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Abstract
In voting theory, impossibility results and compu-
tational hardness results are often circumvented by
recognising that voters’ preferences are not arbi-
trary, but lie within a restricted domain. Uncov-
ering the structure of the underlying domain often
provides useful insights about the nature of the al-
ternative space, and may be helpful in identifying
a collective choice. Preferences single-peaked on
a tree are an example of a relatively broad domain
that nonetheless exhibits several desirable proper-
ties. We consider the setting where agents’ pref-
erences are independently sampled from rankings
that are single-peaked on a given tree, and study the
problem of reliably identifying the tree that gen-
erated the observed votes. We test our algorithm
empirically; to this end, we develop a procedure
to uniformly sample preferences that are single-
peaked on a given tree.

1 Introduction
In multi-agent systems agents often have to make group de-
cisions by reporting their preferences over the available al-
ternatives (candidates): each agent specifies her ranking of
the alternatives, and the decision is determined by an agreed-
upon preference aggregation rule. In general, preference ag-
gregation is a complex problem: if each voter may submit
any ranking of the alternatives, then no voting rule can si-
multaneously enjoy a small number of simple and highly
desirable properties [Arrow, 1951; Gibbard, 1973; Satterth-
waite, 1975]. To make matters worse, many voting rules
are not computationally tractable [Bartholdi III et al., 1989;
Brandt et al., 2016].

However, agents’ preferences are hardly arbitrary, and in
many circumstances the votes are intrinsically restricted to a
certain domain. Hence, we may be interested in recognising
that domain to gain insight about the nature of the alterna-
tive space. Many domain restrictions, when uncovered, can
be used to circumvent the problems we mentioned. Some
examples of domain restrictions that have proved to be use-
ful in this context are single-crossing preferences [Mirrlees,
1971; Roberts, 1977] and value-restricted preferences [Sen,
1966; Sen and Pattanaik, 1969], which include single-peaked

[Black, 1948] and group-separable preferences [Inada, 1964;
1969]. For example, a collection of votes (a profile) is single-
peaked with respect to a certain order (an axis) of candidates,
if for every vote v in this collection and every candidate c, all
candidates that lie between c and the top choice of v on the
axis are ranked higher than c by v. If preferences are assumed
to be single-peaked, Arrow’s impossibility theorem does not
apply, there are strategy-proof voting rules [Moulin, 1980;
1991], and many problems that are NP-hard in general be-
come tractable [Brandt et al., 2015; Walsh, 2007; Faliszewski
et al., 2011; Cornaz et al., 2012].

If the candidates are arranged on a tree rather than a line,
we obtain the domain of preferences single-peaked on a tree
[Demange, 1982]; more precisely, a profile is single-peaked
on a tree if it is single-peaked when restricted to any path in
the tree. This domain subsumes the domain of single-peaked
preferences and retains some of its desirable properties: for
example, profiles that are single-peaked on a tree always have
weak Condorcet winners [Demange, 1982], and, for certain
trees, many hard voting rules become tractable [Yu et al.,
2013; Peters and Elkind, 2016] and preference elicitation be-
comes easier [Dey and Misra, 2016]. An example of a setting
with this type of preferences is facility location on acyclic
road network; for further examples, see [Demange, 1982].

A specific scenario where it may be useful to know whether
the alternative space has a tree-like structure is multiwin-
ner voting [Faliszewski et al., 2017]. Suppose that voters
have to select a fixed-size subset of alternatives so that each
voter likes at least one alternative in this set. It has been ar-
gued that the best multiwinner voting rule for this goal is the
Chamberlin–Courant rule [Chamberlin and Courant, 1983].
While it is NP-hard to compute a winning set under this
rule, this problem becomes polynomial-time solvable when
voters’ preferences are single-peaked on a ‘nice’ tree [Pe-
ters and Elkind, 2016]. Consider now this situation from
the perspective of the voting authorities: they would like to
use the Chamberlin–Courant rule as long as it is computa-
tionally feasible, since this rule is axiomatically justified, and
otherwise they would prefer to use an efficient procedure that
outputs approximately optimal committees [Skowron et al.,
2015], or at least reserve more time for the aggregation pro-
cedure. However, the authorities need to commit to a voting
procedure before the general election, so they need to decide
whether voters’ preferences are likely to be single-peaked on
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a nice tree without eliciting all votes.
One way to achieve that is to draw a small random sam-

ple of voters and check if this sample is single-peaked on a
nice tree. Indeed, there are polynomial-time algorithms for
checking whether a given collection of votes is single-peaked
on a tree and identifying some such tree [Trick, 1989]; in
fact, it is possible to compactly represent all suitable trees,
and pick a tree with desirable properties [Peters and Elkind,
2016]. However, in general, such a tree is not unique. This
presents a problem in our setting: if the election authorities
obtain a sample that is consistent with several different trees,
with some, but not all of these trees having the required struc-
ture, they cannot reasonably expect that, once all votes are
elicited, the resulting instance would be single-peaked on a
nice tree. One can continue to sample votes until there is
only one tree that is consistent with the votes, but, as we will
show, this may require a number of samples that is exponen-
tial in the number of alternatives. Thus, it is desirable to have
a procedure that identifies a tree that is most likely to have
generated a given sample of votes, with high probability.
Our contribution. In this paper, we consider the setting
where votes are sampled independently at random among all
rankings that are single-peaked on a given tree. We are in-
terested in estimating the number of votes that is sufficient
to uniquely identify the underlying tree. We argue that we
may need exponentially many samples to identify the tree
with certainty if the votes are drawn from the uniform dis-
tribution over preferences that are single-peaked on that tree.
However, we obtain a PAC-learning style result showing that
we only need a small number of samples to correctly guess
the tree with high probability. We complement our theo-
retical results with empirical analysis. To conduct our ex-
periments, and specifically to provide input for our learning
algorithms, we design an efficient algorithm for uniformly
sampling preferences that are single-peaked on a given tree;
Walsh [2015] has proposed such an algorithm for preferences
that are single-peaked on a line [see also Conitzer, 2009], but
extending this result to trees is a significant challenge.

2 Preliminaries
A vote over a finite set of candidates C = {1, . . . ,m} is a
strict total order over C. Given a vote v and two candidates
x, y ∈ C, we write x >v y to indicate that v ranks x above
y. We denote the candidate ranked in position k in v by v[k],
and let v[1:k] = {v[1], . . . , v[k]}; also, we sometimes write
v[−1] to denote the lowest-ranked candidate in v. A profile
over C is a list V = (v1, . . . , vn) of votes over C. For each
c ∈ C, the Borda score Bv(c) of c in a vote v is the number
of candidates ranked lower than c in v. The Borda score of c
in a profile V is BV (c) =

∑
v∈V Bv(c). For a C ′ ⊆ C, we

denote by v �C′ the vote obtained by restricting v to C ′.
A profile V is single-peaked (on a line) if there is a linear

orderC on C such that, for all v ∈ V and every pair of candi-
dates x, y ∈ C such that v[1]CxC y or yCxC v[1] we have
x >v y. The profile V is single-peaked on T , where T is a
tree with vertex set C, if V is single-peaked when restricted
to the vertex set of every path of T . Equivalently, V is single-
peaked on T if for every v ∈ V and each k = 1, . . . , |C|, the

set v[1 : k] induces a subtree of T . Given a profile V , we
denote the set of all trees T such that V is single-peaked on
T by T (V ). We say that trees in T (V ) are suitable for V .

3 Sampling Algorithm
Given a tree T , let U(T ) be the uniform distribution on the
set of votes {v : v is single peaked on T}. In this section we
describe a procedure for sampling a vote from U(T ). This al-
gorithm will be used in our experiments (Section 5) to empir-
ically evaluate the learning algorithms described in Section 4.

We split the algorithm into two subroutines:
• P1(T ), determining v[1];
• P2(T, c), determining v[2], . . . , v[m] given v[1] = c.

We present these subroutines in reverse order.

Sampling a vote with given v[1] Fix a tree T = (C,E),
C = {1, . . . ,m}, and a candidate c ∈ C. Let S2(T, c) = {v
is single-peaked on T : v[1] = c}. We describe a randomised
procedure P2(T, c) that samples elements of S2(T, c) uni-
formly at random. From now on we view T as rooted at c;
in particular, we say that a vertex b is a child of a vertex a
if a is the first vertex on the path from b to c. The following
simple observation will be useful for our analysis.
Lemma 1. A vote v with v[1] = c is single-peaked on T if
and only if it ranks every candidate a ∈ C above its children.

We say that a subtree of T is a vine descending from y
if this subtree consists of a child x of y and all descendants
of x, and only contains one leaf. Suppose first that T con-
sists of the root c and two vines that descend from c. De-
note these vines by p1 and p2, and suppose that |p1| = m1,
|p2| = m2, where |p| denotes the number of nodes in a
vine p. Note that m = m1 + m2 + 1. There is a one-
to-one correspondence between the sets S2(T, c) and A =
{A ⊂ {2, 3, . . . ,m} : |A| = m1}: we can view a set
A ∈ A as the set of positions in the vote where candidates
in p1 can be placed, so that the candidates in p2 are placed
in the remaining m2 positions (note that the order of these
candidates is uniquely determined by Lemma 1). We have
|S2(T, c)| = |A| =

(
m−1
m1

)
. We will refer to the following

procedure as merging the vines p1 and p2 in T : given p1 and
p2, pick an element A ∈ A uniformly at random, let v be the
vote in S2(T, c) that corresponds toA, and replace T with the
path (C, {(c, v[2]), (v[2], v[3]), . . . , (v[m − 1], v[m])}). We
denote this procedure by M(c, p1, p2).

We are now ready to consider the general case, where T is
a tree rooted at c.
Lemma 2. Algorithm 1 performs P2(T, c).

Algorithm 1 Sample v single-peaked on T with v[1] = c

1: while T is not a path starting at c do
2: Find a vertex awith at least two vines p1, p2 descend-

ing from a.
3: Perform M(a, p1, p2).
4: end while
5: return The unique vote in S2(T, c).
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Proof. The while loop terminates afterm−1 iterations, since
each iteration decreases the number of leaves in T by one, and
when there is only one leaf, T is a path.

Further, any vote returned by Algorithm 1 is single-peaked
on T , since merging the vines in line 3 preserves descen-
dancy: if a is a descendant of b before the merge, this is also
the case after the merge.

Conversely, every vote v that is single-peaked on T can be
obtained by a sequence of merges; the order of merges can
be arbitrary, but during every merge there is a unique set of
indices A ∈ A that corresponds to v. Each element of A is
equally likely, and so is every vote single-peaked on T .

Algorithm 1 runs in polynomial time, but is too slow to be
used in practice. However, we can use it as a reasoning tool
to arrive at a more efficient solution. In the remainder of this
section, we explore a greedy approach that outputs the candi-
dates in v one by one. The subroutine highestAncestor(d,R)
in this algorithm returns the highest ancestor of d that is an
element of R.

Before we present a proof of correctness of Algorithm 2,
we briefly describe this algorithm in a less formal way. The
i-th iteration of the while loop can be seen as follows.
• There is a pool of disjoint subtrees of T ; v[i] is selected

among the roots of these subtrees.
• The probability that the root of a subtree is selected as
v[i] is proportional to the size of the subtree.
• When a candidate a is picked as v[i], the a’s subtree is

replaced in the pool with the subtrees of a’s children.
Lemma 3. Algorithm 2 performs P2(T, c).

Proof. Consider some vertex u that is a child of c. Let m1 be
the size of the subtree rooted at u; we would like to compute
the probability p that Algorithm 1 returns v[2] = u. Consider
an execution of Algorithm 1 where we merge vines in such an
order that at the last step we merge p1 and p2 and p1 begins
with u; then p only depends on what happens during the last
merge. Let m1 = |p1|. The number of votes with v[2] = u is
then given by

(
m−2
m1−1

)
, and the total number of possible votes

is
(
m−1
m1

)
. Thus, the probability of u being second is(

m−2
m1−1

)(
m−1
m1

) =
m1

m− 1
.

Algorithm 2 Sample v single-peaked on T with v[1] = c

1: v[1]← c
2: R← C \ {c}
3: i← 2
4: while R 6= ∅ do
5: d← uniformly random element of R
6: a← highestAncestor(d,R)
7: R← R \ {a}
8: v[i]← a
9: i← i+ 1

10: end while
11: return v

Since m1 is the size of the subtree of T rooted at u, the prob-
ability that a random vertex from C \ {c} lies in u’s subtree
equals the probability that v[2] equals u.

Once v[2] is determined, v[3] may be any child of c except
v[2], or any child of v[2]. The same reasoning can be repeated
with respect to v[i], for i = 3, 4, . . . ,m, to the conclusion that
for each i, the probability that v[i] = z is proportional to the
size of the subtree rooted at z, for any z in the set

i−1⋃
k=1

children(v[k]) \ {v[1], ..., v[i− 1]}.

Hence, Algorithm 2 determines v[i] at every iteration of the
loop, preserving the distribution of results of Algorithm 1.

In the interest of space we do not discuss how to implement
the subroutines in Algorithm 2 efficiently; the implementa-
tion in our experiments has time complexity O(m logm).

Determining v[1] To use Algorithm 2, we need to determine
v[1]. The following lemma will be crucial for our analysis.

Lemma 4. Consider an edge xy of a tree T . Let Tx and
Ty be the connected components of the graph T \ {xy}, with
x ∈ Tx, y ∈ Ty . Let v be a vote sampled from U(T ). Then

Pr(v[1] = x)

Pr(v[1] = y)
=
|Tx|
|Ty|

.

Proof. We have

Pr(v[1] = x)

Pr(v[1] = y)
=
|{v is single-peaked on T : v[1] = x}|
|{v is single-peaked on T : v[1] = y}|

.

Consider two executions of Algorithm 1, Ex and Ey , with,
respectively, x and y being selected as v[1]. Note that for Ex
the root is x and one of its children is y, and for Ey the op-
posite is true. Recall that the order in which vines are merged
is irrelevant for the distribution of results. In both cases, let
the order of merges be such that all merges happen inside
of Tx or inside of Ty , until only two vines descending from
the root remain. Up to this point, the two executions are the
same, and the number z of possible results until now is the
same. The last step of Ex and Ey is merging the vines of
lengths |Tx| − 1, |Ty|, and |Tx|, |Ty| − 1 respectively. The
number of possible results in the two cases is z

(|Tx|+|Ty|−1
|Tx|−1

)
and z

(|Tx|+|Ty|−1
|Ty|−1

)
, respectively, hence

Pr(v[1] = x)

Pr(v[1] = y)
=
z
(|Tx|+|Ty|−1
|Tx|−1

)
z
(|Tx|+|Ty|−1
|Ty|−1

) =
|Tx|
|Ty|

.

Lemma 5. Algorithm 3 computes Pr(v[1] = i) for each can-
didate i ∈ C.

Proof. By Lemma 4, the values P (i) computed in Line 5 are
proportional to Pr(v[1] = i), and Line 6 normalises them.
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Algorithm 3 Compute Pr(v[1] = k) for k = 1, . . . ,m given
the tree T = ({1, . . . ,m}, E)

1: Root T at 1.
2: Renumber the candidates so that for each i 6= 1 it holds

that parent(i) < i.
3: For each candidate i, compute the size si of the subtree

rooted at i.
4: P (1) = 1 . reference value.
5: For i = 2, . . . ,m let P (i)← si·P (parent(i))

m−si
6: For i = 1, . . . ,m let Pr(v[1] = i) = P (i)∑m

k=1 P (k)

7: return

Algorithm 3 operates on values that may be exponential in
m. Hence, if we assume that an arithmetic operation on num-
bers a and b takes time O(max{log a, log b}), the running
time of Algorithm 3 can be bounded as Θ(m2).

Sampling votes We note that, given a tree T , Algorithm 3
needs to be run just once, no matter how many votes we have
to sample. Then, v[1] can be chosen based on the probabili-
ties computed, and Algorithm 3 can be run repeatedly, sam-
pling each vote in time O(m logm). This procedure will be
referred to as the Sampling Algorithm.

Combining Lemma 3 and Corollary 5 gives the following
result.

Theorem 6. Given a tree T , we can efficiently sample votes
from U(T ).

4 Tree Identification
In this section we investigate the problem of identifying the
tree that describes the vote domain based on the observed
votes. The central question is: how many votes do we need
to examine in order to guess the tree? We consider two vari-
ants of this question, which depend on whether we need to
determine the tree with certainty or with high probability.
Attachment digraph A useful tool in our analysis is the at-
tachment digraph, defined by Peters and Elkind [2016] build-
ing on the ideas of Trick [1989] and Yu et al. [2013]. Given
a profile V over a candidate set C, its attachment digraph is
a digraph D = (C,A) that is built by Algorithm 4; it relies
on the subroutine B(v, c), which takes as input a vote v and
candidate c, and returns the set of candidates that c can be
attached to as a leaf in trees suitable for v.

B(v, c) =

{
{c′ : c′ >v c} if v[1] 6= c

{v[2]} if v[1] = c

The attachment digraph offers a compact description of the
set T (V ), in the following sense. It can be shown that D has
at most two sinks. To obtain the pointed attachment digraph
D′ we set D′ = D, and then, if D has two sinks, we add
an arc between them, directed arbitrarily. By definition, D′
has at most one sink s. We say that a vertex z ∈ C is free if
|{x : zx ∈ A}| > 1 and forced otherwise. Peters and Elkind
[2016] prove that any tree in D(V ) can be obtained from D′

by removing arcs so that the remaining graph contains exactly

Algorithm 4 Build attachment digraph D = (C,A) of V

1: D ← (C, ∅), the empty digraph on C
2: C ′ ← C
3: while |C ′| ≥ 3 do
4: L← {(v �C′)[−1] : v ∈ V }
5: for each candidate c ∈ L do
6: Bc =

⋂
v∈V B(v �C′ , c)

7: if Bc = ∅ then
8: return fail: V not single-peaked on any tree
9: else

10: add arcs cc′ for each c′ ∈ Bc to A
11: end if
12: end for
13: C ′ ← C ′ \ L
14: end while
15: return D

one arc of the form zx for each z ∈ C \ {s}, and forgetting
the orientation.

4.1 Tree Identification with Certainty
In general, to identify the tree T with certainty, we may need
to sample exponentially many votes from U(T ).
Theorem 7. Suppose that a profile V is obtained by sampling
n votes from U(T ), where T is a path with m vertices. If
n < 2m−3 then Pr(|T (V )| = 1) ≤ 1

2 .

Proof. Consider a path T of the form 1–. . . –m. Note that
|T (V )| = 1 if and only if every vertex in the attachment
digraph of T is forced. By the definition of B(v, c) candidate
1 is free if candidates 2 and 3 are ranked higher than 1 in every
vote. There are only two votes single-peaked on T in which
2 or 3 is ranked below 1, namely, u = 1 > 2 > · · · > m and
v = 2 > 1 > 3 > · · · > m. Hence, for T to be identified
with certainly, the sampled profile needs to contain u or v.
There are 2m−1 votes single-peaked on T (see, e.g., [Walsh,
2015]), so the probability of sampling u or v is 1

2m−2 , and the
probability that a profile of n < 2m−3 votes contains neither
u nor v is

(
1− 1

2m−2

)n
> 1

2 .

The number of samples appears to be related to the diame-
ter of the graph: e.g., if T is a star, we only need logarithmi-
cally many samples.
Theorem 8. Suppose that a profile V is obtained by sampling
n votes from U(T ), where T is a star with m vertices. For
every ε > 0, if n ≥ 2 log2m + log2

1
ε , then Pr(|T (V )| =

1) ≥ 1− ε.

4.2 Tree Identification with High Probability
Suppose that we have obtained a profile V by sampling n
votes from U(T ). If V is single-peaked with respect to several
different trees, we cannot identify T with certainty; however,
it may still be possible to identify T with high probability.
Example 9. Consider two trees on candidate set {1, . . . ,m}:
the first tree T1 is a path of the form 1–2–. . . –m, and the
second tree T2 consists of the path 3–. . . –m, with both can-
didates 1 and 2 attached to 3 as leaves. Consider a sample of
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votes from U(T1). If it does not contain votes u and v defined
in the proof of Theorem 7, we cannot be sure that this sample
was not drawn from U(T2). However, if the votes are indeed
sampled from T1, then no voter ranks 2 last whereas in a sam-
ple of votes from U(T2) candidates 1 and 2 are equally likely
to be ranked last. Thus, if the sample is large, and 2 has never
appeared in the last position, we can be reasonably confident
that the underlying tree is T1 rather than T2.

Inspired by Example 9, we consider the problem of identi-
fying T with high probability.

Given δ > 0 and a profile of votes V sampled from U(T ),
our goal is to guess T correctly with probability at least 1−δ.
We ask what is the smallest number of votes n that ensures
this, as a function of 1

δ and |T |.
Intuition. Consider the attachment digraph D = (C,A)
of V . Given a vertex c in T , let PP(c) = {u : cu ∈ A}
be the set of potential parents of c. Note that at most one
vertex in PP(c) is adjacent to c in T : while constructing the
attachment digraph, we add arcs from c to vertices in PP(c)
only when c is ranked last in some vote, i.e., when c is a leaf
in all trees consistent with the profile. We call this vertex the
real parent of c; other vertices in PP(c) are called the false
parents of c. If c is forced, it has only one potential parent,
which is certain to be its real parent. Now, let c be a free
vertex in D. Our algorithm needs to guess which vertex in
PP(c) to specify as the real parent.

If u is a potential parent of c then by construction of the
attachment digraph we have u ∈ B(v, c) for all v ∈ V . Since
c is free, we have |B(v, c)| ≥ 1 for all v ∈ V , and hence by
definition of B(v, c) it holds that u is ranked above c in all
votes in V . Suppose that c has two potential parents: a false
parent f and the real parent p. It follows from the description
of the Sampling Algorithm that c appears immediately after
p with probability at least 1

m . Thus, if vertices f, p, c are con-
sistently ranked as f > p > c in the votes, we can guess than
p is the real parent of c.
Analysis of the algorithm. Consider Algorithm 5 where α
is left to be determined. The operator minBorda(F, V ) re-
turns an element of {f : cf ∈ F} that has the lowest Borda
score in the profile V , breaking ties arbitrarily, and fo(C,A′)
is used to forget orientation, i.e., to turn a directed graph into
an undirected graph.

Theorem 10. For any tree T of size m and δ > 0, if Algo-
rithm 5 is given a profile V of 2mα votes that are sampled
from U(T ), where α ≥ 2 logm + log 1

δ , then the probability
that the tree T ′ returned by the algorithm is equal to T is at
least 1− δ.

Algorithm 5 Guess T , given a profile V with 2mα votes

1: (C,A)← PointedAttachmentDigraph(V )
2: A′ ← ∅
3: for each candidate c ∈ C do
4: F ← {cf : cf ∈ A} . arcs to potential parents of c
5: A′ ← A′ ∪ {c,minBorda(F, V )}
6: end for
7: return T ′ = fo(C,A′)

Algorithm 6 Try to sample a V such that ¬E1,V ∧ ¬E2,V

holds for given c, p and f

1: V ← ∅
2: for k = 1, . . . , 2mα do
3: v is sampled from U(T )
4: i← 1
5: while v[i] /∈ {p, f, c} do
6: i← i+ 1
7: end while
8: if v[i] = c then
9: return ∅

10: end if
11: if v[i] = p then
12: while v[i] 6= f do
13: if v[i] = c then
14: return ∅
15: end if
16: i← i+ 1
17: end while
18: end if
19: V ← V ∪ {v}
20: end for
21: if BV (f) > BV (p) then
22: return ∅
23: end if
24: return V

Proof sketch. Consider a free candidate c with parent p, and
let f be a candidate in C \ {p}. We say that the algorithm
succeeds with (c, f) if the arc cf does not appear in D of if
f is a false parent of c in D, but cf is not chosen in line 5 of
the algorithm. Clearly, if for each free candidate c and each
candidate f that is not c’s real parent the algorithm succeeds
with (c, f), then the returned tree is equal to T .

We will argue that for each such pair (c, f) the algorithm
succeeds with probability at least 1 − e−α; since there are
at most m2 such pairs, by the union bound the probability
that the algorithm fails is at most m2e−α. It then remains to
observe that if α ≥ 2 logm+ log 1

δ then m2e−α ≤ δ.
Fix a pair (c, f), where c is a free candidate whose real

parent is p, and f ∈ C\{c, p}. We can view the profile V as a
random variable. Let E1,V be the event that some vote v ∈ V
ranks c higher than f , and letE2,V be the event thatBV (f) >
BV (p). If E1,V happens then the algorithm succeeds with
(c, f) by the construction of the attachment digraph, and if
E2,V happens then the algorithm succeeds with (c, f) since
cf is not added to A′ in line 5. Thus, the algorithm fails only
if neither of these events happens.

Algorithm 6 samples a preference profile V , in the process
checking if in every vote f is above c, otherwise returning ∅.
If BV (f) ≤ BV (p) does not hold at the end, ∅ is returned as
well. That is, the algorithm samples elements of V uniformly
at random and swaps V for ∅ if E1,V ∨ E2,V holds.

Recall that the Sampling Algorithm determines the votes
candidate by candidate from top down, similarly to how votes
are processed by Algorithm 6. We can view vote sampling as
concurrent with vote processing by the algorithm. Consider a
run of Algorithm 6, and suppose in vote v being processed p
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Table 1: ni values obtained in the experiments.

appears in some position k, while f and c have not appeared
yet. Then, for subsequent positions i = k + 1, k + 2, . . . the
algorithm tests whether v[i] = c in lines 12–13, and returns
∅ if so, until v[i] = f . Recall from the Sampling Algorithm
that, once p has appeared, the probability of sampling v[i] = c
at each position is at least 1

m . Hence, each time the condition
in line 12 is tested, the probability of returning ∅ in the next
step is at least 1

m .
On the other hand, at the end BV (f) ≤ BV (p) has to hold,

or the algorithm returns ∅. Let d(v) be the difference of the
rankings of p and f in vote v if p is ranked higher than f
in v, and 0 otherwise. Note that in each vote the positions
of p and f differ by at least 1, so for BV (f) ≤ BV (p) to
be true,

∑
v∈V d(v) ≥ mα has to hold. Further, line 12 in

Algorithm 6 is executed exactly d(v) times for each vote v,
so if the algorithm does not output ∅, it is executed at least
mα times. Hence, the probability that Algorithm 6 does not
return an empty set is at most (1− 1

m )mα < 1
eα .

5 Experiments
In this section, we empirically investigate the number of
samples from U(T ) needed to identify a tree T , either with
certainty (Experiment 1) or with high probability (Experi-
ment 2). Estimations are based on 2000 trials, unless stated
otherwise.

In Experiment 1 we record our empirical estimations of
how many votes are sufficient to identify T with certainty, in
50%, 85%, 95% of instances respectively; we refer to these
quantities as n1, n2, and n3. That is, if we order the trials by
the number of votes needed to identify the tree with certainty,
from the lowest to the highest, then n1 is the number of sam-
ples required in the 1000-th trial, n2 is the number of samples
required in the 1700-th trial, and n3 is the number of samples
required in the 1900-th trial.

In Experiment 2, we record our empirical estimations of
how many votes are sufficient to achieve δ values of 50%,
15%, 5% respectively, as discussed in Section 4.2; we refer
to these quantities as n4, n5 and n6.

We perform experiments for the following families of trees:

• Stars of sizes 5, 10, 20, 40 and 80

• Balanced binary trees of sizes 7, 15, 31, 63, 127

• Caterpillars of sizes 6, 10, 14, 18, 22

• Paths of sizes 6, 10, 14, 18, 22

The binary tree of size 127 was only used in Experiment 2,
due to the huge number of samples it would require in Ex-
periment 1. For the same reason, in case of the binary tree of
size 63 and the path of size 22 we only performed 40 trials
instead of 2000 in Experiment 1. The results are presented in
Table 1.

For identifying trees with certainty, we know that paths
require exponentially many samples, whereas for stars log-
arithmically many samples suffice (Theorems 7 and 8); this
is confirmed by our experiments. Together with experimental
results for caterpillars and binary trees, this seems to suggest
that the required number of samples is closely related to the
diameter of the graph.

In contrast, for the task of guessing the tree with high prob-
ability, paths require very few samples, but caterpillars turn
out to be quite challenging. This is consistent with the intu-
ition behind Algorithm 5: for the algorithm to guess the real
parent of a leaf correctly, this leaf needs to be ranked immedi-
ately after its parent in some sampled vote. For stars, there is
very little difference between Experiment 1 and Experiment 2
in terms of the number of samples. For balanced binary trees,
the number of required samples is again logarithmic in the
size of the tree in Experiment 2, but seems to be exponential,
or almost exponential in Experiment 1.

6 Conclusions
We have investigated the difficulty of learning a tree that gen-
erates a given preference profile, either with certainty or with
high probability. Our results indicate that achieving certainty
may be very costly in terms of the number of samples re-
quired; however, learning the tree with high probability is
feasible even for fairly large trees.

Throughout the paper, we assumed that neither the tree it-
self nor the assignment of candidates to vertices is known in
advance. One can ask similar questions if the tree itself is
known, but we need to learn the assignment; these questions
are interesting even if the underlying graph is a path.
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