From Partial to Global Asynchronous Reliable Broadcast

Diana Ghinea Martin Hirt Chen-Da Liu-Zhang

ETH Zurich

DISC 2020
Broadcast

Broadcast allows a party to consistently distribute a message to n recipients.

Sender said ”Hi!”
Sender said ”Hi!”
Sender said ”Hi!”
Sender said ”Hi!”
Broadcast

Broadcast allows a party to consistently distribute a message to n recipients.
Broadcast

Broadcast allows a party to consistently distribute a message to n recipients.
Broadcast

Broadcast allows a party to consistently distribute a message to n recipients.

(Sender said “Hi!”)
(Sender said “Bye!” “Hi!”)
(Sender said “Bye!”)
(Sender said “Hi!”)

(Consistency)
Broadcast

Broadcast allows a party to consistently distribute a message to \(n \) recipients.

(Sender)

Sender said "Hi!"

(Sender)

Sender said "Bye!" "Hi!"

(Sender)

Sender said "Bye!"

(Sender)

Sender said "Hi!"

(Validity)
Model

Synchronous channels

I will receive the message in one hour.
Model

Asynchronous channels

I will receive the message eventually.

If it was sent.
Model

Asynchronous channels

I will receive the message eventually.
If it was sent.

Adversary

- Controls the delay time of the messages.
- Corrupts up to t parties: they send wrong messages or they do not send some of the messages.
Achieving Asynchronous Reliable Broadcast

To achieve asynchronous reliable broadcast, a protocol must satisfy the following properties:

Validity
Honest Sender with input \(m \)
\[\implies \] Every honest recipient terminates and outputs \(m \).

Consistency
An honest recipient terminates with output \(m \)
\[\implies \] Every honest recipient terminates with output \(m \).
Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Synchronous BC</th>
<th>Asynchronous RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td>$t < n/3$ [PSL80]</td>
<td>$t < n/3$ [BraTou85]</td>
</tr>
<tr>
<td>PKI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-cast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Synchronous BC</th>
<th>Asynchronous RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td>$t < n/3$ [PSL80]</td>
<td>$t < n/3$ [BraTou85]</td>
</tr>
<tr>
<td>PKI</td>
<td>$t < n$ [DolStr83]</td>
<td>$t < n/3$</td>
</tr>
<tr>
<td>b-cast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Synchronous BC</th>
<th>Asynchronous RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td>$t < n/3$ [PSL80]</td>
<td>$t < n/3$ [BraTou85]</td>
</tr>
<tr>
<td>PKI</td>
<td>$t < n$ [DolStr83]</td>
<td>$t < n/3$</td>
</tr>
<tr>
<td>b-cast</td>
<td>$b = 3$</td>
<td>$t < n/2$ [FitMau00]</td>
</tr>
<tr>
<td></td>
<td>$b - 1$ recipients</td>
<td></td>
</tr>
</tbody>
</table>

b-cast channel

m (😊,😊, ... ,😊)

$b - 1$ recipients
Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Synchronous BC</th>
<th>Asynchronous RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td>$t < n/3$ [PSL80]</td>
<td>$t < n/3$ [BraTou85]</td>
</tr>
<tr>
<td>PKI</td>
<td>$t < n$ [DolStr83]</td>
<td>$t < n/3$</td>
</tr>
<tr>
<td>b-cast</td>
<td>$b = 3$</td>
<td>$t < n/2$ [FitMau00]</td>
</tr>
<tr>
<td></td>
<td>$b < n$</td>
<td>$t < \frac{b-1}{b+1}n$ [CFFLMM05]</td>
</tr>
</tbody>
</table>

b-cast channel: $b - 1$ recipients

m
Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Synchronous BC</th>
<th>Asynchronous RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td>$t < n/3$ [PSL80]</td>
<td>$t < n/3$ [BraTou85]</td>
</tr>
<tr>
<td>PKI</td>
<td>$t < n$ [DolStr83]</td>
<td>$t < n/3$</td>
</tr>
<tr>
<td>b-cast</td>
<td>$b = 3$</td>
<td>$t < n/2$ [FitMau00]</td>
</tr>
<tr>
<td></td>
<td>$b < n$</td>
<td>$t < \frac{b-1}{b+1} n$ [CFFLMM05]</td>
</tr>
</tbody>
</table>

$\begin{align*}
\text{b-cast channel} & \quad m \\
\text{b-recipients} & \quad (\circled{\text{m}}, \circled{\text{m}}, \ldots, \circled{\text{m}}) \\
\text{b - 1 recipients} & \quad \circled{\text{m}}
\end{align*}$
Our Results

Feasibility

An asynchronous reliable broadcast protocol for \(b = 3 \), secure against \(t < n/2 \) corruptions.

An asynchronous reliable broadcast protocol, secure against \(t < \frac{b-4}{b-2} n \) corruptions.

A nonstop reliable broadcast protocol, secure against \(t < \frac{b-4}{b+1} n \) corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving () reliable broadcast secure against \(t \geq \frac{b-1}{b+1} n \) corruptions.
Our Results

Feasibility

- An asynchronous reliable broadcast protocol for $b = 3$, secure against $t < n/2$ corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving (nonstop) reliable broadcast secure against $t \geq \frac{b-1}{b+1} n$ corruptions.
Our Results

Feasibility

- An asynchronous reliable broadcast protocol for $b = 3$, secure against $t < n/2$ corruptions.
- An asynchronous reliable broadcast protocol, secure against $t < \frac{b-4}{b-2}n$ corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving () reliable broadcast secure against $t \geq \frac{b-1}{b+1}n$ corruptions.
Our Results

Feasibility

- An asynchronous reliable broadcast protocol for $b = 3$, secure against $t < n/2$ corruptions.
- An asynchronous reliable broadcast protocol, secure against $t < \frac{b-4}{b-2}n$ corruptions.
- A *nonstop* reliable broadcast protocol, secure against $t < \frac{b-1}{b+1}n$ corruptions.

Impossibility

In the asynchronous setting, there is no protocol achieving (*nonstop*) reliable broadcast secure against $t \geq \frac{b-1}{b+1}n$ corruptions.
Model \mathcal{N}_3

- 3-cast channels among any 3 parties.

\[m \rightarrow (\smiley, \smiley) \]

3-cast channel
Model \mathcal{N}_3

- 3-cast channels among any 3 parties.

- P mega-sends m:

 P sends m to every pair of recipients via 3-cast.

\[\begin{array}{ccc}
\text{P} & m & (\ast, \ast) \\
\end{array} \]
Model \mathcal{N}_3

- 3-cast channels among any 3 parties.

- P mega-sends m:
 P sends m to every pair of recipients via 3-cast.

- R mega-receives m from P:
 R received m from P through all the available 3-cast channels.

\[
(R, \star) \quad m \quad \odot \quad P
\]
Model \mathcal{N}_3

- 3-cast channels among any 3 parties.

- P mega-sends m:
 P sends m to every pair of recipients via 3-cast.

- R mega-receives m from P:
 R received m from P through all the available 3-cast channels.

- R mega-receives m from P \implies R' receives m from P.

\[
\begin{array}{c}
(R, \star) \quad m \quad P \quad \implies (R, R') \quad m \quad P
\end{array}
\]
Protocol in \mathcal{N}_3

Code for Sender S

1. On input m:
 \[\text{mega-send (MSG, } m) \]
Protocol in N_3

Code for Sender S

1. On input m:
 mega-send (MSG, m)

Code for Recipient R_i

1. When mega-receiving (MSG, m) from S:
 mega-send ($READY, m$)
Protocol in \mathcal{N}_3

Code for Sender S
1. On input m:
 \text{mega-send} (\text{MSG}, m)$

Code for Recipient R_i
1. When \text{mega-receiving} (\text{MSG}, m) from S or when \text{receiving}
 (\text{READY}, m) from $t + 1$ recipients:
 \text{mega-send} (\text{READY}, m)
Protocol in \mathcal{N}_3

Code for Sender S

1. On input m:

 \[\text{mega-send} \ (\text{MSG}, m) \]

Code for Recipient R_i

1. When \(\text{mega-receiving} \ (\text{MSG}, m) \) from S or when \(\text{receiving} \ (\text{READY}, m) \) from $t + 1$ recipients:

 \[\text{mega-send} \ (\text{READY}, m) \]

2. When \(\text{mega-receiving} \ (\text{READY}, m) \) from $n - t - 1$ recipients and \((\text{READY}, m) \) was \text{mega-sent}:

 \[\text{output } m \text{ and terminate} \]

\[\Rightarrow \quad \exists R_{k_1} \text{ outputs } m \text{ and terminates} \]
Validity: \(t < n - t \)

Code for Sender \(S \)

1. On input \(m \):

 \[
 \text{mega-send (MSG, m)}
 \]

Code for Recipient \(R_i \)

1. When \(\text{mega-receiving (MSG, m)} \) from \(S \) or when \(\text{receiving (READY, m)} \) from \(t + 1 \) recipients:

 \[
 \text{mega-send (READY, m)}
 \]

2. When \(\text{mega-receiving (READY, m)} \) from \(n - t - 1 \) recipients and \(\text{(READY, m)} \) was mega-sent:

 \[
 \text{output m and terminate}
 \]

Honest Sender’s input: \(m \)

Fact:

Honest \(R \) cannot mega-send \(\text{(READY, m')} \)

\[\Rightarrow R \text{ mega-sends (READY, m)} \]

\[\Rightarrow R \text{ outputs m} \]
Consistency: \(t < n - t \)

Code for Sender \(S \)

1. On input \(m \):

 \[\text{mega-send} \ (\text{MSG}, m) \]

Code for Recipient \(R_i \)

1. When \textit{mega-receiving} \((\text{MSG}, m)\) from \(S\) or when \textit{receiving} \((\text{READY}, m)\) from \(t + 1\) recipients:

 \[\text{ mega-send } (\text{READY}, m) \]

2. When \textit{mega-receiving} \((\text{READY}, m)\) from \(n - t - 1\) recipients and \((\text{READY}, m)\) was \textit{ mega-sent}:

 \[\text{output } m \text{ and terminate} \]

Fact \#1:

An honest \(R \) \textit{ mega-sends } \((\text{READY}, m)\)

\(\implies \) No honest \(R' \) \textit{ mega-sends } \((\text{READY}, m')\)

\(\implies \) No honest \(R' \) \textit{ outputs } \(m' \)

Fact \#2:

An honest \(R \) \textit{ outputs } \(m \)

\(\implies \) Any honest \(R' \) \textit{ mega-sends } \((\text{READY}, m)\)

\(\implies \) Any honest \(R' \) \textit{ outputs } \(m \)
Model \mathcal{N}_b

- **Model \mathcal{N}_b ($b > 3$):** b-cast channels among every group of b parties.
Model \mathcal{N}_b

- Model $\mathcal{N}_b \ (b > 3)$: b-cast channels among every group of b parties.

- Goal when $b = 3$: $t < n - t$
- Goal when $b > 3$: $t \geq n - t$
Model \mathcal{N}_b

- **Model \mathcal{N}_b ($b > 3$):** b-cast channels among every group of b parties.

- Goal when $b = 3$: $t < n - t$
- Goal when $b > 3$: $t \geq n - t$
Model \mathcal{N}_b

- **Model \mathcal{N}_b ($b > 3$):** b-cast channels among every group of b parties.

- Goal when $b = 3$: $t < n - t$

- Goal when $b > 3$: $t \geq n - t$

\Rightarrow Levels of confidence
Messages Received from S

Initially, S forwards his input m to every group of $b - 1$ recipients.
Messages Received from S

Initially, S forwards his input m to every group of $b - 1$ recipients.

- R_1 **1-receives** m:

 R_1 receives m from S through all the available b-cast channels.

 $(R_1, *, *, *, ..., *, *)$
Messages Received from S

Initially, S forwards his input m to every group of $b - 1$ recipients.

- R_1 **1-receives** m:
 - R_1 receives m from S through all the available b-cast channels.

 $(R_1, *, *, *, ..., *, *)$

- R_2 **2-receives** m:
 - R_2 receives m from S through all the b-cast channels **shared with one other recipient** R_1.

 $(R_1, R_2, *, *, ..., *, *)$
Messages Received from \(S \)

Initially, \(S \) forwards his input \(m \) to every group of \(b - 1 \) recipients.

- **\(R_1 \) 1-receives \(m \):**
 \(R_1 \) receives \(m \) from \(S \) through **all** the available \(b \)-cast channels.
 \((R_1, *, *, *, ..., *, *)\)

- **\(R_2 \) 2-receives \(m \):**
 \(R_2 \) receives \(m \) from \(S \) through **all** the \(b \)-cast channels **shared with one other recipient** \(R_1 \).
 \((R_1, R_2, *, *, ..., *, *)\)

 ...

- **\(R_{b-1} \) (\(b - 1 \))-receives \(m \):**
 \(R_{b-1} \) receives \(m \) from \(S \) through **all** the \(b \)-cast channels **shared with \(b - 2 \) other recipients** \(R_1, \ldots, R_{b-2} \).
 \((R_1, R_2, R_3, R_4, ..., R_{b-2}, R_{b-1})\)
Messages Received from S

R_k \textbf{k-receives} m: R_k receives m from S through all the available broadcast channels shared with $k - 1$ other recipients $R_1, R_2, \ldots, R_{k-1}$.

$$(R_1, R_2, \ldots, R_{k-1}, R_k, *, *, \ldots, *)$$

\implies \text{Any recipient R ($k + 1$)-receives m.}$$$(R_1, R_2, \ldots, R_{k-1}, R_k, R, *, \ldots, *)$$
Messages Received from S

R_k \textbf{k-receives} m: R_k receives m from S through all the available b-cast channels shared with $k - 1$ other recipients $R_1, R_2, \ldots, R_{k-1}$.

$$(R_1, R_2, \ldots, R_{k-1}, R_k, \ast, \ast, \ldots, \ast)$$

\implies It is possible that $R \in \{R_1, \ldots, R_{k-1}\}$ $(k - 1)$-receives m.

$$(R_1, R_2, \ldots, R_{k-1}, \ast, \ast, \ast, \ldots, \ast)$$
Levels of Confidence

For a message m, we build the following levels:

- **Level 1**: recipients that 1-receive m and *believe* that S is honest.
Levels of Confidence

For a message m, we build the following levels:

- **Level 1**: recipients that 1-receive m and *believe* that S is honest.

- **Level 2**: recipients that 2-receive m and *believe* that someone on level 1 is honest and terminated with output m.

...
Levels of Confidence

For a message m, we build the following levels:

- **Level 1**: recipients that 1-receive m and believe that S is honest.

- **Level 2**: recipients that 2-receive m and believe that someone on level 1 is honest and terminated with output m.

 ...

- **Level k**: recipients that k-receive m and believe that someone on level $k - 1$ is honest and terminated with output m.
Levels of Confidence

For a message m, we build the following levels:

- **Level 1**: recipients that 1-receive m and believe that S is honest.

- **Level 2**: recipients that 2-receive m and believe that someone on level 1 is honest and terminated with output m.

 ...

- **Level k**: recipients that k-receive m and believe that someone on level $k - 1$ is honest and terminated with output m.

 ...

- **Level b**: recipients that do not receive m, but believe that someone on level $b - 1$ is honest and terminated with output m.
Level 1

When a recipient 1-receives m, it places itself on level 1 and sends notifications to the other recipients.
Level 1

The recipients on level 1 output m if there are $n - t$ recipients that sent notifications for level 1.
Levels 1 and 2

If a recipient 2-receives m and receives notifications for level 1 from $n - t$ recipients, it sends notifications for level 2 and outputs m.

Level 1

Level 2

There might be honest parties on level 1
Levels 2 and 3

If a recipient 3-receives m and receives $n - t$ notifications for level 1 and at least one for 2, it places itself on level 3 and sends notifications.

Level 1

Level 2

Level 3

We might be tricked!

There might be honest parties on level 2

Level 3
Levels 2 and 3

When there are \(n - t \) recipients that sent notifications for levels 2 and 3, the recipients on level 3 output \(m \).

- **Level 1**: \(n - t \) recipients
- **Level 2**: We might be tricked!
- **Level 3**: There might be honest parties on level 2
Levels 3 and 4

Level 1

Level 2

Level 3

We might be tricked!

Level 4

There might be honest parties on level 3

Surprise!
Levels 3 and 4

Level 1

Level 2

Level 3

Level 4

Surprise!

We might be tricked!

There might be honest parties on level 3

\[n - t \]

\[n - t \]

\[n - t \]
Different Outputs?

t must be small enough such that the honest recipients cannot place themselves on levels for different messages.

\[m \quad \text{Level 1} \quad \text{Level 2} \quad \ldots \quad \text{Level } k - 1 \quad \text{Level } k \]

\[m' \quad \text{Level 1} \quad \text{Level 2} \quad \ldots \quad \text{Level } k' - 1 \quad \text{Level } k' \]

\[k'-\text{received } m' \quad \text{keeps waiting} \]
Summary

Can we achieve asynchronous reliable broadcast secure against more than \(t < \frac{n}{3} \) corruptions by assuming \(b \)-cast channels? \textbf{Yes!}

What is the trade-off between the strength of the communication network and the corruptive power of the adversary?

- There is no protocol achieving (nonstop) reliable broadcast secure against \(t \geq \frac{b-1}{b+1}n \) corruptions in the asynchronous setting.
- An \textbf{optimal} reliable broadcast protocol for \(b = 3 \).
- An \textbf{almost optimal} reliable broadcast protocol.
- An \textbf{optimal nonstop} reliable broadcast protocol.