
From Partial to Global Asynchronous
Reliable Broadcast

Diana Ghinea Martin Hirt Chen-Da Liu-Zhang

ETH Zurich

DISC 2020

1 / 20

Broadcast

Broadcast allows a party to consistently distribute a message to n
recipients.

Sender

Hi!

Sender said ”Hi!”
Sender said ”Hi!” ”Bye

Sender said ”Hi!”
Sender said ”Hi!”

2 / 20

Broadcast

Broadcast allows a party to consistently distribute a message to n
recipients.

Sender

Hi!
Sender said ”Hi!”

Sender said ”Hi!” ”Bye

Sender said ”Hi!”
Sender said ”Hi!”

Hi!
Hi!

Hi!

2 / 20

Broadcast

Broadcast allows a party to consistently distribute a message to n
recipients.

Hi!
Hi!

Bye!

Sender said ”Hi!”
Sender said ”Bye!”

Sender said ”Bye!” ”Hi!”
Sender said ”Hi!”

Hi!

Sender

2 / 20

Broadcast

Broadcast allows a party to consistently distribute a message to n
recipients.

Sender

Hi!
Sender said ”Hi!”

Sender said ”Bye!” ”Hi!”

Sender said ”Bye!”
Sender said ”Hi!”

Bye!
Hi!

Hi!

(Consistency)

2 / 20

Broadcast

Broadcast allows a party to consistently distribute a message to n
recipients.

Sender

Hi!
Sender said ”Hi!”

Sender said ”Bye!” ”Hi!”

Sender said ”Bye!”
Sender said ”Hi!”

Hi!
Hi!

Hi!

(Validity)

2 / 20

Model

Synchronous channels

I will receive the
message in one hour.

Adversary
Controls the delay time of the messages.
Corrupts up to t parties: they send wrong messages or they do not
send some of the messages.

3 / 20

Model

Asynchronous channels

I will receive the
message

eventually.
If it was sent.

Adversary
Controls the delay time of the messages.
Corrupts up to t parties: they send wrong messages or they do not
send some of the messages.

3 / 20

Model

Asynchronous channels

I will receive the
message

eventually.
If it was sent.

Adversary
Controls the delay time of the messages.
Corrupts up to t parties: they send wrong messages or they do not
send some of the messages.

3 / 20

Achieving Asynchronous Reliable Broadcast

To achieve asynchronous reliable broadcast, a protocol must satisfy the
following properties:

Validity
Honest Sender with input m

=⇒ Every honest recipient terminates and outputs m.

Consistency
An honest recipient terminates with output m

=⇒ Every honest recipient terminates with output m.

4 / 20

Thresholds

Synchronous BC Asynchronous RBC

Traditional

model
t < n/3 [PSL80] t < n/3 [BraTou85]

PKI

t < n [DolStr83] t < n/3

b = 3 t < n/2 [FitMau00]

b-cast

b < n t < b−1
b+1 n [CFFLMM05]

?

m

b-cast channel
b− 1 recipients

(, , ... ,)

5 / 20

Thresholds

Synchronous BC Asynchronous RBC

Traditional

model
t < n/3 [PSL80] t < n/3 [BraTou85]

PKI t < n [DolStr83] t < n/3

b = 3 t < n/2 [FitMau00]

b-cast

b < n t < b−1
b+1 n [CFFLMM05]

?

m

b-cast channel
b− 1 recipients

(, , ... ,)

5 / 20

Thresholds

Synchronous BC Asynchronous RBC

Traditional

model
t < n/3 [PSL80] t < n/3 [BraTou85]

PKI t < n [DolStr83] t < n/3

b = 3 t < n/2 [FitMau00]
b-cast

b < n t < b−1
b+1 n [CFFLMM05]

?

m

b-cast channel
b− 1 recipients

(, , ... ,)

5 / 20

Thresholds

Synchronous BC Asynchronous RBC

Traditional

model
t < n/3 [PSL80] t < n/3 [BraTou85]

PKI t < n [DolStr83] t < n/3

b = 3 t < n/2 [FitMau00]
b-cast

b < n t < b−1
b+1 n [CFFLMM05]

?

m

b-cast channel
b− 1 recipients

(, , ... ,)

5 / 20

Thresholds

Synchronous BC Asynchronous RBC

Traditional

model
t < n/3 [PSL80] t < n/3 [BraTou85]

PKI t < n [DolStr83] t < n/3

b = 3 t < n/2 [FitMau00]
b-cast

b < n t < b−1
b+1 n [CFFLMM05]

?

m

b-cast channel
b− 1 recipients

(, , ... ,)

5 / 20

Our Results

Feasibility

An asynchronous reliable broadcast
protocol for b = 3, secure against
t < n/2 corruptions.

An asynchronous reliable broadcast
protocol, secure against t < b−4

b−2 n
corruptions.

A nonstop reliable broadcast
protocol, secure against t < b−1

b+1 n
corruptions.

Impossibility

In the asynchronous setting,
there is no protocol achieving
(

nonstop

) reliable broadcast
secure against t ≥ b−1

b+1n
corruptions.

6 / 20

Our Results

Feasibility

An asynchronous reliable broadcast
protocol for b = 3, secure against
t < n/2 corruptions.

An asynchronous reliable broadcast
protocol, secure against t < b−4

b−2 n
corruptions.

A nonstop reliable broadcast
protocol, secure against t < b−1

b+1 n
corruptions.

Impossibility

In the asynchronous setting,
there is no protocol achieving
(

nonstop

) reliable broadcast
secure against t ≥ b−1

b+1n
corruptions.

6 / 20

Our Results

Feasibility

An asynchronous reliable broadcast
protocol for b = 3, secure against
t < n/2 corruptions.

An asynchronous reliable broadcast
protocol, secure against t < b−4

b−2 n
corruptions.

A nonstop reliable broadcast
protocol, secure against t < b−1

b+1 n
corruptions.

Impossibility

In the asynchronous setting,
there is no protocol achieving
(

nonstop

) reliable broadcast
secure against t ≥ b−1

b+1n
corruptions.

6 / 20

Our Results

Feasibility

An asynchronous reliable broadcast
protocol for b = 3, secure against
t < n/2 corruptions.

An asynchronous reliable broadcast
protocol, secure against t < b−4

b−2 n
corruptions.

A nonstop reliable broadcast
protocol, secure against t < b−1

b+1 n
corruptions.

Impossibility

In the asynchronous setting,
there is no protocol achieving
(nonstop) reliable broadcast
secure against t ≥ b−1

b+1n
corruptions.

6 / 20

Model N3

3-cast channels among any 3 parties.

m

3-cast channel

(,)

P mega-sends m:
P sends m to every pair of recipients via 3-cast.

R mega-receives m from P :
R received m from P through all the available 3-cast channels.

R mega-receives m from P =⇒ R′ receives m from P .

m(R, ?)

P

m(R, R′)

P

=⇒

7 / 20

Model N3

3-cast channels among any 3 parties.

P mega-sends m:
P sends m to every pair of recipients via 3-cast.

m (?, ?)
P

R mega-receives m from P :
R received m from P through all the available 3-cast channels.

R mega-receives m from P =⇒ R′ receives m from P .

m(R, ?)

P

m(R, R′)

P

=⇒

7 / 20

Model N3

3-cast channels among any 3 parties.

P mega-sends m:
P sends m to every pair of recipients via 3-cast.

R mega-receives m from P :
R received m from P through all the available 3-cast channels.

m(R, ?)

P

R mega-receives m from P =⇒ R′ receives m from P .

m(R, ?)

P

m(R, R′)

P

=⇒

7 / 20

Model N3

3-cast channels among any 3 parties.

P mega-sends m:
P sends m to every pair of recipients via 3-cast.

R mega-receives m from P :
R received m from P through all the available 3-cast channels.

R mega-receives m from P =⇒ R′ receives m from P .

m(R, ?)

P

m(R, R′)

P

=⇒

7 / 20

Protocol in N3

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)
2 When mega-receiving (READY, m)

from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

(MSG, m) (?, ?)

S

8 / 20

Protocol in N3

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S:

or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)

2 When mega-receiving (READY, m)
from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

=⇒

(Ri, ?)
S

(MSG, m)

(READY, m) (?, ?)
Ri

8 / 20

Protocol in N3

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)

2 When mega-receiving (READY, m)
from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

=⇒

(READY, m)
Rk1

(Ri, Rj1)

Ri

(?, ?)(READY, m)

...

(READY, m)
Rkt+1

(Ri, Rjt+1)

t + 1

8 / 20

Protocol in N3

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)
2 When mega-receiving (READY, m)

from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

+

(READY, m)
Rk1

(Ri, ?)

Ri

outputs m
and terminates

...

(READY, m)
Rkn−t−1

(Ri, ?)

n− t− 1

Ri

(?, ?)(READY, m)

=⇒

8 / 20

Validity: t < n− t

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)
2 When mega-receiving (READY, m)

from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

Honest Sender’s input: m

Fact:
Honest R cannot mega-send (READY, m′)

=⇒ R mega-sends (READY, m)

=⇒ R outputs m

9 / 20

Consistency: t < n− t

Code for Sender S

1 On input m:
mega-send (MSG, m)

Code for Recipient Ri

1 When mega-receiving (MSG, m)
from S or when receiving
(READY, m) from t + 1 recipients:

mega-send (READY, m)
2 When mega-receiving (READY, m)

from n− t− 1 recipients and
(READY, m) was mega-sent:

output m and terminate

Fact #1:
An honest R mega-sends (READY, m)
=⇒ No honest R′ mega-sends (READY, m′)

=⇒ No honest R′ outputs m′

Fact #2:
An honest R outputs m

=⇒ Any honest R′ mega-sends
(READY, m)

=⇒ Any honest R′ outputs m

10 / 20

Model Nb

Model Nb (b > 3): b-cast channels among every group of b parties.

Goal when b = 3: t < n− t

Goal when b > 3: t ≥ n− t

...

n− t

=⇒ Levels of confidence

11 / 20

Model Nb

Model Nb (b > 3): b-cast channels among every group of b parties.

Goal when b = 3: t < n− t

Goal when b > 3: t ≥ n− t

...

n− t

=⇒ Levels of confidence

11 / 20

Model Nb

Model Nb (b > 3): b-cast channels among every group of b parties.

Goal when b = 3: t < n− t

Goal when b > 3: t ≥ n− t

...

n− t

=⇒ Levels of confidence

11 / 20

Model Nb

Model Nb (b > 3): b-cast channels among every group of b parties.

Goal when b = 3: t < n− t

Goal when b > 3: t ≥ n− t

...

n− t

=⇒ Levels of confidence

11 / 20

Messages Received from S

Initially, S forwards his input m to every group of b− 1 recipients.

R1 1-receives m:
R1 receives m from S through all the available b-cast channels.

(R1, ?, ?, ?, ..., ?, ?)

R2 2-receives m:
R2 receives m from S through all the b-cast channels shared with
one other recipient R1.

(R1, R2, ?, ?, ..., ?, ?)
...

Rb−1 (b− 1)-receives m:
Rb−1 receives m from S through all the b-cast channels shared with
b− 2 other recipients R1, . . . , Rb−2.

(R1, R2, R3, R4, ..., Rb−2, Rb−1)

12 / 20

Messages Received from S

Initially, S forwards his input m to every group of b− 1 recipients.

R1 1-receives m:
R1 receives m from S through all the available b-cast channels.

(R1, ?, ?, ?, ..., ?, ?)

R2 2-receives m:
R2 receives m from S through all the b-cast channels shared with
one other recipient R1.

(R1, R2, ?, ?, ..., ?, ?)
...

Rb−1 (b− 1)-receives m:
Rb−1 receives m from S through all the b-cast channels shared with
b− 2 other recipients R1, . . . , Rb−2.

(R1, R2, R3, R4, ..., Rb−2, Rb−1)

12 / 20

Messages Received from S

Initially, S forwards his input m to every group of b− 1 recipients.

R1 1-receives m:
R1 receives m from S through all the available b-cast channels.

(R1, ?, ?, ?, ..., ?, ?)

R2 2-receives m:
R2 receives m from S through all the b-cast channels shared with
one other recipient R1.

(R1, R2, ?, ?, ..., ?, ?)

...

Rb−1 (b− 1)-receives m:
Rb−1 receives m from S through all the b-cast channels shared with
b− 2 other recipients R1, . . . , Rb−2.

(R1, R2, R3, R4, ..., Rb−2, Rb−1)

12 / 20

Messages Received from S

Initially, S forwards his input m to every group of b− 1 recipients.

R1 1-receives m:
R1 receives m from S through all the available b-cast channels.

(R1, ?, ?, ?, ..., ?, ?)

R2 2-receives m:
R2 receives m from S through all the b-cast channels shared with
one other recipient R1.

(R1, R2, ?, ?, ..., ?, ?)
...

Rb−1 (b− 1)-receives m:
Rb−1 receives m from S through all the b-cast channels shared with
b− 2 other recipients R1, . . . , Rb−2.

(R1, R2, R3, R4, ..., Rb−2, Rb−1)

12 / 20

Messages Received from S

Rk k-receives m: Rk receives m from S through all the available
b-cast channels shared with k − 1 other recipients R1, R2, . . . , Rk−1.

(R1, R2,, Rk−1, Rk, ?, ?, ..., ?)

=⇒ Any recipient R (k + 1)-receives m.

(R1, R2,, Rk−1, Rk, R, ?, ..., ?)

13 / 20

Messages Received from S

Rk k-receives m: Rk receives m from S through all the available
b-cast channels shared with k − 1 other recipients R1, R2, . . . , Rk−1.

(R1, R2,, Rk−1, Rk, ?, ?, ..., ?)

=⇒ It is possible that R ∈ {R1, ..., Rk−1} (k − 1)-receives m.

(R1, R2,, Rk−1, Rk ?, ?, ?, ..., ?)

13 / 20

Levels of Confidence

For a message m, we build the following levels:
Level 1: recipients that 1-receive m and believe that S is honest.

Level 2: recipients that 2-receive m and believe that someone on
level 1 is honest and terminated with output m.

...

Level k: recipients that k-receive m and believe that someone on
level k − 1 is honest and terminated with output m.

...

Level b: recipients that do not receive m, but believe that
someone on level b− 1 is honest and terminated with output m.

14 / 20

Levels of Confidence

For a message m, we build the following levels:
Level 1: recipients that 1-receive m and believe that S is honest.

Level 2: recipients that 2-receive m and believe that someone on
level 1 is honest and terminated with output m.

...

Level k: recipients that k-receive m and believe that someone on
level k − 1 is honest and terminated with output m.

...

Level b: recipients that do not receive m, but believe that
someone on level b− 1 is honest and terminated with output m.

14 / 20

Levels of Confidence

For a message m, we build the following levels:
Level 1: recipients that 1-receive m and believe that S is honest.

Level 2: recipients that 2-receive m and believe that someone on
level 1 is honest and terminated with output m.

...

Level k: recipients that k-receive m and believe that someone on
level k − 1 is honest and terminated with output m.

...

Level b: recipients that do not receive m, but believe that
someone on level b− 1 is honest and terminated with output m.

14 / 20

Levels of Confidence

For a message m, we build the following levels:
Level 1: recipients that 1-receive m and believe that S is honest.

Level 2: recipients that 2-receive m and believe that someone on
level 1 is honest and terminated with output m.

...

Level k: recipients that k-receive m and believe that someone on
level k − 1 is honest and terminated with output m.

...

Level b: recipients that do not receive m, but believe that
someone on level b− 1 is honest and terminated with output m.

14 / 20

Level 1

When a recipient 1-receives m, it places itself on level 1 and sends
notifications to the other recipients.

...

There might be
someone

honest on level
3

n− t + 1 n− t

Level 1 Level 4

Level 1

15 / 20

Level 1

The recipients on level 1 output m if there are n− t recipients that
sent notifications for level 1.

...

n− t

There might be
someone

honest on level
3

n− t + 1 n− t

Level 1 Level 4

...

15 / 20

Levels 1 and 2

If a recipient 2-receives m and receives notifications for level 1 from
n− t recipients, it sends notifications for level 2 and outputs m.

...

n− t

There might be
someone

honest on level
3

n− t

Level 1 Level 2 Level 4

There might be
honest parties

on level 1

...

Level 2

n− t

16 / 20

Levels 2 and 3

If a recipient 3-receives m and receives n− t notifications for level 1
and at least one for 2, it places itself on level 3 and sends notifications.

...

n− t

We might
be

tricked!

There might be
someone

honest on level
3

n− t n− t

Level 1 Level 2 Level 3 Level 4

...

There might be
honest parties

on level 2

Level 3

...

17 / 20

Levels 2 and 3

When there are n− t recipients that sent notifications for levels 2 and
3, the recipients on level 3 output m.

... ...

n− t

We might
be

tricked!

There might be
someone

honest on level
3

n− t
n− t

n− t

Level 1 Level 2 Level 3 Level 4

...

...
There might be
honest parties

on level 2

17 / 20

Levels 3 and 4

...

...

...

n− t

Surprise!
We might

be
tricked!

There might be
honest parties

on level 3

n− t
n− t

n− t

Level 1 Level 2 Level 3 Level 4

Level 4

18 / 20

Levels 3 and 4

...

...

n− t

Surprise!
We might

be
tricked!

There might be
honest parties

on level 3

n− t
n− t

n− t

Level 1 Level 2 Level 3 Level 4

18 / 20

Different Outputs?

t must be small enough such that the honest recipients cannot place
themselves on levels for different messages.

...m Level 2Level 1 Level k − 1 Level k

n− t

n− t

n− t

n− t
Level k

...m′ Level k′ − 1

n− t

n− t

n− t

< n− t

Level k′Level 2Level 1

=⇒
k′-received m′

keeps waiting

19 / 20

Summary

Can we achieve asynchronous reliable broadcast secure against more than
t < n/3 corruptions by assuming b-cast channels? Yes!

What is the trade-off between the strength of the communication network and
the corruptive power of the adversary?

There is no protocol achieving (nonstop) reliable broadcast secure
against t ≥ b−1

b+1 n corruptions in the asynchronous setting.

An optimal reliable broadcast protocol for b = 3.

An almost optimal reliable broadcast protocol.

An optimal nonstop reliable broadcast protocol.

20 / 20

