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Abstract—We study complexity and algorithms for network
updates in the setting of Software Defined Networks. Our focus
lies on consistent updates for the case of updating forwarding
rules in a loop free manner and the migration of flows without
congestion. In both cases, we study how the power of two
affects the respective problem setting. For loop freedom, we show
that scheduling consistent updates for two destinations is NP-
hard for a sublinear number of rounds. We also consider the
dynamic case, and show that this problem is NP-hard as well
via a reduction from Feedback Arc Set. While the power of two
increases the complexity for loop freedom, the converse is true
when allowing to split flows twice. For the NP-hard problem
of consistently migrating unsplittable flows to new routes while
respecting waypointing and service chains, we prove that two-
splittability allows the problem to be tractable again.

I Introduction
The power of two is an omnipresent concept in computer

science. E.g., when you randomly throw n balls into n bins,
the biggest bin will have roughly log n balls in it. However,
if you allow a second choice for each ball, and choose the
bin with less balls in it, the biggest bin will just have around
log log n balls [1]!

Similarly [2], if you consider the difficulty of 3-colorability
vs 2-colorability of graphs, or 3-satisfiability vs 2-satisfiability
of boolean formulas, going from 3 to 2 choices changes the
respective problem from being NP-hard to a tractable one.

On the other hand, the power of two can also turn problems
intractable: E.g., Maximizing a single unsplittable s − t flow
is easy, but maximizing a 2-splittable s − t flow is NP-hard
again [3]!

In this paper, we study on the effects of the power of
two on two fundamental network update problems, loop free
updates and consistent flow migration: The ongoing rise of
Software Defined Networks (SDNs) [4], where the control
plane computation is logically centralized, has enabled the
use of centralized algorithms in the distributed environment of
networks. One of the structural problems in SDNs is related
to one of its greatest advantages, the possibility of network
updates from a global point of view [5], but in an inherently
asynchronous system [6], [7], [8].

In loop free updates, the SDN controller would like to
switch from a set of old forwarding rules to a new set
of forwarding rules (for flows: to new paths), but without
inducing (temporary) forwarding loops in the process.
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Even if the forwarding loop just persists for miliseconds,
a large amount of data will be lost in networks with a high
throughput [9], [10], [11], [12], [13], [14].

An analogous problem occurs in the migration of flows
to new paths, where already small time inconsistencies in
the swapping of flows will lead to congestion and increased
latency [7], [15], [16], [17], [18], [19].

II Contributions
In particular, our focus lies on the power of two, i.e., how

do two destinations/choices or two-splittability of flows affect
the tractability of the respective network update problems. Our
main contributions are:

1. NP-hardness of sublinear/dynamic strong loop freedom
We show that having forwarding rules that can cover two
destinations adds considerable complexity compared to the
known one destination case. Specifically, deciding if a loop
free update schedule of length 3 ≤ r ≤ n1−ε exists is NP-
hard. Furthermore, we consider the dynamic case, where one
wants to loop free update as many forwarding rules at once
as possible. As it turns out, already the two choices of old
and new forwarding rule make this problem equivalent to the
NP-hard Feedback Arc Set problem.

2. Tractable consistent migration of 2-splittable flows
We focus on the case of non-mixing old and new flow paths
to ensure waypoint enforcement, for the setting of multi-
commodity flows. Even if the old and new unsplittable flow
assignments are known, we show that deciding if there is a
consistent migration is a NP-hard problem. Thus, we turn our
attention to 2-splittable flows, and prove how to determine in
polynomial time if a consistent migration is possible.

The remaining paper is organized as follows: We start in
Section III by formalizing the notion of loop free updates
and giving an introductory example, followed by proving the
NP-hardness of sublinear update schedules in Section IV,
and the NP-hardness of dynamic updates in Section V. We
then formalize the notion of consistent (multi-commodity)
flow updates respecting waypointing for network migration
in Section VI, before covering its intractability in Section VII
for unsplittable flows, and its tractability for 2-splittable flows
in Section VIII. Lastly, we discuss related work in Section IX,
and conclude with a summary in Section X.



III Model for Loop Free Updates
We start modeling the case of one destination d:1 Let N be

a network with old and new forwarding rules fold, fnew, each
forming an in-tree directed towards d. Due to construction,
neither the old nor the new forwarding rules have any loops.
The goal is to migrate from the old to the new rules without
introducing any (temporary) forwarding loops via a sequence
of updates, where one single update consists of a set of nodes
changing their forwarding rule from old to new for d, cf.
Figure 1.

Due to the inherent asynchrony in networks, it is not
possible to control the order in which the nodes contained in
an update U change from old to new. Thus, we call an update
loop free if the union of the old and the updated forwarding
rules is loop free, cf. Figure 1. For subsequent updates, e.g.,
U2, we define the current network forwarding state as old.
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Fig. 1. In this introductory example the initial network configuration is
depicted on the left side. Both v and w have old forwarding rules for the
destination d, drawn with solid lines. The desired new forwarding rules for d
are drawn dotted. If v and w update in the same round, v could update before
w due to asynchrony, leading to a loop between v and w. On the other hand,
if just w updates to its new forwarding rule, no loop can appear, resulting in
the network configuration depicted on the right side. Then, in the next round,
v can update loop free to its new forwarding rule by sending all packets for
destination d to w.

Dynamic loop free updates
The case of dynamic loop free updates is motivated by

applying a new update as soon as some subset of nodes
reported successful change of their forwarding rules from old
to new. In the following, we will lay special focus on the first
update. We define the problem of dynamic loop free updates
as finding an update of maximal cardinality s.t. the number of
not updated nodes c is minimized.

Scheduling loop free updates
The problem of scheduling loop free updates for one des-

tination d is defined as follows: Given a network N and old
and new forwarding rules fold, fnew, find a sequence of r loop
free updates U1, U2, . . . , Ur s.t. after Ur (i.e., r rounds), the
current network forwarding state is identical to fnew.

For the case of two destinations d, d′, each node can either
have two separate old forwarding rules for d, d′ or a combined
one, analogously for the new rules. We note that the separate
forwarding rules of a node might still point towards the same
node, and that a node can have separate old and combined
new forwarding rules, or vice versa. If a node has a combined
new forwarding rule, then updating to this rule replaces the
old rules. For the case of separate forwarding rules however,

1We follow some notation standards from [10], [14] for ease of readability.

they can be updated in different rounds2. Again, we call an
update for two destinations loop free, if the union of the
old and the updated forwarding rules is loop free for each
destination. Thus, we can define the problem of scheduling
loop free updates for two destinations in an analogous fashion
to one destination, i.e., find a sequence r loop free updates
U1, U2, . . . , Ur s.t. after Ur, the current network forwarding
state is identical to fnew.

IV Loop Free Updates with Two Destinations
In this section, we are going to discuss how the complexity

of scheduling loop free updates is augmented by adding a
second destination. We first restate a result from Ludwig et
al. [10], adjusted to our notation:

Theorem 1 ([10]). The problem of scheduling loop free
updates for one destination d is NP-complete for a 3–update
sequence.

The proof of Theorem 1 is quite involved, yet elegant. As
we will use it as a black box in our own construction, we omit
its proof details due to space constraints.

In fact, adding a second destination allows us to make use of
the following idea: An update of a node v in the construction
of Theorem 1 can be delayed by one round by adding an
additional destination, cf. Figure 2.
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Fig. 2. Old forwarding rules are solid, new ones dashed, the node for
destination d is omitted. To delay the update of v from w to w′, we transform
the network on the left side to the network on the right side. Now, node v
cannot update its combined new rule for the destinations d, d′ to the node w′

until w′ switches its rule for d′ from v to d′. Note that in general, w′ could
have arbitrarily many incoming new forwarding rules, but may only have one
outgoing old forwarding rule for d′; Thus, a new destination is needed for
every delay of an edge when using this construction.

This concept can be performed on all forwarding rules,
allowing every update to be delayed by one round by adding
Ω(n) additional destinations. Iterating this idea beyond one
round yields the NP-completeness of the problem for a loga-
rithmic number of rounds with a linear number of destinations.

Nonetheless, the deciding factor in this hardness augmenta-
tion comes from adding a second destination, as we will show
in the following:

Theorem 2. Let 0 < ε < 1. For any 3 ≤ r ≤ n1−ε, there is a
r∗ ≥ r s.t. the problem of scheduling loop free updates for two
destinations d, d′ is NP-complete for a r∗–update sequence.

2Following the model of [14], while in the model of [13] even separate
forwarding rules must be all updated at once. All updates in the model of [13]
are possible in the stronger model of [14] used here, but the reverse is not
true.
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Fig. 3. In this construction, every new forwarding rule for d from a node
v to w′ gets replaced by a forwarding rule for d, d′ to a node v′, the node
for destination d is omitted among some further edges for simplicity of the
illustration. For the node v′, old and new forwarding rules for d to w′ are
added. Again, v cannot update to its new combined forwarding rule to v′

before v′ has updated its forwarding rule for the destination d′. Observe
that in this construction, even when applied to every new forwarding rule
of the original network, every node from the original network has only one
incoming/outgoing forwarding rule for the new destination d′.

Proof: The problem is in NP: Given a sequence of
(supposedly loop free) updates, each single one can be checked
sequentially in polynomial time to be loop free by using, e.g.,
Tarjan’s algorithm [20].

NP-hardness of r = 4: We start by proving the theorem for
r = 4, before extending it to larger r ≤ n1−ε. The case of
r = 3 was already covered above in Theorem 1. We will again
use the idea of delaying the update of every forwarding rule
by one round akin to the construction in Figure 2, but we will
just use one additional destination d′, cf. Figure 3.

First, we add a new destination d′ to the network. Now let
v, w′ be two nodes in the network s.t. there is a new forwarding
rule for d from v to w′. We add a new node v′, and replace
the forwarding rule for d from v to w′ with one for d, d′ from
v to v′. Additionally, we add old and new forwarding rules for
d from v′ to w′, a new forwarding rule for d′ from v′ to d′,
an old forwarding rule for d′ from v′ to v, and old and new
forwarding rules for d′ from v to d′, see Figure 3.

After applying this construction for every new forwarding
rule in the original network, we added O(n) additional nodes
and forwarding rules. We note that every node from the origi-
nal network has at most one incoming/outgoing forwarding
rule for the new destination d′. Now, the update of every
forwarding rule is delayed by one round, i.e., it is NP-hard
to decide if the network can be updated loop free in r = 4
rounds.

NP-hardness of r ∈ N, r ≥ 3: We can extend the construction
used above for the NP-hardness of r = 4 to any larger natural
number, cf. the construction in Figure 4: By adding the node
v′′ to the construction, the problem becomes NP-hard for r =
5, as v cannot update before v′, which in turn cannot update
before v′′.

This can be iterated with v′′′ for the NP-hardness of r = 6,
v′′′′ for r = 7, and so on. Note that if the original network has
n nodes, the newly constructed network still has O(n) nodes
for any r ∈ N.

d′d′

d′

d′

d′

d′

d′

d′

d, d′

d′

v′′′′ v′′′ v′′

v′vd′

Fig. 4. In Figure 3, v′ had a new forwarding rule for d′ pointing directly at
d′, inducing a delay of one round for the update of the new forwarding rule
of v. This delay can be extended by adding additional nodes v′′, v′′′, . . . as
depicted in the construction shown in this Figure.

NP-hardness for ≤ n1−ε: In the construction for r ∈ N, we
achieved NP-hardness for r in a network with Θ(n + rn) ∈
Θ(n) nodes. The situation changes when r is dependent on n,
e.g., by setting r = n, we get networks with n′ ∈ Θ(n2)
nodes, meaning that the additional delay is just Θ(

√
n′)

opposed to Θ(n′).
However, by setting the delay in the construction to nx,

n ∈ N, it is NP-hard to decide if a schedule of length r∗

exists for some r∗ > nx

nx+3 = n1−
3
x+3 . Hence, the theorem

holds by setting x > 3
ε − 3 for any ε, 0 < ε < 1.

Thus, adding a second destination increases the complexity
of scheduling loop free updates remarkably.

V Dynamic Loop Free Updates
This section covers the case of highly dynamic update

times per node, which can result in scheduling the updates
beforehand being slower than a dynamic approach. Jin et
al. [7] showed that nodes in a production network can take up
to 100 times longer than average to apply updates, motivating
the use of a dependency graph for dynamic updates of various
consistency properties.

The dynamic model was later studied by the authors of [14]
for loop free updates under the lens of algorithms and com-
plexity. They showed that for a number of Θ(n) destinations,
the problem of dynamic loop free updates is NP-hard via a
reduction from 3-satisfiability.

However, is this problem really hard due to adding a linear
amount of destinations – or is the complexity already hidden in
the two choices every node has with one destination? Should
a node 1) update, or 2) not update? As it turns out, already
these two choices make the problem hard:

Theorem 3. Let N be a network with a single destination d
and forwarding rules fold and fnew. The problem of dynamic
loop free updates for one destination is NP-complete.

Proof: The problem is in NP: Observe that the problem
is indeed in NP: Given an update U of new forwarding rules,
checking the union of the old and to be updated forwarding



rules to be loop free can be performed in polynomial time,
e.g., by Tarjan’s algorithm [20].

NP-hardness: It is left to show that the problem is NP-hard.
Our proof is a reduction from the classic NP-complete problem
Feedback Arc Set (FAS) [2]: Given a directed graph, are there
c edges s.t. their removal results in a loop free graph?

We show that for every instance I of FAS, we can construct
in polynomial time an instance I ′ of the corresponding deci-
sion problem of the dynamic loop free update problem, s.t. I
is satisfiable if and only if I ′ is a yes-instance.

For an illustration of the technique used in the remainder
of the construction we refer to the Figures 5, 6, where the
network in Figure 6 represents an instance I ′ created from the
instance I of the network in Figure 5.

v1 v2

v3v4

Fig. 5. In this network instance I , there is exactly one loop between v2
and v3. Removing either of the two edges would solve the Feedback Arc Set
problem in an optimal fashion.
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Fig. 6. The corresponding network instance I′ from I in Figure 5. The
loop between v2 and v3 in I is represented by the loop between the nodes
v2, v2,1, v2,3, v3, v3,2, v2. No further loops exist in I′.

Construction of the new Instance I ′: Let I be an instance
of FAS, i.e., a directed graph G = (V,E) and c ∈ N: Is there
a set of at most c edges Ec ⊆ E, s.t. the removal of those
edges yields a loop free graph G∗ = (V,E \ Ec)? W.l.o.g.,
let V = {v1, . . . , vn}, and let ∆(vi) be the out-degree of the
node vi, with the edges {ei,j1 , . . . , ei,j∆(vi)}. Again, w.l.o.g.
let ei,jk be the edge from vi to vk.

We construct an instance I ′ = (V ′, Eoldd , Enewd ) by first
defining the set of nodes, then the set of old forwarding rules,
and then the set of new forwarding rules.
V ′ consists of a destination d ∈ V , the nodes V , and ∀vi ∈

V we add ∆(vi) nodes {vi,j1 , . . . , vi,j∆(vi)}. Thus, V ′ has in
total 1 + |V |+ |E| nodes.

The set of old forwarding rules is defined as follows: For
each node vi ∈ V , we construct a directed path starting at vi
and ending at d as vi, vi,j1 , . . . , vi,j∆(vi), d. I.e., we basically
have an in-tree for d that consists of |V | paths. The total
number of forwarding rules in Eoldd is |V |+ |E|.

The set of new forwarding rules mimics the edges of
the graph G in the instance I . For each edge ei,jk in E,
we construct a forwarding rule from vi,jk to vjk in E′.
Furthermore, for each node vi ∈ V , we add a forwarding rule
ei,d from vi to d in E′. Thus, the total number of forwarding
rules in Enewd is again |V |+ |E|.

This set of new forwarding rules is loop free: i) The
destination d has no outgoing rules, so all |V | forwarding
rules pointing at d cannot be part of a loop. Note that those
|V | forwarding rules origin from nodes vi. ii) All other |E|
forwarding rules point at nodes vi, and thus cannot be part
of a loop either. Hence, both the old and the new forwarding
rules are loop free.

Note that the instance I ′ can be constructed from the
instance I in polynomial time. We now pose the follow-
ing decision problem for the constructed instance I ′ =
(V ′, Eoldd , Enewd ): Is the maximum number of forwarding rules
that can be updated loop free at least (|Enewd | − c)?

If I is a yes-instance, then I ′ is a yes-instance Let Ec be a set
of c edges, s.t. the removal of those edges from E yields a loop
free directed graph G∗ = (V,E \Ec). Let I∗, be the instance
I ′, with the forwarding rules constructed out of Ec removed,
i.e. I∗ = (V ′, Eoldd , Enew,∗d ). Note that I∗ still has 1+|V |+|E|
nodes. By definition, G∗ is loop free. For contradiction, let us
assume that (V,Eoldd ∪ Enew,∗d ) contains a loop L. L must
contain a mix of old and new forwarding rules, since each set
is loop free individually. Since the outgoing new forwarding
rules from vi point directly at d, the loop L cannot contain
two new forwarding rules consecutively.

We now contract the paths of old forwarding rules originat-
ing at vi in I∗, i.e. vi, vi,j1 , . . . , vi,j∆(vi), d into just one new
node vcontri that points at d with an old edge. The new con-
tracted node vcontri has all ingoing new forwarding rules/edges
from vi and all outgoing new forwarding rules/edges from the
nodes vi,j1 , . . . , vi,j∆(vi), plus one old forwarding rule/edge
that points at d. We do this for all nodes vi ∈ V in I∗,
leading to a contracted graph with |V | + 1 nodes, given by



vcontr1 , . . . , vcontrn , d. If we were to remove the node d from
the contracted graph (and all ingoing edges to d), we would
have a graph isomorphic to G = (V,E): Each node vcontri

corresponds to the node vi in G∗. The same holds for the
adjacency relations, as the contracted graph without d contains
only new forwarding rules/edges, which in turn were created
out of the edges from the edges of G∗.

Thus, if (V,Eoldd ∪E
new,∗
d ) were to contain a loop L, then

the contracted graph would contain a loop as well, and hence
the graph G∗ too. However, by definition, G∗ was loop free,
leading to a contradiction.

If I is a no-instance, then I ′ is a no-instance Let us assume
that no set of c edges Ec ⊆ E exist, s.t. the graph G∗ =
(V,E \ Ec) is loop free. Thus, I is a no-instance. Now, let
Ec be any set of at most c edges, but let Ec be fixed, and let
G∗ = (V,E \Ec). Note that G∗ contains at least one loop L
by definition. Again, as in the argumentation above, we look
at the contracted graph without the destination d constructed
from the instance I∗. Due to isomorphism, G∗ contains a loop
as well, which concludes the proof of Theorem 3.

As seen in the above proof, the problem of dynamic loop
free updates is strongly related to the Feedback Arc Set
problem. The best known approximation ratio which can be
achieved for FAS in polynomial time is O(log n log log n), as
shown by Even et al. in their seminal paper [21]. Thus, we
can show that finding a better guarantee for the dynamic loop
free update problem cannot be achieved unless simultaneously
improving the general case of the FAS problem:

Corollary 1. A polynomial algorithm for the problem of
dynamic loop free updates for one destination with a better
approximation ratio than O(log n log log n) would imply a
better polynomial approximation ratio than O(log n log log n)
for the Feedback Arc Set problem.

Proof: Observe that in the proof of Theorem 3, the con-
struction increases the number of nodes from n to n+m+1. As
O(log n log log n) is equivalent to O(log n+m+1 log logn+
m + 1) due to logarithmic identities, a better approximation
bound would immediately imply a better approximation bound
for the Feedback Arc Set problem.

VI Model for (Un)splittable Flow Migration
We model a network N as a directed graph G = (V,E)

with non-negative edge-capacities c. An (unsplittable) flow Fj
of size dj starts at a source Sj ∈ V and is routed along a cycle-
free path Pj of enough capacity to its destination Tj ∈ V , i.e.,
∀e ∈ Pj : dj ≤ c(e). We call a set of k flows F1, . . . , Fk a
multi-commodity flow F if ∀e ∈ E :

∑k
i=1 Fi(e) ≤ c(e), i.e.,

their combined sizes do not violate any capacity constraints.
For the sake of simplicity, we assume that the old flow size
dj on Pj is identical to its new size d′j on P ′j 6= Pj , else one
could, e.g., reduce the flow size to d′j on Pj before updating,
or migrate and then increase on P ′j .

Consistent flow bandwidth updates. If a set of flows is to be
rerouted along other paths in a network update, the inherent

asynchrony can lead to them being updated in any order. E.g.,
if two flows of size one are to be swapped along two paths of
capacity one, one of the flows could be updated first, leading
to congestion. This lead to the consistency model introduced
by SWAN [19]: A network update of flows U = (N,F ,F ′) is
bandwidth consistent, if ∀e ∈ E :

∑k
i=1 max (Fi(e), F

′(e)) ≤
c(e) holds. I.e., it doesn’t matter if a flow is on the old or new
path, the edge capacities may not be violated in either case.

Consistent non-mixing flow updates Network flow routes
often have to adhere to waypointing, or even service (e.g.,
firewalls, caches, etc.) chaining [22]. As thus, a flow should
only be routed along its old path or its new path, but not a mix
of these two, and especially not along totally different paths.
This is easy to guarantee if the old and the new flow path are
node-disjoint, but not so much when the old and the new path
mix: When old and new packets arrive at a switch, marked
as being from the same flow, forwarding them according to
either or the old rule will lead to the violation of waypointing
or the traversal of network functions in the wrong order.

Therefore, we apply the packet stamping method from [23]
in the context of congestion-avoidance3: We introduce flow
rules F oldi for the old path and Fnewi for the new
path, allowing each packet to respect the service chains.
Hence, inspired from a combination of [19] and [23],
we call a network update of flows non-mixing consis-
tent, if ∀e ∈ E :

∑k
i=1 max

(
F oldi (e) + F ′oldi (e)

)
+

max (Fnewi (e) + F ′newi (e)) ≤ c(e) holds, cf. Figure 7.
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Fig. 7. In this network, the old flow path is drawn solid, the new dotted.
Assume that the flow would be split along the old and the new path, and that
there would be firewalls on the nodes marked with fw. If there is just one flow
rule at w, namely to split the flow along the two outgoing edges, then there
are flow packets not traversing any firewall. As thus, we introduce separate
old and new flow rules for the non-mixing property.

Observe that bandwidth consistency and non-mixing consis-
tency are identical if the old and new flow paths are disjoint,
the only difference is in the case when the old and the new path
are joint at some point. Thus, the packet-stamping approach
can also be omitted in an implementation of the disjoint case.

Consistent non-mixing flow migration So far we described
flow updates of one round, but due to dependencies it can
easily be the case that one needs to apply various updates
before the desired outcome is reached [7]. E.g., F1 wants to
move to the path of F2, but before that can happen, F2 first
needs to be moved to its new path, cf. Figure 8.

Let F be the old flow assignment and F ′ be the new flow
assignment. We call a series of non-mixing consistent flow
updates a non-mixing migration from F to F ′, if the following
two conditions are met: 1) each flow packet may only use the
old or the new flow path, 2) the final flow assignment is F ′.

3Reitblatt et al. [23] use them to guarantee the non-mixing property (which
they call per-flow/per-packet consistency), but do not consider congestion.



S2

S1

T2

T1

v w

Fig. 8. In this network, the old flow paths are drawn solid, the new dotted.
The green flow F1 has to be moved from its bottom old to its top new path,
while the orange flow F2 has to be moved from its current path to its new
top path. All flow sizes and edge capacities are one. If both F1 and F2 are
updated together, F1 could move before F2, causing congestion on edge from
v to w. A consistent way of migrating first moves F2 and then moves F1.

VII Unsplittable Flow Migration
While it is well studied if a set of demands can be

met by unsplittable flows, what about the case of migrating
between two known flow assignments? It is known that if the
unsplittable flows are allowed to take any path, this problem is
NP-hard [16]. We now consider the case where the unsplittable
flows are just allowed to take either the old or the new path:

Theorem 4. Let F , F ′ be unsplittable multi-commodity flows.
Deciding if there is a non-mixing consistent flow migration
from F to F ′ is NP-hard.

Proof: Our proof will be a reduction from the NP-hard
problem Partition [2]: Given a multiset S of k positive integers
s1, . . . , sk of combined size S, can the integers be partitioned
into two subsets S1, S2 s.t. their respective sum is identical
to S/2? For each instance I of Partition, we will create an
instance I ′ of the migration problem s.t. I is a yes-instance if
and only if I ′ is a yes-instance.

Construction of the new Instance I ′: The network N in the
instance I ′ consists of the nodes S1, . . . , Sk, Sb, T1, . . . , Tk,
Tb, v11, v12, v21, and v22. There is a directed edge with
capacity S from each S1, . . . , Sk to v11 and v21, and from
each v12, v22 to T1, . . . , Tk. Furthermore, there is a directed
edge from v11 to v12 and from v21 to v22, each with capacity
S. Lastly, we have edges with capacity S from Sb to v11 and
v21, and from v12 and v22 to Tb. We refer to Figure 9 for an
illustration. The old flow configuration F is given as follows.
For 1 ≤ i ≤ k, there is a flow Fi of size si from Si to Ti along
the path Si, v11, v12, Ti. Also, there is a flow Fb of size S/2
from Sb to Tb via Sb, v21, v22, Tb In the new flow configuration
F ′, the flows Fi instead take the other path Si, v21, v22, Ti,
while the flow Fb takes the path Sb, v11, v12, Tb.

Observe that both F ,F ′ are valid multi-commodity flows.

If I is a no-instance, then I ′ is a no-instance Assume that
it is not possible to partition S into two sets of summed up
size S/2 each. Note that for Fb to migrate to its new path
Sb, v11, v12, Tb, there has to be a free capacity of S/2 on the
edge from v11 to v12. The only possibility for that to happen is
to select a subset of the paths from F1, . . . , Fk of summed up
size S/2 to be routed along the edge from v21 to v22. But, as
the partition instance I is not solvable, no such subset exists.

S1

Si

Sk

Sb

v11

v21

v12

v22

T1

Ti

Tk

Tb

S

S

Fig. 9. In this network, there are k flows from S1, . . . , Sk to T1, . . . , Tk

via the upper path v11, v12 of combined size S, and one flow from Sb to
Tb via v21, v22 of size S/2. All edges have a capacity of S. The task is to
swap the assignments, i.e., move the k flows to the lower path, and the one
bottom flow to the top path. Observe that the only consistent way to do so is
to move flows of combined size S/2 to the bottom path, then the bottom flow
up, then the remaining flows down. As the k unsplittable flows correspond to
a Partition instance, it is NP-hard to decide if this is possible.

If I is a yes-instance, then I ′ is a yes-instance Assume that
it is possible to partition S into two sets S1,S2 of summed
up size S/2 each. We can then migrate as follows:

We select the flows corresponding to S1 and move them to
their new path, their combined size is S/2 and the edge from
v21 to v22 has a free capacity of S/2. Then, we move the
flow Fb to its new path, which now also has a free capacity of
S/2. Lastly, we move the flows corresponding to S2 to their
new path, rejoining the flows corresponding to S1 on the edge
from v21 to v22.

VIII Two-splittable Flow Migration
We saw in the last Section VII that unsplittable flow

migration is NP-hard, even if the old and new flow paths are
known. However, we will now use the power of two to turn
the problem of non-mixing consistent flow migration into a
tractable one.

As it turns out, by allowing the flows to be two-splittable,
we can decide in polynomial time if a non-mixing consistent
flow migration is possible. E.g., in Figure 9, one could move
half of each flow from the top path, move the bottom flow
up, and lastly, move the remaining half of the original top
flows down. We will now first give an overview of the problem
before describing our algorithm, then prove its correctness and
completeness, before lastly stating some additional methods
for the case that no consistent migration exists.

Creation of slack. We are given two unsplittable multi-
commodity flows, with the task to migrate from the old to
the new one in a non-mixing consistent way. As we allow
the flows to be two-splittable, each unsplittable flow can be
separated into two distinct parts, each assigned to the old and
new path, respectively.

The fundamental inherent problem is posed here by edges e
where all capacity is used. In the non-mixing consistent model,
no (part of a) flow can be moved to such an edge e until some
free slack capacity has been created on e, else the capacity
constraints in the consistency property would be violated.



Observation 1. For a non-mixing consistent network update
to increase the combined sizes of any subset of flows on an
edge e by x, the combined total sizes of the flows on e must
be at most c(e)− x.

The slack s on an edge e is defined as the ratio of the
non-used capacity and the capacity on e. E.g., an edge with
capacity 10 and flows of combined size 9 on it has a slack
of 1/10. As thus, the question is: Can slack be created on all
such edges e, with each flow being only split along its old and
new path, i.e., with two-splittable flows?

The following algorithm will try to create slack on all
relevant edges, by iteratively attempting to move parts of flows
in a non-mixing consistent way until either slack has been
created on all edges of F ,F ′, or a situation is reached when
such movement is not possible. The idea is that we will only
create slack, but never remove it completely from any edge.

Algorithm 1 (Creation of slack).
Input: (Old) multi-commodity flow F and a desired mcf F ′.
Output: A sequence of non-mixing consistent network updates,
starting from F , to create slack on all edges used by F ,F ′,
or output that this is not possible.
Invariant: Denote the current flows in the N by F∗,F ′∗.4

1) Let x be the smallest free capacity on any edge in N
used by F∗,F ′∗.

2) Is there a flow F ∗i ∈ F∗i that has no slack on some
edge of their path, but there is slack on all edges of the
corresponding path of F ′∗?
a) If yes, perform a network update where the flow size

of F ′∗ is increased by x/2 and the flow size of F ∗ is
decreased by x/2. Then, go to step 1.

b) Else
i) If all edges of F∗ have slack, output yes & all

performed network updates so far.
ii) If there is still an edge of F∗ without any slack/free

capacity, output no.

Lemma 1. The updates performed by Algorithm 1 are non-
mixing consistent and just use the old and new flow paths.

Proof: The lemma holds as parts of a flow are just moved
to their new path if the new path has enough free capacity, no
other paths are used.

Lemma 2. The runtime of Algorithm 1 is O(k2n), with
k being the number of flows/commodities. The number of
network updates performed is at most k.

Proof: Steps 1 & 2 of Algorithm 1 need to be repeated at
most k times, with k being the number of commodities/flows,
resulting in at most k network updates: If a flow path already
has slack on every edge, this flow does not need to be updated
again. Furthermore, each iteration of Step 1 & 2 needs to check
O(k) flows of length O(n) in the worst case, resulting in a
total runtime of O(k2n).

4Note that at the start of the algorithm, all flows in F ′∗ have a size of 0.

We note that if a sequence of non-mixing consistent network
updates leads to a non-mixing consistent migration from F to
F ′, then this sequence can also be applied “backwards” to F ′,
leading to a non-mixing consistent migration from F ′ to F .
We cast this observation into the following statement:

Observation 2. A non-mixing consistent migration from F to
F ′ exists if and only if a non-mixing consistent migration from
F ′ to F exists.

Non-mixing consistent migration. Let Fslack be a multi-
commodity flow in N where every edge used by the flow
has a slack of at least s, and similarly, let F ′slack be a multi-
commodity flow in N where every edge used by the flow has a
slack of at least s. We can then use a method from SWAN [19]
to migrate in a non-mixing consistent fashion with d1/se − 1
updates: Every network update moves a share of s (possibly
less in the last update) of each flow to its new path, resulting
in the given number of updates. E.g., if the slack is 1/10, then
10% of the original flow size will be moved in every update,
resulting in 9 updates in total. As the invariant of a slack of at
least s will be maintained after every update, each performed
update is non-mixing consistent.

Algorithm 2 (Deciding non-mixing consistent migration).
Input: (Old) multi-commodity flow F and a desired mcf F ′.
Output: yes, if a non-mixing consistent migration from F to
F ′ is possible, no otherwise.

1) Run Algorithm 1 on F ,F ′ and F ′,F . If either output is
no, then output no, else output yes.

Theorem 5. Algorithm 2 decides in a runtime of O(k2n) if a
non-mixing consistent migration is possible.

We defer the complete proof of Theorem 5 and first give
the following algorithm for non-mixing consistent migration:

Algorithm 3 (Performing non-mixing consistent migration).
Input: (Old) multi-commodity flow F and a desired mcf F ′.
Output: Either a sequence of non-mixing consistent network
updates, starting from F , which form a non-mixing consistent
migration to F ′, or an output that this is not possible.

1) Run Algorithm 1 on F ,F ′ and F ′,F . If either output is
no, then output no. Else, denote the resulting networks
gotten by applying updates U ,U ′ by Fslack and F ′slack.

2) Let s be the smallest slack on any edge in N used by
Fslack,F ′slack.

3) Apply the calculated non-mixing consistent updates U to
F , resulting in Fslack.

4) Perform d1/se − 1 non-mixing consistent updates, each
moving an original share of s to its new path, resulting
in F ′slack.

5) Apply the non-mixing consistent updates U ′ in reverse,
resulting in F ′, and output yes .

Combining the above argumentation and Lemma 1, 2 yields:



Corollary 2. The migration performed by Algorithm 3 is non-
mixing consistent, with at most 2k + d1/se − 1 updates.

As thus, we know that a migration performed by Algo-
rithm 3 is non-mixing consistent, but we still need to show
that an output of no is correct as well:

Lemma 3. If Algorithm 3 outputs no, then no consistent non-
mixing migration from F to F ′ is possible.

Proof: Assume for the sake of contradiction that Algo-
rithm 3 outputs no, but that a consistent non-mixing migration
from F to F ′ exists with the updates U1, U2, . . . . As Algo-
rithm 3 outputs no, Algorithm 1 ouputs no as well for the case
of F to F ′ or the case of F ′ to F . Due to Observation 2, we
can assume w.l.o.g it was at least for the case of F to F ′. Note
that if Algorithm 1 would have output yes for both cases, then
Algorithm 3 would have output yes as well.

Let Uj be the first update where a flow Fi was (partially)
moved that Algorithm 1 failed to create slack for on its
new path. By assumption, Algorithm 1 was able to create
slack (or there was already slack) for all flows of F moved
in U1, U2, . . . , Uj−1. Note that if Uj was a non-consistent
mixing network update, then we can create a non-consistent
mixing network update U∗j from Uj that just contains moving
the respective parts of the flow Fi. Recall that Algorithm 1
never removed slack completely from any edge. As thus,
Algorithm 1 would have been able to create slack for Fi, as
it could have moved a part of flow Fi to its new path after
making sure that there is slack for all new flow paths contained
in the updates U1, U2, . . . , Uj−1. Thus, no such non-mixing
consistent update Uj could have existed, leading to the desired
contradiction, which concludes the proof of Lemma 3.

We now have all the methods necessary to prove Theorem 5:
Proof of Theorem 5: It directly follows that the runtime

is O(k2n), as we essentially just run Algorithm 1 twice, cf.
Lemma 2. It is left to show that Algorithm 2 is correct, which
we will infer from its usage in Algorithm 3: With Corollary 2
we know that an output of yes is correct. Similarly, with
Lemma 3 we know that an output of no is correct, concluding
the proof of Theorem 5.

What if no non-mixing consistent migration exists? It can
be the case that Algorithm 3 outputs that no non-mixing
consistent migration of flows exists for two-splittable flows,
but that the benefits of the desired new flow F ′ outweigh the
downsides of congestion during the migration.

In this case, we can apply Algorithm 1 to F ,F ′ to pre-
compute updates for as many edges with slack as possible in
Fslack,F ′slack, and migrate non-mixing consistent to Fslack
using these updates from Algorithm 1. Then, in the next
step, we use the approach from Dionysus [7], which breaks
consistency during some updates,5 but still migrates the flows
from Fslack to F ′slack. Lastly, we can migrate in a non-mixing
consistent fashion from F ′slack to the desired multi-commodity
flow F ′, using the pre-computed updates from Algorithm 1.

5The congestion during these network updates can then be reduced by
employing the methods of [17], [24].

IX Related Work
For an overview over the topic of network updates in

Software Defined Networks, we refer to the recent article of
Casado et al. [5]. In particular, the works of He et al. [8], Jin et
al. [7], and Kuzniar et al. [6] provide evidence for the inherent
asynchrony of switch updates, with widely varying variances
in the implementation time. In the following, we now cover
work on loop free updates and consistent migration of flows.

Loop free network updates Ito et al. [25] investigated
avoiding loops in shortest-path routing by increasing link
costs to bypass single links. Shortly after, the study of loop
free network updates was initiated by François et al. in
their investigation of the convergence of link-state routing
protocols [11], [12]. They studied the scheduling of single-
destination updates, showing that one can always update
in a number of rounds equivalent to the depth of routing
tree induced by the new forwarding rules. Their work was
later extended to the dynamic setting in [26], [14], with
the latter authors also showing the NP-hardness of the dy-
namic loop free update problem for Θ(n) destinations and an
O(log n log log n) approximation algorithm for the case of one
destination. Ludwig et al. [10] further studied the scheduling
of loop free updates, and showed that this problem is NP-
hard for 3 rounds, leaving the in this paper studied case of
r > 3 as an open question. In parallel to our work, Dudycz
et al. studied a setting similar to Section IV of this article,
but allow to break up forwarding rules [27]: They prove that
minimizing the number of interactions with the switches for
loop freedom is NP-hard in this case, and also study how to
efficiently compose schedules for single destinations. Vanbever
et al. [13] consider a modified model for scheduling loop free
updates for O(n) destinations, in their variant all forwarding
rules of a node have to be updated in the same round, making
their decision variant NP-hard as well. Loop freedom can also
be in conflict with waypoint enforcement, as shown in [28],
[29], leading Vissicchio and Cittadini [9] to apply the idea of
packet stamping (or 2-phase commit) from the seminal work
of Reitblatt et al. [23] in the loop free setting, but they do not
consider congestion. Furthermore, Mizrahi et al. [24] study the
problem with a time-based approach, aiming to synchronize
concurrent network updates to reduce the inherent asynchrony;
their work is also applicable to the migration of flows.

Consistent Migration of flows SWAN [19] studied the consis-
tent migration of flows in the presence of background traffic,
they provided a system that allows to migrate in d1/se−1 steps
in the presence of a slack of s. Should no slack be available
on some edges, they present a binary search heuristic to find
a solution. zUpdate [18] uses their methods in a datacenter
setting. In a similar line of work, Dionysus [7] tries to migrate
via a dependency graph, violating some consistency rules if a
heuristic search through the dependency graph does not yield
a solution. Consistent flow migration in the model of SWAN
was then considered in [16], where the authors showed how to
decide if a consistent migration of flows is possible. A similar
setting was studied in [15] for the case of a single logical



destination/source, improving the migration speed. The main
difference to our work is that they allow the flows to use any
(amount of) paths in the network, not just old and new, and
thus also allow the flows to be arbitrarily splittable.

Lastly, in an orthogonal line of work, Jain et al. [17] aim
to minimize the impact of congestion during the migration
of flows by optimizing the speed of the used hardware and
protocols, resulting in faster network update implementations.

X Summary
We studied the power of two in consistent network updates

for loop freedom and flow migration in SDNs. We proved that
adding a second destination turns scheduling sublinear loop
free updates NP-complete, and that the two choices of old
and new forwarding rule turns the dynamic loop free update
problem NP-complete as well. For unsplittable flow migration,
we showed that consistency respecting old and new flow paths
is NP-hard. However, when the flows are two-splittable, we
give a fast polynomial algorithm for consistent migration, and
outlined alternatives when no consistent migration is possible.
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