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ABSTRACT

Speech enhancement is one of the biggest challenges in hear-
ing prosthetics. In face-to-face communication devices have
to estimate the signal of interest, but playback of speech sig-
nals from an electronic device opens up new opportunities.
Audio signals can be enriched with hidden data, which can
subsequently be decoded by the receiver. We investigate a
hybrid strategy made of signal processing and RNN (Recur-
rent Neural Networks) to calculate and compress cepstral co-
efficients: these are descriptors of the speech signal, which
can be embedded in the signal itself and used at the receiver’s
end to perform an Informed Speech Enhancement. Objective
evaluations showed an increase in speech quality for noisy
signals enhanced with our method.

Index Terms— Speech enhancement, Cepstral Smooth-
ing, Recurrent Neural Networks

1. INTRODUCTION

Separating speech from a noisy mixture is a widely studied
problem in the hearing prosthetics domain, as speech intel-
ligibility is compromised by the presence of noise. Modern
prosthetic devices run several algorithms designed to tackle
this issue, from beamformers — which take advantage of mul-
tiple microphones — to statistical signal estimators like Wiener
filters. When the signal of interest is unknown, the problem
can also be described as Blind Source Separation.

A different scenario is posed when there is some prior
knowledge about the signal of interest, and the problem can
be categorized instead as ISS (Informed Source Separation)
[[L]. In recent decades different methods have been proposed
in this field, mainly in the context of music remixing or ac-
tive listening (e.g., a scenario in which the listener can choose
which sound source to enhance in respect to the mixture).
The system proposed in [2] utilizes information from a mu-
sic score in order to separate instruments acoustically from
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a monophonic mixture; in [3] information about the differ-
ent sources is encoded in the signal itself by quantizing the
MDCT (Modified Discrete Cosine Transform) coefficients;
source and receiver need a common code-book to operate, and
the method can be used for active listening.

An application that is still unexplored is the embedding
of data in speech signals for the purpose of being decoded
by hearing devices and used to perform Informed Speech En-
hancement when exposed to playback through the acoustic
channel.

In [4] a method for embedding text into speech signals
is described, while in [5] textual information is used to en-
hance speech from a noisy mixture by utilizing some features
of TTS (Text To Speech), given that a transcription of the ut-
terances is available. While a combination of these methods
seem to point in the direction of our intended application, we
are looking to represent the signal with acoustic descriptors
rather than text to then enhance the speech signal.

While being very efficient at source separation, the ISS
method described in [3] utilizes a high capacity (up to 150
kbps in music signals) watermarking technique based on [6]
which is not intended for acoustic propagation. Its use-case is
in fact for the watermark to be read by a device from the dig-
ital file directly, whereas acoustic propagation would destroy
it. Watermarking techniques that are inaudible and robust to
acoustic propagation have been investigated in the context of
second screen applications; however, such methods are sub-
ject to a heavy trade-off between capacity and robustness to
the acoustic path (e.g., up to 10 bps in [[7]). The OFDM tech-
nique proposed in [8] is designed for acoustic propagation and
has been shown to achieve data rates up to 400 bps; however,
it is designed to be hidden within music signals, as the rich-
ness in frequency content allows for perceptual masking of
high frequency carriers. Such a method is therefore less suit-
able to be used in “’bare” speech signals.

With the described application in mind — a hearing de-
vice detecting a watermark from speech playback through the
acoustic channel — we chose a descriptor of the speech signal
that requires a limited amount of data, while still being use-
ful for signal separation: its cepstral coefficients [9]]. Only a
small number of such coefficients is necessary to reconstruct
the spectral envelope of the signal (the higher the number
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Fig. 1. System overview of the trained neural networks. At
the transmitter, the compression of the cepstral coefficients
is performed while the receiver does the decompression and
cepstral smoothing of the received noisy signal.

of coefficients, the greater the definition). Such coefficients
are widely used in ASR (Automatic Speech Recognition) and
TTS (Text to Speech) applications. In our intended applica-
tion scenario, coefficients could be sent to the receiver and
used to obtain the spectral envelope of the signal via IFFT
(Inverse Fast Fourier Transform), in order to filter out the
ambient noise via spectral subtraction. This system can be
applied in any scenario where speech signals are broadcast
from loudspeakers, such as public speeches, announcements
in train stations, etc. The transmitter does not need any addi-
tional hardware, as the data can be embedded directly in the
audio.

The use of cepstral coefficients for the purpose of speech
enhancement is a known technique [10} [11] also referred to
as cepstral smoothing [12] when used in order to prevent mu-
sical noise in addition to other noise reduction strategies. In
this study, we use it as the sole method of enhancement.
Even though cepstral coefficients may offer a compact acous-
tic description the signal, the amount of data required for an
accurate representation is still too large for any known acous-
tic watermarking technique (e.g. 156 floating point numbers
per second = 4992 bps). For this reason, we try to com-
press this representation even further with a machine learning
method.

2. METHODS

We calculate the cepstral coefficients by dividing the original
speech signal (unaffected by noise) in short Hann-windowed
time frames. For each frame, coefficients are obtained with:

Fllog|F(Wi)|] (1

Where W, is the k-th time frame, and F(.) represents the
FFT (Fast Fourier Transform). We then select only the first
few coefficients.
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Fig. 2. System overview of the neural networks used to train
the transmitting compression network and the receiving de-
compression network. The solid lines indicate the data flow
while the dashed ones indicate the back-propagation of the
loss. The gray boxes represent data, the red ones loss func-
tions, the blue ones are the neural networks, and the yellow
ones are classic functions which are not differentiable.

We have developed two neural networks; one to compress
the cepstral coefficients at the transmitter and a second one to
reconstruct the data at the receiver.

The network located at the transmitter is a convolutional
recurrent neural network (CRN) which compresses the cep-
stral coefficients gathered from the clean speech signal into
eight floating point numbers per second. For this task we use
a CRN because of its ability to store data in a Long-Short-
Term-Memory, which allows to detect time-dependent char-
acteristics of the cepstral coefficients. At the receiver, a linear
neural network (LNN) decompresses the values back to the
cepstral coefficients. This compression scheme is lossy, the
coefficients are not restored perfectly.

At the transmitter the cepstral coefficients are calculated
with overlapping windows with a length of [ = 0.05 sec-
onds. For each window only the first two coefficients are
used. This results in 156 coefficient with a total of 4992
bits per second. These coefficients are then compressed with
the Compression Network to 256 bits per second. The
Decompression Network then decompresses this data
to 20 cepstral coefficients per window of 0.02 seconds. The
compression and decompression are not symmetric, after the
decompression there is more data than before the compres-
sion.

Figure|l|shows an overview of the running systemE]

ISamples can be found at https://drive.google.com/drive/
folders/1MKcdpS01lwY/N51luzwOhf9Ek96xKyTeA]
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2.1. Quality Estimation

A well suited loss function is crucial to achieve good results
with a neural network. The most obvious loss function is the
mean squared error of the decompressed cepstral coefficients
compared to the real cepstral coefficients, which results in the
point_loss. While this guarantees that the decompressed
data is similar to the target data, it does not guarantee that
the decompressed cepstral coefficients are suitable for speech
enhancement via cepstral smoothing. The quality of the co-
efficients can only be measured by judging the intelligibility
and quality of the enhanced speech signal.

In order to evaluate our output we chose to use PESQ
[13]. Although being primarily an objective measure of
speech quality, it has been found to correlate well also with
intelligibility [14]]. Its score ranges from -0.5 (bad) to 4.5
(excellent).

In our case, the closer the noisy signal after the cepstral
smoothing is to a perfectly clean one, the better is the PESQ
value. For this reason the difference between the perfect
PESQ value and the one of the enhanced speech file is a well
suited loss function. Unfortunately, the computation of the
PESQ value is not differentiable and can therefore not be used
directly as a loss function in a neural network. Furthermore in
our case the output of the decompression network are the cep-
stral coefficients which first have to be used for the cepstral
smoothing. These computations are also not differentiable.

To circumvent these issues we have built a third neural
network, the PESQ Estimator, with eight fully connected
linear layers. This network takes the decompressed cepstral
coefficients and the noisy and clean speech signals as inputs
and estimates the PESQ value. The mean squared error of
this estimated PESQ value to the perfect PESQ value of 4.5 is
then used as pesg_loss in the loss function for the com-
pression and decompression network. Figure [2] shows the
whole system during training where also the PESQ estimator
is included. The PESQ estimator is trained after each training
round of the compression and decompression networks. The
estimated PESQ value is compared to the real PESQ value.
The resulting est _1oss, which is the mean squared error, is
then back propagated to the PESQ estimator.

We combine the point_loss and the pesg_loss as
our loss function for the compression and decompression net-
works. This guarantees that the networks search for cepstral
coefficients that minimize the mean squared error compared
to the original ones while the quality of the speech signal is
maximized.

2.2. Compression Network

For the compression of the cepstral coefficients, a convolu-
tional recurrent neural network (CRN) is used. CRNs have
a long short-term memory (LSTM) that allows to pass on in-
formation processed in the past to the current processing step.
The speech signal at a time ¢ is influenced by the signal at time

t — 1. LSTMs are perfectly suited to model this causal influ-
ence on the output. Our CRN consists of three encoder layers,
a long-short term memory layer in the middle and three de-
coder layers to detect the time properties of the cepstral coef-
ficients. At the end we have four fully connected linear layers
that compress the detected properties to eight floating point
coefficients which are then transmitted to the receiver.

We have developed our CRN motivated by recent works
of Ke Tan and DeLiang Wang in [15]. Our network allows
real time speech enhancement since it only considers causal
data.

While in [15] the network uses the noisy audio data as
an input to enhance it, we use the cepstral coefficients calcu-
lated before from the clean speech signal. We have therefore
adapted the original network to our smaller input size. But
even this downsized network from [[15] is far too big for a typ-
ical hearing aid and requires too much computational power;
for this reason, we use this network only on the transmitter
where neither computational power nor storage is a limiting
factor.

2.3. Decompression Network

At the receiver the noisy speech signal should be enhanced
by filtering out the background noise, while the speech signal
remains clear and therefore more intelligible. The data from
the transmitter CRN is used as input to the decompression
network. The network outputs N = 20 cepstral coefficients
for each window of [ = 0.02 seconds. These coefficients can
then be used for cepstral smoothing of the speech signal.

The decompression network is a linear neural network
(LNN). An LNN consists only of fully connected linear lay-
ers. While CRNs with their LSTM are capable of using in-
formation from the past, an LNN is typically simpler and
therefore requires much less computational power and data
storage. This is of great importance at the receiver. The de-
compression network consists of nine linear layers and only
requires 38 KB of storage.

2.4. Data

The training of the proposed neural networks is performed us-
ing the data from [16]. There are 11572 speech files spoken
by 56 different speakers for the training and additional 824
speech files for testing. From these samples we generate the
noisy samples for the receiver. We add echoes and additive
noise of people talking to simulate a realistic environment.
From each sample a one second long interval is chosen ran-
domly and used for training. After every five epochs the train-
ing data gets regenerated and new one second long intervals
are chosen from each speech file.

In Figure [I] the system after the training is depicted. The
PESQ estimator is not used anymore.
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Fig. 3. In this graph the correlation between the estimated and
real PESQ value is depicted. The red line indicates a perfect
correlation of 1.0 while the blue dots represent the effective
results from the measurement.

3. RESULTS

3.1. PESQ Estimation

The PESQ estimation is a crucial part of the system. The
quality of our loss function directly depends on the quality of
the PESQ estimation. Figure [3| shows the estimated and real
average PESQ values for 150 random test samples for each
epoch. As it can be seen, the estimated PESQ value clearly
follows the real PESQ value. In fact the correlation between
these two is with 0.95 almost perfect.

This allows us to use this PESQ estimator in our system to
improve the quality of our loss function for the compression
and decompression networks.

As it can be seen in Figure []the average PESQ value has
a value between 1.9 and 2.2 after the first few epochs. With a
variance of roughly 0.3 about 70 % of all the estimated PESQ
values are in the range between 1.35 and 2.75. This leads to a
mean squared error between 3 and 10 for the pesg_loss.

3.2. Compression and Decompression Networks

The goal of the neural networks is to find well suited cepstral
coefficients with only very little input data at the decompres-
sion network.

Figure 4| shows the comparison of using the original
and the decompressed cepstral coefficients for the cepstral
smoothing of the noisy speech signal. In the first few epochs,
the learning curve is quite steep and the network produces
already good results. From epoch 12 to 20 the network is
still slowly improving but not a lot anymore and after epoch
20 overfitting occurs. The maximum is achieved in epoch
18 with an average real PESQ value of 2.08. This is more
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Fig. 4. The average real PESQ value measured with the testset
of 824 samples per training epoch (green). The maximum is
achieved in epoch 18 with an average PESQ value of 2.08.
The blue and red lines indicate the average real PESQ value
of the noisy audio and the audio enhanced with the original
cepstral coefficients respectively.

than the improvement with the original unprocessed cepstral
coefficients. Our network is therefore capable to detect some
features from the cepstral coefficients such that the compres-
sion and decompression leads to a slight improvement of the
enhancement.

We have shown that the PESQ value is strongly improved
with the help of our networks while we were able to reduce
the transmitted bits per second to only 256.

4. CONCLUSION

We have proposed a method for informed speech enhance-
ment based on cepstral smoothing. While the cepstral coef-
ficients are too large to be directly embedded in the speech
signal via acoustic watermarking, we have developed a neu-
ral network to compress them before transmission. At the
receiver they are decompressed using only a small neural net-
work. From originally 156 floating point numbers per sec-
ond we can drastically reduce the amount of data to 8 floating
point numbers. Our results show that the speech quality of the
output is even improved slightly compared to directly using
the original, uncompressed cepstral coefficients for cepstral
smoothing.

While our results are promising in terms of speech en-
hancement, the amount of data required for acoustic transmis-
sion is still too large for known methods. Future work could
investigate a high-capacity watermarking technique which
satisfies the requirements of robustness and inaudibility.
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