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Abstract

Clustering, a fundamental task in data science and machine
learning, groups a set of objects in such a way that objects
in the same cluster are closer to each other than to those in
other clusters. In this paper, we consider a well-known struc-
ture, so-called r-nets, which rigorously captures the proper-
ties of clustering. We devise algorithms that improve the run-
time of approximating r-nets in high-dimensional spaces with
`1 and `2 metrics from Õ(dn2−Θ(

√
ε)) to Õ(dn + n2−α),

where α = Ω(ε1/3/log(1/ε)). These algorithms are also
used to improve a framework that provides approximate so-
lutions to other high dimensional distance problems. Using
this framework, several important related problems can also
be solved efficiently, e.g., (1 + ε)-approximate kth-nearest
neighbor distance, (4 + ε)-approximate Min-Max clustering,
(4+ε)-approximate k-center clustering. In addition, we build
an algorithm that (1 + ε)-approximates greedy permutations
in time Õ((dn+ n2−α) · log Φ) where Φ is the spread of the
input. This algorithm is used to (2 + ε)-approximate k-center
with the same time complexity.

Introduction
Clustering aims at grouping together similar objects, where
each object is often represented as a point in a high di-
mensional space. Clustering is considered to be a corner-
stone problem in data science and machine learning, and as
a consequence there exist multiple clustering variants. For
instance, while each cluster may just be represented as a set
of points, it is often advantageous to select one point of the
data set as a prototype for each cluster.

A significant formal representation of such a prototype
clustering is known as r-nets. Given a large set of n data
points in d-dimensional space, an r-net is a subset (the pro-
totypes) of these data points. This subset needs to fulfill two
properties: First, balls of radius r around each of the proto-
types need to contain every point of the whole data set (cov-
ering). Second, we must ensure that the prototypes are well
separated, i.e., no ball contains the center of any other ball
(packing). Approximate r-nets lift the covering constraint a
tiny bit by allowing balls to have a slightly larger radius than
r, while preserving the packing property, i.e., any two pro-
totypes still need to have at least distance r.
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Throughout this paper, we assume data sets to be large and
high dimensional. We therefore assume the number of fea-
tures d of each object to be non-constant. This leads to inter-
esting and important problems, as this assumption forces us
to think about algorithms whose runtime is sub-exponential
(preferably linear) in the number of features d. In addition,
we want our runtime to be sub-quadratic in the size n of our
data. In this paper we lay theoretical groundwork, by show-
ing improved algorithms on the approximate r-net problem
and applications thereof.

Related Work
There is not a unique best clustering criterion, hence many
methods (Estivill-Castro 2002) are proposed to solve the
clustering problem for different applications (e.g., (Sibson
1973; Defays 1977; Lloyd 1982; Kriegel et al. 2011)), which
makes it difficult to systematically analyze clustering algo-
rithms.

In our paper we will make use of so-called polynomial
threshold functions (PTF), a powerful tool developed by
(Alman, Chan, and Williams 2016). PTFs are distributions
of polynomials that can efficiently evaluate certain types of
Boolean formulas with some probability. They are mainly
used to solve problems in circuit theory, but were also used
to develop new algorithms for other problems such as ap-
proximate all nearest neighbors or approximate minimum
spanning tree in Hamming, `1 and `2 spaces. In the follow-
ing, we employ this method to develop an algorithm that
computes approximate r-nets.

The algorithmic framework Net & Prune, was developed
by (Har-Peled and Raichel 2015). It is able to solve so called
nice distance problems, when provided with a suitable data
structure for the problem. These data structures are often
constructed by exploiting r-nets. A major drawback of the
framework is its restriction to a constant number of fea-
tures. Consequentially, this framework was later extended
by (Avarikioti et al. 2017) to also solve higher dimensional
cases. The algorithm, constructed in this paper, yields an im-
mediate improvement on this framework, as the construction
of the framework is based around approximate r-nets. We
also present various of the previously mentioned data struc-
tures that we plug into the framework to solve high dimen-
sional distance optimization problems.

Recent work by (Eppstein, Har-Peled, and Sidiropoulos



2015) suggests a way of constructing approximate greedy
permutations with approximate r-nets. Greedy permutations
imply an ordering of the data, which provide a solution to
2-approximate k-center clustering as shown by (Gonzalez
1985). We present a similar construction, by applying ap-
proximate greedy permutations.

An approach on hierarchical clustering was presented by
(Dasgupta 2002). They construct an algorithm based on fur-
thest first traversal, which is essentially building a greedy
permutation and then traversing the permutation in order.

In (Fern and Brodley 2003) they present how random pro-
jections, in practice, can be applied to reduce the dimension
of given data. We later employ a similar approach, namely
random projections to lines, to reduce the approximate r-net
problem with `1 metrics to a low-dimensional subspace.

Our Contribution
This paper presents new theoretical results on the construc-
tion of (1 + ε)-approximate r-nets, improving the previous
upper bound of Õ(dn2−Θ(

√
ε)) by (Avarikioti et al. 2017).

We denote n as the number of data points, d the dimension
of the data and α = Ω(ε

1
3 / log( 1

ε )) for an arbitrary error pa-
rameter ε. The algorithm builds approximate r-nets in Ham-
ming, `1 and `2 spaces, running in Õ(n2−α+n1.7+αd)1 time
in both Hamming and Euclidean space.

We also modify our algorithm to yield an improvement on
the Net & Prune framework of (Avarikioti et al. 2017). Sup-
plying the framework with certain data structures, which are
created using approximate r-nets, we derive new algorithms
with improved runtime on (1 + ε)-approximate k-smallest
nearest neighbor distance, (4 + ε)-approximate Min-Max
Clustering, introduced in (Har-Peled and Raichel 2015), and
(4 + ε)-approximate k-center clustering. These algorithms
run in Õ(dn + n2−α) for data sets in `1 or `2 spaces. With
the exception of approximate k-smallest nearest neighbor,
this is, to our knowledge, the first time this framework is
used to solve these problems in high dimensional spaces.
We later also design a new algorithm to (2+ ε)-approximate
k-center clustering, by deriving an improved version of the
algorithm for (1 + ε)-approximate greedy permutations in
(Eppstein, Har-Peled, and Sidiropoulos 2015). Both of these
algorithms have a runtime of Õ((dn+ n2−α) log Φ), where
Φ denotes the spread of the data. We define the spread of a
dataset as the fraction of the diameter over the shortest dis-
tance of the graph.

The omitted proofs can be found in the appendix.

Approximate r-nets
In this section, we present an algorithm that builds approxi-
mate r-nets in `1 and `2 spaces. To that end, we first derive
an algorithm, that constructs approximate r-nets in Ham-
ming space. We later show how to reduce the problem from
`1 or `2 to Hamming space.

1The Õ notation throughout the paper hides logarithmic factors
in n and polynomial terms in 1

ε

Approximate r-net in Hamming Space
Building approximate r-nets in Euclidean space is computa-
tionally expensive. Therefore, we initially restrict ourselves
to datapoints on the vertices of a high dimensional hyper-
cube. The distance between any two datapoints is then mea-
sured by the Hamming distance. In the following, we define
the notion of approximate r-nets in this metric space, where
the error is additive instead of multiplicative.
Definition 1. Given a point set X ⊂ {0, 1}d, a radius r ∈
R, an approximation parameter ε > 0 and the Hamming
distance denoted as ‖ · ‖1, an approximate r-net of X with
additive error ε is as subset C ⊂ X such that the following
properties hold:

1. (packing) For every p, q ∈ C, p 6= q, it holds that

‖p− q‖1 ≥ r
2. (covering) For every p ∈ X , there exists a q ∈ C, s. t.

‖p− q‖1 ≤ r + εd (additive error)

To construct approximate r-net we employ Probabilistic
Polynomial Threshold Functions, a tool introduced in (Al-
man, Chan, and Williams 2016). To effectively apply this
technique, we require a sparse dataset, meaning that we as-
sume that most of the points are further than r from each
other. To that end, we present a technique that sparsifies the
data in advance without losing meaningful data for our prob-
lem.

Sparsification To sparsify our data, we apply brute force
to build part of the approximate r-net. Intuitively, we ran-
domly pick a center point from our dataset and then remove
every point that is closer then r + εd from the center, by
checking every point of the dataset. This technique was orig-
inally introduced in (Avarikioti et al. 2017). The proof of
Theorem 1 closely follows this work.
Theorem 1. Given X ⊂ {0, 1}d, |X| = n, ε > 0, the Ham-
ming distance which we denote as ‖ · ‖1 and some distance
r ∈ R, we can compute a set X ′ ⊂ X with

Pr[Y ≤ n1.7] ≥ 1− n−0.2

and a partial r-net C of X \X ′, where
Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤ r + εd}| the
number of points with close distance to each other, in time
O(dn1.5).

Distance Matrix Next we introduce a tool, called distance
matrix, to approximate r-nets. To construct a distance ma-
trix, we partition the dataset into disjoint sets of equal size.
The rows of the matrix correspond to partitions and the
columns to points of the dataset. Each entry holds a value
which indicates if any of the points in a partition (row) is at
most r + εd close to a data point (column). We use Prob-
abilistic Polynomial Threshold Functions, formally defined
below, to construct a matrix with such indicator values.
Definition 2 ((Alman, Chan, and Williams 2016)). If f is a
Boolean function on n variables, and R is a ring, a prob-
abilistic polynomial for f with error 1

s and degree d is a
distribution D of degree-d polynomials over R such that
{0, 1}n, P rp∼D[p(x) = f(x)] ≥ 1− 1

s .



The main building block to construct the distance matrix
is Theorem 2, which uses the fact that each entry of the dis-
tance matrix can be expressed as a Boolean formula.
Theorem 2 ((Alman, Chan, and Williams 2016)). Given
d, s, t, ε, we can construct a probabilistic polynomial P̃ :

{0, 1}ns → R of degree at most ∆ := O(( 1
ε )

1
3 log(s)) with

at most s ·
(
n
∆

)
, such that:

1. If
∨s
i=1[

∑n
j=1 xij ≥ t] is false, then

|P̃ (x11, ..., x1n, ..., xs1, ..., xsn)| ≤ s with probabil-
ity at least 2

3 ;
2. If

∨s
i=1[

∑n
j=1 xij ≥ t + εn] is true, then

P̃ (x11, ..., x1n, ..., xs1, ..., xsn) > 2s with probabil-
ity at least 2

3 .
Before we show how to construct the distance matrix for

a given dataset, we cite the following Lemma by (Copper-
smith 1982), on rectangular matrix multiplication.
Lemma 1 ((Coppersmith 1982)). For all sufficiently large
N , and α ≤ .172, multiplication of an N ×Nα matrix with
anNα×N matrix can be done inN2poly(logN) arithmetic
operations, over any field with O(2poly(logN)) elements.2

Next, we present how to build the distance matrix, com-
bining fast matrix multiplication and Probabilistic Polyno-
mial Threshold Functions.
Theorem 3. Let X be a set of n points in {0, 1}d, a radius

r ∈ R, some ε� log6(d logn)
log3 n

, α = Ω( ε
1
3

log( d
ε logn )

) and let

‖ · ‖1 denote the Hamming distance. There exists an algo-
rithm that computes, with high probability, a n1−α × n ma-
trix W and a partition S1, ..., Sn1−α of X that satisfies the
following properties:

1. For all i ∈ [n1−α]3 and j ∈ [n], if minp∈Si ‖xj−p‖1 ≤ r
then Wi,j > 2|Si|.

2. For all k ∈ [n1−α] and j ∈ [n], if minp∈Si ‖xj − p‖1 >
r + εd, then |Wi,j | ≤ |Si|

The algorithm runs in Õ(n2−α).

Building a Net Now, we present how we can build an ap-
proximate r-net for a data set, as in (Avarikioti et al. 2017):
we first employ the sparsification technique and then build
the distance matrix in the sparse dataset where we can search
efficiently. The running time of building an approximate r-
net is dominated by the time complexity of the construction
of the distance matrix.
Theorem 4. Given X ⊂ {0, 1}d with |X| = n, some dis-
tance r ∈ R and some ε � log6(d logn)

log3 n
, we can compute

a set C that contains the centers of an approximate r-net
with additive error at most ε with high probability in time

Õ(n2−α + dn1.7+α), where α = Ω( ε
1
3

log( d
ε logn )

).

Proof. We apply Theorem 1 to the set X with radius r and
error ε. This results in the remaining points X ′, a partial

2A proof can be found in the Appendix of (Williams 2014)
3By [k] we denote the set {1, 2, ..., k}

approximate r-net C ′ for X \ X ′ and Pr[Y ≤ n1.7] ≥
1− n−0.2, where Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤
r+ εd}|, in time O(n1.5d). We then apply Theorem 3 to as-
semble the distance matrixW and the partition S1, ..., Sn1−α

on inputs X ′, ε and r. If we encounter more then n1.7 en-
triesWij whereWij > 2|Si|, we restart the algorithm. Since
Pr[Y ≤ n1.7] ≥ 1 − n−0.2, with high probability we pass
this stage in a constant number of runs.

Next, we iterate top down over every column of W . For
every column j, first check if xj is already deleted. If this is
the case we directly skip to the next column. Otherwise set
C = C ∪{xj} and delete xj . For every entry in that column
such that Wi,j > 2|Si|, we then delete every x ∈ Si where
‖xj − x‖1 ≤ r + εd.

As we iterate over every column of W , which correspond
to every point of X ′, the net fulfills covering. Since points
that are added as centers were not covered within r of a cen-
ter by previous iterations, C also fulfills packing. Thus C
now contains the net points of an approximate r-net of X ′.

By Theorem 3, building the distance matrix takes
Õ(n2−α) time and iterating over every entry of W takes
Õ(n2−α) time as well. For at most n1.7 of these entries, we
check the distance between points in a set Si and the point
of the current column which takes another O(n1.7+αd). The
runtime is thus as stated.

Approximate r-nets in Euclidean Space
In this subsection, we reduce the problem of computing ap-
proximate r-nets from Euclidean to Hamming space. Then,
we apply Theorem 4 to compute approximate r-nets in Eu-
clidean space.

We distinguish between `1 and `2 metrics. Specifically,
we first show how to map the dataset from Rd space with
`1 metric to Hamming space. Then, we present a reduction
from `2 to `1 Euclidean space. Note that the error in the
original Euclidean space is multiplicative, while in Ham-
ming space additive. Although the proofs of both Theorem
5 and 6 use the same mappings as in (Alman, Chan, and
Williams 2016), the problem of computing r-nets is differ-
ent and more general than finding the closest pair, thus we
cannot directly cite their results.

`1 case To reduce the problem of computing approximate
r-nets from the Euclidean to the Hamming space (with `1
metric) we use Locality Sensitive Hashing (LSH), formally
defined below.
Definition 3. Let r, c ∈ R and p1, p2 ∈ [0, 1] where
p1 > p2. A distribution D of hash functions is called
(r, cr, p1, p2)-sensitive, if, for a metric space V under norm
‖ · ‖, a hash function h randomly drawn from D satisfies the
following conditions for any points x, y ∈ V :

1. ‖x− y‖ ≤ r ⇒ Pr[h(x) = h(y)] ≥ p1

2. ‖x− y‖ ≥ cr ⇒ Pr[h(x) = h(y)] ≤ p2

We call hashing methods that exhibit these properties local-
ity sensitive hash functions (LSH).

Now, we show how to compute approximate r-nets in Eu-
clidean space under the `1 norm, by employing a specific
instance of LSH functions.



Theorem 5. For a set of input points X ⊂ Rd, some ra-
dius r ∈ R and some error ε � log6(logn)

log3 n
, with high prob-

ability, we can construct a (1 + ε)-approximate r-net un-
der `1 euclidean norm ‖ · ‖ in time Õ(dn + n2−α) where
α = Ω(ε

1
3 / log( 1

ε )).

Proof. The following inequalities, are the same as the ones
derived in (Alman, Chan, and Williams 2016) for their al-
gorithm that finds all nearest/furthest neighbors of a set.
First apply a variant of locality sensitive hashing, to map
points from `1 to Hamming space. For each point p ∈ X
and i ∈ {1, ..., k}, k = O(ε−2 log n), we define hash func-
tions hi = {hi1(p), ..., hid(p)}, where hij =

⌊
paij+bij

2r

⌋
,

aij ∈ {1, ..., d} and bij ∈ [0, 2r) sampled indepen-
dently uniformly at random. For each value hi(p), define
fi(p) = 0 with probability 1

2 or fi(p) = 1 with proba-
bility 1

2 . We then define a new point in Hamming space as
f(p) = (f1(p), ..., fk(p)). We have that for any p, q ∈ X ,
Pr[hij(p) 6= hij(q)] = 1

d

∑d
a=1 min{ |pa−qa|2r , 1} and

Pr[fi(p) 6= fi(q)]
= Pr[fi(p) 6= fi(q)|hi(p) = hi(q)]Pr[hi(p) = hi(q)]
+ Pr[fi(p) 6= fi(q)|hi(p) 6= hi(q)]Pr[hi(p) 6= hi(q)]

= 0 + 1
2Pr[hi(p) 6= hi(q)] = 1

2Pr[
∨d
j=1 hij(p) 6= hij(q)]

= 1
2 (1−

∏d
j=1 Pr[hij(p) = hij(q)])

= 1
2 (1−

∏d
j=1(1− Pr[hij(p) 6= hij(q)]))

Thus, the following properties hold for any p, q ∈ X:

1. If ‖p− q‖ ≤ r then Pr[hij(p) 6= hij(q)] ≤ 1
2d and thus

Pr[fi(p) 6= fi(q)] ≤ 1
2 (1− (1− 1

2d )d) := α0

2. If ‖p − q‖ ≥ (1 + ε)r then Pr[hij(p) 6= hij(q)] ≥ 1+ε
2d

and thus
Pr[fi(p) 6= fi(q)] ≤ 1

2 (1− (1− 1+ε
2d )d) := α1

Then it follows that α1−α0 = Ω(ε). By applying a Chernoff
bound, we derive the following:

1. If ‖p − q‖ ≤ r then E[‖f(p) − f(q)‖] =∑k
i=1 Pr[‖fi(p) − fi(q)‖] ≤ kα0 and thus Pr[‖f(p) −

f(q)‖ ≤ α0k +O(
√
k log n) := A0] ≥ 1−O( 1

n )

2. If ‖p − q‖ ≥ (1 + ε)r then E[‖f(p) − f(q)‖] =∑k
i=1 Pr[‖fi(p) − fi(q)‖] ≥ kα1 and thus Pr[‖f(p) −

f(q)‖ ≥ α1k −O(
√
k log n) := A1] ≥ 1−O( 1

n )

As we know that α1 − α0 = Ω(ε) it is easy to see that
A1 − A0 = k(α1 − α0) − O(

√
k log n) = Ω(kε). For the

new set of points X ′ := f(X), we construct an approxi-
mate r-net with additive error Ω(ε), which yields the center
points of an approximate r-net of the original points with
multiplicative error (1 + ε).
We hence apply Theorem 4 on inputs X = X ′, d = k,
ε = Ω(ε) and r = A0. This gives us the centers C of an
approximate r-net for X ′ in time Õ(n2−α + n1.7+α) where
α = Ω(ε

1
3 / log( 1

ε )). The points that get mapped to the net
points in C are then the centers of a (1 + ε)-approximate
r-net of the points in X under `1 metrics with high proba-
bility. Applying this version of locality sensitive hashing to

X ′ takes O(dkn) = Õ(dn) time, which leads to the runtime
as stated.

`2 case Firstly, we reduce the dimension of the dataset
using the Fast Johnson Lindenstrauss Transform (Johnson
and Schechtman 1982; Johnson and Lindenstrauss 1984).
Specifically, we use a variant that allows us to map `2 points
to `1 points, while preserving a slightly perturbed all pair
distance under the respective norm, as for example seen in
(Matoušek 2008). Thus, we can construct approximate r-nets
in the general Euclidean space, as formally stated below.

Theorem 6. For set of input points X ⊂ Rd, some ra-
dius r ∈ R, some error ε � log6(logn)

log3 n
, with high proba-

bility, we can construct a (1 + ε)-approximate r-net under
`2 euclidean norm ‖ · ‖ in time Õ(dn1.7+α + n2−α) where
α = Ω(ε

1
3 / log( 1

ε )).

Applications
In the following section, we present applications for the al-
gorithms we presented in the previous section. To that end,
we exhibit an improvement on a framework called Net &
Prune. Net & Prune was invented by (Har-Peled and Raichel
2015) for low dimensional applications. An extended ver-
sion of the framework, that is efficient in higher dimensional
datasets, was later presented by (Avarikioti et al. 2017). In
what follows, we apply the approximate r-net algorithm to
immediately improve the high dimensional framework. We
then present various applications, that depend on approxi-
mate r-nets and the framework.

Net & Prune Framework
Net & Prune mainly consists of two algorithms, ApprxNet
and DelFar, which are alternatively called by the frame-
work, and a data structure that is specific to the problem we
want to solve. When supplied with these, the framework re-
turns an interval with constant spread, which is guaranteed
to contain the optimal solution to the objective of the desired
problem. To improve the framework, we first improve these
two algorithms. ApprxNet computes an approximate r-net
for a given point set and DelFar deletes points the isolated
points, i.e. the points that do not contain any other point in a
ball of radius r around them.

As an improvement to ApprxNet, we refer to Theorem 5
and Theorem 6. We now present an algorithm, that yields an
improved version of DelFar:

Theorem 7. For a set of points X , some error
ε � log6(logn)

log3 n
, a radius r ∈ Rd and the norm ‖ · ‖, that

denotes the `1 or `2 norm, we can construct an algorithm
DelFar that outputs, with high probability, a set F , where
the following holds:

1. If for any point p ∈ X it holds that
∀q ∈ X, q 6= p, ‖p− q‖ > (1 + ε)r then p 6∈ F

2. If for any point p ∈ X it holds that
∃q ∈ X, q 6= p, ‖p− q‖ ≤ r then p ∈ F

We do this in time Õ(dn+ n2−α), where α = Ω( ε
1
3

log(1/ε) ).



Proof. We prove the Theorem for the `1 metric. For an `2
instance we can simply apply the mapping of Theorem 6
and the proof holds. Initially, we map the points to Ham-
ming space, applying the techniques described in Theorem
5. During the brute force part of the algorithm we do the
following: we delete each point that is covered by a center
and then we add both the point and the center to set F . We
do not add centers to F that do not cover any other points.
Later, when traversing the distance matrix, we check each
entry that indicates if the partition contains a close point.
We calculate the distances between the current point and all
points of the partition. We add in set F , and then delete, the
points that are actually close. We ignore points, where every
entry in its column indicate no close points. In the end, we
return the set F . The running time of the algorithm is the
same as in Theorem 6, since deleting a point after adding it
to set F takes constant time.

The Net & Prune framework allows us to solve various so
called nice distance problems. As presented by (Har-Peled
and Raichel 2015), the problems solved in the subsections to
come, are all proven to be of such kind. One of the properties
of such problems is, that there needs to exist a so called (1+
ε)-decider for that problem. In the following, we denote a
formal definition of such deciders.

Definition 4 ((Avarikioti et al. 2017)). Given a function f :
X → R, we call a decider procedure a (1 + ε)-decider for
f , if for any x ∈ X and r > 0, deciderf (r,X) returns one
of the following: (i) f(x) ∈ [β, (1 + ε)β] for some real β,
(ii) f(x) < r, or (iii) f(x) > r.

Even though (Har-Peled and Raichel 2015) presented a
decider for each of the problems that follow, the extended
framework by (Avarikioti et al. 2017) requires deciders to
be efficient, as otherwise the frameworks runtime does not
hold. This is a good opportunity to apply Theorem 5 and
Theorem 6 from the previous section. In the following sec-
tions, we employ the theorem below to find constant spread
intervals. These contain the solutions to nice distance prob-
lems. We then apply deciders to approximate the solution of
the problem.

Theorem 8 ((Avarikioti et al. 2017)). For c ≥ 64, the Net
& Prune algorithm computes in O(dn1.999999) time a con-
stant spread interval containing the optimal value f(X),
with probability 1− o(1).

kth-Smallest Nearest Neighbor Distance
When having a set of points in high dimensional space, we
may be interested in finding the k-smallest nearest neigh-
bor distance. This means, when looking at the set of dis-
tances to the nearest neighbor of each point, finding the
kth-smallest of these. Computing this with a naive algo-
rithm takes O(dn2), which is not suitable in high dimen-
sional space. Alternatively, we are able to build a (1 + ε)-
decider and then apply the Net & Prune framework to solve
the problem. This has previously been done by (Avarikioti
et al. 2017). Theorem 5 and Theorem 6 yield immediate im-
provement on the runtime of the decider, as it is built with
help of DelFar. We thus omit the proof of the following

Theorem here. The proof can be found in the supplementary
material.

Theorem 9. For a set of points X , ε � 4 log6(logn)
log3 n

and
the norm ‖ · ‖, that denotes the `1 or `2 norm, with high
probability, we can find the (1 + ε)-approximate k-smallest
nearest neighbor distance ofX in time Õ(dn+n2−α), where

α = Ω( ε
1
3

log(1/ε) ).

Min-Max Clustering
To understand the following problem, we first define Up-
ward Closed Set Systems and Sketchable Families, as intro-
duced in (Har-Peled and Raichel 2015).

Definition 5 (Upward Closed Set System & Sketchable
Families (Har-Peled and Raichel 2015)). Let P be a finite
ground set of elements, and let F be a family of subsets of
P . Then (P,F) is an upward closed set system if for any
X ∈ F and any Y ⊂ P , such that X ⊂ Y , we have that
Y ∈ F . Such a set system is a sketchable family, if for any
set S ⊂ P there exists a constant size sketch sk(S) such that
the following hold.

1. For any S, T ⊂ P that are disjoint, sk(S ∪ T ) can be
computed from sk(S) and sk(T ) in O(1) time. We assume
the sketch of a singleton can be computed in O(1) time,
and as such the sketch of a set S ⊂ P can be computed in
O(|S|).

2. There is a membership oracle for the set system based on
the sketch. That is, there is a procedure orac such that
given the sketch of a subset sk(S), orac returns whether
S ∈ F or not, in O(1) time.

Min-Max Clustering is a method of clustering sets of the
Upward Closed Set Systems within Sketchable Families un-
der some cost function. The following is a formal defini-
tion of Min-Max clustering, as provided by (Har-Peled and
Raichel 2015).

Definition 6 (Min-Max Clustering (Har-Peled and Raichel
2015)). We are given a sketchable family (P,F), and a cost
function g : 2P → R+. We are interested in finding dis-
joint sets S1, ..., Sm ∈ F , such that (i)

⋃m
i=1 Si = P , and

(ii) maxi g(Si) is minimized. We will refer to the partition
realizing the minimum as the optimal clustering of P .

We later resort to the following Lemma when building a
(1 + ε)-decider for a concrete instance of Min-Max Cluster-
ing.

Lemma 2. Given a set of n pointsX ⊂ Rd, a radius r ∈ R,
some error parameter ε � log6(logn)

log3 n
, the norm ‖ · ‖, that

denotes the `1 or `2 norm, and a set C ⊂ X s.t. ∀x, y ∈
C, ‖x−y‖ ≥ 2r(1+ε), with high probability, we can return
sets Pi, such that ∀ci ∈ C,∀x ∈ Pi, ‖ci − x‖ ≤ (1 + ε)r
and ∀x ∈ X ∩ Br(ci), where Br(ci) = {x : x ∈ Rd, ‖x −
ci‖ ≤ r} we have that x ∈ Pi in time Õ(dn+n2−α), where

α = Ω( ε
1
3

log(1/ε) ).

Proof. We reduce the problem to Hamming space with error
ε and radius r, applying the same techniques as in Theorem



5 for `1 points or Theorem 6 for points in `2. After this re-
duction, we get a set of new points X ′ and a new radius r′.
We apply brute force on X ′ to get part of the solution. We
randomly choose a point of ci ∈ C and then iterate over
every point in x ∈ X ′. We check if ‖x − ci‖ ≤ r′ + εk,
for k = (ε−2 log n) the dimension in Hamming space. For
every point where this holds, we the original point into the
set Pi and then delete x from X ′. We do this

√
n times

which takes Õ(n1.5) time in total. Without loss of gener-
ality, we now assume that |C| >

√
n, as otherwise we would

be done at this point. With a similar argument as in Theo-
rem 1, we argue that, after using brute force, with probabil-
ity at least 1 − n−0.2, |{(c, x)|c ∈ C, x ∈ X ′, ‖x − c‖ ≤
r′ + εk}| ≤ n1.7. As in Theorem 4, we then build the dis-
tance matrix W of the remaining points in X ′. We iterate
over every column corresponding to remaining center points
cj . For every entry Wi,j > 2|Si|, we add original version
of every point x ∈ Si such that ‖x − cj‖ ≤ r′ + kε

to Pj . This takes time Õ(n2−α + n1.7). It then holds that
∀ci ∈ C, ∀x ∈ Pi, ‖ci − x‖ ≤ (1 + ε)r, as we only added
points to Pi’s, where this property holds. It also holds that
∀x ∈ X ∩ Br(ci), as every point is only within the ball
of one single center, because of the constraint on C. As we
only do brute force and then build a distance matrix which
we iterate through in a similar fashion as in Theorem 4, the
runtime is as stated.

The proof of the following Theorem describes how to uti-
lize the above Lemma to build a decider. The framework
then allows us to solve a concrete instance of Min-Max
Clustering. A similar decider was built by (Har-Peled and
Raichel 2015), to solve the same problem in low dimen-
sional space.

Theorem 10. Let P ⊂ Rd, let (P,F) be a sketchable family
and let ‖·‖ be the norm, that denotes the `1 or `2 norm. For a
set W ∈ F , let rmin(W ) be the smallest radius, such that a
ball centered at a point of W encloses the whole set. We can
then, for ε� 4 log6(logn)

log3 n
, (4 + ε)-approximate the min-max

clustering of P with rmin(W ) as the cost function, with high

probability, in time Õ(dn+ n2−α), where α = Ω( ε
1
3

log(1/ε) ).
Specifically, one can cover P by a set of balls and assign

each point of P to a ball containing that point, such that the
set of assigned point of each ball is in F and the maximum
radius of these balls is a (4+ε)-approximate of the minimum
of the maximal radius used by any such cover.

Proof. First notice that, when building a (1+ε)-approximate
(4ropt(1 + ε))-net, where ropt is the radius of the opti-
mal clustering Popt of P , the following properties hold. Let
Wi ∈ Popt be the cluster that contains center ci of the r net.
It then holds that diam(Wi) ≤ 2ropt. Also any two center
points of the net have distance at least (4ropt(1 + ε)) from
each other, thus there are no i 6= j such that Wi = Wj . Now
define Ci as the set of points that are contained in a ball of
radius 2ropt around center ci, hence Ci = P ∩ B2ropt(ci).
It then holds that Wi ⊂ Ci and since Wi ∈ Popt, we know
that Wi ∈ F . Thus Ci ∈ F by definition of upward closed
set systems.

This observation allows us to build a decider for f(P,F),
which is the function returning the optimal solution to
the objective of the clustering. First, we build a (1 + ε

4 )-
approximate (4r(1 + ε

4 ))-net. We then apply Lemma 2 on
inputs X = P ,r = 2r, ε = ε

4 and C = C , where C
is the set of center points of the net. It is easy to see, that
the needed property on C is met,as it contains the center
points of a (4r(1 + ε

4 ))-net. The sets Pi, that get returned
by Lemma 2, are then supersets of Ci, if r ≥ ropt. From
the definition of sketchable families we know that, for ev-
ery Pi, we are able to decide if Pi ∈ F in O(n). Assume
now that there exists a Pi which is not in F . Pi is thus not
a superset of Ci, and we return r < ropt. Otherwise, we
know that ∀i, Ci ⊂ Pi and thus r ≥ ropt. Now its left
to decide if ropt is within some constant spread interval.
To that end, we repeat the process above, but for a slightly
smaller net, say a (1 + ε

4 )-approximate 4r-net. If all of the
Pi’s for this new net are in F , we know that the original
r was to big and we return f(P,F) < r. Otherwise, be-
cause we applied Lemma 2 to radius 2r

(1+ ε
4 ) and found that

balls of that radius centered at ci are not in F , we know
that the optimal value is at least r

(1+ ε
4 ) , dew to our obser-

vation about the diameter of the clusters in the beginning.
We also know that ropt can be as big as 4(1 + ε

4 )2r as we
are able to cover the whole space with balls of such radius
and subsets of these are inF . Therefor, we return the interval
[ r
1+ ε

4
, 4(1+ ε

4 )3 r
1+ ε

4
]. Plugging this into the framework thus

provides us with a constant spread interval, which contains
the solution. By searching the interval the same way as in
Theorem 9, we end up with an interval [ r

1+ ε
4
, 4(1+ ε

4 )3 r
1+ ε

4
].

We return r
1+ ε

4
, which is a (4+ε)-approximate solution since

the real solution may be up to a 4(1 + ε
4 )3-factor off and

4(1 + ε
4 )3 = 4(( ε4 )3 + 3( ε4 )2 + 3 ε4 + 1) ≤ (4 + ε). In the

worst case, the decider builds an approximate r-net twice
and also calls Lemma 2 twice. Applying the framework with
that decider and searching the returned interval thus results
in Õ(dn+ n2−α).

k-center
The k-center clustering is tightly coupled to the problem of
building r-nets. For a set of high dimensional points, we
want to find k clusters, that minimize the maximum diameter
of any of these. For any ε > 0, computing a (2− ε) approxi-
mate k-center clustering in polynomial time has been shown
to be impossible except P = NP (Hsu and Nemhauser
1979). We thus focus on computing (2 + ε)-approximates
of the optimal solution. In the following we present two
approaches to this. First, we build a decider, such that we
are able to employ the framework, which provides us with
a (4 + ε)-approximate k-center clustering. We then exhibit
a different approach to the problem. Instead of relying on
the framework, we derive an algorithm that computes ap-
proximate greedy permutations. We then present a way of
reducing the computation of a (2 + ε)-approximate k-center
clustering to building approximate greedy permutations. The
drawback of this approach is, that the runtime has a logarith-
mic dependency on the spread of the data.



(4+ε) approximate k-center As in previous subsections,
we design a decider which then gets called by the frame-
work. The construction is similar to (Har-Peled and Raichel
2015), where they construct a decider to (4+ε)-approximate
k-center clustering in lower dimensions.

We first proof the following Lemma, which is going to be
useful later.
Lemma 3. There are the following relations between a set
C, which contains the net points of a (1 + ε)-approximate
r-net on a set of points X , and the function f(X, k), which
returns the optimal clustering radius for the k-center prob-
lem on the set X .

1. If |C| ≤ k then f(X) < (1 + 2ε)r

2. If |C| > k then r ≤ 2f(X)

Theorem 11. For a set of n points X ∈ Rd, some integer
k, n ≥ k > 0, some error parameter ε � 32 log6(logn)

log3 n

and the norm ‖ · ‖, that denotes the `1 or `2 norm, with
high probability, we return a (4 + ε)-approximate k-center

clustering in time Õ(dn+ n2−α), where α = Ω( ε
1
3

log(1/ε) ).

Proof. In the following we present the decider that we plug
into the framework. First we create a (1 + ε

32 )-approximate
r

1+ ε
16

-net and check if we get k or less center points. If we
do, then due to Lemma 3 we can safely return f(X, k) < r.
If we do not, we create a (1+ ε

32 )-approximate (2(1+ ε
16 )r)-

net and check if we have at most k centers in this net. In that
case, due to Lemma 3 we know that r

2(1+ ε
16 ) ≤ f(X, k) <

2(1 + ε
16 )2r and we return this interval. Otherwise, we have

more than k-centers. Thus we know from Lemma 3 that
r(1 + ε

16 ) ≤ f(X, k) and we return f(X, k) > r. We there-
for satisfy the properties of a (1 + ε)-decider and apply it
to the framework to compute a constant spread interval con-
taining the exact solution. As in the previous subsections, we
slice the interval and do binary search using the decider. If
we find an interval r

2(1+ ε
16 ) ≤ f(X, k) < 2(1 + ε

16 )2r, we
return 2(1 + ε

16 )2r which is a (4 + ε) approximation, as it
might miss the real solution up to a factor of 4(1 + ε

16 )3 =

4+ 3ε
4 + 3ε2

64 + ε3

1024 ≤ 4+ ε. It is easy to see that the decider
runs in time Õ(dn+n2−α) and as in the previous subsection,
the search takes O(1/ε2) iterations. Therefor, the runtime is
as stated.

(2 + ε) approximate k-center with dependency on the
spread Another way to approach the approximate k-center
clustering, is given by (Gonzalez 1985). There they con-
struct a 2-approximate k-center clustering by using greedy
permutations. A greedy permutation of a point set is an or-
dering, such that the i-th point is the furthest from all pre-
vious points in the permutation. In (Eppstein, Har-Peled,
and Sidiropoulos 2015) they describe a way of construct-
ing an approximate greedy permutation by building approx-
imate r-nets. In the following, we present a way to improve
this construction by applying the approximate r-net algo-
rithm from the previous section. We then present how to
exploit approximate greedy permutations to create (2 + ε)-
approximate k-center clusterings. Unfortunately, building

the greedy permutation has a logarithmic runtime depen-
dency on the spread, which is the ratio of the biggest to the
smallest distance within the point set. Therefore, the algo-
rithm is only useful for data, where the spread is in poly(n).

Approximate greedy permutation A greedy permutation
is an ordered set Π of the input points, such that the point πi
is the furthest point in V from the set {πj}i−1

j=1. The follow-
ing is a formal definition of approximate greedy permuta-
tions, as described in (Eppstein, Har-Peled, and Sidiropou-
los 2015).

Definition 7. A Permutation Π is a (1 + ε)-greedy permu-
tation on n points on metric space (V, d), if there exists a
sequence r1 ≥ r2 ≥ ... ≥ rn s.t.

1. The maximum distance of a point in V from {πj}ij=1 is in
the range [ri, (1 + ε)ri]

2. The distance between any two points u, v ∈ {πj}ij=1 is at
least ri
We now proof the following Lemma, which helps us build

the approximate greedy permutation later.

Lemma 4. For a set of n points X ⊂ Rd, the norm ‖ · ‖,
that denotes the `1 or `2 norm, a set of points C ⊂ X , such
that ∀x, y ∈ C, ‖x − y‖ ≥ r , some error ε � log6(logn)

log3 n

and a radius r ∈ R, with high probability, we can compute
a set F , such that ∀y ∈ F, c ∈ C, ‖x − y‖ ≥ r. We do this

in time Õ(dn+ n2−α), where α = Ω( ε
1
3

log(1/ε) ).

Proof. We proceed similar as when building the approxi-
mate r-net. We first reduce the problem to Hamming space
with additive error ε as in Theorem 5 for points in `1 or The-
orem 6 for `2 points. We then arrive at the mapped point set
X ′ and radius r′. Next, we apply a slightly modified version
of Theorem 1. Instead of randomly choosing a point from
X ′, we randomly choose a point c ∈ C. We then iterate over
every point in x ∈ X ′ and check if ‖x − c‖ ≤ r′ + εk
for k = (ε−2 log n), the dimension in Hamming space.
For every point x where this holds, we delete x from X ′

as well as from the original set X . We do this
√
n times,

which takes Õ(n1.5) time in total. We now assume, without
loss of generality, that |C| >

√
n, as otherwise we would

be done at this point. By applying a similar argument as in
Theorem 1, it holds that with probability at least 1− n−0.2,
|{(c, x)|c ∈ C, x ∈ X, ‖x − c‖ ≤ r′ + εk}| ≤ n1.7. As
in Theorem 4, we now build the distance matrix W of the
remaining points in X ′. We then iterate over every column
corresponding to the remaining center points cj and, for ev-
ery entry Wi,j > 2|Si|, delete the original version of every
point x ∈ Si such that ‖x−c‖ ≤ r′+kε fromX . This takes
time Õ(n2−α+n1.7). The point setX then, by construction,
only contains points which are further then r from any point
in C.

The algorithm for building the greedy permutation is very
similar to the algorithm presented in (Eppstein, Har-Peled,
and Sidiropoulos 2015). We build sequences of approximate
r-nets, starting with a radius that is an approximation of the



maximum distance within the point set. Then, we consec-
utively build approximate r-nets for smaller and smaller r,
while keeping centers of previously computed approximate
r-nets. Putting the center points into a list in the order they
get computed results in an approximate greedy permutation.
For a full proof outline refer to the supplementary material.

Theorem 12. For point set X ⊂ Rd with |X| = n, ε �
4 log6(logn)

log3 n
and the norm ‖·‖, that denotes the `1 or `2 norm,

with high probability, we can compute a (1+ε)-approximate
greedy computation in time Õ((dn + n2−α) log Φ), where

α = Ω( ε
1
3

log(1/ε) ) and Φ =
maxx,y∈X,x 6=y ‖x−y‖
minx,y∈X,x 6=y ‖x−y‖ is the spread

of data X .

k-center with approximate greedy permutation In
(Gonzalez 1985), Gonzales proved that an exact greedy
permutation leads to a 2 approximation of the solution for
the k-center objective, if we take the first k elements out
of the permutation and declare them as cluster centers. The
maximum radius of a cluster, is then the minimum distance
of the k+1-th point in the permutation to the one of the first
k points. With a (1 + ε)-approximate greedy permutation
we can then derive a (2 + ε)-approximate solution for the
k-center problem, since for every element πi and every ri
as in the definition of the approximate greedy permutation,
we know that, in metric space (V, ‖ · ‖), it holds that
ri ≤ maxu∈V minj∈{1,...,i} ‖πj − u‖ ≤ (1 + ε)ri. Thus
the radius used, if we take the first k elements of the
approximate greedy permutation as cluster centers, is at
most a 1 + ε factor larger than the radius we would use by
taking the first k elements of the exact greedy permutation,
which in turn is at most a 2 factor larger than the exact
k-center clustering radius.

Conclusion & Future Work
Our work has lead to interesting improvement on the
construction time of approximate r-nets and applications
thereof. We wish to highlight the following open problems.
First, can we find a lower bound to the construction time
of r-nets? This would also tell us more about the limits of
the Net & Prune framework. Second, can we get rid of the
spread dependency on the approximate greedy permutation
algorithm, as this would make the algorithm suitable for
much more general data sets? Our work seems to suggest
that this is tightly coupled to finding all nearest neighbors.
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Proof of Theorem 1
Theorem 1. Given X ⊂ {0, 1}d, |X| = n, ε > 0, the Ham-
ming distance which we denote as ‖ · ‖1 and some distance
r ∈ R, we can compute a set X ′ ⊂ X with

Pr[Y ≤ n1.7] ≥ 1− n−0.2

and a partial r-net C of X \X ′, where
Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤ r + εd}| the
number of points with close distance to each other, in time
O(dn1.5).

Proof. We create a copy of X and call it X ′. After that, we
repeat the following

√
n times: Choose a point xi ∈ X ′ uni-

formly at random, delete it from X ′ and add it to C. Then
check for each x ∈ X ′, if ‖x− xi‖1 ≤ r + εd. If so, delete
x from X ′ as well. We do this in O(dn1.5) time.
Let Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤ r + εd}|.
We now prove Pr[Y ≤ n1.7] ≥ 1 − n−0.2 by doing a
case distinction. Let Ai be the number of points with small
distance to a randomly chosen point p in the i-th iteration.
Now first assume that E[Ai] > 2n0.5;∀i ∈ {1, ...,

√
n}.

Thus the number of points to be deleted in each iteration
is at least 2n0.5 + 1 in expectation which results in more
then n deleted points after

√
n iterations. Therefor, if our as-

sumption holds, we get |X ′| = 0 after at most
√
n iterations.

Pr[Y ≤ n1.7] ≥ 1− n−0.2 then holds as Y = 0.
Next assume that ∃i ∈ {1, ...,

√
n},E[Xi] ≤ 2n0.5. If we

reach such an i, we have at most 2n0.5 small distances left
between a random point ofX ′ and all the points withinX ′ in
expectation. After all iterations, the number of ”small” dis-
tances is therefor no more then 2n1.5 in expectation. Thus,
by Markov’s inequality:

Pr[Y ≤ n1.7] = 1− Pr[Y ≥ n1.7] ≥ 1−O(n−0.2). (1)

We now prove correctness of the partial approximate r-net
C. For every point p ∈ X \X ′ there will be a net point in C
that has distance at most r+ εd from p, as we only removed
points from X’ which satisfy this property. For every two
points p, q ∈ C we have ‖p − q‖1 > r, because if the dis-
tance was less or equal to r, either pwould have been deleted
in the iteration of q or vice versa (whatever point came first).
This concludes the proof.

Proof of Theorem 3
Theorem 3. Let X be a set of n points in {0, 1}d, a radius

r ∈ R, some ε� log6(d logn)
log3 n

, α = Ω( ε
1
3

log( d
ε logn )

) and let

‖ · ‖1 denote the Hamming distance. There exists an algo-
rithm that computes, with high probability, a n1−α × n ma-
trix W and a partition S1, ..., Sn1−α of X that satisfies the
following properties:

1. For all i ∈ [n1−α]4 and j ∈ [n], if minp∈Si ‖xj−p‖1 ≤ r
then Wi,j > 2|Si|.

2. For all k ∈ [n1−α] and j ∈ [n], if minp∈Si ‖xj − p‖1 >
r + εd, then |Wi,j | ≤ |Si|
4By [k] we denote the set {1, 2, ..., k}

The algorithm runs in Õ(n2−α).

Proof. We construct an algorithm that is similar to the
one used for nearest/furthest neighbor search in Hamming
space, presented in (Alman, Chan, and Williams 2016).
We first create a random partition of X into disjoint
sets S1, ..., Sn1−α , each of size s := nα. For every such
Si and every point q ∈ X we then want to test, if at
least one point is within (r + εd) distance of q or not. This
can be expressed as a Boolean formula in the following way:

F (Si, q) := [min
p∈Si
‖p− q‖1 ≤ r + εd]

=
∨
p∈Si

[

d∑
j=1

(pjqj + (1− pj)(1− qj)) ≥ d− (r + εd)]

=
∨
p∈Si

[

d∑
j=1

(pj − 0.5)(2qj − 1) ≥ d− (r + εd) + 0.5]

Applying Theorem 2, we construct a probabilistic PTF to
express F (Si, q). We then give a bound on the maximum
number of monomials, according to Theorem 2:

s ·
(

O(d)

O(( 1
ε )

1
3 log(s))

)
≤ nα ·O(

d

( α
ε
1
3

) log n
)
O( α

ε1/3
logn)

≤ nα · nO(( α

ε1/3
) log( d

α logn )) � (n1−α)0.1

As stated in (Alman, Chan, and Williams 2016), this bound
also holds for the construction time of the polynomial.
Next we sample a polynomial f from the probabilistic PTF
for F (Si, q). As presented by (Alman, Chan, and Williams
2016), we are able to do this in O(n log(d) log(nd)) time.
We then split f into two vectors φ(Si) and ψ(q) of
(n1−α)0.1 dimensions over R s.t. their dot product results
in the evaluation of the corresponding polynomial. We are
able to do this as the polynomial P (x11, ...x|Si|d) has pa-
rameters of the form xij = (pj − 0.5)(2qj − 1). This re-
duces the problem of evaluating n2−α many polynomials to
multiplying a matrix A := n

s × (ns )0.1, where the i-th row
of A consists of φ(Si)

T , with a matrix B := (ns )0.1 × n,
where the i-th column of B consists of ψ(xi). We further
reduce the multiplication, by splitting B into s matrices of
size (ns )0.1 × n

s . By Lemma 1 we are able to do each of
these multiplications in Õ((ns )2) arithmetic operations over
an appropriate field. The total time of the multiplications is
then Õ(n

2

s ) = Õ(n2−α) as we do s matrix multiplications.
We then reassemble each of the s matrices by placing

them next to each other, such that the j-th column corre-
sponds to the point qj ∈ X . This leads to the matrix W
where

1. Wij > 2|Si| if∨
p∈Si

[

d∑
j=1

(pj − 0.5)(2qj − 1) ≥ d− (r + εd) + 0.5 + εd]

= [min
p∈Si
‖p− q‖1 ≤ r]



2. |Wij | ≤ |Si| if∧
p∈Si

[

d∑
j=1

(pj − 0.5)(2qj − 1) < d− (r + εd) + 0.5]

= [min
p∈Si
‖p− q‖1 > r + εd]

By Theorem 2, the error probability of each entry is 1
3 which

can be lowered to 1
n3 by repeatingO(log n) times and taking

majorities. The overall runtime is then Õ(n2−α).

Proof of Theorem 6
Theorem 6. For set of input points X ⊂ Rd, some ra-
dius r ∈ R, some error ε � log6(logn)

log3 n
, with high proba-

bility, we can construct a (1 + ε)-approximate r-net under
`2 euclidean norm ‖ · ‖ in time Õ(dn1.7+α + n2−α) where
α = Ω(ε

1
3 / log( 1

ε )).

Proof. We define a mapping from `2 to `1. Every x ∈ X
gets mapped to the vector f(x) = (f1(x), ..., fk(x)) where
k = (ε−2 log n) and fi(x) =

∑d
j=1 σijxj . The coefficients

σij’s are independent normally distributed random variables
with mean 0 and variance 1. As presented in (Matoušek
2008), it holds that for any two points x, y ∈ X ,
(1 − ε)‖x − y‖2 ≤ C‖f(x) − f(y)‖1 ≤ (1 + ε)‖x − y‖2
with probability 1−O( 1

n ) for some constant C. The cost of
applying the mapping is O(dkn). We then employ Theorem
5 on the new set of points, to get a (1+ε)-approximate r-net
in the time stated.

Proof of Theorem 9
Theorem 9. For a set of points X , ε � 4 log6(logn)

log3 n
and

the norm ‖ · ‖, that denotes the `1 or `2 norm, with high
probability, we can find the (1 + ε)-approximate k-smallest
nearest neighbor distance ofX in time Õ(dn+n2−α), where

α = Ω( ε
1
3

log(1/ε) ).

Proof. First we describe the decider, which is basically the
same as in (Avarikioti et al. 2017), except that we plug in the
new algorithm for DelFar. The decider then works as fol-
lows: We first call DelFar on the setX with radius r/(1+ ε

4 )
and error ε/4 to get a set W1. Then we call DelFar on X
again but this time with radius r and error ε/4 to get another
set W2. If it then holds that |W1| ≥ k, we know that when
drawing balls of at most radius r around each point, at least
k of the points have their nearest neighbor within their ball.
This means, that r is to big and we output f(X, k) < r.
Similar, if |W2| < k, we know that even if we draw balls
around all the points with at least radius r, not even k points
have their nearest neighbor inside their ball which implies
that r is to small and we output f(X, k) > r. Finally, if we
have that |W1| < k and |W2| ≥ k, we know that the exact k-
nearest neighbor has to be in the range [r/(1 + ε

4 ), (1 + ε
4 )r]

and we output that interval.
As this satisfies the definition of a (1 + ε)-decider, we plug
it into the framework and get a constant spread interval

[x, y] which contains the exact solution. We then use the de-
cider again to (1 + ε)-approximate the exact solution. We
slice the interval into pieces x, (1 + ε)x, (1 + ε)2x, ..., y
and do binary search on those slices, by applying the de-
cider. If we hit an r where the decider gives us an interval
[r/(1 + ε

4 ), (1 + ε
4 )r], we return (1 + ε

4 )r and are done.
The optimal solution might then be r/(1 + ε

4 ), which is a
(1 + ε

4 )2 factor smaller then what we return. This is fine as
(1 + ε

4 )2 = 1 + ε/2 + ε2/16 ≤ 1 + ε and what we return is
thus a (1 + ε)-approximate as desired. While searching we
make O(1/ log(1 + ε)) = O(1/ε2) calls to the decider. The
search thus ends up having a runtime of Õ(dn+n2−α).

Proof of Lemma 3
Lemma 3. There are the following relations between a set
C, which contains the net points of a (1 + ε)-approximate
r-net on a set of points X , and the function f(X, k), which
returns the optimal clustering radius for the k-center prob-
lem on the set X .

1. If |C| ≤ k then f(X) < (1 + 2ε)r

2. If |C| > k then r ≤ 2f(X)

Proof. For the first property we create a (1+ε)-approximate
r-net of X . Due to the covering property of approximate r-
nets, every point in X is within (1 + ε)r of a center point
and thus (1 + 2ε)r is not an optimal radius for the k-center
clustering.

For the second property note that an approximate r-net
with more then k centers contains at least k + 1 centers.
These are at least r from each other due to the packing prop-
erty. Thus k centers with a radius of < r/2 would not be
able to cover all of the k + 1 centers from the approximate
r-net and hence r ≤ 2f(X).

Proof of Theorem 12
Theorem 12. For point set X ⊂ Rd with |X| = n, ε �
4 log6(logn)

log3 n
and the norm ‖·‖, that denotes the `1 or `2 norm,

with high probability, we can compute a (1+ε)-approximate
greedy computation in time Õ((dn + n2−α) log Φ), where

α = Ω( ε
1
3

log(1/ε) ) and Φ =
maxx,y∈X,x 6=y ‖x−y‖
minx,y∈X,x 6=y ‖x−y‖ is the spread

of data X .

Proof. In (Eppstein, Har-Peled, and Sidiropoulos 2015) they
presented a way to compute a (1 + ε)-approximate greedy
permutation. In the following, when talking about building
an approximate r-net we refer to Theorem 5 for Euclidean
points with `1 metric or Theorem 6 for points in `2 metric
space.

We choose a point p at random and search for the furthest
neighbor of that point. ∆, which is the distance to the fur-
thest neighbor, is then a 2-approximation to the maximum
distance within X by the triangle inequality. We thus know
that maxx,y∈X,x 6=y ‖x − y‖ ≥ ∆ ≥ 1

2 maxx,y∈X,x 6=y ‖x −
y‖. Next we define a sequence of radiuses ri = ∆

(1+ ε
4 )i−1

for i ∈ {1, ..,M :=
⌈
log1+ ε

4
Φ
⌉

+ 2} where Φ :=



maxx,y∈X,x 6=y ‖x−y‖
minx,y∈X,x 6=y ‖x−y‖ is the spread of the data. Note that

rM ≤ minx,y∈X,x 6=y ‖x−y‖
(1+ε) . We then iterate over this se-

quence, where in the first iteration, we compute an approx-
imate r1 net C1 of X . We do not need to run the algorithm
as we know that {p} = C1 as r1 = ∆ and a ball of radius ∆
around p covers X by construction. In every iteration i > 1,
we then first define the set Si =

⋃i−1
j=1 Cj . Next, we alter the

approximate r-net algorithm in such a way, that the points
in Si are already centers of the net and thus points within
distance ri of Si are not added as net points. By Lemma 4
we are able to do this, without an increase of the runtime.
We then apply Lemma 4 to X with error ε/4, the set Si and
radius ri. After that we compute a (1 + ε

4 )-approximate r-
net of the set F that gets returned. The net points are then
stored in the set Ci. The sequence 〈C1, ..., CM 〉 then forms
a (1 + ε)-greedy permutation, as shown in (Eppstein, Har-
Peled, and Sidiropoulos 2015). It is sufficient to do M iter-
ations as we know that a (1 + ε

4 )-approximate rM -net adds
all the remaining points to CM as rM is less then the mini-
mum distance of the set. The number of iterations is M and
O(log1+ ε

4
Φ) = O( 4

ε log Φ) = Õ(log Φ). In each iteration
we apply Lemma 4 and compute an approximate r-net, the
total runtime is thus as stated.


