
A Deep Learning Approach for the Segmentation of
Electroencephalography Data in Eye Tracking Applications

Lukas Wolf 1 2 Ard Kastrati 3 Martyna Beata Płomecka 2 Jie-Ming Li 1 Dustin Klebe 1 Alexander Veicht 1

Roger Wattenhofer 3 Nicolas Langer 2

Abstract
The collection of eye gaze information provides
a window into many critical aspects of human
cognition, health and behaviour. Additionally,
many neuroscientific studies complement the be-
havioural information gained from eye tracking
with the high temporal resolution and neurophysi-
ological markers provided by electroencephalog-
raphy (EEG). One of the essential eye-tracking
software processing steps is the segmentation of
the continuous data stream into events relevant to
eye-tracking applications, such as saccades, fixa-
tions, and blinks. Here, we introduce DETRtime,
a novel framework for time-series segmentation
that creates ocular event detectors that do not re-
quire additionally recorded eye-tracking modality
and rely solely on EEG data. Our end-to-end deep-
learning-based framework brings recent advances
in Computer Vision to the forefront of the times
series segmentation of EEG data. DETRtime
achieves state-of-the-art performance in ocular
event detection across diverse eye-tracking exper-
iment paradigms. In addition to that, we provide
evidence that our model generalizes well in the
task of EEG sleep stage segmentation.

1. Introduction and Motivation
Eye gaze information is widely used in cognitive neuro-
science and psychology. Moreover, many neuroscientific
studies complement scientific methods such as functional
magnetic resonance imaging (fMRI) and electroencephalog-
raphy (EEG) with eye-tracking technology to identify varia-
tions in attention, arousal, and the participant’s compliance

1Department of Computer Science, ETH Zurich, Zurich,
Switzerland 2Department of Psychology, University of Zurich,
Zurich, Switzerland 3Information Technology Department, ETH
Zurich, Zurich, Switzerland. Correspondence to: Lukas
Wolf <wolflu@ethz.ch>, Ard Kastrati <kard@ethz.ch>, Martyna
Plomecka <martyna.plomecka@uzh.ch>.
Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

with the task demands (Hanke et al., 2019). This way, the
combined EEG and eye-tracking studies can provide an
“ideal neuroscience model” to investigate brain-behaviour
associations (Luna et al., 2008). Nowadays, infrared video-
based eye trackers are the most common approach in sci-
entific studies. Although costs for infrared video-based are
slowly becoming less prohibitive, these devices remain out-
side the range of access for many researchers due to the
added layers of complexity (e.g., operator training, setup
time, synchronization of eye-tracking data with fMRI or
EEG, and analysis of an additional data type) that can be
burdensome (Holmqvist et al., 2011). In addition, once in-
stalled, setup and calibration for each scanning session also
can be time-consuming (Fuhl et al., 2016).
Nonetheless, recent evidence (Kastrati et al., 2021c;a) sug-
gests that gaze position can be computed by using the com-
bination of EEG and deep learning. Our benchmark and a
dataset for estimation of gaze position intending to simulate
a purely EEG-based eye-tracker shows that this task is chal-
lenging to solve with high accuracy.
However, even the segmentation of continuous EEG data
stream into ocular events (i.e. fixations, saccades and
blinks), the prerequisite for an EEG based eye-tracker, can
provide meaningful insights into human behaviour (Toiva-
nen et al., 2015). For instance, blinks can indicate various
human states, including fatigue or drowsiness (Schmidt
et al., 2018). Moreover, the analysis of the gaze activity
recognition allows us to study changes in cognitive work-
load (Buettner, 2013), recognize the context from gaze pat-
tern behaviour (Bulling & Roggen, 2011), and even detect
microsleep episodes in eye movement data while driving a
car (Behrens et al., 2010). Despite these benefits, no deep-
learning based approach that segments the EEG signal into
meaningful ocular events is available in daily research and
clinical practice.
To address this shortcoming, we developed the first neural
network-based segmentation method to identify and differ-
entiate ocular events from continuous EEG data. In this
paper, we introduce DETRtime, a novel time series network
architecture that can be used for the segmentation of events
in a unified manner. The DETRtime is based on the DETR
architecture (Carion et al., 2020b) that was initially pro-

DETRtime

posed for object detection.
Our time series adaptation maps sequential inputs of arbi-
trary length to sequences of class labels on a freely chosen
temporal scale. We evaluated DETRtime on EEG data con-
sisting of recordings from 4 experimental paradigms and
overall 168 participants. In addition, we provided evidence
on a second task, namely EEG sleep stage segmentation.
For that matter, we ran experiments on the publicly available
Sleep-EDF-153 dataset (Goldberger AL, 2000).

In all cases, we found that DETRtime outperforms current
state-of-the-art deep learning models on both the ocular
event and sleep stage segmentation.
To conclude, our main contributions are:

• A novel, purely EEG-based segmentation technique
for eye-tracking applications.

• An adaption of the Detection Transformer (DETR)
architecture (Carion et al., 2020b), introducing instance
segmentation to the analysis of EEG data and providing
a performant alternative to the current state-of-the-art
which implements (often convolution-based) semantic
segmentation (Thoma, 2016).

• A collection of two novel ocular event datasets (Movie
Watching and Large Grid paradigm) containing 139k
fixations, 139k saccades and 14k blinks, with concur-
rently recorded EEG and infrared video-based eye-
tracking serving as ground truth.

2. Related Work
The ocular events’ detection is an active research topic with
applications in human behaviour analysis (Mele & Fed-
erici, 2012), activity recognition (Bulling & Roggen, 2011),
human-computer interaction and usability research (Jacob
& Karn, 2003), to mention a few.
The most standard and exploited segmentation techniques
rely on infrared video-based systems. Modern eye-tracker
companies use proprietary solutions to enable fast and reli-
able data segmentation (Engbert & Kliegl, 2003; Nyström &
Holmqvist, 2010). These approaches utilize adaptive thresh-
olds freeing researchers from setting different thresholds per
trial when the noise level varies between trials. Another no-
table example of the segmentation framework was provided
by (Zemblys et al., 2018). This deep learning-based solution
detects eye movements from eye-tracking data and does not
require hand-crafted signal features or signal thresholding.
However, in many experimental settings, a camera setup
for eye tracking is not available, and thus this approach be-
comes impossible.
Another technique of measuring eye movements is Elec-
trooculography (EOG), which records changes in electric
potentials that originate from movements of the eye muscles
(Barea et al., 2002). Previous studies have described and

evaluated algorithms for detecting saccade, fixation, and
blink characteristics from EOG signals recorded while driv-
ing a car (Behrens et al., 2010). The proposed algorithm
detects microsleep episodes in eye movement data, showing
the high importance of the tool. Other authors (Bulling et al.,
2009) have successfully evaluated algorithms for detecting
three eye movement types from EOG signal achieving aver-
age precision of 76.1 % and recall of 70.5 % over all classes
and participants. To date, the most successful and compre-
hensive approach to the problem of the EOG segmentation
was proposed by (Pettersson et al., 2013). They classified
temporal eye parameters (saccades, blinks) from EOG data.
The classification sensitivity for horizontal and large sac-
cades was larger than 89% and for vertical saccades larger
than 82%. Another line of research on the subject has been
mostly restricted to blink detection (Kleifges et al., 2017).
Their BLINKER algorithm effectively captures most of the
blinks and calculates common ocular indices. Nonetheless,
to the best of our knowledge, an end-to-end continuous EEG
data stream segmentation framework for eye-tracking ap-
plications is missing. One of the prominent attempts for
EEG data segmentation applied to sleep staging was tar-
geted in (Perslev et al., 2019). The proposed architecture,
U-Time, could learn sleep staging based on various input
channels across healthy and diseased subjects, obtaining a
global F1 score above 0.75. However, the authors did not
address the problem of segmenting the continuous EEG data
stream into ocular events. Nevertheless, they recommended
their network architecture as a universal tool for the seg-
mentation of various psychophysiological datasets (Perslev
et al., 2019). Recent improvements in sleep staging research
were obtained by the introduction of SalientSleepNet (Jia
et al., 2021). The proposed fully convolutional network is
based on the U2-Net architecture, originally proposed for
salient object detection in computer vision. SalientSleepNet
shows performance improvements over U-Time on the pub-
licly available Sleep-EDF-39, and Sleep-EDF-153 datasets
(Goldberger AL, 2000). Thus, we apply both U-Time and
SalientSleepNet as part of our baseline efforts.

3. Experimental Setup and Dataset
The experiment took place in a sound-attenuated and dark-
ened room. The participant was seated at a distance of 68cm
from a 24-inch monitor (ASUS ROG, Swift PG248Q, dis-
play dimensions 531×299 mm, resolution 800×600 pixels
resulting in a display: 400×298.9 mm, vertical refresh rate
of 100Hz). Participants completed the tasks sitting alone,
while research assistants monitored their progress in the
adjoining room. The study was approved by the local ethics
commission.

DETRtime

Figure 1. The illustration of the recording setup

3.1. Data Acquisition
Participants We collected data from 168 healthy adults
(age range 20-80 years, 92 females) across four experimen-
tal paradigms (see Section 3.2). All participants gave written
consent for their participation and the re-use of the data prior
to the start of the experiments. All participants received a
monetary compensation (the local currency equivalent of 25
United States Dollars) per hour of the engagement.

Eye-Tracking Acquisition Eye movements were
recorded with an infrared video-based eye tracker (EyeLink
1000 Plus, SR Research) at a sampling rate of 500 Hz and
an instrumental spatial resolution of 0.01°. The eye-tracker
was calibrated with a 9-point grid at the beginning of
the session and re-validated before each block of trials.
Participants were instructed to keep their gaze on a given
point until it disappeared. If the average error of all points
(calibration vs. validation) was below 1° of visual angle,
the positions were accepted. Otherwise, the calibration was
redone until this threshold was reached.

EEG Acquisition We recorded the high-density EEG data
at a sampling rate of 500 Hz with a bandpass of 0.1 to 100
Hz, using a 128-channel EEG Geodesic Hydrocel system.
A signal snippet can be seen in Figure 3. The Cz electrode
served as a recording reference. The impedance of each
electrode was checked before recording and was kept be-
low 40 kΩ. Additionally, electrode impedance levels were
checked approximately every 30 minutes and reduced if
necessary.

3.2. Stimuli & Experimental Design
Large Grid We used the Large Grid paradigm as pro-
posed in (Kastrati et al., 2021a), where participants fixate
on a series of sequentially presented dots, each at one of 25
unique positions (presentation duration = 1.5-1.8s). This
experimental paradigm is similar to the calibration proce-

dures, which are used in infrared video- based eye-tracking
approaches. The positions cover all corners of the screen as
well as the center (see Figure 2). Unlike the others, the dot
at the center of the screen appears three times, resulting in
27 trials (displayed dots) per block. To record a larger num-
ber of trials and reduce the predictability of the subsequent
positions in the primary sequence of the stimulus, we used
different pseudo-randomized orderings of the dots presen-
tation, distributed in five experimental blocks, as shown in
Figure 3. The entire procedure was repeated 6 times during
the measurement, resulting in 810 stimuli presentations per
each participant.

Visual Symbol Search Visual Symbol Search (VSS)
paradigm is a computerized version of a clinical assess-
ment to measure processing speed (Symbol Search Subtest
of the Wechsler Intelligence Scale for Children IV (WISC-
IV) (Wechsler & Kodama, 1949)) and the Wechsler Adult
Intelligence Scale (WAIS-III) (Wechsler, 1955)). Partici-
pants are shown 15 rows at a time, where each row consists
of two target symbols, five search symbols and two addi-
tional symbols that contain respectively the words “YES”
and “NO”. For each row, participants need to indicate by
clicking with the mouse button on the “YES” or “NO” sym-
bol, whether or not one of the two target symbols appears
among the five search symbols (Kastrati et al., 2021b). A
schematic overview can be found in Figure 2. For detailed
event information of the dataset we refer to Appendix G.3.

Natural Reading In order further explore performance
under natural viewing conditions, we test our model suite on
the publicly available ZuCo 2.0 dataset (Hollenstein et al.,
2019). ZuCo 2.0 is a dataset containing simultaneous eye-
tracking and electroencephalography data collected during
natural reading. The dataset we use contains gaze and brain
activity data from nine participants reading English lan-
guage sentences, both in a normal reading paradigm and in
a task-specific paradigm. In the latter, participants actively
search for a semantic relation type in the given sentences
as a linguistic annotation task. A schematic overview of
the experimental paradigm can be found in Figure 2. For
detailed event information we refer to Appendix G.2.

Movie Watching The Movie Watching paradigm enables
the collection of EEG data in a naturalistic viewing set-
ting. Data were obtained during two short and highly en-
gaging movies scenes (‘Despicable Me’ [171 seconds clip,
MPEG-4 movie, the bedtime ("Three Little Kittens") scene]
and ‘Fun Fractals’ [163 seconds clip, MPEG-4 movie]). A
schematic view of the experimental paradigm can be found
in Figure 2. For detailed event information we refer to
Appendix G.1.

DETRtime

Figure 2. Schematic overview of all experimental paradigms used in our evaluation: Movie Watching, Natural Reading, Visual Symbol
Search, and Large Grid.

3.3. Preprocessing and Data Annotation
Eye-Tracking Preprocessing Existing literature studying
eye movement generally distinguishes between three differ-
ent ocular events (Toivanen et al., 2015): saccades, fixations,
and blinks. Saccades are rapid, ballistic eye movements
that instantly change the gaze position. Saccade onsets are
detected using the eye-tracking software default settings: ac-
celeration larger than 8000°/s2, a velocity above 30°/s, and a
deflection above 0.1°. Fixations are defined as time periods
while maintaining of the gaze on a single location (Engbert
& Kliegl, 2003), and blinks are considered a special case of
fixation, where the pupil diameter is zero. One example of
such labeled data is shown in Figure 3.

Electroencephalography Preprocessing EEG data is of-
ten contaminated by artifacts produced by environmental
factors, e.g., temperature, air humidity, as well as other
sources of electromagnetic noise, such as line noise (Kap-
penman & Luck, 2010) and therefore requires preprocessing
in the form of artifact cleaning or artifact correction (Keil
et al., 2014). Our EEG preprocessing included detecting
and interpolating bad electrodes and filtering the data with a
0.1 Hz high-pass filter. With this “minimal” preprocessing
pipeline, the preprocessed data still retains ocular activity,
which can be used to infer the ocular events (the signal of
interest in the present study). The detailed preprocessing
pipeline is described in Appendix F.

EEG & Eye-Tracking Synchronization In the next step,
the EEG and eye-tracking data were synchronized using
the EYE-EEG toolbox (Dimigen et al., 2011) to enable
EEG analyses time-locked to the onsets of fixations and
saccades, and subsequently segment the EEG data based on
the eye-tracking measures. The synchronization algorithm
first identified the “shared” events between eye-tracking and
electroencephalography recordings (start end trigger of each
experimental paradigm). Next, a linear function was fitted to
the shared event latencies to refine the start- and end-event
latency estimation in the eye tracker recording. Finally,
the synchronization quality was ensured by comparing the
trigger latencies recorded in the EEG and eye-tracker data.
As a result, all synchronization errors did not exceed 2 ms
(i.e., one data point).

4. EEG Segmentation Task & Metric
For each of the four datasets we approached the task of
segmenting the EEG data into three different ocular events:
fixations, saccades and blinks. As illustrated in Figure 3, the
goal of this task was to classify each time point (i.e 2ms) of
the 128-channel EEG stream of data as a unique event.

Data Structure Since our model operates on samples of
arbitrary length (e.g. 500 time steps), we cut fixed size
samples from a participants’ continuous data stream. Each
participant was randomly assigned to either training, vali-

DETRtime

Dataset
Fixations

Fixation Time
Saccades

Saccade Time
Blinks

Blink Time
Total Events

Total Time

Large Grid
108416

1522 min
108500
109 min

10187
19 min

227103
1650 min

VSS
42383

142 min
42375
32 min

948
1 min

85706
175 min

Natural Reading
72251

263 min
72236
58 min

5301
10 min

149788
332 min

Movies
30399

220 min
30387
27 min

3559
7 min

64345
254 min

Table 1. Event distribution of all ocular event datasets. We report
the number of events and the total event length of all three classes.
The event frequency depends strongly depends on the experimental
paradigm. Detailed information about each dataset can be found
in Appendix G.

Figure 3. EEG data and the segments with ocular events.

dation or test set. We assigned 70% of the participants to
our training data set, and 15 % to validation and test set,
respectively. Details on the number of events in each dataset
are summarized in Table 1. The prepared dataset is publicly
available and can be found online in an OSF repository 1.

Evaluation Metric Since our dataset is heavily imbal-
anced, we used F1-score as an evaluation metric. This evalu-
ation procedure was also proposed in comparative literature
such as in (Perslev et al., 2019). Moreover, the F1 score is
often used for semantic segmentation in the computer vision
literature (among other similar metrics such as Intersection-
over-Union), where segmentation is achieved by classify-
ing single, atomic pixels/time steps (Kirillov et al., 2018).
Depending on the setting, a background class can be intro-
duced. For the purpose of our study, we opted to segment
the complete time series, where each time point (i.e. 2ms)
was classified as either belonging to a blink, a fixation or a
saccade.

1https://osf.io/dr6zb/

4.1. Potential Issues and Challenges
Micro Events In certain experimental paradigms, such as
Large Grid, participants tend to correct their gaze before
fixating on the final location (e.g. a participant moves the
eye gaze to the consecutively presented dots). This leads to
phases of very short saccades and fixations. The alternating
and brief phases of fixations and saccades make it hard for
any convolution-based classification model to accurately
classify events based on their immediate neighborhood. An
additional restrictive factor is the limited temporal resolution
of the infrared video-based ground truth signal (see Section
3.1).

Ambiguity in the Signal From a signal processing per-
spective, vertical saccades are hard to differentiate from
blinks (Kleifges et al., 2017). This may lead to a higher
number of wrong predictions in the respective classes.

Dataset Imbalance Fixation events last, on average, much
longer than saccades or blinks (see Appendix G for a de-
tailed event analysis of all experimental paradigms). While
fixations and saccades are balanced in event occurrence,
each experimental paradigm exhibits a significant tempo-
ral imbalance of ocular events through the nature of the
eye gaze itself. To counter this temporal imbalance, we
introduce biased sampling to the training procedure of our
baseline model suite and our DETRtime architecture. This
strategy assigns each data sample a sampling probability
based on the event types. In our case, higher weight is given
to samples containing more saccade or blink events, thus
introducing a bias. The data loader then draws samples
into batches based on this distribution. Therefore, model
parameters get updated more often on samples containing
minorities.

5. Baselines
We run extensive experiments on the proposed task in order
to provide baselines of different complexity for the EEG
segmentation task. As part of our baseline model suite,
we compared models based on classical machine learning
techniques (see Appendix E.2) to established deep neural
network architectures. In addition to that, we included re-
cently proposed models that are tailored explicitly for EEG
data (Lawhern et al., 2018; Perslev et al., 2019). Detailed
descriptions of all Deep Learning-based baseline models
can be found in Appendix E.3. The state-of-the-art time
series segmentation models U-Time and SalientSleepnet are
covered in Appendix E.4.

6. DETRtime
End-to-End Object DEtection with TRansformers (DETR)
(Carion et al., 2020b) was originally proposed for object de-
tection in natural images. We argue that the object detection

https://osf.io/dr6zb/

DETRtime

objective as defined in (Carion et al., 2020b) can be adapted
to predict discrete time-segments, yielding several benefits
over the classical semantic segmentation approach. In ad-
dition, it is relatively straightforward to process predicted
regions to one single segmented time series. We introduce
the DETRtime framework as a time-series adaptation of
the the original DETR architecture. The code is publicly
available 2.

6.1. Architecture
The architecture of the model is illustrated in Figure 4. At
a high level, it consists of a backbone, transformer, and
an embedding layer (for type of event, and the length and
position of the event). In the following section, we explain
each building block of this architecture.

Backbone First, a convolutional backbone learns a rep-
resentation of the input signal. In the original DETR im-
plementation, the backbone model is a Resnet50 model
pretrained on images. For our case, we experimented with
several convolutional models: classical CNN, Pyramidal
CNN, InceptionTime, and Xception, all part of our base-
line model suite (see Section 5). The backbone module is
composed of 6 layers of convolutional models with skip
connections between layers i and (i + 2)%3 and a final
projection layer that maps the input to a shape suitable for
the transformer.

Positional Embedding As usual for transformers, the
features of the backbone are supplemented with a positional
encoding before being passed into a transformer encoder
since we must inject some information about the relative or
absolute position of the sequence embeddings. We use sine
functions for positional encoding as described in (Vaswani
et al., 2017).

Transformer The transformer consists of an encoder and
decoder. The transformer encoder learns a representation
of the sequence, which is fed together with the learned
queries into the decoder. The transformer decoder then
processes a small but fixed number of N learned event
queries, and additionally attends to the encoder output. The
output of the decoder produces encoded features for these
N event queries. Therefore, we obtain an upper bound of
N detectable events in a given sample. For our purposes,
N = 20 is sufficient for almost all EEG data streams with a
length of 1 second. The output of the decoder is then used
to predict the properties of each event.

Event Prediction In order to predict events, we make use
of a 3-layer perceptron to map the encoded features of the
N event queries to their respective type, position and length.

2https://github.com/lu-wo/DETRtime

These N predictions represent the events that are later used
to produce the final segmentation.

6.2. Object Detection as Time Region Prediction
As a single forward pass of the network up to the transformer
decoder produces N unordered predictions, one of the main
challenges during training is defining a well-suited loss
function to evaluate how well these N predictions detect the
events contained in the ground truth signal. The Hungarian
loss proposed in DETR (Carion et al., 2020b) solves this
problem by matching each predicted object to one ground-
truth object and then minimizing the objective

ℓ = ℓL1
+ ℓGIoU + ℓCE

where ℓL1
and ℓGIoU is the L1 distance between the bound-

aries and the general intersection over the union of the target
and predicted region, respectively. Combined, both mea-
sures optimize the fit between the target bounding box and
the predicted bounding box of the respective objects. ℓCE

is the Cross-Entropy loss on the predicted labels of each
region, optimizing the class prediction. Unmatched predic-
tions are expected to predict an additional “no class“ dummy
class, added as a slightly penalized class to the classification
loss. This object detection objective translates well into
time series segmentation, as time segments are perfectly
localized by their bounding boxes. Thus segmentation is
equivalent to finding the bounding boxes.
By restricting our prediction to N discrete regions, we regu-
larize the region prediction to an extent that does not exist
in classical semantic segmentation. Namely, the prediction
is limited to N smooth regions and cannot easily produce
artifacts. We limit the class imbalance similar to semantic
segmentation-based methods. Furthermore, since classifi-
cation is only considered on discrete regions, the temporal
class imbalance encountered in other models is not an issue
when training DETRtime.

6.3. Optimization
In our training procedure, we used the Adam optimizer
with a learning rate η = 1e-4. To further counter class
imbalance, we selected batches of size B = 32 on the fly
and used biased sampling, as introduced in Section 4.1.
For instance, we experimented with feeding our DETRtime
model an elevated number of samples containing minority
events (saccades and blinks). In our best-performing model
(see Table 3), only samples containing blinks were given an
increased probability of being chosen by the dataloader.

6.4. Inference
The immediate output of the model is not a full segmentation
but instead N discrete, possibly overlapping time segments
with different class confidences. We processed this into a
segmentation prediction according to the following heuris-
tics:

https://github.com/lu-wo/DETRtime

DETRtime

....

....

....

....

TRANSFORMER DECODER Positional Encoding

Set of EEG features

Convolutional
Module

EEG Recording TRANSFORMER ENCODER

Backbone

H
ID

D
EN

 F
EA

TU
R

ES

TYPE
EMBEDDING

LENGTH
EMBEDDING

EV
EN

TS

In
pu

t P
ro

je
ct

or

ar
gm

ax

F
 S

 F
 B

 F
 S

 F

H
U

N
G

A
R

IA
N

LO
S

S

Figure 4. DETRtime Architecture is composed of a backbone model, a positional embedding followed by a transformer and finally
feed-forward networks that map the hidden features to the events and their length.

• We ignored all segments predicting the dummy class
with the highest confidence.

• Each time step was assigned to the highest confidence
class of an event overlapping it.

• Since predicted segments were allowed to float freely,
it was not ensured that each time step was covered by a
prediction. Time steps without a predicted event were
assigned to the majority class.

This heuristic can be applied to produce a time series of arbi-
trary temporal resolution. In order to appropriately compare
the above segmentation to classical semantic segmentation
models and methods using standard metrics such as the F1
score, we applied the above heuristic to transform the pre-
diction constituted of discrete segments into a time series.
We found that the proposed heuristic performs well, and
using a separate segmentation pipeline on the transformer
output does not bring any advantages (see Appendix A).
In Table 2, we report the size of each model and its GPU
inference time. Finally, a detailed explanation of all hyperpa-
rameters of the DETRtime architecture and the optimization
procedure are reported in Appendix C.

7. Results
In Table 3, we report the results of our experiments on
the four datasets introduced in Section 3. In addition to
that, we perform experiments in applications other than eye-
tracking, namely the EEG sleep stage segmentation task
(see Appendix B). Our experiments show the generalization
of our model across different experimental paradigms and
tasks.

Standard Machine Learning Models First, we compared
some of the most widely used classical machine learning
models: kNN, Decision Tree, Random Forest and Ridge
Classifier. We can observe in Table 3 that the best per-

Model # Parameters Size Inference Time

CNN 790K 3.01MB 3.76ms
Pyramidal CNN 723K 2.76MB 3.52ms
EEGNet 35K 0.13MB 1.49ms
InceptionTime 939K 3.59MB 11.17ms
Xception 1277K 4.89MB 8.94ms
LSTM 912K 3.65MB 33.60ms
biLSTM 2098K 8.40MB 67.27ms
CNN-LSTM 30433K 121.80MB 43.74ms

SalientSleepNet 187453K 750.35MB 30.81ms
U-Time 67966K 259.27MB 10.69ms
DETRtime 7725K 29.49MB 15.42ms

Table 2. Complexity and inference time of our model suite. We
provide the number of parameters of each model as well as the
file size in Megabyte. Inference was performed on a single GPU
(Nvidia Titan Xp) and is given in milliseconds. We group the
models into established deep learning models (above) as well as
specialized segmentation models (below).

forming model in this group throughout all datasets was
Random Forest, achieving average F1 scores between 0.48
(Movies) and 0.61 (Large Grid). As can be seen in Table
3, all standard machine learning models struggled to de-
tect saccades and blinks on more naturalistic experimental
paradigms (Movies, Reading) and on the Visual Symbol
Search (VSS) dataset. Fixations were detected fairly well
(kNN achieving 0.94 F1 score on Movies). Finally, blinks
were detected better on the Large Grid paradigm (Random
Forest and Ridge Classifier achieving a blink F1 score of
0.82). It is worth mentioning that on all datasets, classical
machine learning models outperformed the naive baselines
(e.g. prior distribution achieving 0.33 vs. Random Forest
achieving 0.48 F1 score on Movies dataset).

Deep Learning Baselines We compared eight deep
learning-based models (CNN, Pyramidal CNN, EEGNet, In-
ceptionTime, Xception, LSTM, biLSTM and CNN-LSTM)

DETRtime

Large Grid VSS Reading Movies

Model fix sac blk avg fix sac blk avg fix sac blk avg fix sac blk avg

U.a.r. 0.49 0.12 0.02 0.21 0.47 0.24 0.01 0.24 0.47 0.23 0.05 0.25 0.48 0.16 0.05 0.23
Prior 0.92 0.08 0.01 0.34 0.81 0.18 0.01 0.33 0.79 0.18 0.03 0.33 0.86 0.11 0.03 0.33
Most Freq. 0.96 0.00 0.00 0.32 0.89 0.00 0.00 0.30 0.89 0.00 0.00 0.30 0.93 0.00 0.00 0.31

kNN 0.60 0.38 0.77 0.58 0.89 0.23 0.23 0.45 0.88 0.32 0.12 0.44 0.94 0.28 0.18 0.47
DecisionTree 0.55 0.39 0.66 0.52 0.71 0.30 0.00 0.34 0.71 0.30 0.00 0.34 0.78 0.24 0.00 0.34
RandomForest 0.67 0.36 0.82 0.61 0.88 0.27 0.14 0.43 0.89 0.36 0.00 0.42 0.93 0.32 0.21 0.48
RidgeClassifier 0.67 0.14 0.82 0.54 0.83 0.20 0.00 0.34 0.77 0.28 0.06 0.37 0.90 0.17 0.21 0.43

CNN 0.99 0.83 0.58 0.80 0.97 0.89 0.29 0.72 0.88 0.45 0.33 0.55 0.96 0.70 0.55 0.74
PyramidalCNN 0.99 0.83 0.52 0.78 0.97 0.86 0.20 0.68 0.87 0.44 0.31 0.54 0.96 0.71 0.58 0.75
EEGNet 0.99 0.80 0.55 0.78 0.97 0.87 0.53 0.79 0.89 0.49 0.33 0.57 0.96 0.65 0.32 0.64
InceptionTime 0.99 0.83 0.53 0.78 0.97 0.89 0.29 0.72 0.88 0.45 0.31 0.55 0.96 0.72 0.58 0.75
Xception 0.99 0.84 0.63 0.82 0.98 0.90 0.45 0.77 0.89 0.43 0.45 0.59 0.96 0.70 0.58 0.75
LSTM 0.98 0.71 0.49 0.73 0.97 0.86 0.18 0.67 0.86 0.47 0.29 0.54 0.94 0.62 0.49 0.68
biLSTM 0.98 0.79 0.47 0.75 0.97 0.86 0.28 0.70 0.87 0.44 0.27 0.53 0.96 0.69 0.57 0.74
CNN-LSTM 0.99 0.84 0.52 0.78 0.97 0.88 0.24 0.70 0.87 0.44 0.34 0.55 0.96 0.70 0.56 0.70

SalientSleepNet 0.99 0.81 0.51 0.77 0.97 0.86 0.24 0.69 0.85 0.40 0.43 0.56 0.96 0.62 0.52 0.70
U-Time 0.99 0.82 0.88 0.90 0.90 0.70 0.79 0.79 0.86 0.47 0.72 0.69 0.96 0.70 0.62 0.76
DETRtime 0.99 0.87 0.90 0.92 0.86 0.78 0.82 0.86 0.90 0.55 0.80 0.75 0.96 0.69 0.63 0.76

Table 3. Results on the ocular event datasets. We report the results of the best hyperparameter configuration found for each model.
Additionally, we report F1 scores of all classes as well as the (macro) average F1 score. The best results of the average F1 score are
displayed in bold. Hyperparameter configurations as well as training properties can be found in Appendix D. Standard Machine Learning
models (see Appendix E.2) are trained on a a single time step (1, 128) basis.

that are not particularly tailored for segmentation tasks
but classify each time point with one of the ocular events.
All deep learning architectures performed significantly bet-
ter than the naive baseline and outperformed all reported
standard machine learning methods. On the Large Grid
paradigm, Xception achieved an average F1 score of 0.82,
outperforming all other baselines in its group. Conversely,
on the Visual Symbol Search paradigm, the best perform-
ing model was EEGNet, specifically designed to process
EEG data, achieving an average F1 score of 0.79. All deep
learning baselines performed significantly worse on the Nat-
ural Reading paradigm, with the best performing Xception
achieving an average F1 score of 0.59. A similar image
is drawn on the Movies dataset, where all deep learning
baselines performed similarly well, with Xception and In-
ceptionTime achieving average F1 scores of 0.75. These
results suggest that the Natural Reading paradigm data is
harder to segment than Movies. While the Movies paradigm
is the most naturalistic evaluated paradigm, the Reading task
mainly contains eye movements from left to right. Through-
out all four datasets, the deep learning baselines achieve
very high F1 scores for the fixation class. Nevertheless,
saccades and blinks are harder to detect, which stems from
the ambiguous nature of their signals. In addition, blinks
are challenging to distinguish from vertical saccades (see
Section 4.1), resulting in lower F1 scores for both classes.

SalientSleepNet, U-Time & DETRtime SalientSleepNet
and U-Time models were explicitly designed for the segmen-
tation of psychophysiological datasets. As demonstrated
in Table 2, U-Time and DETRtime, outperformed all the
other models (including SalientSleepNet) by a considerable
margin. In addition, SalientSleepNet performs well, achiev-
ing F1 scores significantly better than standard machine
learning algorithms and naive baselines. Nevertheless, on
average, it does not outperform other deep learning mod-
els. The gap between the two leading models and the other
deep learning-based models is the largest in the Large Grid
paradigm. U-Time surpasses the basic CNN architecture by
0.12, achieving an average F1 score of 0.90. This result is
only reached by DETRtime, achieving an average F1 score
of 0.92. On Reading and VSS paradigms, DETRtime out-
performs the runner-up U-Time by a large margin, namely
0.75 vs 0.69 average F1 score on the Reading paradigm
and 0.86 vs 0.79 F1 score on the VSS paradigm. On the
Movies paradigm, both U-Time and DETRtime achieve an
average F1 score of 0.76. Finally, it is worth noting that
both U-Time and DETRtime consistently achieve high F1
scores on all datasets.

8. Discussion
In this paper, we introduced DETRtime, a novel time-series
segmentation approach inspired by the recent success of
the DETR architecture (Carion et al., 2020a). Furthermore,
we showed that deep learning models designed initially for

DETRtime

image segmentation are also well-suited for EEG time-series
data.

Here, we decomposed the continuous data stream into three
types of ocular events: fixations, saccades, and blinks. Ad-
ditionally, we presented two novel datasets (Large Grid and
Movies paradigms). The former was specifically designed
to segment EEG data in ocular events, allowing for the
model training. In contrast, the Movies paradigm was used
to validate the generalization of our approach in real-world
situations.

We performed extensive experiments on our novel and pub-
licly available datasets (Visual Symbol Search (Kastrati
et al., 2021b) and Reading paradigms (Hollenstein et al.,
2019)). Based on the reported results in Table 2, we ob-
served that our model outperforms the current state-of-the-
art models by a large margin. Finally, we evaluated DETR-
time in the different applications, namely the sleep staging
task, initially performed with the U-time (Perslev et al.,
2019) and SalientSleepNet (Jia et al., 2021) models . Again,
DETRtime outperformed current state of the art solutions
for the sleep staging task, showing its generalization capa-
bilities.

Additionally, our extensive experiments demonstrated that
other deep learning models (CNNs, RNNs) outperformed
standard machine learning techniques. We also observed
that one of the main challenges was differentiating between
vertical saccades and blinks because their signal trace is very
similar (Kleifges et al., 2017). Furthermore, our dataset is
heavily imbalanced and many samples exclusively contain
fixations. This resulted in a higher F1 score for fixations
than for saccades and blinks.

While DETRtime is an adaption of the original model
(DETR), to the best of our knowledge, this is the first time
when the deep learning-based methods developed initially
for the instance segmentation (“object detection, bounding
boxes”) have been applied in EEG data. Instead, all previous
approaches adapted models designed for semantic segmen-
tation (most of which are convolution-based)(Perslev et al.,
2019). We believe this to constitute a fundamental differ-
ence in the methods used. Furthermore, we performed abla-
tion studies showing that a separate segmentation pipeline
is unnecessary in EEG data and experimented with several
backbones specifically tailored for EEG data (Lawhern et al.,
2018).

Comparison to related work As described in Section
2, the ocular events’ detection is an active research topic
in the applied machine learning community. Nonetheless,
the previous results are not directly comparable to our set-
ting. More precisely, we introduced the EEG segmentation
task and an evaluation metric that unified several methods
and problems addressed in related research. We classified

signals to ocular events and segmented them with 2 ms
time resolution. This way, we could also find each ocular
event’s onset (beginning) and offset (end). On the other
hand, (Behrens et al., 2010) only focused on detecting sac-
cades with horizontal movement (left vs right) and finding
other parameters of the saccade (such as acceleration). A
closer work, (Bulling & Roggen, 2011) addressed the prob-
lem of detecting all three ocular events and reported an
average of 0.761 score for precision and 0.705 for recall. In
comparison, our DETRtime achieved an average of 0.936
precision score and 0.902 recall score. Nevertheless, these
results are also not directly comparable since (Bulling &
Roggen, 2011) used an EOG dataset consisting of only 8
participants (as opposed to our datasets with in total 168
participants) and a different experimental paradigm while
recording the data. Finally, (Pettersson et al., 2013) focused
only on the saccade detection and did not follow the same
setup as ours. It should be emphasized that our EEG seg-
mentation model outperformed the current state-of-the-art
solutions for the sleep staging task, providing a reliable tool
for the time series segmentation.

Limitations and Future Work In this work, we have ob-
served different signal qualities across participants. There-
fore, investigating other methods, such as fine-tuning the
models on a single participant, is planned for future work.
Furthermore, although we achieved a very high F1 score for
the fixations detection, there is still room for improvement
in detecting the other two ocular events. Additionally, our
experiments revealed that the proposed task is much harder
in naturalistic settings, making the contributed benchmark-
ing task valuable for the ML community and fostering the
development of new and more suitable methods.

Finally, it is worth mentioning that the eye-tracking com-
munity is mainly focused on camera-based solutions. This
work complements these research efforts showing that seg-
mentation of ocular events can also be performed on EEG
data with high accuracy. This opens the door to further
research exploring whether combining these two modali-
ties is beneficial. Even though we provided evidence that
DETRtime performs well in other time-series segmentation
tasks such as sleep stage segmentation (see Appendix B), it
also remains to experiment how DETRtime performs in the
time-series datasets that do not necessarily stem out of EEG
measurements. Nevertheless, the proposed framework is
general, and the same architecture can be used for detecting
different objects in time-series data.

DETRtime

References
Barea, R., Boquete, L., Mazo, M., and López, E. System

for assisted mobility using eye movements based on elec-
trooculography. IEEE transactions on neural systems and
rehabilitation engineering, 10(4):209–218, 2002.

Behrens, F., MacKeben, M., and Schröder-Preikschat, W.
An improved algorithm for automatic detection of sac-
cades in eye movement data and for calculating saccade
parameters. Behavior research methods, 42(3):701–708,
2010.

Buettner, R. Cognitive workload of humans using artificial
intelligence systems: towards objective measurement ap-
plying eye-tracking technology. In Annual conference on
artificial intelligence, pp. 37–48. Springer, 2013.

Bulling, A. and Roggen, D. Recognition of visual memory
recall processes using eye movement analysis. In Proceed-
ings of the 13th international conference on Ubiquitous
computing, pp. 455–464, 2011.

Bulling, A., Ward, J. A., Gellersen, H., and Tröster, G. Eye
movement analysis for activity recognition. In Proceed-
ings of the 11th international conference on Ubiquitous
computing, pp. 41–50, 2009.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion, pp. 213–229. Springer, 2020a.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion, pp. 213–229. Springer, 2020b.

Chollet, F. Xception: Deep learning with depthwise separa-
ble convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1251–
1258, 2017.

de Cheveigné, A. Zapline: A simple and effective method
to remove power line artifacts. Neuroimage, 207:116356,
2020.

Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M.,
and Kliegl, R. Coregistration of eye movements and
eeg in natural reading: analyses and review. Journal of
experimental psychology: General, 140(4):552, 2011.

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan,
S., Guadarrama, S., Saenko, K., and Darrell, T. Long-
term recurrent convolutional networks for visual recog-
nition and description, 2014. URL https://arxiv.
org/abs/1411.4389.

Engbert, R. and Kliegl, R. Microsaccades uncover the
orientation of covert attention. Vision research, 43(9):
1035–1045, 2003.

Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt,
D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller, P.-
A., and Petitjean, F. Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge

Discovery, 34(6):1936–1962, 2020.
Fuhl, W., Tonsen, M., Bulling, A., and Kasneci, E. Pupil

detection for head-mounted eye tracking in the wild: an
evaluation of the state of the art. Machine Vision and
Applications, 27(8):1275–1288, 2016.

Goldberger AL, Amaral LAN, G. L. H. J. I. P. M. R. M.
J. M. G. P. C.-K. S. H. Physiobank, physiotoolkit, and
physionet: Components of a new research resource for
complex physiologic signals. Circulation 101(23):e215-
e220, 2000.

Hanke, M., Mathôt, S., Ort, E., Peitek, N., Stadler, J., and
Wagner, A. A practical guide to functional magnetic
resonance imaging with simultaneous eye tracking for
cognitive neuroimaging research. In Spatial Learning
and Attention Guidance, pp. 291–305. Springer, 2019.

Hollenstein, N., Troendle, M., Zhang, C., and Langer,
N. Zuco 2.0: A dataset of physiological record-
ings during natural reading and annotation. CoRR,
abs/1912.00903, 2019. URL http://arxiv.org/
abs/1912.00903.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R.,
Jarodzka, H., and Van de Weijer, J. Eye tracking: A
comprehensive guide to methods and measures. OUP
Oxford, 2011.

Jacob, R. J. and Karn, K. S. Eye tracking in human-
computer interaction and usability research: Ready to
deliver the promises. In The mind’s eye, pp. 573–605.
Elsevier, 2003.

Jia, Z., Lin, Y., Wang, J., Wang, X., Xie, P., and Zhang,
Y. Salientsleepnet: Multimodal salient wave detection
network for sleep staging. CoRR, abs/2105.13864, 2021.
URL https://arxiv.org/abs/2105.13864.

Kappenman, E. S. and Luck, S. J. The effects of electrode
impedance on data quality and statistical significance in
erp recordings. Psychophysiology, 47(5):888–904, 2010.

Kastrati, A., Plomecka, M. B., Pascual, D., Wolf, L., Gillioz,
V., Wattenhofer, R., and Langer, N. Eegeyenet: a simulta-
neous electroencephalography and eye-tracking dataset
and benchmark for eye movement prediction. CoRR,
abs/2111.05100, 2021a. URL https://arxiv.org/
abs/2111.05100.

Kastrati, A., Plomecka, M. B., Pascual, D., Wolf, L., Gillioz,
V., Wattenhofer, R., and Langer, N. Eegeyenet: a simulta-
neous electroencephalography and eye-tracking dataset
and benchmark for eye movement prediction. 2021b.

Kastrati, A., Plomecka, M. B., Wattenhofer, R., and Langer,
N. Using deep learning to classify saccade direction
from brain activity. In ACM Symposium on Eye Track-
ing Research and Applications, ETRA ’21 Short Papers.
Association for Computing Machinery, 2021c.

Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappen-
man, E. S., Luck, S. J., Luu, P., Miller, G. A., and Yee,
C. M. Committee report: publication guidelines and rec-
ommendations for studies using electroencephalography

https://arxiv.org/abs/1411.4389
https://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1912.00903
http://arxiv.org/abs/1912.00903
https://arxiv.org/abs/2105.13864
https://arxiv.org/abs/2111.05100
https://arxiv.org/abs/2111.05100

DETRtime

and magnetoencephalography. Psychophysiology, 51(1):
1–21, 2014.

Kirillov, A., He, K., Girshick, R. B., Rother, C., and Dollár,
P. Panoptic segmentation. CoRR, abs/1801.00868, 2018.
URL http://arxiv.org/abs/1801.00868.

Kleifges, K., Bigdely-Shamlo, N., Kerick, S. E., and Rob-
bins, K. A. Blinker: Automated extraction of ocular
indices from eeg enabling large-scale analysis. Frontiers
in neuroscience, 11:12, 2017.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
S. M., Hung, C. P., and Lance, B. J. Eegnet: a com-
pact convolutional neural network for eeg-based brain–
computer interfaces. Journal of neural engineering, 15
(5):056013, 2018.

Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., and Li, J. Dice
loss for data-imbalanced nlp tasks, 2020.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In 2017 IEEE
International Conference on Computer Vision (ICCV), pp.
2999–3007, 2017. doi: 10.1109/ICCV.2017.324.

Luna, B., Velanova, K., and Geier, C. F. Development
of eye-movement control. Brain and cognition, 68(3):
293–308, 2008.

Mele, M. L. and Federici, S. Gaze and eye-tracking solu-
tions for psychological research. Cognitive processing,
13(1):261–265, 2012.

Nyström, M. and Holmqvist, K. An adaptive algorithm for
fixation, saccade, and glissade detection in eyetracking
data. Behavior research methods, 42(1):188–204, 2010.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pedroni, A., Bahreini, A., and Langer, N. Automagic: Stan-
dardized preprocessing of big eeg data. NeuroImage, 200:
460–473, 2019.

Perslev, M., Jensen, M. H., Darkner, S., Jennum, P. J., and
Igel, C. U-time: A fully convolutional network for time
series segmentation applied to sleep staging, 2019.

Perslev, M., Darkner, S., Kempfner, L., Nikolic, M.,
Jennum, P. J., and Igel, C. U-sleep: resilient high-
frequency sleep staging. npj Digital Medicine, 4(1):

72, Apr 2021. ISSN 2398-6352. doi: 10.1038/
s41746-021-00440-5. URL https://doi.org/10.
1038/s41746-021-00440-5.

Pettersson, K., Jagadeesan, S., Lukander, K., Henelius, A.,
Hæggström, E., and Müller, K. Algorithm for automatic
analysis of electro-oculographic data. Biomedical engi-
neering online, 12(1):1–18, 2013.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. URL http://arxiv.
org/abs/1505.04597.

Schmidt, J., Laarousi, R., Stolzmann, W., and Karrer-Gauß,
K. Eye blink detection for different driver states in condi-
tionally automated driving and manual driving using eog
and a driver camera. Behavior research methods, 50(3):
1088–1101, 2018.

Sherstinsky, A. Fundamentals of recurrent neural network
(RNN) and long short-term memory (LSTM) network.
CoRR, abs/1808.03314, 2018. URL http://arxiv.
org/abs/1808.03314.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, number 1, 2017.

Thoma, M. A survey of semantic segmentation. CoRR,
abs/1602.06541, 2016. URL http://arxiv.org/
abs/1602.06541.

Toivanen, M., Pettersson, K., and Lukander, K. A proba-
bilistic real-time algorithm for detecting blinks, saccades,
and fixations from eog data. Journal of Eye Movement
Research, 8(2), 2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Wechsler, D. Wechsler adult intelligence scale–. Archives
of Clinical Neuropsychology, 1955.

Wechsler, D. and Kodama, H. Wechsler intelligence scale
for children, volume 1. Psychological corporation New
York, 1949.

Xu, G., Ren, T., Chen, Y., and Che, W. A one-dimensional
cnn-lstm model for epileptic seizure recognition using
eeg signal analysis. Frontiers in Neuroscience, 14:1253,
2020.

Zemblys, R., Niehorster, D. C., and Holmqvist, K. gazenet:
End-to-end eye-movement event detection with deep neu-
ral networks. Behavior research methods, 2018.

http://arxiv.org/abs/1801.00868
https://doi.org/10.1038/s41746-021-00440-5
https://doi.org/10.1038/s41746-021-00440-5
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1602.06541
http://arxiv.org/abs/1602.06541
http://arxiv.org/abs/1706.03762

DETRtime

....

....

....

....

TRANSFORMER DECODER

Positional Encoding

Set of EEG features

Convolutional
Module

EEG Recording TRANSFORMER ENCODER

S

B

F

no object

M
ul

ti-
H

ea
d

A
tt

en
tio

n

Segmentator

3 layers
CONV

ar
gm

ax

F
 S

 F
 B

 F
 S

 F

Backbone

H
ID

D
EN

 F
EA

TU
R

ES

TYPE EMBEDDING

LENGTH EMBEDDING

ATTENTION MAPS

EV
EN

TS

H
U

N
G

A
R

IA
N

LO

S
S

PHASE I

PHASE II

 D
IC

E
LO

S
SIn
pu

t P
ro

je
ct

or
Figure 5. The experimental architecture described in Appendix A consists of a detection module and segmentation module. The detection
module comprises a backbone model, positional embeddings, followed by a transformer and feed-forward networks that map the hidden
features to the events and their length. The segmentation module that produces the segmentation masks for each detected event is
composed of a multihead attention layer and a 3-layer convolutional module.

A. Experiments with Segmentation Pipeline
Instead of using the simple heuristic for predictions, we also tested whether a separate segmentation module would improve
the results. Our model can be easily extended to perform segmentation in a 2-staged fashion, where we train a separate
model on transformer feature maps, box embeddings, and inputs projections. We trained models adapted from the panoptic
segmentation implemented in (Carion et al., 2020b) (see Figure 5) as well as simpler CNN or multi-layer perceptron (MLP)
models on our features. As we can see in Table 4, none of these approaches brought any advantages, showing that the object
detection and a simple heuristic, where we use argmax over overlapping events, is enough for the EEG segmentation task. In
the following section, we explain our 2-stage approach.

Segmentation Module As we can see in Figure 5, the segmentation module takes events features extracted from the
decoder, the hidden features of the encoder and attends to a encoded signal from the backbone. The multi-headed attention
module predicts heatmaps for each of the predicted events, which we further process with 3 convolution layers to produce
the segmentation masks for each event.

Detr Backbone F1 w/o Seg F1 with Seg

Pyramidal CNN 0.875 0.874
InceptionTime 0.918 0.907
Xception 0.873 0.871

Table 4. Segmentation Results.

We optimized the architecture in Figure 5 in two different phases.

Phase 1 In Phase 1, we train the original model using our segmentation objective.

Phase 2 In Phase 2, we freeze the weights of the original model and train the additional segmentation module. The goal is
to map the detected events (type, position, length) and learned feature maps of the transformer to the segmentation mask of
the EEG data and thus classify each time point to a type of event. Here, we have used the Adam optimizer again with a
learning rate η = 1e-4. Similar to the baselines in Section E.3, to produce the final segmentation masks, we used Dice Loss
in Phase 2.

B. Experiments on EEG Sleep Stage Segmentation Task
In order to further evaluate our model’s performance, we provide evidence on a thoroughly researched segmentation task,
namely EEG Sleep Stage Segmentation. Sleep staging segments a period of sleep into a sequence of phases providing

DETRtime

the basis for most clinical decisions in sleep medicine (Perslev et al., 2021). We make use of the publicly available
Sleep-EDF-153 dataset (Goldberger AL, 2000) and compare it to State-of-the-Art models in this research area.

Sleep-EDF-153

Model W N1 N2 N3 REM avg

SalientSleepNet 0.93 0.54 0.86 0.78 0.86 0.795
U-time 0.92 0.51 0.84 0.75 0.80 0.76
DETRtime 0.98 0.49 0.85 0.81 0.88 0.801

Table 5. Generalization on EEG Sleep Staging. Metric: Macro F1 score.

C. Hyperparameter Configuration of the Presented DETRtime Architecture
In this section we give details about the hyperparameter configuration of the best found DETRtime model. The list can be
found in Table 6.

Hyperparameter Value / Description

Backbone InceptionTime
Learning Rate Backbone 0.0001
Backbone Kernel Sizes 16, 8, 4

Backbone Channels 16
Backbone Depth 6

Residual Connections False

Positional Embedding Sine
Transformer Encoding Layers 6
Transformer Decoding Layers 6

Dimension Feedforward 2048
Hidden Dimension 128

Dropout 0.1
Number of Heads 8

Number of Object Queries 20

Cost Class 1
Cost Bounding Box 5

Cost Intersection over Union 2
Bounding Box Loss Coefficient 10

IoU Loss Coefficient 2
No class Weight Coefficient 0.3

Number of classes 3

Sequence Length 500
Random Seed 42

Batch Size 32
Weight Decay 0.0001

Epochs 200
Learning Rate Drop Every 5 Epochs after 150

Table 6. The hyperparameters of the best performing model: DETRtime.

For DETRtime backbones, we tested the same CNN architectures that were used as baseline models. Accordingly, various
hyperparameter configurations such as kernel sizes, channel numbers and module depth have been tested. Similarly, the
transformer hyperparameters such as hidden dimensions and depth have been tested. Based on the number of events in a
typical sample, we made the conscious decision to predict at most 20 events. This number is sufficiently high to cover almost
all samples. The DETR loss weights have been adjusted to balance all loss components, thus ensuring smooth training
progress. Little to no overfitting was experienced even after training over a large number of epochs.

DETRtime

Parameter CNN Pyr. CNN EEGNet InceptionTime Xception LSTM biLSTM CNN-LSTM

Depth 5 5 2 5 8 10 5
5 CNN /
3 LSTM

Number of filters 16 16 16/256 32 64 - - 16
Kernel size 32 16 64 16 32 - - 32
Max Pooling 2 2 2 3 2 - - 2
Residual connections True False False True True - - True
Bottleneck size - - - 16 - - - -
Dropout rate - - 0.5 - - 0.5 0.5 0.5
LSTM Hidden Size - - - - - 128 128 64

Sequence Length 500 500 500 500 500 500 500 500

Batch size 32 32 32 32 32 32 32 32
Epochs 50 50 50 50 50 50 100 50
Early stopping patience 20 20 20 20 20 20 20
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-4 1e-3

Table 7. Hyperparameters of the Deep Learning Models. EEGNet and U-Net both report the respective number of filters for all their
blocks.

Parameter SalientSleepNet U-Time

Depth 7 7

Number of filters
128, 256, 512,

1024, 512, 256,
128

256, 512, 1024
2048 1024, 512,

256
Kernel size 5 5
Max Pooling 2 4/3/2
Upsampling 2 2/3/4
Residual connections True True

Sequence Length 500 500

Batch size 32 32
Epochs 50 100
Early stopping patience 20 20
Optimizer Adam Adam
Learning Rate 1e-3 1e-5

Table 8. Hyperparameters of the State-of-the-Art Segmentation Models. We report the respective number of filters for all their blocks.

D. Hyperparameter Configurations of the Baseline Models
In Table 7 and Table 9, we report the hyperparameters of all baseline models. Hyperparameters were optimized on the Large
Grid paradigm dataset.

E. Detailed Baseline Model Overview
E.1. Naive Baselines
In order to assess the performances of our model suite, we provide three types of naive predictions: sampling uniformly at
random from the three classes (fixation, saccade, blink), sampling from the prior label distribution, and always predicting
the most frequent class (fixation). For details about the label distributions we refer to Appendix G

E.2. Standard Machine Learning Baselines
We briefly introduce our standard machine learning baseline models. For all models explored here we make use of the
scikit-learn (Pedregosa et al., 2011) implementation.

DETRtime

Parameter kNN Decision Tree Random Forest Ridge Classifier

Number of Neighbors 5 - - -
Weights Uniform - - -
Criterion - Gini Gini -
Max Depth - None None -
Number of Estimators - - 150 -
Alpha - - - 1.0
Tol - - - 1e-3

Table 9. Hyperparameters of the Standard Machine Learning Models from scikit-learn.

E.2.1. K NEAREST NEIGHBORS

The k-nearest neighbors (kNN) algorithm is a non-parametric method that can be used for classification and regression. The
inputs used are the k-closest training samples in the data set. Using the algorithm for classification, we choose the predicted
class based on a majority vote of the k nearest neighbors. In regression, the output is the average of the values of the k
nearest neighbors.

E.2.2. DECISION TREE

Decision Tree is a non-parametric supervised learning method that can be used for both classification and regression. The
core idea of the model is to predict target values by learning simple decision rules based on input data features. A tree can
be seen as piecewise constant approximation.

E.2.3. RANDOM FOREST

Random forests are an ensemble learning method for classification and regression that operates by constructing multiple
decision trees at training time. For classification tasks, the output of the random forest is the class selected by most trees.
When performing regression, the mean of average of the predictions of the individual trees is returned.

E.2.4. RIDGE CLASSIFIER

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the
coefficients. The ridge coefficients minimize a penalized residual sum of squares objective. The Ridge Classifier is the
classifier variant of Ridge Regression. The classifier first converts binary targets to {−1, 1} and then treats the problem as a
regression task, optimizing the Ridge Regression objective. In our case of multi-class classification, the problem can be
reformulated from multi-output regression, where the predicted class is found by computing the argmax of output values.

E.3. Established Deep Learning Baselines
Each of the following models has an input sequence of size (N,C=128) and predicts a label sequence of size (N,1), where N
is the length of the EEG data stream and C is the number of channels (electrodes). Since experiments with CrossEntropy
and Focal Loss (Lin et al., 2017) turned out to perform poorly, we decided to experiment with Dice Loss, a region-based
loss function classically used for semantic segmentation (Li et al., 2020). The Dice Loss is based on the Sørensen–Dice
Coefficient that measures the normalized intersecting area of prediction and ground truth.

All models in our baseline model suite were trained with Dice loss. Normalized class weights were assigned to the loss
function, that are equal to the inverse of the relative occurrence of the respective class. In addition to that, we made use of the
biased sampling technique covered in Section 4.1. In the remainder of this section, we will introduce our baseline models.

E.3.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
This is the most basic model in our collection of deep learning models. We implement a standard convolutional neural
network with one-dimensional convolutional filters and additional residual connections every three convolutional blocks.
Each of the blocks consists of such a 1D-convolution, a batch-normalization layer, and applying the ReLU activation
function to the output followed by a max pooling layer. In the configuration used for the reported results, we use 16 filters of
kernel size 32 (time samples), and the pooling operation uses a kernel size of 2 with a stride of 1.

DETRtime

E.3.2. PYRAMIDAL CNN
This model implements a classical CNN where we stack 8 CNN blocks with sizes that follow the shape of an inverted
pyramid. Each block consists of the same modules as in the CNN describe above, with the difference that the number
of filters is a multiple of 16 and grows with depth. This means we have 16 filters in the first layer, 32 in the second and
so on. We used a kernel size of 16 for the convolutional layers. As in the CNN, the convolution is followed by a batch
normalization layer and a ReLu activation. Finally, a max-pooling layer is applied with a kernel size of size 2 and a stride of
size 1. Note that in this architecture we did not use residual connections due to the different shape of the output compared to
the input of a block.

E.3.3. EEGNET

The EEGNet architecture is a convolutional neural network developed for Brain-Computer Interfaces (Lawhern et al., 2018).
This model performs a temporal convolution to learn frequency filters and then performs a depthwise convolution to learn
frequency-specific spatial filters followed by a separable convolution which should learn a temporal summary for each
individual feature map. Finally, to mix the results of these feature maps, a pointwise convolution is applied.

E.3.4. INCEPTIONTIME

This models implementation is based on (Fawaz et al., 2020), an adaption of the Inception-v4 architecture (Szegedy et al.,
2017) for time series classification. We build this model from 9 blocks and skip connections every three layers. Each block
consists of an InceptionTime module, which takes as input 64 channels and performs a 1x1 bottleneck convolution that
produces a feature map with 16 channels. The reason for reducing the width is the following: we then pass this feature
map through three different convolution operators with 16 filters each, using kernel sizes of 16, 8, and 4. What follows is a
max-pooling layer with a kernel size of 3. The four resulting feature maps are then concatenated to form the layer’s output,
which has, as the input, again 64 channels. The key idea is that the network itself offers a variety of possible convolution
operators at each layer. The bottleneck convolution at the beginning reduces the dimensions and targets to reduce the
increased amount of computation necessary due to the 4 parallel convolutions.

E.3.5. XCEPTION

As part of our baselines we also provide a model based on the Xception architecture proposed by (Chollet, 2017). This
model has the same structure as the CNN, with 12 layers and residual connections. Each layer contains a 1D depthwise
separable convolution (Chollet, 2017), with 64 filters and a kernel size of 32, followed by a batch normalization layer and
ReLu activation.

E.3.6. LSTM
A recurrent neural network (RNN) (Sherstinsky, 2018) is a type of artificial neural network which uses sequential data or
time series data. Unfortunately, RNNs are incapable of tracking long-range dependencies. The Long-Short-Term-Memory
(LSTM) cells (Xu et al., 2020) deal with these problems by introducing new gates, such as input and forget gates, which
allow for a better control over the gradient flow and enable better preservation of long-range dependencies. LSTM-based
models have shown great performance in sequence processing tasks. Unlike the standard LSTM, in the bidirectional LSTM
(biLSTM) the input flows in both directions. Therefore, it’s capable of utilizing information from both sides. As LSTM-based
models have shown great success in sequence processing, we include both LSTM and biLSTM implementations into our
baseline model suite, where we make use of the PyTorch (Paszke et al., 2019) standard implementations. For both model
variants we chose a hidden size of 128 and a dropout rate of 0.5.

E.3.7. CNN-LSTM
The CNN Long Short-Term Memory Network (CNN-LSTM) is an LSTM architecture specifically designed for sequence
prediction problems. Successful use cases can be found in the domain of visual recognition and description (Donahue et al.,
2014). The CNN-LSTM architecture involves using CNN layers for feature extraction on input data combined with LSTMs
to support sequence prediction. We stack 5 CNN blocks as described in Section E.3.1, followed by a unidirectional LSTM
block of depth 3 with a hidden size of 64 and a dropout rate of 0.5.

DETRtime

E.4. State-of-the-Art Deep Learning Baselines
E.4.1. U-TIME

U-time is an approach to time series segmentation proposed in (Perslev et al., 2019). It is based on the U-Net CNN
architecture originally designed for semantic segmentation of biomedical images (Ronneberger et al., 2015). The idea is
to first contract the input through multiple convolutional and pooling layers before upsampling the features to original
resolution size again through layers of convolutional and upsampling layers. Thus, the architecture consists of a layer of
encoding blocks followed by decoding blocks, effectively yielding a U-shape architecture. In addition, skip connections
are added between matching encoder and decoder blocks. The contraction allows for coverage over larger patches in the
sequence, while the skip connections improve localization accuracy of detected patches. We use blocks of two consecutive
convolutional layers, each followed by an activation and batch normalization layer. In addition, each encoding block has
a final maxpooling layer, while decoding blocks have an initial upsampling block respectively. The overall architecture
consists of 3 encoding blocks, a bottleneck convolutional layer and 3 decoding blocks. Before each decoding block the
feature outputs of its counterpart encoding block are added to the output of the preceeding block. The hyperparameters can
be found in Table 8.

E.4.2. SALIENTSLEEPNET

SalientSleepNet is a multimodal salient wave detection network for sleep staging. The fully convolutional network is
based on the U2-Net architecture that was originally proposed for salient object detection in computer vision. It is mainly
composed of two independent U2-like streams to extract the salient features from multimodal data, respectively. We
summarize the five key ideas of the architecture (Jia et al., 2021): 1) Develop a two-stream U2-structure to capture the
salient waves in EEG and EOG modalities. 2) Design a multi-scale extraction module by dilated convolution with different
scales of receptive fields to learn the multi-scale sleep transition rules explicitly. 3) Propose a multimodal attention module
to fuse the outputs from EEG and EOG streams and strengthen the features of different modalities which make greater
contribution to identify certain sleep stage. 4) Improve the traditional pixel-wise (point-wise) classifier in computer vision
into a segment-wise classifier for sleep signals. 5) Employ a bottleneck layer to reduce the computational cost to make the
overall model lightweight. The hyperparameters can be found in Table 8.

F. EEG preprocessing pipeline
The EEG preprocessing was conducted with the open-source MATLAB toolbox pipeline Automagic (Pedroni et al., 2019),
which combines state-of-the-art EEG preprocessing tools into a standardized and automated pipeline. The EEG preprocessing
consisted of the following steps: First, bad channels were detected by the algorithms implemented in the EEGlab plugin
clean_rawdata.3 Detected bad channels were automatically removed and later interpolated using a spherical spline
interpolation. Subsequently, residual bad channels were excluded if their standard deviation exceeded a threshold of 25µV .
Very high transient artifacts (> ±100µV) were excluded from calculating the standard deviation of each channel. Next,
line noise artifacts were removed by applying Zapline (de Cheveigné, 2020). However, if this resulted in a significant loss
of channel data (> 50%), the channel was removed from the data. Due to the poor data quality and missing parts of the
data, we removed 14 participants’ recordings from the dataset. Therefore, the final sample used for experiments consists of
recordings from 168 subjects.

G. Details on Ocular Events
In this section we provide detailed information about the events occurring in the four datasets we provide, namely Movie
Watching-, Reading-, Visual Symbol Search- (VSS), as well as Large Grid paradigm. Visualisations of the experimental
setups can be found in Section 3.2.

G.1. Movie Watching paradigm
In the Movie Watching paradigm, we observe the following label distribution: fixation 86.49%, saccade 10.77%, blink:
2.74%. The fixations have an average length of 216 time samples (432ms) with a standard deviation of 227 (454ms). In
contrast to the Large Grid paradigm, the mean value is a common value of the distribution. In the saccade class, we have
an average events’ length of 27 (54ms) and a standard deviation of 39 (78ms). Blink events have an average length of 59
(118ms) with a standard deviation of 72 (144ms). Details of the distributions can be found in Figure 6. Event lengths are
given in terms of measurement points (i.e. 2ms per point).

3http://sccn.ucsd.edu/wiki/Plugin_list_process

http://sccn.ucsd.edu/wiki/Plugin_list_process

DETRtime

G.2. Natural Reading paradigm
In the Natural Reading paradigm, we observe the following label distribution: fixation 79.50%, saccade 17.63%, blink:
2.87%. The fixations have an average length of 110 time samples (220ms) with a standard deviation of 63 (126ms). In the
saccade class, we have an average events’ length of 24 (48ms) and a standard deviation of 49 (98ms). Blink events have an
average length of 54 (108ms) with a standard deviation of 167 (334ms). Details of the distributions can be found in Figure 7.
Event lengths are given in terms of measurement points (i.e. 2ms per point).

G.3. Visual Symbol Search paradigm
In the Natural Reading paradigm, we observe the following label distribution: fixation 80.96%, saccade 18.38%, blink:
0.66%. The fixations have an average length of 100 time samples (200ms) with a standard deviation of 56 (112ms). In the
saccade class, we have an average events’ length of 23 (46ms) and a standard deviation of 14 (28ms). Blink events have an
average length of 37 (74ms) with a standard deviation of 28 (56ms). Details of the distributions can be found in Figure 8.
Event lengths are given in terms of measurement points (i.e. 2ms per point).

G.4. Large Grid paradigm
In the Large Grid paradigm, we observe the following label distribution: fixation 92.26%, saccade 6.59%, blink: 1.15%.
The fixations have an average length of 421 time samples (842ms) with a standard deviation of 359 (718ms). It’s noteworthy
that the mean value is here almost never observed. In the saccade class, we have an average events’ length of 30 (60ms)
and a standard deviation of 35 (70ms). Blink events have an average length of 56 (112ms) with a standard deviation of 63
(126ms). Details of the distributions can be found in Figure 9. Event lengths are given in terms of measurement points (i.e.
2ms per point).

(a) Distribution of the fixation length (b) Distribution of the saccade length

(c) Distribution of the blink length

Figure 6. Distribution of the length of each ocular event in the Movie Watching paradigm: fixations, saccades and blinks.

DETRtime

(a) Distribution of the fixation length (b) Distribution of the saccade length

(c) Distribution of the blink length

Figure 7. Distribution of the length of each ocular event in the Natural Reading paradigm: fixations, saccades and blinks.

DETRtime

(a) Distribution of the fixation length (b) Distribution of the saccade length

(c) Distribution of the blink length

Figure 8. Distribution of the length of each ocular event in the Visual Symbol Search paradigm: fixations, saccades and blinks.

DETRtime

(a) Distribution of the fixation length (b) Distribution of the saccade length

(c) Distribution of the blink length

Figure 9. Distribution of the length of each ocular event in the Large Grid paradigm: fixations, saccades and blinks.

