, 1}k(n)2 , Alice constructs Ga and given input b ∈ {0, 1}k(n)2

Bob constructs Gb.
For each i ∈ [k(n)2 − 1]0, if the input is a(i) = 1, Alice adds a short path PAν,µ connecting lν to lµ

of length ps (with ν = i mod k(n) and µ = k(n) +
⌊

i
k(n)

⌋
). If a(i) = 0, Alice adds a long path PAν,µ of

length pl. Alice also adds a long path PAν,µ of length pl between all pairs lν and lµ that were not already

connected above. An example for this is displayed in Figure 4. In a similar way Bob adds paths PBν,µ to
Gb depending on b. Thus Red is a 2k(n)-reduction.

We set the cut-set Ck(n)2 that connects Ga with Gb to be Ck(n)2 := ∪i∈[2k−1]0{(li, ri)}. Now we could
define Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) (see Definition 4.3), but observe that the number of nodes
that we added so far to Va and Vb is not necessarily n yet. Denote by n̄a the number of nodes that have
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Figure 4: Graph used to calculate disjk(n)2 when given a girth estimator-algorithm. The graph in the
example is for n = 1010 (only important nodes are explicitly displayed) and δ = 1/4, thus k(n) = 2,
ps = 8 and pl = 32. We use a = (0, 0, 0, 1) and b = (0, 1, 1, 1). The green dotted lines represent
short paths; the red dashed lines represent long paths. To be more detailed, the long l0 − l2-path PA0,2
represents a(0) = 0, the long l0 − l3-path PA0,3 represents a(1) = 0, the long l1 − l2-path PA1,2 represents

a(2) = 0 and the short l1 − l3-path PA1,3 represents a(3) = 1. The long r0 − r2-path PB0,2 represents

b(0) = 0, the short r0− r3-path PB0,3 represents b(1) = 1, the short r1− r2-path PB1,2 represents b(2) = 1,

the short r1 − r3-path PB1,3 represents b(3) = 1. In this example, Ga contains 5 long paths and 1 short
path. Since Ga should contain 505 nodes, 505− n̄a = 339 fill-up nodes are in Ga. On the other side, Gb
contains 3 long paths and 3 short path. Since Gb should contain 505 nodes as well, 505− 4− n̄b = 387
fill-up nodes are in Gb. Since the sets are not disjoint, there is a cycle of length 2ps + 2 involving edges
(l1, r1) and (l3, r3), as well as paths PA1,3 and PB1,3. This cycle is indicated by a light-gray background.
Note, that the constants in the proof could be improved.

been added to Va so far. We have that

n̄a = |L|+ nodes in paths of Ga

= 2k(n) + (ps − 1) ·
∑

i∈[k(n)2−1]0

a(i)

︸ ︷︷ ︸
nodes in short paths

+ (pl − 1) ·

1

2
(2k(n))(2k(n)− 1)−

∑
i∈[k(n)2−1]0

a(i)


︸ ︷︷ ︸

nodes in long paths

,

which can be bounded by 2k(n) + (pl − 1) · k(n)(2k(n)− 1). Since pl ≥ 4, we can further bound this to
be

≤ 2k(n)2 · (pl − 1)

= 2 ·

⌊√
n

32
⌈

2
δ

⌉
− 4

⌋2

·
(

4

⌈
2

δ

⌉
− 1

)
≤ n/2



One can show n̄b ≤ n/2 in a similar way. However, we want our lower bound to be valid for all graph-
sizes n and thus need to fill up the graph with nodes until it is large enough. Therefore we add fill-up
nodes wA0 , . . . , w

A
n̄a−n/2−1 to Ga (each connected by an edge to l0) such that |Va| = n/2 and fill-up nodes

wB0 , . . . , w
B
n/2−n̄b−1 to Gb (each connected by an edge to r0) such that |Vb| = n/2. Note that in case n

is odd, we can just add one more fill-up node e.g. to Gb.
Finally we set Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) (see Definition 4.3).

Lemma 7.1. Any graph Ga,b as constructed above has diameter at most 8
⌈

2
δ

⌉
+2. Thus the lower bound

on approximating the girth is valid even when communication distances are short.

Proof. Let u and v be any nodes in Va,b. From u and v respectively to the nearest nodes u′, v′ ∈ L ∪R
it is at most pl+1

2 hops (e.g. if u is in the middle of a long path in Ga). Since nodes u′ and v′ are in
L ∪R they are connected by a path PAν,µ or PBν,µ (with appropriate ν, µ) of length pl and one edge that

connects L and R. Therefore Ga,b has diameter at most 2pl + 2 = 8
⌈

2
δ

⌉
+ 2.

Lemma 7.2. The sets a and b are disjoint, if and only if the estimated girth g′ of Ga,b is at least pl.

Proof. First we prove that if a and b are not disjoint, there is a cycle of length 2ps + 2 causing that any
(2 − δ)-estimate g′ is less than pl. Later we show that if a and b are disjoint, there is no cycle shorter
than pl.

If a and b are not disjoint there exists an i such that a(i) = b(i) = 1. The cycle(
PAν,µ, (rν , lν)), PBν,µ, (lµ, rµ)

)
consisting of two short paths and two edges has length (2ps + 2) due to the definition of the paths.
Since we know for the estimate g′ that g′ ≤ (2 − δ)g where g is the actual girth of graph Ga,b. From

this we conclude that g′ ≤ (2− δ)g ≤
(

2− 2
ps

)
g by using the definition of ps. Inserting the value of g

we obtained above, we get g′ ≤
(

2− 2
ps

)
(2ps + 2) = 4ps − 4

ps
< pl

Conversely if a and b are disjoint, there is no cycle shorter than pl. We distinguish four cases, the
two most important ones are displayed in the Figures 5 and 6.

1. In case that the smallest cycle contains a long path: This means that the real girth g is at least
pl and thus the estimator g′ is also at least pl.

2. In case that the the smallest cycle contains no path of length pl but is completely contained in
Ga: Since there can be no long path in the cycle and since short paths go only from the upper
to the lower half (by construction), and two nodes ν, µ can only be connected by one path, e.g.
PAν,µ, the cycle must contain at least 4 short paths, see Figure 5. Hence the girth g of Ga,b and
therefore its estimate g′ is at least 4ps = pl.

3. In case that the smallest cycle contains no path of length pl but is completely contained in Gb:
This case is completely analog to the previous case.

4. In case that the smallest cycle contains no path of length pl but nodes from both Ga and Gb:
The cycle must contain 2 edges of type (rν , lν), (rµ, lµ). If both ν and µ are smaller than k(n) or
both are at least k(n), this means that neither the left nor the right nodes are in the upper/lower
part and can be connected by one short path each. Therefore the cycle contains at least 4 short
paths. Conversely if ν is smaller than k(n) and µ is at least k(n) or the other way around, it is
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Figure 5: Case 2 of Lemma 7.2: A smallest cycle within Ga that contains no path of length pl must
contain 4 paths of length ps.

not possible that those edges are directly connected by short paths on both sides, because a and
b are disjoint. The connection-path on the left / right side which is not connected by one short
path contains at least 3 short paths, see Figure 6. Hence the girth and estimator of Ga,b is at least
4ps + 2 > pl.

Proof. (of Theorem 7.1). To solve the disjk(n)2 problem using any (2− δ)-approximation algorithm for
girth we use the reduction Red from disjk(n)2 to girthpl and observed that Red delivers a promise-
problem such that there is a reduction from girthpl to girth via girth′pl . Now we apply Lemma 7.2 and
use Theorem 4.1 to derive that

Rcc−pubε (disjk(n)2)

2|Ck(n)2 | ·B
≤ Rdc−pubε (girthpl)

Due to Theorem 2.1 we know that Rcc−pubε (disjk(n)2) is at least Ω(k(n)2). Together with the fact

that |Ck(n)2 | = 2k(n) we conclude that for all inputs to h of size k(n) it is Rdc−pubε (girthpl) ∈ Ω(k(n)/B).

We obtain the stated result since we chose k(n) :=

⌊√
n

32d 2δe−4

⌋
.
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