Distributed Verification and Hardness of Distributed
Approximation -

Atish Das SarmaT
Google Research
Mountain View, USA.
dassarma@google.com

Amos Kormani
CNRS & LIAFA, Univ. Paris 7
Paris, France
amos.korman @ liafa.jussieu.fr

David Peleg
Weizmann Institute of Science
Rehovot, Israel

Stephan Holzer
ETH Zurich
Zurich, Switzerland
stholzer@tik.ee.ethz.ch

Danupon Nanongkai
University of Vienna & Georgia
Institute of Technology
Austria & USA
danupon @ gmail.com

Liah Kor
Weizmann Institute of Science
Rehovot, Israel
liah.kor@weizmann.ac.il

Gopal Pandurangan§
Nanyang Technological
University & Brown University
Singapore & USA
gopalpandurangan @gmail.com

Roger Wattenhofer
ETH Zurich
Zurich, Switzerland

david.peleg@weizmann.ac.il wattenhofer@tik.ee.ethz.ch

ABSTRACT

We study the werification problem in distributed networks,
stated as follows. Let H be a subgraph of a network G
where each vertex of G knows which edges incident on it
are in H. We would like to verify whether H has some
properties, e.g., if it is a tree or if it is connected (every node
knows in the end of the process whether H has the specified
property or not). We would like to perform this verification
in a decentralized fashion via a distributed algorithm. The
time complexity of verification is measured as the number
of rounds of distributed communication.

In this paper we initiate a systematic study of distributed
verification, and give almost tight lower bounds on the run-
ning time of distributed verification algorithms for many

*A full version of this paper is available as [5] at http://
arxiv.org/abs/1011.3049

TPart of the work done while at Georgia Institute of Tech-
nology.

iSupported by the ANR projects ALADDIN and PROSE
and by the INRIA project GANG. Also supported
by a France-Israel cooperation grant (“Mutli-Computing”
project) from the France Ministry of Science and Israel Min-
istry of Science.

§Supported in part by the following grants: Nanyang Tech-
nological University grant M58110000, US NSF grant CCF-
1023166, and a grant from the US-Israeli Binational Science
Foundation (BSF).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’11, June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

363

fundamental problems such as connectivity, spanning con-
nected subgraph, and s — t cut verification. We then show
applications of these results in deriving strong unconditional
time lower bounds on the hardness of distributed approxi-
mation for many classical optimization problems including
minimum spanning tree, shortest paths, and minimum cut.
Many of these results are the first non-trivial lower bounds
for both exact and approximate distributed computation
and they resolve previous open questions. Moreover, our un-
conditional lower bound of approximating minimum span-
ning tree (MST) subsumes and improves upon the previ-
ous hardness of approximation bound of Elkin [STOC 2004]
as well as the lower bound for (exact) MST computation
of Peleg and Rubinovich [FOCS 1999]. Our result implies
that there can be no distributed approximation algorithm
for MST that is significantly faster than the current exact
algorithm, for any approximation factor.

Our lower bound proofs show an interesting connection
between communication complexity and distributed com-
puting which turns out to be useful in establishing the time
complexity of exact and approximate distributed computa-
tion of many problems.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; F.0 [Theory
of Computation]: General; G.2.2 [Mathematics of Com-
puting]: Discrete Mathematic—Graph Theory

General Terms
Algorithms, Theory

Keywords

Distributed Algorithms, Graph Algorithms, Lower Bound,
Time Complexity, Communication Complexity, Minimum
Spanning Tree, Shortest Path

1. INTRODUCTION

Large and complex networks, such as the human society,
the Internet, or the brain, are being studied intensely by
different branches of science. Each individual node in such a
network can directly communicate only with its neighboring
nodes. Despite being restricted to such local communication,
the network itself should work towards a global goal, i.e., it
should organize itself, or deliver a service.

In this work we investigate the possibilities and limita-
tions of distributed/decentralized computation, i.e., to what
degree local information is sufficient to solve global tasks.
Many tasks can be solved entirely via local communication,
for instance, how many friends of friends one has. Research
in the last 30 years has shown that some classic combinato-
rial optimization problems such as matching, coloring, dom-
inating set, or approximations thereof can be solved using
small (i.e., polylogarithmic) local communication. For ex-
ample, a maximal independent set can be computed in time
O(log n) [22], but not in time Q(4/logn/loglogn) [17] (n is
the network size). This lower bound even holds if message
sizes are unbounded.

However “many” important optimization problems are “global”

problems from the distributed computation point of view.
To count the total number of nodes, to determining the di-
ameter of the system, or to compute a spanning tree, in-
formation necessarily must travel to the farthest nodes in
a system. If exchanging a message over a single edge costs
one time unit, one needs (D) time units to compute the
result, where D is the network diameter. If message size
was unbounded, one can simply collect all the information
in O(D) time, and then compute the result. Hence, in order
to arrive at a realistic problem, we need to introduce com-
munication limits, i.e., each node can exchange messages
with each of its neighbors in each step of a synchronous sys-
tem, but each message can have at most B bits (typically
B is small, say O(logn)). However, to compute a spanning
tree, even single-bit messages are enough, as one can sim-
ply breadth-first-search the graph in time O(D) and this is
optimal [24].

But, can we verify whether an existing spanning tree in-
deed is a correct spanning tree?! In this paper we show that
this is not generally possible in O(D) time — instead one
needs Q(y/n + D) time. (Thus, in contrast to traditional
non-distributed complexity, verification is harder than com-
putation in the distributed world!). Our paper is more gen-
eral, as we show interesting lower and upper bounds (these
are almost tight) for a whole selection of verification prob-
lems. Furthermore, we show a key application of studying
such verification problems to proving strong unconditional
time lower bounds on exact and approximate distributed
computation for many classical problems.

1.1 Technical Background and Previous Work

Distributed Computing. Consider a synchronous net-
work of processors with unbounded computational power.
The network is modeled by an undirected n-vertex graph,
where vertices model the processors and edges model the
links between the processors. The processors (henceforth,
vertices) communicate by exchanging messages via the links
(henceforth, edges). The vertices have limited global knowl-
edge, in particular, each of them has its own local perspec-
tive of the network (a.k.a graph), which is confined to its im-

364

mediate neighborhood. The vertices may have to compute
(cooperatively) some global function of the graph, such as a
spanning tree (ST) or a minimum spanning tree (MST), via
communicating with each other and running a distributed
algorithm designed for the task at hand. There are several
measures to analyze the performance of such algorithms,
a fundamental one being the running time, defined as the
worst-case number of rounds of distributed communication.
This measure naturally gives rise to a complexity measure
of problems, called the time complerity. On each round at
most B bits can be sent through each edge in each direc-
tion, where B is the bandwidth parameter of the network.
The design of efficient algorithms for this model (hence-
forth, the B model), as well as establishing lower bounds
on the time complexity of various fundamental graph prob-
lems, has been the subject of an active area of research called
(locality-sensitive) distributed computing (see [24] and refer-
ences therein.)

Distributed Algorithms, Approximation, and Hard-
ness. Much of the initial research focus in the area of dis-
tributed computing was on designing algorithms for solving
problems exactly, e.g., distributed algorithms for ST, MST,
and shortest paths are well-known [24, 23]. Over the last
few years, there has been interest in designing distributed
algorithms that provide approximate solutions to problems.
This area is known as distributed approximation. One mo-
tivation for designing such algorithms is that they can run
faster or have better communication complexity albeit at
the cost of providing suboptimal solution. This can be espe-
cially appealing for resource-constrained and dynamic net-
works (such as sensor or peer-to-peer networks). For exam-
ple, there is not much point in having an optimal algorithm
in a dynamic network if it takes too much time, since the
topology could have changed by that time. For this rea-
son, in the distributed context, such algorithms are well-
motivated even for network optimization problems that are
not NP-hard, e.g., minimum spanning tree, shortest paths
etc. There is a large body of work on distributed approx-
imation algorithms for various classical graph optimization
problems (e.g., see the surveys by Elkin [7] and Dubhashi et
al. [6], and the work of [14] and the references therein).

While a lot of progress has been made in the design of dis-
tributed approximation algorithms, the same has not been
the case with the theory of lower bounds on the approxima-
bility of distributed problems, i.e., hardness of distributed
approximation. There are some inapproximability results
that are based on lower bounds on the time complexity of the
exact solution of certain problems and on integrality of the
objective functions of these problems. For example, a fun-
damental result due to Linial [20] says that 3-coloring an n-
vertex ring requires Q(log* n) time. In particular, it implies
that any 3/2-approximation protocol for the vertex-coloring
problem requires 2(log* n) time. On the other hand, one
can state inapproximability results assuming that vertices
are computationally limited; under this assumption, any
NP-hardness inapproximability result immediately implies
an analogous result in the distributed model. However, the
above results are not interesting in the distributed setting,
as they provide no new insights on the roles of locality and
communication [10].

There are but a few significant results currently known
on the hardness of distributed approximation. Perhaps the
first important result was presented for the MST problem by

Elkin in [10]. Specifically, he showed strong unconditional
lower bounds (i.e., ones that do not depend on complexity-

theoretic assumptions) for distributed approximate MST (more

on this result below). Later, Kuhn, Moscibroda, and Wat-
tenhofer [17] showed lower bounds on time approximation
trade-offs for several problems.

1.2 Distributed Verification

The above discussion summarized two major research as-
pects in distributed computing, namely studying distributed
algorithms and lower bounds for (1) exact and (2) approx-
imate solutions to various problems. The third aspect —
that turns out to have remarkable applications to the first
two — called distributed verification, is the main subject of
the current paper. In distributed verification, we want to
efficiently check whether a given subgraph of a network has
a specified property via a distributed algorithm®. Formally,
given a graph G = (V,E), a subgraph H = (V, E’) with
E’ C E, and a predicate II, it is required to decide whether
H satisfies II (i.e., when the algorithm terminates, every
node knows whether H satisfies IT). The predicate II may
specify statements such as “H is connected” or “H is a span-
ning tree” or “H contains a cycle”. (Each vertex in G' knows
which of its incident edges (if any) belong to H.) The goal is
to study bounds on the time complexity of distributed ver-
ification. The time complexity of the verification algorithm
is measured with respect to parameters of G (in particular,
its size n and diameter D), independently from H.

We note that verification is different from construction
problems, which have been the traditional focus in distributed
computing. Indeed, distributed algorithms for construct-
ing spanning trees, shortest paths, and other problems have
been well studied ([24, 23]). However, the corresponding
verification problems have received much less attention. To
the best of our knowledge, the only distributed verification
problem that has received some attention is the MST (i.e.,
verifying if H is a MST); the recent work of Kor et al. [15]
gives a Q(v/n/B + D) deterministic lower bound on dis-
tributed verification of MST, where D is the diameter of the
network GG. That paper also gives a matching upper bound
(see also [16]). Note that distributed construction of MST
has rather similar lower and upper bounds [25, 11]. Thus
in the case of the MST problem, verification and construc-
tion have the same time complexity. We later show that the
above result of Kor et al. is subsumed by the results of this
paper, as we show that verifying any spanning tree takes so
much time.

Motivations. The study of distributed verification has two
main motivations. The first is understanding the complex-
ity of verification versus construction. This is obviously a
central question in the traditional RAM model, but here
we want to focus on the same question in the distributed
model. Unlike in the centralized setting, it turns out that
verification is mot in general easier than construction in the
distributed setting! In fact, as was indicated earlier, dis-
tributively verifying a spanning tree turns out to be harder
than constructing it in the worst case. Thus understand-
ing the complexity of verification in the distributed model is
also important. Second, from an algorithmic point of view,
for some problems, understanding the verification problem

1Such problems have been studied in the sequential setting,
e.g., Tarjan[27] studied verification of MST.

365

can help in solving the construction problem or showing
the inherent limitations in obtaining an efficient algorithm.
In addition to these, there is yet another motivation that
emerges from this work: We show that distributed verifica-
tion leads to showing strong unconditional lower bounds on
distributed computation (both exact and approzimate) for a
variety of problems, many hitherto unknown. For example,
we show that establishing a lower bound on the spanning
connected subgraph verification problem leads to establish-
ing lower bounds for the minimum spanning tree, shortest
path tree, minimum cut etc. Hence, studying verification
problems may lead to proving hardness of approximation as
well as lower bounds for exact computation for new prob-
lems.

1.3 Our Contributions

In this paper, our main contributions are two fold. First,
we initiate a systematic study of distributed verification, and
give almost tight uniform lower bounds on the running time
of distributed verification algorithms for many fundamental
problems. Second, we make progress in establishing strong
hardness results on the distributed approximation of many
classical optimization problems. Our lower bounds also ap-
ply seamlessly to exact algorithms. We next state our main
results (the precise theorem statements are in the respective
sections as mentioned below).

1. Distributed Verification. We show a lower bound of
Q(/n/(Blogn) 4+ D) for many verification problems in the
B model, including spanning connected subgraph, s-t con-
nectivity, cycle-containment, bipartiteness, cut, least-element
list, and s — t cut (cf. Section 4). These bounds apply to
randomized algorithms as well, and clearly hold also for asyn-
chronous networks. Moreover, it is important to note that
our lower bounds apply even to graphs of small diameter
(D = O(logn)). (Indeed, the problems studied in this pa-
per are “global” problems, i.e., the network diameter of G
imposes an inherent lower bound on the time complexity.)

Additionally, we show that another fundamental problem,
namely, the spanning tree verification problem (i.e., veri-
fying whether H is a spanning tree) has the same lower
bound of Q(+/n/(Blogn) + D) (cf. Section 6). However,
this bound applies to only deterministic algorithms. This
result strengthens the lower bound result of MST verifica-
tion by Kor et al. [15]. Moreover, we note the interesting fact
that although finding a spanning tree (e.g., a breadth-first
tree) can be done in O(D) rounds [24], verifying if a given
subgraph is a spanning tree requires Q(\/ﬁ + D) rounds!
Thus the verification problem for spanning trees is harder
than its construction in the distributed setting. This is in
contrast to this well-studied problem in the centralized set-
ting. Apart from the spanning tree problem, we also show
deterministic lower bounds for other verification problems,
including Hamiltonian cycle and simple path.

Our lower bounds are almost tight as we show that there
exist algorithms that run in O(y/nlog* n + D) rounds (as-
suming B = O(logn)) for all the verification problems ad-
dressed here (cf. Full version).

2. Bounds on Hardness of Distributed Approxima-
tion. An important consequence of our verification lower
bound is that it leads to lower bounds for exact and approx-
imate distributed computation. We show the unconditional

time lower bound of Q(y/n/(Blogn) + D) for approximat-

ing many optimization problems, including MST, shortest
s —t path, shortest path tree, and minimum cut (Section 5).
The important point to note is that the above lower bound
applies for any approximation ratio o > 1. Thus the same
bound holds for exact algorithms also (a« = 1). All these
hardness bounds hold for randomized algorithms. As in our
verification lower bounds, these bounds apply even to graphs
of small (O(log n)) diameter. Figure 1 summarizes our lower
bounds for various diameters.

Our results improve over previous ones (e.g., Elkin’s lower
bound for approximate MST and shortest path tree [10])
and subsumes some well-established exact bounds (e.g., Pe-
leg and Rubinovich lower bound for MST [25]) as well as
shows new strong bounds (both for exact and approximate
computation) for many other problems (e.g., minimum cut),
thus answering some questions that were open earlier (see
the survey by Elkin [7]).

The new lower bound for approximating MST simplifies
and improves upon the previous Q(y/n/(aBlog n)+D) lower
bound by Elkin [10], where « is the approximation factor.
[10] showed a tradeoff between the running time and the
approximation ratio of MST. Our result shows that approx-
imating MST requires Q(1/n/(Blog n)+ D) rounds, regard-
less of a. Thus our result shows that there is actually no
trade-off, since there can be no distributed approximation
algorithm for MST that is significantly faster than the cur-
rent exact algorithm [19, 9], for any approximation factor
a>1.

2. OVERVIEW OF TECHNICAL APPROACH

We prove our lower bounds by establishing an interest-
ing connection between communication complexity and dis-
tributed computing. Our lower bound proofs consider the
family of graphs evolved through a series of papers in the lit-
erature [10, 21, 25]. However, while previous results [10, 25]
rely on counting the number of states to analyze the mailing
problem (along with some sophisticated techniques for the
variant, called corrupted mail problem, in the case of approx-
imation algorithm lower bounds) and use Yao’s method [30]
(with appropriate input distributions) to get lower bounds
for randomized algorithms, our results are achieved using
the following three steps of simple reductions, as follows.

(Section 3) First, we reduce the lower bounds of prob-
lems in the standard communication complexity model [18]
to the lower bounds of the equivalent problems in the “dis-
tributed version” of communication complexity. Specifically,
we relate the communication lower bound from the standard
communication complexity model [18] to compute some ap-
propriately chosen function f, to the distributed time com-
plexity lower bound for computing the same function in a
specially chosen graph G. In the standard model, Alice and
Bob can communicate directly (via a bidirectional edge of
bandwidth one). In the distributed model, we assume that
Alice and Bob are some vertices of G and they together wish
to compute the function f using the communication graph
G. The choice of graph G is critical. We use a graph called
G(T',d,p) (parameterized by I', d and p) that was first used
in [10]. We show a reduction from the standard model to
the distributed model, the proof of which relies on certain
observations similar to those used in previous results (e.g.,
25]).

(Section 4) The connection established in the first step
allows us to bypass the state counting argument and Yao’s

366

method, and reduces our task in proving lower bounds of
verification problems to merely picking the right function f
to reduce from. The function f that is useful in showing our
randomized lower bounds is the set disjointness function,
which is the quintessential problem in the world of commu-
nication complexity with applications to diverse areas and
has been studied for decades (see a recent survey in [3]). Fol-
lowing the result well known in communication complexity
[18], we show that the distributed version of this problem
has an Q(y/n/(Blogn)) lower bound on graphs of small di-
ameter. We then reduce this problem to the verification
problems using simple reductions similar to those used in
data streams [12]. The set disjointness function yields ran-
domized lower bounds and works for many problems (see
Fig. 2), but it does not reduce to certain other problems
such as spanning tree. To show lower bounds for these and
a few other problems, we use a different function f called
equality. However, this reduction yields only deterministic
lower bounds for the corresponding verification problems.

(Section 5) Finally, we reduce the verification problem to
hardness of distributed approximation for a variety of prob-
lems to show that the same lower bounds hold for approx-
imation algorithms as well. For this, we use a reduction
whose idea is similar to one used to prove hardness of ap-
proximating TSP (Traveling Salesman Problem) on general
graphs (see, e.g., [28]): We convert a verification problem
to an optimization problem by introducing edge weight in
such a way that there is a large gap between the optimal
values for the cases where H satisfies, or does not satisfy a
certain property. This technique is surprisingly simple, yet
yields strong unconditional hardness bounds — many hith-
erto unknown, left open (e.g., minimum cut) [7] and some
that improve over known ones (e.g., MST and shortest path
tree) [10]. As mentioned earlier, our approach shows that
approximating MST by any factor needs Q(y/n) time, while
the previous result due to Elkin gave a bound that depends
on « (the approximation factor), i.e. 2(y/n/a), using more
sophisticated techniques.

Fig. 2 summarizes these reductions that will be proved in
this paper. Due to the space constraint, we focus on the
proofs towards the lower bound of approximating minimum
spanning tree in the main paper. Other results can be found
in the Full version.

3. FROM COMMUNICATION COMPLEX-
ITY TO DISTRIBUTED COMPUTING

Consider the following problem. There are two parties
that have unbounded computational power. Each party re-
ceives a b-bit string, for some integer b > 1, denoted by T and
7 in {0,1}°. They both want to together compute f(Z,7)
for some boolean function f : {0,1}" x {0,1}* — {0,1}. We
consider two models of communication.

o Direct communication: This is the standard model in
communication complexity. Two parties can commu-
nicate via a bidirectional edge of bandwidth one. We
call the party receiving z Alice, and the other party
Bob. At the end of the process, Bob will output f(Z, 7).

e Communication through network G(T',d,p): Two par-
ties are distinct vertices in a B model distributed net-
work, called G(T', d, p), for some parameters I', d, and
p; the network has ©(I'dP) vertices and a diameter of

Previous lower bound for MST | New lower bound for MST,
Diameter D and shortest-path tree [10] shortest-path tree and
(for exact algorithms, use a = 1) all problems in Fig. 2.
n%,0<8<1/2 (/%) QL/%)
G(IOgn) Q(\/ aB?ogn) Q(\/ Bl:)lgn)
Constant > 3 Q((QLB)%_2D1—2 Q((%)%——zpl_z)
4 ()% ()
3 () QA

Figure 1: Lower bounds of randomized a-approximation
in the first column are for the MST and shortest path t

algorithms on graphs of various diameters. Bounds
ree problems [10] while those in the second column

are for these problems and many problems listed in Fig. 2. We note that these bounds almost match the
O(yv/nlog* n+ D) upper bound for the MST problem [11, 19] and are independent of the approximation-factor

Q.

set disjointness <
g
.
< D
l connected spanning subgraph ‘ l s-t connectivity‘ l e-cycle ‘ bipartiteness‘ O’:l“ Hamiltonian cycle
=4
=
. — —> o - -
COnnCC/tl ty Fc—component cut s-t cut Lleaqt—element list l l edge on all paths‘ = spanning tree Emple path
v ~ AN >
lMSTl ls—sourcc distancc‘ Lshortest path treq min s-t cut &hortest s-t path g
=
]
l shallow-light tree‘ l min routing cost tree‘ l min cut l lgeneralized Steiner forest ‘ 5
E
. o e e e
Randomized o Deterministic

]
=

Section 4 Full version Full version - Full version

Section 5 Full version Full version Full version

Figure 2: Problems and reductions between them to obtain randomized and deterministic lower bounds. For

all problems, we obtain lower bounds as in Fig. 1

©(2p +2). (This network was first defined in [10] and
described below.) We denote the vertex receiving Z by
s and the vertex receiving y by r. At the end of the
process, r will output f(Z, 7).

We consider time lower bounds for public coin randomized
algorithms under both models. In particular, we assume that
all parties (Alice and Bob in the first model and all vertices
in G(T',d, p) in the second model) share a random bit string
of infinite length. For any € > 0, we say that a randomized
algorithm A is e-error if for any input, it outputs the correct
answer with probability at least 1 — e, where the probability
is over all possible random bit strings. The running time
of A, denoted by T4, is the number of rounds in the worst
case (over all inputs and random strings). Let RE™PUP(f)
and REG(F’d’p)’S’T(f) denote the best time complexity of e-
error algorithms in the models of direct communication and
communication through graph G(I',d,p), respectively. We
are particularly interested in the case where we pick b to be
T" (for any choice of I'). The rest of this section is devoted
to showing that if there is a fast e-error algorithm for com-
puting f on G(T',d, p), then there is a fast e-error algorithm
for Alice and Bob to compute f.

Theorem 3.1 For any ', d, p, B, ¢ > 0, and function

367

f:{0, 13" x {0,1}" = {0,1}, if

P —1
RECADr () <

2

then
R§C7PUb(f) S deBReG(F,d,p),s,'r(f))
We first describe the graph G(T',d, p) with parameters T,
d and p and distinct vertices s and r.

The graph G(I',d,p) [10]: The two basic units in the
construction are paths and a tree. There are I' paths, de-
noted by P!, P2 ..., P', each having dP vertices, i.e., for
{=1,2,...T,

V(Pe) = {Ug, .. .,vﬁp,l} and

E(PY) = {(vf,vi1) | 0<i<d’ —1}.

There is a tree, denoted by 7 having depth p where each
non-leaf vertex has d children (thus, there are dP leaf ver-
tices). We denote the vertices of T at level £ from left to right
by ug, .. '7“21—1 (so, ug is the root of T and uf,...,ub,
are the leaves of 7). For any £ and j, the leaf vertex u? is
connected to the corresponding path vertex Uf by a spoke
edge (uf, v%). Finally, we set the two special vertices (which
will receive input strings Z and §) as s = uf and r = uf), ;.
Fig. 3(a) depicts this graph. The number of vertices in
G(T',d,p) its diameter are analyzed in [10], as follows.

Figure 3: (a) The Graph G(I',d,p) (here, d = 2).

LN

(b) Example of H for the spanning connected subgraph

problem (marked with thick red edges) when Z =0...10 and g = 1...00.

Lemma 3.2 [10] The number of vertices in G(I',d,p) is
n = O(I'm) and its diameter is 2p + 2.

Terminologies: For 1 < i < |(dP — 1)/2], define the i-left
and the i-right of the path P’ as

Li(P*) ={vj|j <d’—1—i} and Ri(P‘)={v}|j>1i},

respectively. Define the i-left of the tree 7, denoted by
L;i(T), as the union of set § = {uf | j < d” — 1 — i} and
all ancestors of all vertices in S in 7. Similarly, the é-right
R;i(T) of the tree T is the union of set S = {u | j > i} and
all ancestors of all vertices in S. Now, the i-left and i-right
sets of G(I',d,p) are the union of those left and right sets,

Li=JLi(PYUL(T) and R =|JR(P)UR(T).
¢ 4

For ¢ = 0, the definition is slightly different; we set Lo
V\{r}and Ro =V \ {s}. See Fig. 3(a).

Let A be any deterministic distributed algorithm run on
graph G(I',d, p) for computing a function f. Fix any input
strings T and § given to s and r respectively. Let o4 (Z,7)
denote the execution of 4 on Z and g. Denote the state of the
vertex v at the end of round ¢ during the execution @4 (Z, 7)
by oa(v,t,T,7). In two different executions ¢4 (Z,7) and
wa(Z',7'), a vertex reaches the same state at time ¢ (i.e.,
oA(v,t,%,7) = oa(v,t,7, 7)) if and only if it receives the
same sequence of messages on each of its incoming links.

For a given set of vertices U = {v1,...,u.} C V, a config-
uration

CA(U7 t7 j? g) = <O-A(/U17t7 'i7 g)? e

is a vector of the states of the vertices of U at the end of
round ¢ of the execution ¢4(Z, 7). We note the following
crucial observation used in [25] and many later results.

,oa(ve, t, T, 7))

Observation 3.3 For any set U C U’ CV, Ca(U,t,7,%)
can be uniquely determined by C4(U’,t—1,%,4) and all mes-
sages sent to U from V\ U’ at time t.

368

PROOF. Recall that the state of each vertex v in U can be
uniquely determined by its state oa(v,t — 1,Z,7) at time
t — 1 and the messages sent to it at time ¢t. Moreover, the
messages sent to v from vertices inside U’ can be determined
by C4(U’,t,Z,5). Thus if the messages sent from vertices in
V\ U’ are given then we can determine all messages sent to
U at time ¢t and thus we can determine Ca(U,t,Z,y). O

From now on, to simplify notation, when A, T and g
are clear from the context, we use Cr, and Cg, to denote
Ca(L, t,z,y) and Ca(Re,t,T,7), respectively. The lemma
below states that Cr, (Cr,, respectively) can be determined
by Cr, , (Cr,_,, respectively) and dp messages generated
by some vertices in R¢—1 (L:—1 respectively) at time ¢. It
essentially follows from Observation 3.3 and an observation
that there are at most d” edges linking between vertices in
V\ Re—1 (V' \ L¢—1 respectively) and vertices in R; (L¢ re-
spectively).

Lemma 3.4 Fiz any deterministic algorithm A and input
strings T and §. For any 0 < t < (d? — 1)/2, there ex-
ist functions g1, and gr, B-bit messages MIL"1 S, Mdet’l

sent by some vertices in Li—1 at time t, and B-bit messages

Mft’l,...,Mit’l sent by some vertices in Re—1 at time t
such that
_ Ry_1 R¢_1
Cr, =9.(Cr,_,, M, 7"'7Mdp) (1)
Lo Ly
CthgR(CRt,let 17"'7Mdpt 1)' (2)

PROOF. We prove Eq. (2) only. (Eq. (1) is proved in exactly
the same way.) Observe that all neighbors of all path vertices
in R; are in R;_1. Similarly, all neighbors of all leaf vertices
in V(T) N Rt are in Ry—1. Moreover, for any non-leaf tree
vertex u! (for some £ and), if uf is in R; then its parent and
vertices uf_H, uf+2, ... 7“25—1 are in R;—,. For any ¢ < p and
t, let u*(R;) denote the leftmost vertex that is at level £ of T
and in Ry, i.e., u’(R:) = uf where 7 is such that uf € R; and
uf_y ¢ Ry. (For example, in Fig. 3(a), u?~'(R:1) = v}~ " and

uP~'(R2) = u4~".) Finally, observe that for any 4 and ¢, if
uf_; is in R; then all children of uf are in R; (otherwise, all
children of u{_; are not in R; and so is uf_;, a contradiction).
Thus, all edges linking between vertices in R: and V' \ R¢—1
are in the following form: (u‘(R;),) for some £ and child
u' of u*(Ry).

Setting U’ = Ry—1 and U = R; in Observation 3.3, we
have that Cr, can be uniquely determined by Cr, , and
messages sent to u’(R:) from its children in V \ R¢—1. Note
that each of these messages contains at most B bits since
they correspond to a message sent on an edge in one round.

Observe further that, for any ¢t < (d” —1)/2, V \ Ri—1 C
L¢_1 since Lt+—1 and R:_1 share some path vertices. More-

over, each u‘(R;) has d children. Therefore, if we let MlLt’l,

- Mde"_l be the messages sent from children of u’(R;),

u'(Ry), ..., uP" (Ry) in V'\ Rs—1 to their parents (note that
if there are less than dp such messages then we add some
empty messages) then we can uniquely determine Cr, by

Cr,_, and M{*"*,..., My "', Eq. (2) thus follows. [

Using the above lemma, we can now prove Theorem 3.1.

Proor oF THEOREM 3.1. Let f be the function in the the-
orem statement. Let Ae be any e-error distributed algorithm
for computing f on graph G(I',d, p). Fix a random string 7
used by A (shared by all vertices in G(T', d, p)) and consider
the deterministic algorithm A run on the input of A. and
the fixed random string 7. Let T4 be the worst case run-
ning time of algorithm A (over all inputs). We only consider
T4 < (dP —1)/2, as assumed in the theorem statement. We
show that Alice and Bob, when given 7 as the public random
string, can simulate A using 2dpT 4 communication bits, as
follows.

Alice and Bob make T4 iterations of communications. Ini-
tially, Alice computes Cr, which depends only on Z. Bob
also computes Cg, which depends only on y. In each it-
eration ¢ > 0, we assume that Alice and Bob know Cfr,_,
and CRg, ,, respectively, before the iteration starts. Then,
Alice and Bob will exchange at most 2dpB bits so that Alice
and Bob know Cr, and Cg,, respectively, at the end of the
iteration.

To do this, Alice sends to Bob the messages MlLt’l, e

M;}f’l as in Lemma 3.4. Alice can generate these mes-
sages since she knows Cr, , (by assumption). Then, Bob
can compute Cr, using Eq. (2) in Lemma 3.4. Similarly,
Bob sends dp messages to Alice and Alice can compute Cp,.
They exchange at most 2dpB bits in total in each iteration
since there are 2dp messages, each of B bits, exchanged.

After T4 iterations, Bob knows C(Rr,,T4,Z,y). In par-
ticular, he knows the output of A (output by r) since he
knows the state of r after A terminates. He thus outputs
the output of r.

Since A, is e-error, the probability (over all possible shared
random strings) that A outputs the correct value of f(Z,7)
is at least 1 —e. Therefore, the communication protocol run
by Alice and Bob is e-error as well. Moreover, Alice and Bob
communicates at most 2dpBT. 4 bits. The theorem follows.

O

369

4. RANDOMIZED LOWER BOUNDS FOR
DISTRIBUTED VERIFICATION

In this section, we present randomized lower bounds for
many verification problems for graph of various diameters,
as shown in Fig. 1.

The general theorem is below. For brevity, in the main
section of the paper, we prove the theorem only for the span-
ning connected subgraph verification problem. This will be
useful later in proving many hardness of approximation re-
sults. In this problem, we want to verify whether H is con-
nected and spans all nodes of G, i.e., every node in G is
incident to some edge in H. Definitions of other problems
and proofs of their lower bounds are in Full version.

Theorem 4.1 For anyp > 1, B> 1, and n € {2*T'pB,
32PT1pB, ...}, there exists a constant € > 0 such that any e-
error distributed algorithm for any of the following problems
requires Q((n/(pB))%_m) time on some ©(n)-vertex
graph of diameter 2p+2 in the B model: Spanning connected
subgraph, connectivity, s-t connectivity, k-components, bi-
partiteness, cycle containment, e-cycle containment, cut, s-t
cut, least-element list [4, 14], and edge on all paths.

In particular, for graphs with diameter D = 4, we get
Q((n/B)*?) lower bound and for graphs with diameter D =
logn we get Q(y/n/(Blogn)). Similar analysis also leads to
a Q(y/n/B) lower bound for graphs of diameter n° for any
§ > 0, and Q((n/B)"*) lower bound for graphs of diameter
3 using the same analysis as in [10]. We note that the lower
bound holds even in the public coin model where every ver-
tex shares a random string. To prove the theorem, we need
the lower bound for computing set disjointness function.

Definition 4.2 (Set Disjointness function) Given two b-
bit strings T and y, the set disjointness function, denoted by
disj(Z,y), ts defined to be 1 if the inner product (T,y) is
0 (i.e., ©; =0 ory; =0 for every 1 <4 <b) and 0 oth-
erwise. We refer to the problem of computing disj func-
tion on G(I',d, p) on I'-bit input strings given to s and r by
DISJ(G(T,d,p),s,r,T).

The following lemma is a consequence of Theorem 3.1 and
the communication complexity lower bound of computing
disj.

Lemma 4.3 For any I',d, p, there exists a constant ¢ > 0
such that any e-error algorithm solving DISJ(G(T',d,p), s, r,
I') requires Q(min(d®, dpLB)) time.

Proor. If RET 4P "7 (dis§) > (dP —1)/2 then RS HP)="
(disj) = Q(d?) and we are done. Otherwise, Theorem 3.1
implies that RS ?**(disj) < 2dpB-RE"*P " (disj). Now
we use the fact that RS P*®(disj) = Q(T') for the function
disj on I'-bit inputs, for some € > 0 [1, 13, 2, 26] (also see
[18, Example 3.22] and references therein). It follows that
RETAP)=T(qi55) = Q(T/(dpB)). O

The lower bound of spanning connected subgraph verifi-
cation essentially follows from the following lemma.

Lemma 4.4 For any I', d > 2 and p, there exists a con-
stant € > 0 such that any e-error distributed algorithm for

spanning connected subgraph verification on graph G(T', d, p)
can be used to solve the DISI(G(T',d,p), s, t, I') problem on
G(T',d,p) with the same time complezity.

PrOOF. Consider an e-error algorithm A for the spanning
connected subgraph verification problem, and suppose that
we are given an instance of the DISJ(G(T', d, p), s, t,I') prob-
lem with input strings £ and §. We use A to solve this
instance of set disjointness problem as follows.

First, we mark all path edges and tree edges as participat-
ing in H. All spoke edges are marked as not participating
in subgraph H, except those incident to s and r for which
we do the following: For each bit z;, 1 < ¢ < I, vertex s
indicates that the spoke edge (s, v$) participates in H if and
only if z; = 0. Similarly, for each bit y;, 1 <1i < T, vertex r
indicates that the spoke edge (r,v%»_;) participates in H if
and only if y; = 0. (See Fig. 3(b).)

Note that the participation of all edges, except those inci-
dent to s and r, is decided independently of the input. More-
over, one round is sufficient for s and r to inform their neigh-
bors the participation of edges incident to them. Hence,
one round is enough to construct H. Then, algorithm A is
started.

Once algorithm A terminates, vertex r determines its out-
put for the set disjointness problem by stating that both
input strings are disjoint if and only if spanning connected
subgraph verification algorithm verified that the given sub-
graph H is indeed a spanning connected subgraph.

Observe that H is a spanning connected subgraph if and
only if for all 1 < i < T at least one of the edges (s,v)
and (r,v%»_,) is in H; thus, by the construction of H, H
is a spanning connected subgraph if and only if the input
strings Z,y are disjoint, i.e., for every i either z; = 0 or
y; = 0. Hence the resulting algorithm has correctly solved
the given instance of the set disjointness problem. [

Using Lemma 4.3, we obtain the following result.

Corollary 4.5 For any I',d,p, there exists a constant ¢ >
0 such that any e-error algorithm for spanming connected
subgraph verification problem requires Q(min(dP, dpLB)) time
on some O(I'dP)-vertex graph of diameter 2p + 2.

In particular, if we consider I'=d?*'pB then
Q(min(d?,T'/(dpB))) = Q(d?) .

Moreover, by Lemma 3.2, G(d?"*pB, d, p) has n=0(d****pB)
vertices and thus the lower bound (d?) becomes

Q((n/(pB))? " Z@) .

Theorem 4.1 (for the case of spanning connected subgraph)
follows.

5. HARDNESS OF DISTRIBUTED APPROX-
IMATION

In this section we show a time lower bound of Q(
for approximation algorithms of many problems. For dis-
tributed approximation problems such as MST, we assume
that a weight function w : E — RT associated with the
graph assigns a nonnegative real weight w(e) to each edge
e = (u,v) € E. Initially, the weight w(e) is known only to
the adjacent vertices, u and v. We assume that the edge

n/(Blogn))

370

weights are bounded by a polynomial in n (the number of
vertices). It is assumed that B is large enough to allow the
transmission of any edge weight in a single message.

We show the hardness of distributed approximation for
many problems, as in the theorem below. For brevity, we
only prove the theorem for the minimum spanning tree prob-
lem here. Definitions and proofs of other problems can be
found in Full version.

Theorem 5.1 For any polynomial function a(n), numbers
p, B> 1, and n € {2°T1pB, 3T pB, ...}, there exists a
constant € > 0 such that any a(n)-approximation e-error
distributed algorithm for any of the following problems re-
quires Q((}%)%_m) time on some ©(n)-vertex graph of
diameter 2p+2 in the B model: minimum spanning tree [10,
25], shortest s-t path, s-source distance [8], s-source shortest
path tree [10], minimum cut [7], minimum s-t cut, mazimum
cut, minimum routing cost spanning tree [29], shallow-light
tree [24], and generalized Steiner forest [14].

Recall that in the minimum spanning tree problem, we
are given a connected graph G and we want to compute the
minimum spanning tree (i.e., the spanning tree of minimum
weight). At the end of the process each vertex knows which
edges incident to it are in the output tree.

Recall the following standard notions of an approzimation
algorithm. We say that a randomized algorithm A is a-
approximation e-error if, for any input instance Z, algorithm
A outputs a solution that is at most « times the optimal so-
lution of Z with probability at least 1 — e. Therefore, in the
minimum spanning tree, an a-approximation e-error algo-
rithm should output a number that is at most « times the
total weight of the minimum spanning tree, with probability
at least 1 —e.

PROOF OF THEOREM 5.1. (This proof is only for the case of
minimum spanning tree.) Let A be an a(n)-approximation
e-error algorithm for the minimum spanning tree problem.
We show that Ac can be used to solve the spanning con-
nected subgraph verification problem using the same run-
ning time.

To do this, construct a weight function on edges in G,
denoted by w, by assigning weight 1 to all edges in H and
na(n) to all other edges. Note that constructing w does
not need any communication since each vertex knows which
edges incident to it are in H. Now we find the weight W
of the minimum spanning tree using A and announce that
H is a spanning connected subgraph if and only if W is less
than na(n).

Now we show that the weighted graph (G, w) has a span-
ning tree of weight less than na(n) if and only if H is a
spanning connected subgraph of G and thus the algorithm
above is correct: Suppose that H is a spanning connected
subgraph. Then, there is a spanning tree that is a subgraph
of H and has weight n — 1 < na(n). Thus the minimum
spanning tree has weight less than na(n). Conversely, sup-
pose that H is not a spanning connected subgraph. Then,
any spanning tree must contain an edge not in H. There-
fore, any spanning tree has weight at least na(n) as claimed.

Our MST lower bound here matches the lower bound of
exact MST algorithms and improves the lower bound of

(/) by Elkin [10]. Our lower bound for s-source dis-
tance complements the results in [8].

6. DETERMINISTIC LOWER BOUNDS

We show the following lower bound of deterministic algo-
rithms for problems listed in the theorem below. We note
that our lower bound of spanning tree verification simplifies
and generalizes the lower bound of minimum spanning tree
verification shown in [15]. Due to space constraints, problem
definitions and proofs are placed in Full version.

Theorem 6.1 Foranyp, B > 1, andn € {2?7'pB, 3?*T1pB,

...}, any deterministic distributed algorithm for any of the
1° 1

following problems requires Q((;5)? 2@ F1) time on some

O(n)-vertex graph of diameter O(2p + 2) in the B model:

Hamiltonian cycle, spanning tree, and simple path verifica-
tion.

7. CONCLUSION

We initiate the systematic study of verification problems
in the context of distributed network algorithms and present
a uniform lower bound for several problems. We also show
how these verification bounds can be used to obtain lower
bounds on exact and approximation algorithms for many
problems.

Several problems remain open. A general direction for ex-
tending all of this work is to study similar verification prob-
lems in special classes of graphs, e.g., a complete graph. A
few specific open questions include proving better lower or
upper bounds for the problems of shortest s-t path, single-
source distance computation, shortest path tree, s-t cut,
minimum cut. (Some of these problems were also asked
in [7].) Also, showing randomized bounds for Hamiltonian
path, spanning tree, and simple path verification remains
open.

8. REFERENCES

[1] L. Babai, P. Frankl, and J. Simon. Complexity classes
in communication complexity theory (preliminary
version). In FOCS, pages 337-347, 1986.

Z. Bar-Yossef, T. S. Jayram, R. Kumar, and

D. Sivakumar. An information statistics approach to
data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702-732, 2004. Also in
FOCS’02.

A. Chattopadhyay and T. Pitassi. The Story of Set
Disjointness. SIGACT News, 41(3):59-85, 2010.

E. Cohen. Size-Estimation Framework with
Applications to Transitive Closure and Reachability.
J. Comput. Syst. Sci., 55(3):441-453, 1997. Also in
FOCS94.

A. Das Sarma, S. Holzer, L. Kor, A. Korman,

D. Nanongkai, G. Pandurangan, D. Peleg, and

R. Wattenhofer. Distributed verification and hardness
of distributed approximation. CoRR, abs/1011.3049,
2010.

D. P. Dubhashi, F. Grandioni, and A. Panconesi.
Distributed Algorithms via LP Duality and
Randomization. In Handbook of Approzimation
Algorithms and Metaheuristics. Chapman and
Hall/CRC, 2007.

2]

3

[5]

[6]

371

[7] M. Elkin. Distributed approximation: a survey.
SIGACT News, 35(4):40-57, 2004.

M. Elkin. Computing almost shortest paths. ACM
Transactions on Algorithms, 1(2):283-323, 2005. Also
in PODC’01.

M. Elkin. A faster distributed protocol for
constructing a minimum spanning tree. J. Comput.
Syst. Sci., 72(8):1282-1308, 2006. Also in SODA’04.
M. Elkin. An Unconditional Lower Bound on the
Time-Approximation Trade-off for the Distributed
Minimum Spanning Tree Problem. SIAM J. Comput.,
36(2):433-456, 2006. Also in STOC’04.

J. A. Garay, S. Kutten, and D. Peleg. A Sublinear
Time Distributed Algorithm for Minimum-Weight
Spanning Trees. SIAM J. Comput., 27(1):302-316,
1998. Also in FOCS ’93.

M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. In J. M. Abello and J. S.
Vitter, editors, External memory algorithms, pages
107-118. American Mathematical Society, Boston,
MA, USA, 1999.

B. Kalyanasundaram and G. Schnitger. The
Probabilistic Communication Complexity of Set
Intersection. STAM J. Discrete Math., 5(4):545-557,
1992.

M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and
K. Talwar. Efficient distributed approximation
algorithms via probabilistic tree embeddings. In
PODC; pages 263-272, 2008.

L. Kor, A. Korman, and D. Peleg. Tight bounds for
distributed MST verification. STACS, 2011.

A. Korman and S. Kutten. Distributed verification of
minimum spanning trees. Distributed Computing,
20(4):253-266, 2007. Also in PODC’06.

F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In PODC, pages
300-309, 2004.

E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, New York,
NY, USA, 1997.

S. Kutten and D. Peleg. Fast Distributed Construction
of Small k-Dominating Sets and Applications. J.
Algorithms, 28(1):40-66, 1998. Also in PODC’95.

N. Linial. Locality in distributed graph algorithms.
SIAM J. Comput., 21(1):193-201, 1992.

Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed
MST for constant diameter graphs. Distributed
Computing, 18(6):453-460, 2006. Also in PODC’01.
M. Luby. A simple parallel algorithm for the maximal
independent set problem. STAM J. Comput.,
15(4):1036-1053, 1986. Also in STOC’85.

N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

D. Peleg. Distributed computing: o locality-sensitive
approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

D. Peleg and V. Rubinovich. A Near-Tight Lower
Bound on the Time Complexity of Distributed
Minimum-Weight Spanning Tree Construction. STAM
J. Comput., 30(5):1427-1442, 2000. Also in FOCS’99.
[26] A. A. Razborov. On the Distributional Complexity of

(8]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

24]

(25]

Disjointness. Theor. Comput. Sci., 106(2):385-390,
1992. Also in ICALP’90.

R. E. Tarjan. Applications of path compression on
balanced trees. J. ACM, 26(4):690-715, 1979.

V. V. Vazirani. Approximation Algorithms. Springer,
July 2001.

B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi,
and C. Y. Tang. A polynomial-time approximation
scheme for minimum routing cost spanning trees.
SIAM J. Comput., 29(3):761-778, 1999. Also in
SODA’98.

A. C.-C. Yao. Probabilistic Computations: Toward a
Unified Measure of Complexity. In FOCS, pages
222-227, 1977.

372

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

