
A Blueprint for Constructing Peer-to-Peer Systems
Robust to Dynamic Worst-Case Joins and Leaves

Fabian Kuhn
Microsoft Research

Silicon Valley

1065 La Avenida

Mountain View, CA, USA

kuhn@microsoft.com

Stefan Schmid
Computer Engineering and

Networks Laboratory (TIK)

ETH Zurich

8092 Zurich, Switzerland

schmiste@tik.ee.ethz.ch

Joest Smit
Computer Engineering and

Networks Laboratory (TIK)

ETH Zurich

8092 Zurich, Switzerland

jmsmit@ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory (TIK)

ETH Zurich

8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract— Until now, the analysis of fault tolerance of peer-
to-peer systems usually only covers random faults of some kind.
Contrary to traditional algorithmic research, faults as well as
joins and leaves occurring in a worst-case manner are hardly
considered. In this paper, we devise techniques to build dynamic
peer-to-peer systems which remain fully functional in spite of
an adversary which continuously adds and removes peers. We
exemplify our algorithms on a pancake topology and present
a system which maintains peer degree and network diameter
O(log n

log log n
), where n is the total number of peers in the system.

I. INTRODUCTION

Stirred by the remarkable popularity of Internet file-sharing

software, distributed systems and networking research made

peer-to-peer (P2P) systems a focal point of their recent studies.

As opposed to P2P systems, conventional distributed systems

typically consist of a fixed set of machines. During operation,

occasionally (but rarely!) a small subset of machines might fail

(crash or behave maliciously, depending on the model). Thanks

to ingenious communication protocols these failures will be

detected, and operable parts of the system will eventually be

guided back to a save state.

In a P2P system, however, there is no fixed set of participat-

ing machines. Instead, a distributed P2P system is composed

of a huge number of machines (peers) which join and leave

the system at high rates. In P2P lingo, this high turnover

of machines is called churn. For distributed systems with

high churn the orthodox group communication schemes seem

futile. In a P2P system with millions of peers where each

participates in the system for a few hours on average, hundreds

of membership changes take place every second. In such a

system, it seems out of the question to achieve consensus

which peers currently participate.

In spite of being a foremost difficulty in P2P systems, churn

has not received the attention it deserves in the literature. With

the exception of [12], P2P systems are instead analyzed against

an adversary which can crash a functionally bounded number

of random peers. Then, much in the esprit of self-stabilization

or group communication, the P2P system is given sufficient

time to recover.

In this paper we describe how to construct an efficient

distributed hash table (DHT) which is resilient to churn. We

assume that joins and leaves occur in a worst-case manner,

i.e., an adversary chooses which peers to crash and how peers

join. Thereby, the adversary does not need to wait until the

system is recovered before it crashes the next group of peers.

Instead, the adversary may crash peers continuously while

the system is trying to stay alive. Our system remains fully

functional in the presence of an adversary constantly attacking

its weakest part. Such an adversary is countered by our system

by continuously moving the remaining or newly joining peers

towards the weakest areas.

Of course, we cannot allow our adversary to have unlimited

capabilities. In particular, in any constant time interval, the

adversary can at most add and/or remove Θ(log n
log log n) peers,

n being the total number of peers presently in the system.

Since the peer degree—or the routing state per peer—is

also in O(log n
log log n), this is asymptotically optimal: If the

adversary could remove as many peers as the the peer degree,

it would be able to disconnect a peer completely from the

system by crashing all the peer’s neighbors. Our model covers

an adversary which repeatedly takes down machines by a

distributed denial of service attack, but only a bounded number

of machines at each point in time. Our system is synchronous
and we assume messages to be delivered timely, that is, in

at most constant time between any pair of operational peers.

It would be possible to adapt the system for an asynchronous

environment; in this case, the propagation delay of the slowest

message defines the notion of time which is needed for the

adversarial model.

The basic structure of our P2P system is a pancake graph

(cf Definition 1.1 and Figure 1) of order d. Each peer is part of

a distinct pancake node; each pancake node consists of O(d2)
peers. A data item is redundantly stored by the peers of the

node to which its identifier hashes. Peers have connections to

other peers of their pancake node; additionally, some peers

of neighboring pancake nodes are connected to each other. In

the case of joins or leaves, some of the peers have to change

to another pancake node such that up to constant factors, all

pancake nodes own the same number of peers at all times. If

the total number of peers grows or shrinks above or below

a certain threshold, the order of the pancake is increased or

decreased by one, respectively.

1-4244-0476-2/06/$20.00 ©2006 IEEE. 12

Fig. 1. A pancake graph of order 4 (P4).

Definition 1.1: A pancake graph of order d is a graph Pd =
(V, E), with V (Pd) = {l1l2...ld |li ∈ {1, ..., d},∀i �= j : li �=
lj}, i.e., V (Pd) is the set of all permutations on the set [1, d].
Let ρi denote a prefix-inversion of length i: ρi(l1...li...ld) :=
lili−1...l1li+1...ld. For u, v ∈ V (Pd), it holds that {u, v} ∈
E(Pd) ⇔ v = ρi(u) for i ∈ {2, ..., d}. Pd is a (d− 1)-regular

graph of diameter smaller than 2d.

Henceforth, we will refer to the set {a, a + 1, ..., b − 1, b} as

[a, b]. Moreover, the number li at the ith position of a node

with label v = l1...ld will be called the ith entry.

The balancing of peers among the pancake nodes can be

seen as a dynamic token distribution problem [15] on the

pancake. Each node of a graph having a certain number of

tokens, the goal is to distribute the tokens along the edges

of the graph such that all nodes end up with roughly the

same number of tokens. While tokens are moved around,

an adversary continuously adds and removes tokens. Our

P2P system builds on two basic components: i) an algorithm

which performs the described dynamic token distribution and

ii) an information aggregation algorithm which is used to

estimate the number of peers in the system and adapt the order

accordingly.

Apart from the pancake graph, our techniques can be

applied to any of the popular P2P topologies. We decided

to use the pancake graph for two reasons. First, we can

show that the described method works for rather complex

topologies such as the pancake graph. Second, it allows to

obtain a system which minimizes the maximum of peer degree

and network diameter. Based on the described structure, we

get a fully scalable P2P system with peer degree and net-

work diameter O(log n/ log log n), implying time complexity

O(log n/ log log n) for the usual operations (e.g. search). At

the same time, our system tolerates Θ(log n/ log log n) worst-

case joins and/or crashes per constant time interval.

The road-map of the paper is as follows. After introducing

our model (Section II) and discussing related work (Section

III), the basic algorithms of our system together with their

proofs are provided in Section IV. In Section V, we show how

to compose these algorithms in order to build the complete P2P

system. The paper is concluded in Section VI.

II. MODEL

We consider the synchronous message passing model where

in each round, every peer can send a message to all its

neighbors. Dynamic worst-case joins and leaves (churn) are

modeled with an adversary AADV (J, L, λ) which may per-

form J arbitrary joins and L arbitrary leaves (crashes) in any

time interval of length λ rounds. A joining peer π1 is assumed

to contact an arbitrary peer π2 which already belongs to the

system. In contrast to other networks where peers are bound to

execute some finalizing protocols before leaving, we consider

the rough model where peers depart or crash without notice.

III. RELATED WORK

The pancake graph and the unsolved problem of computing

its diameter was introduced in [7].1 In terms of the group-

theoretic model for network topologies introduced by Akers

and Krishnamurthy [3], the pancake is an instance of a

hierarchical Cayley graph [4]. It has the interesting property

that there is no graph with both asymptotically smaller degree

and smaller diameter; the degree can only be reduced further

at the expense of a larger diameter, and vice versa. However,

to the best of our knowledge, this is the first paper to address

the issues of scalability, information aggregation, and token

distribution on the pancake graph.

Over the last years, enough and to spare overlay networks

with various interesting technical properties have been pro-

posed (e.g. [2], [5], [6], [10], [11], [14], [16], [17], [20]).

Because of the nature of P2P systems, fault-tolerance has been

a prime issue from the beginning. The systems are usually

robust against a large number of random faults. But after

crashing a few peers, the systems are given time to recover

again.

Resilience to worst-case failures has been studied by Fiat,

Saia et al. in [8], [18]. They introduce a system where, with

high probability, (1 − ε)-fractions of peers and data survive

the adversarial removal of up to half of all nodes. However,

in contrast to our work the failure model is static. Moreover,

the whole structure has to be rebuilt from scratch if the total

number of peers changes by a constant factor.

Abraham et al. [1] address scalability and resilience to

worst-case joins and leaves. They focus on maintaining a

balanced network rather than on fault-tolerance in the presence

of concurrent faults. In contrast to our system, whenever a join

or leave takes place, the network has some time to adapt.

The first paper treating arbitrarily concurrent worst-case

joins and leaves is by Li et al. [13]. In contrast to our paper, Li

et al. consider a completely asynchronous model where mes-

sages can be arbitrarily delayed. The stronger communication

model is compensated by a weaker failure model. Leaving

peers execute an appropriate “exit” protocol and do not leave

before the system allows; crashes are not allowed.

1In no paper about pancake graphs a reference to [9] shall be missing: A
paper that was originally written in 1976 by a Ph.D. student (later to become a
famous scholar) and a 21 year old college dropout (later to become a famous
entrepreneur).

1-4244-0476-2/06/$20.00 ©2006 IEEE. 13

To the best of our knowledge the only solution tolerating

continuous joins and leaves is [12]. In [12] it is shown

that a hyper-cubic topology can tolerate Θ(log n) worst-case

joins and/or crashes per constant time interval, where n is

the total number of peers. In this paper—superficially—we

improve the result of [12] by presenting a topology with

better characteristics (faster search time and lower degree).

However, we think our main contribution is to make a most

intricate graph topology dynamic. Mastering the pancake, we

believe, essentially gives a recipe for any recursively defined

P2P topology, by simply applying our basic components (cf

Section IV) as ingredients.

IV. BASIC COMPONENTS

A. Scaling

The order of the pancake graph is changed according to

the total number of peers in the system. For the expansion,

node l1...ld ∈ V (Pd) splits into d + 1 new nodes {(d +
1)l1l2...ld, l1(d + 1)l2...ld, ..., l1l2...ld(d + 1)} of Pd+1, and

vice versa for the reduction.

To be useful for our application, the pancake’s order change

from dold to dnew has to fulfill a crucial requirement: A node

in Pdnew
must be able to compute its new neighbors locally,

i.e., based on the information about the neighbors in Pdold
.

We will now describe the expansion and the reduction of the

order in turn and show that this criterion is indeed met in both

cases.

1) Expansion: If the total number of peers in the system

exceeds a certain threshold, each node v = l1...ld ∈ V (Pd)
splits into d + 1 new nodes {vexp

(1) := (d + 1)l1l2...ld, v
exp
(2) :=

l1(d + 1)l2...ld, ..., v
exp
(d+1) := l1l2...ld(d + 1)} of Pd+1. The

following lemma states that the new neighbors of a node

vexp
(i) ∈ V (Pd+1) can easily be computed by the knowledge

about the neighbors of the original node v ∈ V (Pd).
Lemma 4.1: Consider two arbitrary nodes u and v of Pd.

It holds that if {uexp
(i) , vexp

(j) } ∈ E(Pd+1) for some i, j ∈
{1, ..., d + 1}, then {u, v} ∈ E(Pd) or u = v.

Proof: If {uexp
(i) , vexp

(j) } ∈ E(Pd+1) there is a k ∈
{2, ..., d + 1} such that uexp

(i) = ρk(vexp
(j)). If d + 1 appears

among the first k entries of uexp
(i) (and thus also of vexp

(i)), the

original nodes—having no entry (d + 1)—are related by a

prefix-inversion of length k − 1: u = ρk−1(v). If on the other

hand the entry (d + 1) appears among the remaining entries,

u and v are related by the same prefix-inversion: u = ρk(v).

2) Reduction: If the total number of peers in the system

falls below a certain threshold, all nodes l1...li(d+1)li+1...ld ∈
V (Pd+1) for i ∈ [0, d] merge into a single node l1...ld ∈
V (Pd). Unfortunately, we cannot reverse the expansion di-

rectly. Instead, the reduction works as follows. First, the

following dominating set on Pd+1 is computed: Every node

v = l1...ld+1 having l1 = d+1 becomes a dominator. We will

call a dominator plus its adjacent (dominated) nodes a cluster.

In the following, let vdom
(1) = (d+1)l1...ld be a dominator and

vdom
(i) = ρi(vdom

(1)) = li−1li−2...(d + 1)li...ld its neighbor with

prefix-inversion of length i, for i ∈ [1, d + 1]. The idea is to

contract each cluster with dominator vdom
(1) = (d + 1)l1...ld

to a single node v = l1...ld ∈ V (Pd). Mind, however, that

our clusters do not yield the desired reduction yet: In order

to get the inverse operation of the expansion, each cluster has

to exchange one dominated node with each of its adjacent

clusters.

Before we explain the exchange of the dominated nodes in

detail, we first prove that the set of nodes having l1 = d + 1
indeed forms a dominating set, that every dominated node is

adjacent to exactly one dominator, and that dominators are

independent.

Lemma 4.2: Consider the graph Pd+1. The d! nodes of

Pd+1 with first entry l1 = d + 1 build a dominating set,

i.e., each node is either a dominator itself or adjacent to a

dominator. Moreover, clusters are disjoint.

Proof: Consider an arbitrary node v = l1l2...ld+1.

Assume that li = d + 1 for some i ∈ {1, ..., d + 1}. If i = 1,

v is a dominator itself. Two nodes having l1 = d + 1 cannot

be adjacent because of the prefix-inversion changes the first

entry. If i �= 1, there is exactly one neighbor of v which is a

dominator, namely node u = ρi(v).
According to Lemma 4.2, each node belongs to exactly one

cluster, hence the contraction operation is well-defined. How-

ever, as already mentioned, we additionally need to exchange

dominated nodes between adjacent clusters. This is done as

follows: The cluster with dominator vdom
(1) = (d + 1)l1...ld

sends its dominated node vdom
(i+1) to the cluster with dominator

(d + 1)ρi(l1...ld), for i ∈ [2, d].
It holds that after the exchange of the dominated nodes, (i)

each cluster with dominator vdom
(1) = vexp

(1) = (d + 1)l1...ld
which will contract to node v = l1...ld consists of the nodes

vexp
(1) = (d + 1)l1...ld, v

exp
(2) = l1(d + 1)...ld, ..., v

exp
(d+1) =

l1...ld(d + 1), and (ii) the dominated node vexp
(i) for i ∈

[3, d + 1]—before being transferred to the cluster dominated

by vdom
(1) —belonged to the cluster that will form the new

node ρi(v). To see this, note that node vdom
(i) is replaced by

ρi−1(vdom
(i)) = ρi−1(li−1...l1(d + 1)li...ld) = vexp

(i) , and that

before the transfer, vexp
(i) belonged to the cluster dominated

by ρi(v
exp
(i)) = (d+1)li−1...l1li...ld which will reduce to node

ρi−1(v). Thus, after the exchange, the following lemma holds.

Lemma 4.3: The cluster contracting to node v consists of

those nodes which v would also expand to, and the cluster has

information about each of v’s neighbors.

B. Information Aggregation

As stated, each pancake node is simulated by several peers,

and the pancake’s order is adapted according to the total

number of peers in the system. In this section, we present

an algorithm AIA which allows to count the total number of

peers in the pancake’s nodes. In our description, we use the

term token rather than peer.

Let Pi(v) denote the sub-graph of the pancake graph Pd

consisting of those nodes which share a postfix of length d− i
with a given node v. (Note that the graph induced by Pi(v) is

1-4244-0476-2/06/$20.00 ©2006 IEEE. 14

a pancake graph of order i.) The algorithm runs in d−1 phases

and accumulates the total number of tokens in sub-graphs of

increasing size.

Each phase consists of two rounds. In the first round

of phase i, a node v sends the total number of tokens in

its sub-graph Pi(v)—which is known by induction—to its

neighbor ρi+1(v). Thus, since prefix-inversion is a symmetric

operation, v receives the total number of tokens in the sub-

graph Pi(ρi+1(v)) from node ρi+1(v). In the second round,

node v sends this information to all neighbors ρj(v) for

j < i + 1. Given the information about all Pi(ρi+1(ρj(v)))
(for j < i + 1), the total number of tokens in the sub-

graph Pi+1(v) can be computed: τ(Pi+1(v)) = τ(Pi(v)) +∑i
j=1 τ(Pi(ρi+1(ρj(v)))), where τ(·) denotes the number of

tokens in the corresponding sub-graph. Hence, by induction,

after d − 1 phases, every node can compute the total number

of tokens in the system.

Theorem 4.4: AIA provides all nodes with the correct total

number of tokens in the system after d − 1 phases.

Proof: By induction over the phases we show that after

phase i, it holds that each node v knows the total number of

tokens in Pi+1(v).
i = 0 : Before the first phase, a node v only knows its own

tokens, and as there is only one node in P1(v), the claim holds

trivially.

i → i +1 : By the induction hypothesis, after phase i, each

node v = l1...ld knows the total number of tokens in the sub-

graph Pi+1(v). In phase i+1, node v learns the total number

of tokens in the sub-graphs Pi+1(ρi+2(ρj(v))) for j < i + 2.

This allows to compute the total number of tokens in Pi+2(v).
Note that the nodes ρj(v) for j < i + 2 all have a different

first entry and share the postfix li+2li+3...ld with v. Performing

a ρi+2 prefix-inversion yields a member for each sub-graph

with postfix li+3li+4...ld of length d − (i + 2). Therefore,

combining the information of the sub-graphs yields the total

number of tokens in Pi+2(v).
In our system, AIA is executed all the time and in a

pipelined fashion, i.e., all phases run concurrently. This way,

all nodes always get a consistent result even if the adversary

concurrently adds and removes tokens (peers). Moreover, the

result always corresponds to the exact state of the system d−1
phases ago.

C. Token Distribution

Ideally, the number of peers per pancake node should be

roughly equal for all nodes. Because peers join and leave, it is

necessary to constantly adapt the assignment of peers to nodes.

The problem of assigning peers to nodes is closely related to

the token distribution problem as introduced in [15]. Given a

graph G and a number of tokens at each node of G, the goal

is to find a distributed algorithm which moves tokens along

the edges of G such that in the end, the tokens are distributed

equally among all nodes of G.

The problem is of prime importance in the field of load

balancing, where the workload is modeled by a number of

tokens or jobs of unit size; the main objective is to distribute

the total load equally among the processors. Such load bal-

ancing problems arise in a number of parallel and distributed

applications [19].
In the context of this paper, we look at a dynamic token

distribution problem on the pancake graph where in each step,

tokens (peers) can be added and removed at arbitrary nodes.

The objective is to constantly move tokens along edges such

that at all times, all pancake nodes have roughly the same

number of tokens.
Formally, the goal is to minimize the maximum difference

of the number of tokens of any two pancake nodes, denoted by

the discrepancy φ. Analogously to the information aggregation

algorithm of Section IV-B, our token distribution algorithm

ATD exploits the recursive structure of the pancake graph. In

a first step, all pancakes of order 2 balance their tokens. Then,

the pancakes of order 3, 4, . . . exchange tokens. Pancakes of

order i can thereby build on the fact that all pancakes of order

i−1 have balanced the token levels of their nodes. A detailed

description of ATD is given in Algorithm 1. We assume that

we have a dominating set as described in Section IV-A for

each pancake Pi(v). For example, the dominators could again

be all nodes of Pi(v) having the largest of the first i entries

at the first position. Note that entries i + 1 to d are fixed for

all nodes of Pi(v) by definition.

Algorithm 1 Token Distribution ATD (node v)

1: for i := 2 to d do
2: send all tokens to ρi(v);
3: send all tokens to dominator in Pi(v);
4: dominators send tokens to nodes of their clusters;

5: end for

Let Pi(v) be the pancake of order i as in Section IV-B.

After the ith iteration of ATD, for all v, all nodes of Pi(v)
have the same number of tokens. Hence, at the end (i = d)

all nodes of the pancake have the same number of tokens.

In line 4 of ATD, it is not specified how many tokens to

send to which nodes if the number of tokens at a node is not

divisible by i. There is also no explicit notion of tokens which

are added or removed by an adversary during the algorithm.

In the following, we will prove that the algorithm perfectly

distributes tokens if tokens are fractional, that is, if they can

be divided arbitrarily and if no tokens are added or removed

during the algorithm (static token distribution). We will then

analyze the effects of adversarial insertions and deletions and

of integer tokens.
Lemma 4.5: ATD perfectly solves the static fractional to-

ken distribution problem on a pancake of order d.
Proof: As outlined above, we prove the lemma by

induction over i. Since P1(v) is a single node, clearly at

the beginning all nodes of P1(v) have the same number of

tokens. Let us therefore assume that for all nodes u, each

node of Pi−1(u) has the same number of tokens τi−1(u). The

pancakes Pi−1(u) of order i − 1 belonging to Pi(v) can be

characterized by their ith entry. Let li be the ith entry of the

nodes of Pi−1(u). In line 2 of ATD, a node u of Pi−1(u)

1-4244-0476-2/06/$20.00 ©2006 IEEE. 15

moves all tokens to ρi(u), that is, all tokens are moved to a

node with li as its first entry. Hence, after line 2, all nodes of

Pi(u) with first entry li have τi−1(u) tokens.

In lines 3 and 4, each cluster (dominator plus neighbors)

distributes all its tokens equally among the members of the

cluster. It therefore remains to show that each cluster of Pi(u)
has the same number of tokens. However, since in each cluster,

every possible first entry occurs exactly once, this is clear from

the discussion of the first step of the algorithm (line 2).

We will now show how dynamic insertions and deletions

of tokens affect the fractional token distribution of ATD. For

the dynamic token distribution algorithm, we assume that the

d − 1 iterations of the algorithm are repeated, that is, after

i = d, we start again at i = 2.

Lemma 4.6: If in every iteration of ATD at most J tokens

are added and at most L tokens are removed, the algorithm

guarantees that at all times t ≥ d− 1, the maximal difference

between the numbers of fractional tokens between any two

nodes is 3(J + L).
Proof: To start, we only consider insertions and neglect

deletions. Because all operations of the algorithm are linear,

we can look at each token independently. By Lemma 4.5, each

token which is added before the first iteration of the algorithm

is distributed equally among i! ≥ 2i nodes after iteration i. A

token which is added after iteration j is distributed among

i!/j! ≥ 2i−j nodes after iteration i. All tokens which were

inserted before the last complete execution of ATD are equally

distributed among all nodes of the pancake. We therefore only

have to look at the last complete execution and at the current

execution of the algorithm. All tokens which are inserted in

the current execution of ATD are distributed among at least 2t

nodes, t iterations after the insertion. Therefore, by a geometric

series argument, there are at most 2J tokens per node which

were inserted in the current iteration. All tokens which were

inserted before the end of the last complete execution of

the algorithm, were distributed among at least d nodes after

the last complete execution. Since in iteration i, each node

distributes its tokens among i different nodes and each node

receives tokens from i different nodes, all the tokens from the

last complete execution of the algorithm remain distributed

among at least d nodes. Because there are at most (d − 1)J
such tokens, each node has less than one of them. Together,

the difference between the number of tokens at the heaviest

and the lightest node becomes 3J . For deleted tokens the same

argumentation as for inserted tokens holds.

Up to now, we have analyzed the token distribution al-

gorithm for the idealized case where tokens can be divided

arbitrarily. In our application, tokens correspond to peers,

and we thus have to extend the analysis to integer tokens.

We assume that in line 4, tokens are distributed as good as

possible. That is, if there are k tokens in a cluster, some of

the nodes receive �k/i	 tokens and some nodes receive
k/i�
tokens.

Lemma 4.7: The (absolute) difference between the number

of integer tokens and the number of fractional tokens at any

node is always upper bounded by 2d.

Proof: We start the proof by looking at iteration i of

ATD. Assume that before iteration i, the difference between

the number of integer tokens and the number of fractional

tokens is at most ξ at each node. If there are token insertions

or deletions at a node, this difference does not change because

insertions and deletions affect the numbers of fractional and

integer tokens in the same way. In line 2, all tokens are moved

and therefore ξ remains unchanged. In lines 3 and 4, tokens

are distributed equally among i nodes of a cluster. If there

are k tokens in such a cluster, each node gets between �k/i	
and
k/i� tokens. If every node got exactly k/i tokens, the

difference between fractional and integer would remain at most

ξ. Due to the rounding, the difference can therefore grow

to at most ξ + 1 after iteration i. Hence, after t iterations,

the absolute difference between the numbers of fractional and

integer tokens is at most t.
To prove that at each node, the number of integer tokens

cannot deviate from the number of fractional tokens by more

than 2d, we need the following observation. By Lemma 4.5,

fractional tokens are distributed equally among all nodes after

their first complete execution of ATD, that is, after less than

2d iterations. Therefore, the number of fractional tokens at

each node does solely depend on the insertions and deletions

of the last 2d iterations and on the total number of tokens

in the system. Therefore, the distribution of fractional tokens

is the same if we assume that before the last 2d iterations,

the number of fractional tokens at each node was equal to

the number of integer tokens. By the above argumentation,

the difference between the numbers of integer and fractional

tokens at a node can have grown to at most 2d in those 2d
iterations.

Combining Lemmas 4.5, 4.6, and 4.7, we obtain the fol-

lowing theorem about the dynamic integer token distribution

algorithm.

Theorem 4.8: The discrepancy φ of the dynamic integer

token distribution algorithm is at most φ ≤ 4d + 3(J + L).
We conclude this section with a few considerations about an

actual implementation of ATD. The algorithm is formulated in

the form which makes the proofs of this section as simple as

possible. It is of course not desirable that all nodes first have to

move all tokens to dominator nodes which then redistribute the

tokens. Especially in the case where no insertions or deletions

occur, we would like the system to stabilize to a point where no

tokens have to be moved around. It is not difficult to implement

ATD in a way which has this property. In line 2, two nodes

u and ρi(u) exchange all their tokens. They can of course

obtain the same effect by computing the difference between

the number of tokens and by only moving this number of

tokens in the appropriate direction. A similar trick can be

applied for lines 3 and 4. The dominator nodes can collect

all the necessary information and decide about the necessary

movements of tokens.

D. Node Representation

The algorithms provided so far have all been described on

the level of pancake graphs. In this section, we take a more

1-4244-0476-2/06/$20.00 ©2006 IEEE. 16

Fig. 2. The peers of a pancake node are arranged as a grid with
d + 1 columns. A peer has connections to all peers in its row plus
to all peers in its column. The pancake’s edges are represented by a
matching between the peers of the bottom row.

detailed look at the internals of our system. As stated, our

system simulates the pancake topology and a pancake node

consists of several peers. But how are peers of the same node

connected to each other (intra-connections)? And how are

peers connected to peers in adjacent nodes (inter-connections)?

In Section IV-D.1, we present the representation of the

pancake’s nodes and edges. Section IV-D.2 then gives an

algorithm which allows to maintain these structures against

a concurrent adversary. Finally, we give the algorithms for

expansion and reduction of the pancake’s order (Sections IV-

D.3 and IV-D.4). Note that—due to space constraints—we

omit the peer-level description of some components, for exam-

ple the token distribution or also the information aggregation

algorithm. However, these operations are straight-forward and

can be done with similar techniques.

1) The Grid: The peers of a node v ∈ V (Pd) are arranged

to form a 2-dimensional grid Gv consisting of exactly d + 1
columns, while the number of rows R may vary depending on

the total number of peers in v.

Let τ(v) be the total number of peers in node v and

let R := �τ(v)/(d + 1)	. The first R · (d + 1) peers are

arranged in a 2-dimensional grid with d + 1 columns and

R complete rows, such that every peer occupies exactly one

position Gv[x, y] for x ∈ [0, d] and y ∈ [0, R − 1]. The

remaining τ(v) mod (d+1) peers—from now on called extra
peers—are located in an incomplete additional row Gv[i, R]
for i ∈ [0, τ(v) mod (d + 1)]. Inside a row or column, the

peers are completely connected (“intra-connections”): A peer

at Gv[x, y] is connected to the peers Gv[x, i] for i ∈ [0, R]
and Gv[i, y] for i ∈ [0, d]. As the extra peers do not form a

complete row, they are more vulnerable; thus, they additionally

participate in row R−1, i.e., we also have connections between

Gv[i, R] for i ∈ [0, d + 1] and all peers Gv[j, R − 1] for

j ∈ [0, τ(v) mod (d + 1)].
Additionally, we need to specify the representation of the

pancake’s edges (“inter-connections”). The idea is as follows:

If two nodes u and v are connected in the pancake graph Pd,

i.e., {u, v} ∈ E(Pd), then each peer Gu[i, 0] is connected to

the peer occupying Gv[i, 0], for i ∈ [0, d]. In the following,

we will call the peers in the lowest row (row 0) the core of

the corresponding node. Thus, two nodes are connected by a

matching between their cores.

The representation of the pancake’s nodes is depicted in

Figure 2.

2) Grid Maintenance: In this section, we describe how to

maintain the grid against concurrent adversarial churn. Our

algorithm AGRID needs several rounds. The idea is as follows:

At the beginning, a snapshot of the state (living peers, etc.) of

the system is made. The following rounds are then solely based

on this information—ignoring the fact that some peers may

have crashed by the concurrent adversary in the meantime.

That is, by using enough redundancy, we do not have to take

the crashed and newly joined peers into consideration until the

maintenance algorithm restarts with the first round.

AGRID consists of two phases. In the first phase, the

following information is broadcast throughout the grid: (1)

the positions where peers have left, (2) the IP addresses of

the peers that have joined, (3) the IP addresses of the extra

peers, and (4) the IP addresses of the peers in row R − 1.

The second phase is based on this information and works

as follows: Every surviving peer can locally compute which

peers will take the positions of the peers that left (gaps in

the grid). Thereby, newly joined peers are taken into account

first, and if this is not enough the extra peers are used. If

there are still gaps in the grid, the peers of the top row are

used, and if necessary, the number of rows is decremented

(R := R − 1). If on the other hand there are still joining

peers left after all gaps have been filled, these peers are

added to the top row, creating a new top row if necessary

(R := R+1). After this local computation, the peers that have

to fill the gaps are provided with the information about their

new neighbors. We can guarantee that no row may be removed

completely and that there is always a complete column in

the presence of a concurrent adversary AADV (d
2 , d

2 , 5) which

may add and remove at most d
2 peers in any time period of 5

rounds. Moreover, also the pancake’s edges may be repaired in

constant time since we ensure that two adjacent pancake nodes

always have at least two living adjacent core peers which may

reestablish the matching between the cores.

We now give the detailed description of AGRID. We write

Gv[·, y] and Gv[x, ·] to denote all (surviving) peers in the yth

row and in the xth column respectively. In the following, we

assume the extra peers to participate in both rows R and R−1,

i.e., they send and receive messages for both rows.

Round 1: The snapshot is made: A surviving peer at position

Gv[x, y] sends its IP address and the IP addresses of its joiners

to all peers in Gv[·, y].
Round 2: Each peer at position Gv[x, y] sends the addresses

of its joiners plus the information in which column of its row

peers have left to Gv[x, ·].
Round 3: Each peer at position Gv[x, y] forwards the infor-

mation received in Round 2 to the peers Gv[·, y].
Round 4: Now the new form of Gv is computed locally: If a

peer at Gv[x, y] has missing neighbors on its row or column, it

computes which joiner or—if necessary—which extra peer or

which peer in the top row has to replace it. If there are enough

new peers, the number of rows is incremented, and vice versa

if more than all extra peers are used for repairing. Each peer

having a missing neighbor on its row sends the information

about all neighbors of this row or column directly to the peer

1-4244-0476-2/06/$20.00 ©2006 IEEE. 17

which will replace it. Additionally, the necessary information

to establish the top rows is provided to the responsible peers.

Finally, in order to repair the matching between adjacent

nodes, the peers of the old core which are still alive send

the addresses of the new core peers to the old neighboring

cores.

Round 5: The old core broadcasts the new partners of the

matchings within Gv[·, 0]; this ends the repairing according to

the snapshot’s state.

3) Expansion: When the pancake graph’s order is incre-

mented from d to d+1, each node v must split into d+1 new

nodes (cf Section IV-A). Since the grid Gv consists of d + 1
columns, there is a simple way to perform the expansion on

the grid level: Every column becomes one new node.

According to Section IV-A, two neighboring expanded

nodes have already been adjacent in Pd (or originate from the

same node). Assume that two columns, one in Gv and the other

one in Gu for two expanding adjacent nodes u, v ∈ V (Pd),
become neighbors in Pd+1. With the grid as described so far,

these two columns have only one connection to each other (one

pair of core peers). In order to increase the fault-tolerance the

following mechanism is applied: As soon as there are enough

peers in the system and there are definitely at least d + 2
complete rows in each node, adjacent nodes u, v ∈ V (Pd)
start to establish a matching between the columns in Gu and

Gv which will become neighbors if the graph is expanded.

In order to limit the information that is sent, we establish

this matching stepwise, ensuring that it is finished before the

node actually has to split. This is done in d + 1 phases,

in phase i for the matching to neighbor ρi(v). The idea is

that each peer at Gv[x, y] with y ∈ [1, d + 2] sends its IP

address to the peer Gv[y − 1, 0]. Peer Gv[y − 1, 0] is then

responsible to transfer the yth row to the corresponding peers

Gρi(v)[y, 0] for i ∈ [2, d + 2]. From there, the information

is broadcast to Gρi(v)[·, y]. This mechanism guarantees that

between two neighboring columns, at least one connection will

be established, even in the presence of a concurrent adversary.

Once the matching is established it is maintained as long as

there are at least d + 2 rows.

The expansion then works as follows. We consider a node

v = l1...ld with grid Gv . The column Gv[i, ·] for i ∈ [1, d+1]
will form the new node vexp

(i) = l1...li−1(d + 1)li...ld. Since

peers of the ith column Gv[i, ·] are completely connected,

the expansion can be performed in two rounds: It is straight-

forward to locally compute the form of the new grids Gvexp

(i)
,

including cores and inter-connections, and send this informa-

tion to nodes ρj(v
exp
(i)) for j ∈ [2, d + 1].

Round 1: The peers of the ith column Gv[i, ·] which will form

the new node vexp
(i) are completely connected, and each peer in

vexp
(i) can locally compute the form of Gvexp

(i)
. The information

about the new core is sent to nodes ρj(v
exp
(i)) for j ∈ [2, d+1]

using the connections of the matching.

Round 2: The peers in vexp
(i) send the information about the

neighboring cores received in Round 1 to their own new core.

4) Reduction: The reduction of the pancake’s order is more

elaborate: Reducing the order from d + 1 to d requires d + 1
grids to merge into one. Additionally, some peers are bound

to change nodes (cf Section IV-A).

Similarly to the notation introduced in Section IV-A, let

vdom
(1) ∈ V (Pd+1) be the dominator of a cluster that contracts

to v ∈ V (Pd) and let vdom
(i) = ρi(vdom

(1)). To reduce the order of

the pancake graph, we must exchange the nodes vdom
(i+1) with

udom
(i+1) for i ∈ [2, d] where u = ρi(v), and then merge the

clusters into one node v (cf Section IV-A).

On the grid level, a constant number of rounds is needed

for this order reduction. Basically, the procedure is as follows.

First we turn Gvdom
(i)

for i ∈ [1, d + 1] into a clique and the

information about the core of Gvdom
(1)

is sent to ρi−1(vdom
(i))

(node exchange, cf Section IV-A). Now, the new grid of node

v will be formed. For this, let again vexp
(i) for i ∈ [1, d+1] be the

nodes which will form v after the node exchange, vexp
(1) being

the dominator. After vexp
(1) learned about its new dominated

nodes, it sends all its peers’ addresses to vexp
(i) for i ∈ [2, d+1].

With this information, a first version of Gv can be computed,

where column i is given by vexp
(i) . Based on this structure, the

final grid can be obtained by a rearrangement.

V. THE SYSTEM

The n peers in our system are arranged in a simulated

pancake topology of order d. The data of the DHT is stored

as follows. Let hash(·) be a hash function which, given an

identifier ID, outputs a random permutation on some set

[1, N], where N is a sufficiently large global integer constant.

A data item with identifier ID is stored on the node v ∈ V (Pd)
which is determined by the ordering of the smallest d numbers

of hash(ID). However, a data item is not copied to all peers

in that node, but only replicated on the core at the bottom row.

This has the advantage that—if we use peers in topmost rows

for the peer distribution—unnecessary copying of data can be

avoided when peers move between nodes, while we are still

able to tolerate the same powerful adversary. Of course, this

solution implies a certain load imbalance in the sense that data

is not evenly distributed among the peers. However, we will

not discuss how to remedy this, as our focus here is mainly

on the provable fault-tolerance of our system. Finally, observe

that routing is simple in the pancake system: Assume that a

peer in a node u = l1l2...ld wants to find a data item which

hashes to a node v = l̂1 l̂2...l̂d. The lookup operation proceeds

by correcting one “coordinate” at a time, starting at the back:

From node u = l1l2...ld the request is forwarded to node

ld...lj+1l1l2...lj−1 l̂d, etc.

We now describe how the components introduced in Sec-

tion IV are assembled to form a P2P system resilient to

an adversary AADV (Θ(log n
log log n),Θ(log n

log log n), 1). Our system

permanently runs AIA to estimate the total number of peers

in the system (cf Section IV-B) and adapts the pancake’s

order accordingly (cf Section IV-A), ATD to distribute the

peers evenly among the pancake’s nodes (cf Section IV-C),

and AGRID to maintain the grid (cf Section IV-D). When

1-4244-0476-2/06/$20.00 ©2006 IEEE. 18

the order of the pancake is changed, both AIA and ATD are

restarted. This is possible because our system guarantees that

after a change of the pancake’s order, there are enough rounds

without another order change such that the estimations of the

total number of peers are up-to-date.

Taking into account that AIA delivers the estimated number

of peers with a delay of d − 1 phases, and that according to

Theorem 4.8, the difference between the total number of peers

at any two nodes is bounded by O(d) if there are O(d) joins

and leaves per time unit, the following theorem holds.

Theorem 5.1: Our pancake P2P system guarantees peer

degree and network diameter O(d) in the presence of an

adversary which inserts and deletes Θ(d) peers per unit time.

Each node always has at least one living core peer and no data

is lost. Moreover, it holds that d = Θ(log n
log log n), where n is

the total number of peers in the system.

VI. CONCLUSIONS

We have described how to construct a P2P system which

maintains desirable properties such as low peer degree and

low network diameter against a powerful, concurrent adversary

which has complete visibility of the entire state of the system.

It has been shown that the fault tolerance is asymptotically

optimal as the robustness of any topology is upper bounded

by its peer degree.

From a practical point of view, our system could be op-

timized in various respects. For instance the total number

of messages sent can be made adaptive to the dynamics of

the system: As long as only few joins and leaves happen,

the message complexity can be kept low by communicating

the information about the changes only when really needed.

Further, the load imbalance due to the division of peers into

core and peripheral peers could be alleviated using a more

sophisticated system. However, since our focus is on proving

dynamic worst-case fault-tolerance rather than on developing a

ready-to-use system, we did not consider these practical issues.

While the various new algorithms for the pancake graph

may be of independent interest, our main contribution is the

introduction of techniques which allow to make a most intri-

cate topology dynamic. Having mastered the pancake graph,

we believe that applying our basic components as ingredients

gives a recipe for any P2P topology.

ACKNOWLEDGMENTS

Research supported by the Swiss National Science Founda-

tion and the Hasler Stiftung.

REFERENCES

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and E. Pavlov. A
Generic Scheme for Building Overlay Networks in Adversarial Scenarios.
In Proc. 17th Int. Symp. on Parallel and Distributed Processing (IPDPS),
2003.

[2] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε)
Locality-Aware Networks for DHTs. In Proc. 15th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 550–559, 2004.

[3] S. B. Akers and B. Krishnamurthy. A Group-Theoretic Model for
Symmetric Interconnection Networks. IEEE Transactions on Computing,
38(4):555–566, 1989.

[4] F. Annexstein, M. Baumslag, and A. L. Rosenberg. Group Action Graphs
and Parallel Architectures. SIAM J. Comput., 19(3):544–569, 1990.

[5] J. Aspnes and G. Shah. Skip Graphs. In Proc. 14th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 384–393, 2003.

[6] B. Awerbuch and C. Scheideler. The Hyperring: A Low-Congestion
Deterministic Data Structure for Distributed Environments. In Proc. 15th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 318–327,
2004.

[7] H. Dweighter (a.k.a. J. E. Goodman). American Mathematical Monthly,
82, 1975.

[8] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Address-
able Networks. In Proc. 13th Symp. on Discrete Algorithms (SODA),
2002.

[9] W. Gates and C. Papadimitriou. Bounds for Sorting by Prefix Reversal.
Discrete Math., 27:47–57, 1979.

[10] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
SkipNet: A Scalable Overlay Network with Practical Locality Properties.
In Proc. 4th USENIX Symp. on Internet Technologies and Systems
(USITS), 2003.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-scale Persistent Storage. In Proc.
of ACM ASPLOS, November 2000.

[12] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-to-
Peer System Resilient to Dynamic Adversarial Churn. In Proc. 4th Int.
Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[13] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology
Maintenance. In Proc. 18th Ann. Conference on Distributed Computing
(DISC), 2004.

[14] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In Proc. 21st Ann. Symp. on
Principles of Distributed Computing (PODC), pages 183–192, 2002.

[15] D. Peleg and E. Upfal. The Token Distribution Problem. SIAM Journal
on Computing, 18(2):229–243, 1989.

[16] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. In Proc. 9th
Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
311–320, 1997.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content Addressable Network. In Proc. of ACM SIGCOMM
2001, 2001.

[18] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically Fault-
Tolerant Content Addressable Networks. In Proc. 1st Int. Workshop on
Peer-to-Peer Systems (IPTPS), 2002.

[19] B. A. Shirazi, K. M. Kavi, and A. R. Hurson. Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer Science
Press, 1995.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proc. ACM SIGCOMM Conference, 2001.

1-4244-0476-2/06/$20.00 ©2006 IEEE. 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

