
Forming Probably Stable Communities with Limited Interactions

Ayumi Igarashi
Kyushu University

Fukuoka, Japan
igarashi@agent.inf.kyushu-u.ac.jp

Jakub Sliwinski
ETH Zurich

Zurich, Switzerland
jsliwinski@ethz.ch

Yair Zick
National University of Singapore

Singapore
zick@comp.nus.edu.sg

Abstract

A community needs to be partitioned into disjoint groups;
each community member has an underlying preference over
the groups that they would want to be a member of. We are in-
terested in finding a stable community structure: one where no
subset of members S wants to deviate from the current struc-
ture. We model this setting as a hedonic game, where players
are connected by an underlying interaction network, and can
only consider joining groups that are connected subgraphs of
the underlying graph. We analyze the relation between net-
work structure, and one’s capability to infer statistically stable
(also known as PAC stable) player partitions from data. We
show that when the interaction network is a forest, one can
efficiently infer PAC stable coalition structures. Furthermore,
when the underlying interaction graph is not a forest, efficient
PAC stabilizability is no longer achievable. Thus, our results
completely characterize when one can leverage the underlying
graph structure in order to compute PAC stable outcomes for
hedonic games. Finally, given an unknown underlying inter-
action network, we show that it is NP-hard to decide whether
there exists a forest consistent with data samples from the
network.

1 Introduction
A professor wants her students to complete a group program-
ming project. In order to do so, students should divide into
project groups with a few students in each; naturally, some
groups will be objectively better than others. However, stu-
dents seldom try to find a group that’s objectively optimal
for them; they would rather join groups that have at least
one or two of their friends. This type of scenario falls into
the realm of constrained coalition formation; in other words,
how should we partition a group of people given that (a) they
have preferences over the groups they are assigned to and
(b) they have limited interactions with one another? Other
scenarios fitting this description include

(a) Seating arrangements at a wedding (or at conference ban-
quets): some guests should absolutely not be seated to-
gether, while others would probably enjoy one another’s
company. However, it should always be the case that
every guest has at least one acquaintance seated at their
table.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(b) Group formation on social media: given a social media
network (e.g. Facebook), people prefer being affiliated
with certain groups; however, they are limited to joining
groups that already contain their friends.

Constrained coalition formation problems are often modeled
as hedonic games. Hedonic games formally capture a simple,
yet compelling, paradigm: how does one partition players
into groups, while factoring individual players’ preferences?
The literature on hedonic games is primarily focused on find-
ing “good” coalition structures — partitions of players into
disjoint groups. A set of coalition structures satisfying cer-
tain desiderata is called a solution concept. A central hedonic
solution concept is coalitional stability: given a coalition
structure π, we say that a set of players (also known as a
coalition) S can deviate from π if every i ∈ S prefers S to
its assigned group under π; a coalition structure π is stable if
no coalition S can deviate. In other words, S contains at least
one player i who prefers its current coalition (denoted π(i))
to S. The set of stable coalition structures — also known
as the core of the hedonic game — may be empty; what’s
worse, even when it is known to be non-empty, finding a
stable coalition structure may be computationally intractable.
Moreover, efficient algorithms for finding stable coalition
structures often assume full knowledge of the underlying he-
donic game; that is, in order to work, the algorithm needs to
have either oracle access to player preferences (i.e. queries of
the form ‘does player i prefer coalition S to coalition T ?’), or
structural knowledge of the underlying preference structure
(e.g. some concise representation of player preferences that
one can leverage in order to obtain a poly-time algorithm).

Neither assumption is realistic in practice: eliciting user
preferences is notoriously difficult, especially over combina-
torially complex domains such as subsets of players. If one
forgoes preference elicitation and opts for mathematically
modeling preferences (e.g. assuming that users have additive
preferences over coalition members), it is not entirely obvi-
ous what mathematical model of user preferences is valid.
This leads us to the following natural question: can we find
a stable coalition structure when player preferences are un-
known? Recent works (Balcan, Procaccia, and Zick 2015;
Balkanski, Syed, and Vassilvitskii 2017; Sliwinski and Zick
2017) propose a statistical approach to stability in collab-
orative environments. In this framework, one assumes the
existence of user preference data over some coalitions, which

is then used to construct probably approximately stable out-
comes (the notion is referred to as PAC stability). In this
paper, we explore the relation between structural assump-
tions on player preferences, and computability of PAC stable
outcomes.

Our contribution We assume that there exists some un-
derlying interaction network governing player preferences;
that is, players are nodes on a graph, and only connected
coalitions are feasible. Within this framework, we show that
if player preferences are restricted by a forest, one can com-
pute a PAC stable outcome using only a polynomial number
of samples. Surprisingly, even if the underlying forest struc-
ture is not known to the learner, PAC stabilizability still holds,
despite the fact that it may be computationally intractable to
find an approximate forest structure that is likely consistent
with the true interaction graph. In contrast, we show that it
is impossible to find a PAC stable outcome even if the graph
contains a single cycle. The latter result is constructive: we
show that whenever the underlying interaction graph does
contain a cycle, one can construct a sample distribution for
which it would be impossible to elicit a PAC stable outcome.

Our positive result for forests is interesting in several re-
spects. First, while one can find PAC stable outcomes in
polynomial time, computing stable outcomes for hedonic
games on forests is computationally intractable (Igarashi and
Elkind 2016); second, unlike (Sliwinski and Zick 2017), we
do not require that player preferences are provided in the
form of numerical utilities over coalitions. This not only
makes our results more general, but also more faithful to the
problem we model, which assumes ordinal information about
player preferences, rather than cardinal utilities. Finally, in
Section 5, we prove a non-trivial technical result on learning
forest structures that is of independent interest. Briefly, we
study the following problem: we are given samples of subsets
of graph vertices, each labeled either ‘connected’ or ‘discon-
nected’; we need to decide whether there exists some forest
T ∗ that is consistent with the sample — i.e. all connected
sets of vertices are connected under T ∗ and all disconnected
sets are not. We show that when all of our vertex samples are
connected (i.e. we do not observe any disconnected compo-
nents), it is possible to efficiently learn an underlying forest
structure (if one exists); on the other hand, if one assumes
that both connected and disconnected sets are presented to
the learner, it is computationally intractable to decide whether
there exists a forest, or even a path, that is consistent with the
samples.

Related work There exists a rich body of literature
studying hedonic games from an economic perspective (e.g.
(Banerjee, Konishi, and Sönmez 2001; Bogomolnaia and
Jackson 2002)). More recently, the AI community has be-
gun studying both computational and analytical proper-
ties of hedonic games (see e.g. (Aziz and Brandl 2012;
Deineko and Woeginger 2013; Gairing and Savani 2010;
Peters and Elkind 2015), and (Aziz and Savani 2016;
Woeginger 2013) for an overview). Interaction networks
in cooperative games were first introduced by Myerson
(1977). The relation between graph structure and stability
in the classic cooperative game setting is also relatively
well-understood. Demange (2004) shows that if the un-

derlying interaction network is a forest, then the core is
not empty; further studies (Bousquet, Li, and Vetta 2015;
Meir et al. 2013) establish relations between approximate
stability and the underlying graph structure, while Chalki-
adakis, Greco, and Markakis (2016) study the computational
complexity of finding core outcomes in graph restricted en-
vironments. Igarashi and Elkind (2016) establish both the
existence of stable coalition structures in hedonic games over
forests, as well as the computational intractability of finding
stable coalition structures; Peters (2016) studies the relation
between hedonic solution concepts and the treewidth of the
underlying interaction graph.

Several works study learning based game-theoretic solu-
tion concepts. Sliwinski and Zick (2017) introduce PAC sta-
bility in hedonic games, and analyze several common classes
of hedonic games. Other works on learning and game theory
include learning in cooperative games (Balcan, Procaccia,
and Zick 2015; Balkanski, Syed, and Vassilvitskii 2017),
rankings (Balcan, Vitercik, and White 2016), auctions (Bal-
can et al. 2012; Balcan, Sandholm, and Vitercik 2018;
Morgenstern and Roughgarden 2016) and noncooperative
games (Fearnley et al. 2013; Sinha, Kar, and Tambe 2016).

Full version. An extended version with full proofs is avail-
able on arXiv (Igarashi, Sliwinski, and Zick 2018).

2 Preliminaries
Throughout this paper, vectors are denoted by ~x, and sets
are denoted by uppercase letters; given a value s ∈ N, we
set [s] = {1, . . . , s}. A hedonic game is given by a pair
〈N,�〉, where N = [n] is a finite set of players, and �=
(�1, . . . ,�n) is a list of preferences players in N have over
subsets of N (also referred to as coalitions); in more detail,
for every i ∈ N , we write Ni = {S ⊆ N | i ∈ S };
�i describes a complete and transitive preference relation
over Ni. For each i ∈ N , let �i denote the strict preference
derived from �i, i.e., S �i S′ if S �i S′, but S′ 6�i S.
An outcome of a hedonic game is a coalition structure, i.e.,
a partition π of N into disjoint coalitions; we denote by
π(i) the coalition containing i ∈ N . A solution concept is a
mapping whose input is a hedonic game 〈N,�〉, and whose
output is a (possibly empty) set of coalition structures. The
core is the most fundamental solution concept in hedonic
games. First, we say that a coalition S strongly blocks a
coalition structure π if every player i ∈ S strictly prefers
S to its current coalition π(i), i.e. S �i π(i). A coalition
structure π is said to be core stable if no coalition S ⊆ N
strongly blocks π.

2.1 Interaction Networks
Given an undirected graph G = 〈N,E〉 whose nodes are the
player set, we restrict the space of feasible coalitions to be
the set of connected subsets of G; we denote by FE the set
of feasible coalitions. Intuitively, we restrict our attention to
coalition structures where all group members form a social
subnetwork of the underlying interaction graph. Note that
when G is a clique, all coalitions are feasible, and the result
is a standard (unrestricted) hedonic game. From now on, we
define a hedonic graph game as the tuple 〈N,�, E〉; here, N

is the set of players, � their preference relations, and E the
edges of the underlying interaction network. We focus our
attention only on core stable coalition structures that consist
of feasible coalitions.

In what follows, it is useful to express player preferences
in terms of cardinal utilities. In other words, player i assigns
a value vi(S) ∈ R to every coalition S ∈ Ni; we write a
hedonic game as 〈N,V〉 where V is a collection of functions
vi : Ni → R for each i ∈ N . This representation allows
us to seamlessly integrate ideas from PAC learning into the
hedonic games model, and is indeed quite common in other
works studying hedonic games. However, as we later show,
our main result (Theorem 4.1) still holds when we transition
from a utility-based cardinal model, to a preference-based
ordinal model.

2.2 PAC Learning
We provide a brief introduction to PAC learning1. The basic
idea is as follows: we are given an unknown function v :
2N → R (a target concept in the language of PAC learning)
that assigns values to subsets of players. In addition, we
are given a set of m samples ((S1, v(S1)), . . . , (Sm, v(Sm))
where Sj ⊆ N and v(Sj) is the valuation of v over Sj ; we
wish to estimate v on subsets we did not observe. We assume
that v belongs to a hypothesis classH (say, we know that v
is an additive valuation). Our goal is to output a hypothesis
v∗ ∈ H (e.g. if v is additive, v∗ should be as well) that is
likely to match the outputs of v on future observations drawn
from some distribution D. More formally, a hypothesis v∗
is ε approximately correct w.r.t a probability distribution D
over 2N and an unknown function v if

Pr
S∼D

[v∗(S) 6= v(S)] < ε.

A learning algorithm A takes as input m samples

(S1, v(S1)), (S2, v(S2)), . . . , (Sm, v(Sm))

drawn i.i.d. from a distribution D over 2N , and two parame-
ters ε, δ > 0.

A class of functions H is (ε, δ) PAC (probably approxi-
mately correctly) learnable if there exists an algorithmA that
for any v ∈ H and probability distribution D over 2N , with
probability of at least 1− δ, it outputs a hypothesis v∗ that is
ε approximately correct with respect to D and v. If this holds
for any ε, δ > 0, H is said to be PAC learnable; moreover,
if the running time of A, and the number of samples m are
polynomial in 1

ε , log 1
δ and n,H is said to be efficiently PAC

learnable.
The value δ is the confidence parameter: intuitively, it is

the probability that the random samples drawn from D do
not accurately portray the true sample distribution; for ex-
ample, if D is the uniform distribution, then it is possible
(though unlikely) that we draw the same subset in every one
of our m samples. The value ε is called the error parame-
ter: it is the likelihood that our hypothesis v∗ does not agree

1What we show here is but one of many variants on the theory
of PAC learning. There are many excellent sources on this classic
theory; we refer our reader to (Anthony and Bartlett 1999; Kearns
and Vazirani 1994; Shashua 2009)

with the target concept v. Not all hypothesis classes are ef-
ficiently PAC learnable; learnability is inherently related to
the complexity of the hypothesis class. The complexity of
real-valued functions is commonly measured using the notion
of pseudo dimension (see e.g. Chapter 11 of (Anthony and
Bartlett 1999)). Given a list of sets S1, . . . , Sm ⊆ N , and
corresponding values r1, . . . , rm ∈ R we say that a class
of functionsH can pseudo-shatter (Sj , rj)

m
j=1 if for any la-

beling `1, . . . , `m ∈ {0, 1}, there is some v ∈ H such that
v(Sj) ≥ rj iff `j = 1. The pseudo-dimension ofH, denoted
Pdim(H) is

max{m | ∃ (Sj , rj)
m
j=1 that can be shattered byH}.

The following well-known theorem relates the pseudo-
dimension and PAC learnability.

Theorem 2.1 ((Anthony and Bartlett 1999)). A class
of functions H is efficiently (ε, δ) PAC learnable us-
ing m = poly(Pdim(H), 1ε , log 1

δ) samples if there
exists an algorithm such that given m samples
(S1, v(S1)), (S2, v(S2)), . . . , (Sm, v(Sm)) drawn i.i.d.
from a distribution D, it outputs v∗ ∈ H consistent with the
sample, i.e. v∗(Sj) = v(Sj) for all sampled Sj , and runs in
time polynomial in 1

ε , log 1
δ and m. Furthermore, if Pdim(H)

is superpolynomial in n,H is not PAC learnable.

In other words, in order to establish the PAC learnabil-
ity of some hypothesis class, it suffices that one shows that
its pseudo dimension is low, and that there exists some effi-
cient algorithm that is able to output a hypothesis v∗ which
matches the outputs of v on all samples. We note that even
if an efficient consistent algorithm does not exist (e.g. if the
problem of matching a hypothesis to the samples is computa-
tionally intractable), a low pseudo dimension is still desirable:
it implies that the number of samples needed in order to find
a good hypothesis is polynomial.

2.3 PAC Stabilizability
When studying hedonic games, one is not necessarily inter-
ested in eliciting approximately accurate user preferences
over coalitions using data; in our case, we are interested
in identifying core stable coalition structures. Intuitively, it
seems that the following idea might work: first, infer player
utilities from data and obtain a PAC approximation of the
original hedonic game; next, find a coalition structure that sta-
bilizes the approximate hedonic game. This approach, how-
ever, may be overcomplicated: first, it may be impossible to
PAC learn player preferences from data (this depends on the
hypothesis class); moreover, computing a core coalition struc-
ture for the learned game may be computationally intractable.
(Sliwinski and Zick 2017) propose learning a stable outcome
directly from data. They introduce a statistical notion of core
stability for hedonic games, which they term PAC stability
(this term was first used by (Balcan, Procaccia, and Zick
2015) for cooperative transferable utility games).

We say that a partition π is ε-PAC stable w.r.t. a probability
distribution D over 2N if

Pr
S∼D

[S strongly blocks π] < ε.

The inputs to our learning algorithms will be samples

(S1, ~v(S1)), (S2, ~v(S2)), . . . , (Sm, ~v(Sm)),

where S1, . . . , Sm ⊆ N , and ~v(Sj) is a vector describing
players’ utilities over Sj ; that is, ~v(Sj) = (vi(Sj))i∈Sj .

Given an unknown hedonic game 〈N,V〉 belonging to
some hypothesis class H, a PAC stabilizing algorithm A
takes as input m sets S1, . . . , Sm sampled i.i.d. from a distri-
bution D, and players’ preferences over the sampled sets; in
addition, it receives two parameters ε, δ > 0. The algorithm
A PAC stabilizes H, if for any hedonic game 〈N,V〉 ∈ H,
distribution D over 2N , and parameters ε, δ > 0, with proba-
bility ≥ 1− δ, A outputs an ε-PAC stable coalition structure
if it exists; again, if the running time of the algorithm A and
the number of samples, m, are bounded by a polynomial in
n, 1

ε and log 1
δ , then we say that A efficiently PAC stabilizes

H. Similarly, we say thatH is (efficiently) PAC stabilizable
if there is some algorithm A that (efficiently) PAC stabilizes
H.

3 Learning Hedonic Graph Games
In what follows we consider the following hypothesis class.

Definition 3.1. For an undirected graph G = 〈N,E〉, let
HG be the class of all hedonic games 〈N,V〉 where for each
player i ∈ N , vi({i}) = 0 and player i strictly prefers its
singleton to any disconnected coalition S ∈ Ni \ FE , i.e.,
vi(S) < 0 for all S ∈ Ni \ FE .

We first present a baseline negative result: fixing a forest
G, the hypothesis class, HG is not efficiently PAC learn-
able. When referring to the PAC learnability of any class
of hedonic games, we mean inferring some utility function
v∗i : 2N → R for all i ∈ N that PAC approximates the true
utilities of players in N . This approximation guarantee can
be interpreted in both an ordinal and cardinal manner. If we
are given player i’s ordinal preferences, this simply means
that v∗i is consistent with the ordinal preferences; if we are
given player i’s cardinal utility function vi, v∗i should be a
PAC approximation of vi. As Theorem 3.2 shows, even when
we are given additional information about the underlying
graph interaction network, players’ preferences are not PAC
learnable.

Theorem 3.2. For any graphG = 〈N,E〉with exponentially
many connected coalitions, the class HG is not efficiently
PAC learnable.

Proof. Recall that FE is the set of all feasible coalitions
over G = 〈N,E〉; by assumption, |FE | is exponential. Let
Hi be the set of all possible utility functions vi : Ni → R
satisfying vi({i}) = 0 and v(S) < 0 for all disconnected
coalition S ∈ Ni \ FE . The utility player i derives from
feasible coalitions in G is unrestricted; in particular, one
cannot deduce anything about the utility of some feasible
coalition S ∈ FE , based on other feasible coalitions’ utilities.
This immediately implies that the set FE can be pseudo-
shattered byHi. Hence Pdim(Hi) is at least exponential, and
by Theorem 2.1,Hi is not efficiently PAC learnable.

As an immediate corollary, forest interaction structures
do not admit PAC learnable preference structures in general;
this is true even if G is a star graph over n players, since the
number of feasible coalitions is exponential in n.

Corollary 3.3. Let G be a star graph over n players; then
HG is not PAC learnable.

Proof. For a star with n nodes, any coalition containing the
center of the star is feasible, hence it has 2n−1 feasible coali-
tions. By Theorem 3.2, hedonic games on forests are not PAC
learnable.

The reason that hedonic games with forest interaction
structures are not PAC learnable is that they may have expo-
nentially many feasible coalitions; this is also the reason
that finding a core stable coalition structure for hedonic
games with forest interaction structures is computationally in-
tractable (Igarashi and Elkind 2016). However, we now show
how one can still exploit the structural properties of forest
graph structures to efficiently compute PAC stable outcomes.

4 PAC Stabilizability of Hedonic Graph
Games

Having established that hedonic games with a forest inter-
action structure are not, generally speaking, PAC learnable,
we turn our attention to their PAC stabilizability. We divide
our analysis into two parts. We begin by assuming that the
underlying interaction graph structure G is known to us; in
other words, we know that our game belongs to the hypothe-
sis classHG. In Section 5, we show how one can forgo this
assumption.

Theorem 4.1. If G = 〈N,E〉 is a forest, HG is efficiently
PAC stabilizable.

Proof. We claim that Algorithm 1 PAC stabilizes HG. It is
related to the algorithm introduced in Demange (2004) used
to find core stable outcomes for forest-restricted hedonic
games2 in the full information setting. Intuitively, instead of
identifying the guaranteed coalition for each player precisely,
Algorithm 1 approximates it. If the input graph 〈N,E〉 is a
forest, we can process each of its connected components
separately, so we can assume that 〈N,E〉 is a tree.

We first provide an informal description of our algorithm,
followed by pseudocode. The algorithm first transforms
〈N,E〉 into a rooted tree with root r by orienting the edges
in E towards the leaves. For every player i starting from the
bottom to the top, the algorithm identifiesBi - a coalition con-
taining i, the best for i observed in the samples that is entirely
contained in i’s subtree, such that others inBi prefer it to their
own best guaranteed coalition; in other words, Bi �j Bj for
all j ∈ Bi. Having identified Bi for every i ∈ N , players are
partitioned according to the Bi’s from top-down. The main
concern is to ensure that Bi is a good approximation of its

2Demange (2004) presents the algorithm for non-transferable
cooperative utility games on trees where each coalition has a choice
of action. A hedonic game is a special case of a non-transferable
utility game where each coalition has a unique action.

full-information counterpart; this is guaranteed by taking a
sufficiently large sample size m = dnε log n

δ e.
In what follows, we assume an orientation of the trees in

G, with arbitrary root nodes. Fixing the orientation, we let
desc(i) be the set of descendants of i (we assume that i ∈
desc(i)). For each coalition S ⊆ N , we denote by child(S)
the set of children of S, namely,

child(S) = { i ∈ N \ S | i’s parent belongs to S }.

The height of a node i ∈ N is defined inductively as follows:
height(i) := 0 if i is a leaf, i.e., desc(i) = {i}, and

height(i) := 1 + max{ height(j) | j ∈ desc(i) \ {i} },

otherwise.

Algorithm 1 An algorithm finding a PAC stable outcome for
forest-restricted games

Input: set S of m = dnε log n
δ e samples from D

1: Make a rooted tree with root r by orienting all the edges
in E towards the leaves.

2: Initialize Bi ← ∅ and π(i) ← ∅ for each i ∈ N .
3: for t = 0, . . . , height(r) do
4: for each node i ∈ N with height(i) = t do
5: set S∗ = {S ∈ S ∩ FE | i ∈ S ⊆

desc(i) ∧ vj(S) ≥ vj(Bj), for all j ∈ S\{i} }∪{{i}}

6: choose Bi ∈ argmax{ vi(S) | S ∈ S∗ }
7: set π(i) ← {Bi} ∪

⋃
{π(j) | j ∈ child(Bi) }

8: end for
9: end for

Given player i, let Bi be the collection of coalitions Bj
for every descendant j 6= i of i, i.e., Bi = {Bj | j ∈
desc(i) \ {i} }. For each i ∈ N and each coalition X ⊆ N ,
we let PBi(X) mean that i ∈ X ⊆ desc(i), X is connected,
and every other player j in X \ {i} weakly prefers X to Bj .
Now, we define a modified preference order for player i,�Bi ,
that devalues any coalition X for which PBi(X) does not
hold.

• If PBi(X) and PBi(Y), then X �Bi Y ⇐⇒ X �i Y
• If PBi(X) but ¬PBi(Y), then X �Bi Y
• If ¬PBi(X), then ∀Y : Y �Bi X

Given Bi and a distribution D, we say that a coalition X
is top- εn for player i, if

Pr
S∼D

[S �Bi X] ≤ ε

n
.

Trivially, for every Bi the probability of sampling a top-
ε
n coalition for player i from D is at least ε

n ; moreover, if
Pr
S∼D

[PBi(S)] ≤ ε
n , then any coalition is top- εn .

Intuitively, Bi approximates the best coalition i can form
with members of the subtree rooted at i. Algorithm 1’s ob-
jective is to ensure that sampling a coalition S from D such
that PBi(S)∧S �i Bi is unlikely, namely, the probability of
seeing S fromD such that S is better for the highest node i in
S than Bi, and every other player in S prefers it to their Bj ,

is smaller than ε; this is done by examining enough coalitions
so as to see some top- εn coalition for every player.

Examine what happens if Bi containing Bj’s for i’s de-
scendants is fixed upfront, i.e. not dependent on the sample.
Let us bound the probability that for i, none of the coalitions
in S are top- εn :(

1− ε

n

)m
=
(

1− ε

n

)dnε log nδ e
(1)

≤
((

1− ε

n

)n
ε

)log nδ

<

(
1

e

)log nδ

<
δ

n

Note that Inequality (1) is true irrespective of what Bi is.
Taking a union bound, the probability that there is some
player i such that there is no top- εn coalition for i in S is at
most δ. Note that S∗ can end up not containing any coalition
(line 5). But then with high confidence, as a special case of
the above consideration, every coalition is top- εn , and the
algorithm can pick {i}.

Recall that in an actual run of the algorithm the sample S
is drawn, and for every descendant j of i, Bj is computed
based on S, and then Bi is computed based on the same
sample. One can ask whether some dependence between the
computation of Bi and the Bj’s does not invalidate Inequal-
ity (1). This potential problem can be easily solved by taking
a larger number of samples: if we take m = dn

2

ε log n
δ e sam-

ples, we can just use n
ε log n

δ samples to compute each Bi
and maintain complete independence in the samples.

In order to see the smaller sample size used in Algorithm 1
provides the same guarantee, consider an equivalent reorder-
ing of the computation of Bi and Bj’s: first, for every i ∈ N ,
determine the number k of connected coalitions S in the sam-
ple such that i will be the highest node in S. Then, draw the
other m− k coalitions and compute Bj’s for every descen-
dant j of i; finally, based on this, determine the family Bi.
Note that regardless of what Bi is, each of the undetermined,
independently drawn k coalitions has probability of at least
ε
n to be top- εn for i. Hence, the inequality (1) holds even if Bi
and Bi are computed based on the same sample of coalitions
S.

We are now ready to prove that the coalition structure
outputted by Algorithm 1 returns a PAC stable outcome π(r).
We observe that any coalition included in the returned π(r)

is a Bi for some i. Note that for every j ∈ Bi, we have that
vj(Bi) ≥ vj(Bj) (line 5). Now, consider any coalition X
that strongly blocks π(r); let i = argmaxj∈Xheight(j). Since
X strongly blocks π(r),

vj(X) > vj(π
(r)(j)) ≥ vj(Bj)

for all players j ∈ X . In particular, vi(X) > vi(Bi). By
construction of Bi and Inequality (1), Bi is top- εn for i; that
is,

ε

n
> Pr
S∼D

[vi(S) > vi(Bi)] ≥ Pr
S∼D

[S = X];

thus the probability of drawing a coalition such as X
from D, i.e. strongly blocking π(r) and having i =
argmaxj∈Xheight(j), is less than ε

n . Taking a union bound
over all players,

Pr
X∼D

[X strongly blocks π(r)] < ε;

this guarantee holds with confidence 1− δ.

We conjecture that a similar argument can imply a stronger
statement. That is, we can replace ‘strongly block’ in the
definition of PAC stabilizability with ‘weakly block’ and still
obtain PAC stabilizability on trees. (A coalition S weakly
blocks a coalition structure if every player weakly prefers
S to their current coalition and at least one player in S has
a strict preference) We note that in the full information set-
ting, a strict core outcome does not necessarily exist on trees
(Igarashi and Elkind 2016).
Remark 4.2 (From Cardinal to Ordinal Preferences). Note
that step 6 of the Algorithm 1 is the only step that refers to
the numerical representation of agent preferences vi. The
algorithm chooses a coalition with maximal utility value
vi out of some set of possible coalitions; in particular, the
only thing required for the successful implementation of
Algorithm 1 is players’ ranking of coalitions in the sample. In
other words, the particular numerical representation of player
preferences plays no role. This is a significant departure from
the algorithms devised by (Sliwinski and Zick 2017), where
the type of utility representation functions used was crucial
for PAC stability.

Next, we show that Theorem 4.1 is ‘tight’ in the sense that
if the graph G contains a cycle,HG is not PAC stabilizable.

Theorem 4.3. Given a non-forest graph G = 〈N,E〉, the
classHG is not PAC stabilizable.

Proof Sketch. Since G is not a forest, there is a cycle in G.
Without of loss of generality, letC = {1, 2, . . . , k} be a cycle
with {i, i+1} ∈ E for all i = 1, 2, . . . , k−1, and {k, 1} ∈ E.
Let S1 = {1, 2}, S2 = {2, 3}, S3 = {3, . . . , k, 1}. Suppose
D is the uniform distribution on {S1, S2, S3} and that the
following holds:

S1 �1 S3, S2 �2 S1, S3 �3 S2. (2)

In this case, nothing beyond (2) can be deduced about the
game by examining samples from D. Consider the following
games satisfying (2):

• A game Γ1 where every player i ∈ {1, 2, 3} strictly prefers
{i} to any other coalition, and any non-singleton coalition
is less preferred than Si and Si−1, namely, {i} �i Si �i
Si−1 �i S′ for any S′ ∈ Ni \ {Si, Si−1, {i}}. Here we
set S0 = S3. Every player j ∈ S3 strictly prefers S3 to
any other coalition.

• A game Γ2 where every player in C strictly prefers
C = {1, 2, ..., k} to any other coalition, and every player
i ∈ {1, 2, 3} strictly prefers Si to any coalition other than
C. Every player j ∈ S3 strictly prefers S3 to any other
coalition other than C.

Suppose towards a contradiction that there is an algorithm
A that returns a 1

3 -PAC stable partition π. Then, for π to be
resistant against deviations supported by D, π has to include
{1} or {2} or {3} for the first game, and C for the second
game, which implies that it is impossible to achieve ε < 1

3
with any confidence 1− δ > 0.

5 Inferring Tree Interaction Networks from
Data

Until now, we assume that the underlying interaction network
G was given to us as input; this is, naturally, an assumption
that we would like to forgo. Suppose the underlying graph is
a forest T = 〈N,E〉, and consider the question of whether
it is possible to infer a forest T ∗ = 〈N,E∗〉 that agrees with
the original graph with high probability. Let Tn be the set of
all possible trees over n vertices, and let Fn be the set of all
possible forests; Fn is our hypothesis class for guessing an
approximate forest. More formally, Fn consists of functions
fG that given an n vertex forestG, output 1 if a set of vertices
is connected, and 0 otherwise. By Cayley’s formula:

|Tn| = nn−2 (3)

Any forest can be obtained by choosing a tree, and then
choosing a subset of its edges, hence:

|Fn| ≤ |Tn|2n−1 = nn−22n−1 (4)

We observe the following variant of Theorem 2.1 for finite
hypothesis classes.
Theorem 5.1 (Anthony and Bartlett (1999)). Let C be a
finite hypothesis class where log |C| is polynomial in n. If
there exists a polynomial time algorithm that for any v ∈ C,
and samples

〈S1, v(S1)〉 . . . , 〈Sm, v(Sm)〉

finds a function v∗ ∈ C consistent with the samples, i.e.,
v∗(Sj) = v(Sj) for each j = 1, 2, . . . ,m, then C is effi-
ciently PAC learnable.

Since log |Fn| < 2n log n, all we need is to establish
the existence of an efficient algorithm to compute a forest
consistent with a given sample. More formally, let T be an
unknown forest; we are given a set of m subsets of vertices
labeled ’connected’ or ’disconnected’ according to T , can
we find a forest that is consistent with the labeling? First,
we consider an easier question and assume all subsets are
connected. The answer to this question is affirmative, and
appears in Conitzer, Derryberry, and Sandholm (2004).
Theorem 5.2 (Conitzer, Derryberry, and Sandholm (2004)).
Let T = 〈N,E〉 be a tree. Given a list S1, . . . , Sm of con-
nected vertices in T , there exists a poly-time algorithm that
outputs a tree T ∗ where every subset Sj is connected in T ∗.

Theorem 5.2 pertains to trees, but immediately generalizes
to forests by noting that if T is a forest, any tree whose
edgeset is a superset of E is a valid solution as well, hence
the same algorithm solves the problem.

In other words, if one only observes subsets of feasible
coalitions and players’ preferences over them, it is possible
to find a forest structure consistent with the samples.
Corollary 5.3. If the probability distribution D supports
only connected subgraphs, Fn is PAC learnable over D.

Corollary 5.3 is immediately implied by (4), Theorems 5.1
and 5.2. Theorem 4.1 assumes that the underlying interaction
graph is known to us. Leveraging Corollary 5.3, we now show

that this assumption can be forgone; that is, it is possible to
PAC stabilize a hedonic game whose underlying interaction
graph is a forest, even if the forest structure is unknown to us.
Note that we established that the forest structure can be PAC
learned efficiently only if the sample contains exclusively
connected coalitions, yet we do not have this requirement for
PAC stabilizability.
Theorem 5.4. Let H∗ =

⋃
{HG | G is a forest } be the

class of all hedonic games whose interaction graph is a
forest; thenH∗ is efficiently PAC stabilizable.

Theorem 5.2, while interesting in its own right, provides
us with only a partial understanding of the problem: if all
one is given is positive examples, it is possible to find a tree
structure that is consistent with all connected coalitions. In
what follows, we study a more general question of whether
we can find a forest consistent with both positive (connected
coalitions) and negative (disconnected coalitions) examples.
As we show in Theorem 5.5, introducing the possibility of
negative examples makes the problem computationally in-
tractable, even if we restrict ourselves to the hypothesis class
of paths. Hence, forests cannot be PAC learned efficiently.
It is interesting to note that Theorem 5.4 could be achieved
despite this negative result.

5.1 The Complexity of Constructing Consistent
Trees

We now argue that deciding whether there exists a forest
consistent with both positive and negative examples is com-
putationally intractable; in fact, this claim holds even when
the desired forest is a path. This result stands in sharp con-
trast to known computational results in the literature; in-
deed, there are several efficient algorithms for such restricted
networks when only connected coalitions are taken into ac-
count 3 (Booth and Lueker 1976; Korte and Möhring 1987;
Corneil, Olariu, and Stewart 1998; Fulkerson and Gross 1965;
Habib et al. 2000; Kratsch et al. 2006; Hsu and Ma 1999).

Specifically, we are given m samples of node subsets
S1, . . . , Sm; each subset Sj is labeled by a function `G such
that

`G(Sj) =

{
1 if Sj is connected in G
0 otherwise.

(5)

We say that a graph G∗ = 〈V,E∗〉 is consistent with G =
〈V,E〉 over the samples S = {S1, . . . , Sm} ⊆ V if and
only if `G∗(Sj) = `G(Sj) for all j ∈ [m]. Our objective
is to find a forest T ∗ such that `T∗(Sj) = `G(Sj) for all j.
Theorem 5.5 states that it is NP-hard to determine whether
such a graph exists.
Theorem 5.5. Given a family of subsets S ⊆ 2N such that
each set in S is of size at most 3, and a mapping ` : S →
{1, 0}, it is NP-hard to decide whether there exists a path
T ∗ = 〈N,E〉 such that `T∗(S) = `(S) for each S ∈ S . The
result also holds when T ∗ is a forest.

3The problem of deciding the existence of a path consistent with
connected coalitions is equivalent to the problem of determining
whether the intersection graph of a hypergraph is an interval, which
is also closely related to testing the consecutive ones property of a
matrix (see, e.g. the survey by Dom (2009) for more details).

To conclude, if one allows observations of both connected
and disconnected components, finding a forest consistent
with samples is computationally intractable. We note that this
does not preclude the existence of efficient heuristics com-
puting consistent forest structures in practice: as previously
mentioned, inferring PAC approximations of forest structures
has a low communication complexity (Theorem 5.1); thus,
given access to strong MILP solvers, we believe that identi-
fying consistent forest structures should be easy in practice.

6 Conclusions and Future Work
This work establishes a strong connection between interaction
structure and the ability to guarantee approximate stability in
hedonic games; simply put, we show that if one only knows
the underlying interaction structure and nothing more, then
one can only obtain PAC stable outcomes if the underlying
interaction structure is very well-behaved, i.e. a forest. This
result seems to imply a natural tradeoff: our work assumes
very little knowledge about underlying player preferences,
and thus requires a lot of structure; Sliwinski and Zick (2017)
make no assumptions on the underlying interaction network,
but assume a more restricted player preference model. It
would be interesting to explore ‘intermediate’ cases; that
is, suppose we make some structural assumptions on the
interaction network, what classes of player preferences admit
PAC stable outcomes?

We make use of tools from computational learning theory
in order to analyze hedonic coalition formation. We believe
that as a research paradigm, this is a useful and important
methodological approach. Hedonic games (and cooperative
games in general) have, by and large, seen sparse applica-
tion. Other game-theoretic methods have been successfully
applied by taking a problem-oriented approach (e.g. stable
matching for resident-hospital allocation (Kleinberg and Tar-
dos 2006, Chapter 1.1), or Stackelberg games in the security
domain (Tambe 2011)); a concrete problem modeled and
solved by a hedonic game framework has not yet been identi-
fied, to the best of our knowledge; this is despite the wealth
of potential application domains, and rich data environments
available nowadays (in particular, social network datasets
would be particularly agreeable to the type of analysis pre-
sented in this work). Our work makes a fundamental connec-
tion between data, community structure, and game-theoretic
solution concepts; a connection that we hope will result in a
more applicable model of strategic collaborative behavior.

Acknowledgements. We thank reviewers at AAAI-19 for
helpful feedback. Jakub Sliwinski was supported by a Singa-
pore MOE Grant #R-252-000- 625-133; Jakub Sliwinski and
Yair Zick were funded by NRF Fellowship #R-252-000-750-
733. Part of this work was conducted while Ayumi Igarashi
visited NUS, supported by the NRF Fellowship #R-252-000-
750-733.

References
Anthony, M., and Bartlett, P. 1999. Neural Network Learning:
Theoretical Foundations. Cambridge University Press.
Aziz, H., and Brandl, F. 2012. Existence of stability in hedo-

nic coalition formation games. In Proc.of the 11th AAMAS,
763–770.
Aziz, H., and Savani, R. 2016. Hedonic games. In Brandt,
F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A.,
eds., Handbook of Computational Social Choice. Cambridge
University Press. chapter 15.
Balcan, M.; Constantin, F.; Iwata, S.; and Wang, L. 2012.
Learning valuation functions. In Proc.of the 25th COLT,
4.1–4.24.
Balcan, M.; Procaccia, A.; and Zick, Y. 2015. Learning
cooperative games. In Proc.of the 24th IJCAI, 475–481.
Balcan, M. F.; Sandholm, T.; and Vitercik, E. 2018. A
general theory of sample complexity for multi-item profit
maximization. In Proc.of the 19th EC, 173–174.
Balcan, M.; Vitercik, E.; and White, C. 2016. Learning com-
binatorial functions from pairwise comparisons. In Proc.of
the 29th COLT, 1–35.
Balkanski, E.; Syed, U.; and Vassilvitskii, S. 2017. Statistical
cost sharing. In Proc.of the 30th NIPS, 6222–6231.
Banerjee, S.; Konishi, H.; and Sönmez, T. 2001. Core in a
simple coalition formation game. Social Choice and Welfare
18(1):135–153.
Bogomolnaia, A., and Jackson, M. 2002. The stability of
hedonic coalition structures. Games and Economic Behavior
38(2):201–230.
Booth, K. S., and Lueker, G. S. 1976. Testing for the con-
secutive ones property, interval graphs, and graph planarity
using pq-tree algorithms. Journal of Computer and System
Sciences 13(3):335 – 379.
Bousquet, N.; Li, Z.; and Vetta, A. 2015. Coalition games
on interaction graphs: A horticultural perspective. In Proc.of
the 16th EC, 95–112.
Chalkiadakis, G.; Greco, G.; and Markakis, E. 2016. Char-
acteristic function games with restricted agent interactions:
Core-stability and coalition structures. Artificial Intelligence
232:76–113.
Conitzer, V.; Derryberry, J.; and Sandholm, T. 2004. Combi-
natorial auctions with structured item graphs. In Proc.of the
19th AAAI, 212–218.
Corneil, D. G.; Olariu, S.; and Stewart, L. 1998. The ultimate
interval graph recognition algorithm? In Proc.of the 9th
SODA, 175–180.
Deineko, V., and Woeginger, G. 2013. Two hardness re-
sults for core stability in hedonic coalition formation games.
Discrete Applied Mathematics 161(13):1837–1842.
Demange, G. 2004. On group stability in hierarchies and
networks. Journal of Political Economy 112(4):754–778.
Dom, M. 2009. Algorithmic aspects of the consecutive-ones
property.
Fearnley, J.; Gairing, M.; Goldberg, P.; and Savani, R. 2013.
Learning equilibria of games via payoff queries. In Proc.of
the 14th EC, 397–414.
Fulkerson, D. R., and Gross, O. A. 1965. Incidence ma-
trices and interval graphs. Pacific Journal of Mathematics
15(3):835–855.

Gairing, M., and Savani, R. 2010. Computing stable out-
comes in hedonic games. In Proc.of the 3rd SAGT, 174–185.
Habib, M.; McConnell, R.; Paul, C.; and Viennot, L. 2000.
Lex-bfs and partition refinement, with applications to transi-
tive orientation, interval graph recognition and consecutive
ones testing. Theoretical Computer Science 234(1):59 – 84.
Hsu, W.-L., and Ma, T.-H. 1999. Fast and simple algorithms
for recognizing chordal comparability graphs and interval
graphs. SIAM Journal on Computing 28(3):1004–1020.
Igarashi, A., and Elkind, E. 2016. Hedonic games with
graph-restricted communication. In Proc.of the 15th AAMAS,
242–250.
Igarashi, A.; Sliwinski, J.; and Zick, Y. 2018. Forming
probably stable communities with limited interactions. arXiv
preprint arXiv:1811.04616.
Kearns, M., and Vazirani, U. 1994. An introduction to
computational learning theory. MIT press.
Kleinberg, J., and Tardos, E. 2006. Algorithm Design. Pear-
son Education.
Korte, N., and Möhring, R. H. 1987. A simple linear-time
algorithm to recognize interval graphs. Berlin, Heidelberg:
Springer Berlin Heidelberg. 1–16.
Kratsch, D.; McConnell, R. M.; Mehlhorn, K.; and Spinrad,
J. P. 2006. Certifying algorithms for recognizing interval
graphs and permutation graphs. SIAM Journal on Computing
36(2):326–353.
Meir, R.; Zick, Y.; Elkind, E.; and Rosenschein, J. 2013.
Bounding the cost of stability in games over interaction net-
works. In Proc.of the 27th AAAI, 690–696.
Morgenstern, J., and Roughgarden, T. 2016. Learning simple
auctions. In Proc.of the 29th COLT, 1298–1318.
Myerson, R. 1977. Graphs and cooperation in games. Math-
ematics of Operations Research 2(3):225–229.
Peters, D., and Elkind, E. 2015. Simple causes of complexity
in hedonic games. In Proc.of the 24th IJCAI, 617–623.
Peters, D. 2016. Graphical hedonic games of bounded
treewidth. In Proc.of the 30th AAAI, 586–593.
Shashua, A. 2009. Introduction to machine learning: Class
notes 67577. arXiv preprint arXiv:0904.3664.
Sinha, A.; Kar, D.; and Tambe, M. 2016. Learning adversary
behavior in security games: A PAC model perspective. In
Proc.of the 15th AAMAS, 214–222.
Sliwinski, J., and Zick, Y. 2017. Learning hedonic games. In
Proc.of the 26th IJCAI, 2730–2736.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Woeginger, G. 2013. Core stability in hedonic coalition
formation. In Proc.of the 39th SOFSEM, 33–50.

