Competitive Concurrent Distributed Queuing

Maurice Herlihy Srikanta Tirthapura Roger Wattenhofer
Computer Science Computer Science Microsoft Research
Department Department Redmond, WA 98052

Brown University
Providence, Rl 02912

herlihy@cs.brown.edu

ABSTRACT

Distributed queuing is a fundamental problem in distributed
computing, arising in a variety of applications. The chal-
lenge in designing a distributed queuing algorithm is to min-
imize message traffic and delay.

This paper gives a novel competitive analysis of the Arrow
distributed queuing protocol under concurrent access. We
analyze the combined latency of r simultaneous requests,
and derive a competitive ratio of s -logr, where s is the
stretch of a preselected spanning tree in the network.

Our analysis employs a novel greedy characterization of the
way the Arrow protocol orders concurrent requests, and
yields a new lower bound on the quality of the nearest-
neighbor heuristic for the Traveling Salesperson Problem.

1. INTRODUCTION

In the distributed queuing problem, processes in a message-
passing network asynchronously and concurrently place them-
selves in a distributed logical queue. Specifically, each par-
ticipating process informs its predecessor of its identity, and
(when appropriate) learns the identity of its successor. The
challenge in designing a distributed queuing protocol is to
minimize message traffic and delay.

Distributed queuing is a fundamental problem in distributed
computing, arising in a variety of distributed applications.
For example, we have used the Arrow distributed queuing
protocol [4] as the basis for managing mobile objects in the
Aleph Toolkit [5], a distributed shared object system that
provides transparent caching and synchronization of mobile
objects. Experimental results show that the Arrow protocol
substantially outperforms conventional home-based schemes
under high contention [7].

Distributed queuing can also be used for distributed mutual
exclusion (by passing a token along the queue), distributed

Brown University
Providence, RI 02912

snt@cs.brown.edu

rogerwa@microsoft.com

counting (by passing a counter), or distributed implementa-
tions of synchronization primitives such as swap. We have
shown how to use distributed queuing for scalable ordered
multicast in [6].

The Arrow protocol [4] is a simple distributed queuing pro-
tocol based on path reversal in a network spanning tree (we
give an informal description of the protocol in section 2).
This paper gives a novel competitive analysis of the per-
formance of the Arrow protocol under concurrent access. A
queuing algorithm has many options for handling concurrent
requests. For example, when presented with simultaneous
requests from nodes a, b, and ¢, where a and b are near one
another but ¢ is far, it makes sense to avoid ordering ¢ be-
tween a and b. More generally, r concurrent requests can
be ordered in any of r! ways, and depending on the origins
of the requests, some orderings may be much more efficient
than others. A common way to evaluate the effectiveness
of an on-line distributed algorithm is to compare its perfor-
mance to an optimal off-line algorithm (or “adversary”), one
that pays nothing for synchronization and can make routing
decisions based on “omniscient” global information.

Prior work: In the original paper describing the Arrow
protocol, Demmer and Herlihy [4] give a competitive analy-
sis under sequential access. Sequential access assumes that
the Arrow protocol and the adversary would queue requests
in the same order. Arrow would send a message from a
node to its predecessor on the shortest (and only) path on
the spanning tree while the optimal protocol could do so on
the shortest path on the graph. The stretch s of a tree T is
the worst-case ratio between the shortest paths linking two
vertices in T and the same vertices in G. Thus the Arrow
protocol has a worst case competitive ratio of s in the se-
quential case. Peleg and Reshef [8] show that if one knows
something about the probability distributions of requests at
each node, it is possible to choose a spanning tree on which
the expected overhead of the Arrow protocol is small.

The above analyses do not apply to concurrent access be-
cause the adversary is not allowed to gain by ordering con-
current (or nearly concurrent) requests in a smarter way. In
this paper, we study the following one-shot instance of the
problem for concurrent access. At time zero, r nodes issue
requests to join the queue (and no further requests occur). A
request’s latency is the time needed for the originating node
to inform its predecessor of its identity. A natural measure

of work is the sum of all requests’ latencies. Our analysis
is based on a synchronous network in which nodes do not
crash, messages are not lost, and each communication link
has a fixed latency.

For r concurrent requests, we derive a competitive ratio of
s - logr. This ratio does not depend on the size of the net-
work, and depends only logarithmically on the degree of
concurrency. Informally, the adversary could win over a dis-
tributed protocol like the Arrow protocol in two ways: (1)It
could communicate over the graph, while the Arrow proto-
col communicates over a tree, since it needs to synchronize
the requests. This leads to the factor of stretch in the com-
petitive ratio. (2)It could select the queuing order of the
requests in an optimal way, while the distributed protocol,
with local information could be sub-optimal in its ordering.
For the arrow protocol, this results in a factor of log r in the
competitive ratio. From a practical perspective, we would
like to point out that there are no hidden constants in the
competitive ratio.

Our analysis employs a novel greedy characterization of how
Arrow orders concurrent requests, and yields an intriguing
connection with the nearest neighbor heuristic for the Trav-
eling Salesperson Problem (TSP). A further contribution of
this paper is a new lower bound on the quality of a nearest-
neighbor TSP algorithm on a tree. Rosenkrantz, Stearns,
and Lewis [9] have shown that the nearest neighbor algo-
rithm is a log r approximation algorithm for TSP on a graph
with r nodes which satisfies the triangle inequality. Since a
tree metric obeys the triangle inequality, this result implies
the same logr upper bound for the nearest neighbor algo-
rithm over a tree metric. We show that there exist tree met-
rics on which the greedy algorithm could be off by as much
as a factor of Q(log r/loglog r) from optimal. It follows that
a graph having the stronger tree metric property does not
substantially improve the behavior of the nearest-neighbor
TSP heuristic.

The rest of the paper is organized as follows. Section 2 de-
fines the problem formally and explains the model of compu-
tation. Section 3 gives the competitive analysis of the Arrow
protocol for the one-shot problem. Section 4 contains a dis-
cussion of the competitive ratio and we end with the open
problems and conclusions.

2. MODEL AND PROBLEM DESCRIPTION

We first give an informal presentation of the Arrow protocol
(more detailed descriptions appear elsewhere [4, 6]). The
protocol runs on a fixed spanning tree T of the network
graph G. Each node stores an “arrow” which can point ei-
ther to itself, or to any of its neighbors in T'. The meaning
of the arrow is the following: if a node’s arrow points to it-
self, then that node is tentatively the last node in the queue.
Otherwise, if the node’s arrow points to a neighbor, then the
end of the queue currently resides in the component of the
directory tree containing that neighbor. Informally, except
for the node at the end of the queue, a node knows only in
which “direction” the end of the queue lies.

The protocol is based on path reversal. Initially, one node is
selected to be the head of the queue, and the tree is initial-
ized so that following the arrows from any node leads to that

head. To place itself on the queue, a node v sends a find(v)
message to the node indicated by its arrow, and “flips” its
arrow to point to itself. When a node x whose arrow points
to u receives a find(v) message from tree neighbor w, it
immediately “flips” its arrow back to w. If z is not in the
queue, it forwards the message to u, the prior target of its
arrow. If z is in the queue, then it has just learned that v is
its successor. (In many applications of distributed queuing,
 would then send a message to v, but we do not consider
that message as a part of the queuing protocol itself.) In
[4], the authors prove the correctness of the protocol in an
asynchronous model. They also show that find(v) travels
on a simple path on T from v to its predecessor.

We model the network as a graph G = (V, E) where V is the
set of nodes (processors), and E is the set of edges, represent-
ing reliable FIFO communication links between processors.
Each edge e has a weight w(e) equal to the latency of the
communication link. The Arrow protocol runs on a span-
ning tree T of this graph, which we can choose. Denote the
length of the shortest path between nodes v and v on G by
dc(u,v) and the length of the shortest path between them
on T by dr(u,v). The stretch of the tree T with respect to
G is defined as s = maxy vev dr(u,v)/da(u,v). This ratio
measures how far from optimal a path through the spanning
tree T can be.

We assume a synchronous model for our analysis (although
the protocol does not require synchrony for correctness). A
find() message arriving at a node is processed immediately,
and simultaneously arriving messages are processed in an ar-
bitrary order. For a simple example with concurrent find()
operations, see Figure 1. In practice, the time needed to
service a message is small compared to communication la-
tencies, and because the degree of the spanning tree is typ-
ically small, a node cannot receive very many simultaneous
messages.

In the one-shot problem, at time zero, a subset R C V of
nodes request to join the queue, with r = |R|. Let l4(v)
be the latency of node v to find its predecessor using the
Arrow protocol. The cost of the Arrow protocol is L4 =
> ver la(v). We compare L* to a lower bound L*, which is
the cost of an optimal protocol (with global knowledge and
incurring no synchronization costs). The competitive ratio
of Arrow is defined to be maxgcy {L*/L"}.

3. COMPETITIVE ANALYSIS

In this section, we present an upper bound for L# and a
lower bound for L*. We first analyze L*.

Suppose the find() operations are executed in the order
v1,02,...,Uy, that is, root (the initial head of the queue) is
the predecessor of v1, which precedes v2 and so on. Note
that the order of execution is not necessarily the real time
order of completion. All the queuing is done in parallel, so
v2 might learn about its successor v before v; learns about
V2.

As shown in [4] a find() travels along a simple path on the
tree until it finds the predecessor, and never waits. Hence
la(vi) = dr(vi,root), and la(v;) = dr(vs,vi—1), for i > 1.
‘We have:

find(y)

find(x)

& 0

find(y)

Figure 1: Concurrent find messages.

Initially node v is selected to be the head of the queue. Nodes x and y both place themselves on the queue. Message find(y)
arrives at node u before find(z). Finally, find(z) and find(y) find their respective predecessors y and v in the queue, and z

is the new head of the queue.

L = dr(vi,root) + ZdT(’Ui,’Uifl)- (1)

i=2

We now give a simple characterization of the order v; ... v,.
A greedy walk on tree T over vertex set R = {u1,...,ur}
visits all vertices in R as follows: It starts at the root of
the tree. It then visits the closest unvisited vertex in R,
and keeps doing so until all vertices in R have been visited.
In other words, the vertices of R are visited in the order
V1,... ,Vp With

dr(root,v1) = meizng(TOOt’v) (2)
dr(vi,vi+1) = rréing(vi,v) with v & {v1,... ,v:} (3)

An example of a greedy walk is shown in Figure 2. An
ordering of vertices is greedy if there is a greedy walk that
produces the same ordering. Denote the length of a greedy
walk on tree T over vertex set R by greedy(T, R).

THEOREM 1. The ordering of the Arrow protocol is greedy,
in other words, the ordering of the requests satisfies equa-
tions 2 and 3.

PRrROOF. We first prove Equation 2. Let C' be the set of
all the closest requests to the root, and let d be the distance
between them and the root at time 0. At time 0, requests in
C start traveling towards the root, since the tree is initialized
with arrows pointing towards the root. If two (or more) of
these find() requests meet at a node, then one continues
towards the root and the others are deflected. Therefore at
least one of the requests in C' arrives at the root at time d.
Since no request outside C' can reach the root in time d or
less, we have v1 € C, as in equation 2.

We now prove Equation 3. Denote the root by vg. Con-
sider another starting configuration of the distributed sys-
tem, where the tree is initialized with v: as the root and
there is no request at v1. Call this configuration F; and the
original one (with vo as the root) Fp.

LEMMA 2. No request but vi will be able to distinguish
between the configurations Fo and Fy during execution.

PrOOF. Refer to Figure 3. The only difference between
Fy and Fi is that all arrows on the path between vy and
v1 are in the opposite direction. Assume, for the sake of
contradiction, that there is a find(v;) with ¢ > 1 that is able
to see an arrow pointing towards vo before find(vi) changes
it. Then find(v;) must reach a node u (u between vo and v1)
before find(vi). If so, find(v1) would be deflected towards
v;, which is a contradiction to the assumption that v; is the
first request in the total order. [

Lemma 2 implies that for the purpose of finding the ordering
of {v;|t > 1} we can pretend as if we started in configura-
tion Fy and find(vz2) will find v in the resulting execution.
Applying Equation 2 to Fi, we find that vy is one of the
requests closest to vi. Inductively, we define F; to be the
configuration derived from Fy by removing the requests at
nodes v1,...,v;, and making v; the root of the tree. For
the rest of the requests {vj|j > i}, F; is identical to Fp.
Equation 3 follows. This concludes the proof of Theorem 1.

O

The above Theorem lets us relate L” to the cost of travel-
ing salesperson tours. Let T'SP(G) denote the cost of the
optimal traveling salesperson tour on graph G.

THEOREM 3. Let G& be the complete graph with vertices
R (plus the root) and distance between vertices u and v equal
to dr(u,v). Then greedy(T,R) < logr-TSP(G%)/2.

PrOOF. The Theorem follows directly from Theorem 1
of Rosenkrantz, Stearns, and Lewis [9]. They show that
the nearest neighbor heuristic is at most a factor logarith-
mic in the number of nodes worse than an optimal traveling
salesperson tour on a graph satisfying certain conditions. A
greedy walk costs exactly as much as the nearest neighbor
heuristic without returning to the root.

We note that the graph G% satisfies the three preconditions
of the Theorem, that is, d(u,v) = d(v,u), d(u,v) > 0, and
the triangle inequality d(u,v) + d(v,w) > d(u,w). O

(a) A greedy walk on a tree.

,,3

(b) An Euler tour traversal of the same tree.

Figure 2: A greedy walk on a tree vs Euler tour
Vertices belonging to R are marked solid; every edge has weight 1. The numbers at the vertices indicate the order in which
they are visited. The traversals start at the root, which is the topmost vertex.

Configuration F

Configuration F,

root

Figure 3: The two configurations are identical to every request but v;.

Let Tr denote the smallest subtree of T' containing all the
vertices in R and the root. Note that the optimal TSP on
G?% corresponds to an Euler tour traversal of Tg, as shown
in Figure 2, and then returning back to the root.

Theorems 1 and 3 immediately lead to the following corol-
lary.

COROLLARY 4. L* <logr-TSP(G%)/2.

THEOREM 5. Let Gr be a complete graph on R (plus the
root) with the weight of the edge between two nodes u and v
equal to da(u,v). Then L* > TSP(GRr)/2.

PROOF. Let the set of request nodes be R = {u1,... ,u,},
and assume that the optimal algorithm orders the requests
as Ui, ... ,Uy. Since u;’s queuing is complete only when wu;_1
learns of the identity of w;, the latency of u;’s request is at
least dg(u;i—1,u;) (and the latency of uy’s request is at least
da(root,u1)). Thus, the sum of the latencies of the optimal
algorithm is at least

r
L* > dg(root,u1) + ng(ui,ui_l).
i=2
When finally returning to the root, we have a valid (but
not necessarily optimal) TSP tour with cost C < L* +
da(ur,root). The graph Gr satisfies the triangle inequality,
since its edge weights are lengths of shortest paths between
the vertices on G. Thus, dg(u,,root) < L*, and therefore
TSP(Ggr)<C <2L*. O

COROLLARY 6. L*/L* < s-logr.

PrROOF. The edge between vertices u and v in Gy has
weight dr(u,v) while the corresponding edge in Gg has
weight dg(u,v). The edge on G% can be longer than the
corresponding edge in Gr by a factor of at most s. The
same ratio carries over to the length of the optimal TSP
tours and we have TSP(GR) < s - TSP(GR).

With Corollary 4 and Theorem 5 we get
L* < logr-TSP(GR)/2
logr-s-TSP(Gr)/2

<
< logr-s-L".

O

In the remainder of this section we show that our analysis
is (almost) tight. We will construct a tree, along with a
set of requesting nodes where the greedy (nearest neighbor)
walk is off by Q(logr/loglogr) from optimal. It follows
that having the tree metric does not help (much) over the
more general triangle inequality metric. To the best of our
knowledge, this is a new result in the area of TSP heuristics
as well.

THEOREM 7. There exists a tree T and a set of requesting
nodes R such that L* = Q(log r/loglogr)L*, where r = |R|.

PROOF. The tree T consists of a long “trunk”with many
“branches” of varying lengths on it as shown in the figure

4. Each branch is a single edge; one end of the edge is on
the trunk and the other end is a leaf with a request on it. A
branch of length 0 is a request on the trunk. The root is at
one end of the trunk and the other end is denoted by T. Our
convention is that we move right to get from the root to T.
The distance between two branches is the distance between
the endpoints of the branches which are lying on the trunk.
Similarly, the distance between a vertex v on the trunk and
a branch e is the distance between v and the endpoint of e
that lies on the trunk.

The idea is as follows: by careful placement of branches on
the trunk, we will make the greedy walk traverse the length
of the trunk many times, as shown in figure 5. The trunk
contributes a significant fraction of the weight of the tree,
and we get the length of the greedy walk to be super-linear
in the size of the tree and hence the length of the Euler tour.
The details follow.

Let the length of the trunk be w. Let k = log w/ loglog w
rounded down to the nearest odd number. We have k + 1
sets of branches, By ... By. Each branch in B; is of length 3.
Thus requests in By are on the trunk, while those in By are
at distance 1 from the trunk, and so on. When the context
is clear, we use B; to refer to the set of requests that lie on
the branches in B;.

There is only one branch in By, and this is at the root. Once
we have placed all the branches in B;, we place those in
B;_1 as follows.

Suppose j was odd. Let eir,e2 € B; be two consecutive
branches in B; starting at vertices u; and ug from the trunk
respectively (i.e there are no branches in B; with endpoints
between u; and uz). Suppose u; is closer to the root than
ua. Let | be the least integer such that 2'7" > dr(u1, uz).
We place branches in B;j_; at vertices between w; and u»
at geometrically increasing distances 1,3...2' —1 from u;.
This is shown in figure 6. If the farthest branch from the root
in B; starts at u, then we place branches in B; _; between u
and T at distances 1,3...2" —1 from v until 2" > d(u, T).
We also place a branch in B; ; at T.

Suppose that j was even. The construction is similar to the
above, but the role of T and the root are interchanged. In
other words, if e1,e2 € B; are two consecutive branches in
B; starting at vertices wi; and ug from the trunk respec-
tively and suppose u;1 is closer to the root than wz. Let [
be the least integer such that 2 > dr(u1,u2). We place
branches in Bj_1 at vertices between w1 and w2 at distances
1,3...2" — 1 from ug (not u;). Similarly, we place branches
in B;j_1 between the branch in B; that is closest to the root
and the root, and we place a branch at the root.

LEMMA 8. For any vertex on the trunk, one of the closest
requests in the set of branches {U;>cB;} is in B..

PROOF. Let x be a vertex on the trunk. We show that the
distance to the closest request in B; is lesser than or equal
to the distance to the closest request in B;11. Suppose rp
was the closest request in B;y1, whose branch starts from
the trunk at vertex p.

Consider the following case: p is to the left of = (or p = z)
and i is even (or zero). There is a branch in B; to the right
of p at distance 1 from p (if p is T, then there is a branch
in B; at T). The request on this branch is certainly closer
(or the same distance as) to z than r,.

The other cases, p on the left of z and ¢ odd, and the analo-
gous cases for p to the right of x can be checked similarly. [

THEOREM 9. The following is a greedy walk on T. Start
from the root. Visit all requests in order of the branch size
(i.e. all requests in Bo first, followed by those in By and
so on until By). If i is even (or zero), visit the requests in
B; in order of increasing distance from the root. If i is odd,
then wvisit them in order of increasing distance from T.

PrOOF. We show that visiting all the requests in By in
order of increasing distance from the root is a prefix of a
greedy walk. This portion of the walk ends at T. Then the
proof follows, since after that we can treat T as the root,
and it is a similar situation.

Clearly, the first request visited is the closest request in By
because of Lemma 8. Suppose we are at vertex x on the
trunk. All the requests in By to the left of z have been
visited. None to the right have been. Let ¢o be the closest
request in Bp that is to the right of x. We will show that
co is one of the closest unvisited requests. Going to co next
would be greedy, and this way we visit all the requests in
By in order of increasing distance from the root and reach
T.

To prove that co is one of the closest unvisited requests,
we first show that co is not further away from z than the
closest request in Bi (say c¢1). By Lemma 8, one of the
closest requests to « in the set {U;>1B;} is in Bi, and the
proof follows.

We now show that co is not further away from z than c;.
Note that the request ¢1 could be to the right or left of z,
but ¢p is to the right of . Suppose ¢1 was to the right of x.
Recall that in our construction, to the right of every branch
in By, there is a branch in By at a distance of 1 (or if ¢; is
T, then there’s a branch in By at T). The request on this
branch in By is at least as close to z as ¢;. Now suppose
that ¢1 was to the left of . There are branches in By at
distances 1,3...2" — 1 from ¢; and it can be seen that the
closest request in this set of branches to the right of z is not
further away from z than ¢;. [

We now compute the length of the greedy walk. It traverses
the trunk £+1 times and the the branches at least once each.
Thus, the length of the greedy walk is L* > (k+ 1)w + wgs
where wp is the sum of the weights of all the branches. The
Euler tour traverses each edge of the tree at most twice, thus
L* <2(w+ wa).

Now, we upper-bound wg. The number of branches in B;
is given by the following Lemma.

LeEMMA 10. We have |B—;| < 2log’ w.

Figure 5: Greedy Walk on Tree T

PROOF. By induction: |Bg| = 1, and |Bk_1| = logw +
1. With the induction assumption we have |Bi_;+1| <
2log"~! w. The maximum distance d between two branches
of |Bg_it+1| is less than w, therefore |By_i| < 2log™'w -
logd < 2log ™Y w - logw = 2log w. O

Thus, wp is bounded by,

k k

wp =Y |Bpi|-(k—i) <2 (k—i)log' w < 2

i=0 =0

logF*+t w

(logw —1)?

We use k = log w/ loglogw and get wp < 2w. Thus,

X k+VWw+ws _ (k+ 1w
arpe s > =
L7/L" > Swtws) > 6w Q(log w/ log log w)

This concludes the proof of Theorem 7. [

4. DISCUSSION
4.1 Stretch

While in the general case it may not be possible to find a tree
with low stretch (for a ring with n nodes, the stretch of any
tree is ©(n)), in the typical case, one might find a tree with
a “good” stretch. In particular, if the network itself is a tree,
then we can find a tree with stretch of 1. Finding good trees
to execute the Arrow protocol is studied by Peleg and Reshef
in [8]. They note that if the adversary (who decides where
requests occur) is oblivious, then one can use approximation
of metric spaces by tree metrics [1, 2, 3] to choose a tree with
an expected overhead of O(log nloglogn) for general graphs
and O(logn) expected overhead for constant dimensional
Euclidean graphs.

When combined with results from the previous section, this
gives us an O(lognloglognlogr) competitive ratio for the
Arrow protocol on a general n-node graph with an oblivious
adversary, and r concurrent requests (note that the above
competitive ratio is not a worst-case ratio, but an expected
ratio, the expectation taken over coin flips during the selec-
tion of the spanning tree).

4.2 Special Graphs

Some common graphs do not need the extra log r overhead.
If the network itself is a tree, and there are enough con-
current requests, then we can apply a different analysis to
strengthen our result.

THEOREM 11. Let G be a tree with constant degree c.
Suppose all requests R come from a subtree T of G. Let
h denote the height of the subtree, and let w(e) = 1 for each
edge e in T. Then the cost of the Arrow protocol is bounded
by c". If the number of concurrent requests is significant, i.e.
r = |R| = Q(c"), then the Arrow protocol is asymptotically
optimal, that is, L* = O(L*).

PRrROOF. Let e be an edge in T. Denote the number of
times the greedy walk traverses edge e by t(e). The distance
between an edge e and vertex v is defined to be the distance
between v and the adjacent vertex of e that is closest to v.
Let edge e be at level | (at a distance of I from the root,
0<I<h-1).

Let u; be the request that is visited right after the ith
traversal of edge e, with i = 1,... ,¢(e). Note that node u;
with odd (even) index ¢ has dr(root,u;) > (L) dr(root,e).
Moreover, dT(ui, UH.Q) Z dT(Ui, ui+1). Since dT(ui, ’ui+1) =
dr(ui,e) + 1+ dr(e,uit1), and dr(us, uit2) = dr(ui,e) +
dr(e,ui+2), we conclude that

dr(uit2,e) = dr(ui, uit2) — dr(ui, e)

> dr(ui, wit1) — dr(ui, e)
dr(e,ui+1) + 1.

With dr(e,u1) > 0 we have dr(e,u;) > i — 1. Let k be
the greatest odd number which is not greater than t(e). In
other words, t(e) < k + 1. Using dr(e,ux) > k — 1 we
get t(e) < dr(e,ux) + 2. Let h be the height of the tree.
Since the tree has height h, dr(e,ux) < h —1 — 1, thus
tle)<h—1+1.

Because the tree has constant degree ¢, we know that the
number of edges at level [is bounded by ¢!. The greedy
walk is bounded by the sum of traversals of all the edges in
the tree, that is

h—1
greedy(T,R) < Z tle) < ch(h —1+1)=0(c").
1=0

ecT

branches in B;_;

® -
root

€1

LT

trunk

U T

branches in B;

Figure 6: Placement of branches in B;_; between two branches in B;

Applying Theorem 1 we immediately get L* = O(c"). On
the other hand, the optimal TSP tour has to visit at least r
nodes, and since no two requests are at the same node, we
have L™ > r. The second claim follows. O

If the network G is a linked list, a similar analysis yields:

THEOREM 12. If G is a linked list, then L* < 2L*.

4.3 Other cost measures

We have so far analyzed the sum of latencies (or equivalently,
the average latency of a request). Another cost measure is
the delay till all the requests have been queued up. In the
Arrow protocol, every request takes a simple path on the
tree and never waits. Hence the delay until every request
has been queued is trivially bounded by the diameter of the
tree.

5. CONCLUSIONSAND OPENPROBLEMS

In this paper we presented a competitive analysis of the Ar-
row distributed queuing protocol for the one-shot problem.
The key ideas were a greedy characterization of the behavior
of the protocol under concurrency and a connection to the
nearest-neighbor heuristic for the TSP. We also presented a
constructive lower bound on the worst case performance of
the nearest neighbor heuristic for the TSP on tree metrics.

Open Problems

In this paper, we analyzed the one-shot instance of the Ar-
row protocol where all the requests start at the same time
and yields a competitive ratio of s -logr. The other end of
the spectrum is the sequential case, where the requests are
so far apart in time that the Arrow protocol and an opti-
mal protocol would choose the same queuing order. For the
sequential case, the competitive ratio for Arrow is s. This
leads to the following natural question: can we prove a com-
petitive ratio for the general case, which is neither sequential
nor one-shot?

Trees/requests with greedy walks that are super-linear in the
number of nodes have a rather peculiar shape. It seems that
most “natural” trees/requests have greedy walks that are
only linear in the number of nodes. We pose the following
question: what classes of trees/requests have a linear greedy
walk?

Acknowledgments

We thank Eric Ruppert for helpful discussions and com-
ments about the paper, and the PODC referees for useful
feedback.

6. REFERENCES

[1] Y. Bartal. Probabilistic approximation of metric spaces
and its algorithmic applications. In Proc 37th IEEE
Symposium on Foundations of Computer Science, pages
184-193, 1996.

[2] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pages 161-168,
1998.

[3] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proceedings of the 39th
IEEE Symposium on the Foundations of Computer
Science, 1998.

[4] M. Demmer and M. Herlihy. The arrow directory
protocol. In Proceedings of 12th International
Symposium on Distributed Computing, Sept. 1998.

[5] M. Herlihy. The aleph toolkit: Support for scalable
distributed shared objects. In Workshop on
Communication, Architecture, and Applications for
Network-based Parallel Computing (CANPC), January
1999.

[6] M. Herlihy, S. Tirthapura, and R. Wattenhofer.
Ordered multicast and distributed swap. Operating
Systems Review, 35(1):85-96, January 2001.

[7] M. Herlihy and M. Warres. A tale of two directories:
implementing distributed shared objects in java.
Concurrency - Practice and Ezperience, 12(7):555-572,
2000.

[8] D. Peleg and E. Reshef. A variant of the arrow
distributed directory protocol with low average
complexity. In Proc 26th International Colloquium on
Automata Languages and Programming, July 1999.

[9] D. Rosenkrantz, R. Stearns, and P. Lewis. An analysis
of several heuristics for the traveling salesman problem.
SIAM Journal on Computing, 6(3):563-581, Sept. 1977.

